
LLNL-TR-613612

Adaptive AMG with Coarsening
Based on Compatible Weighted
Matching

P. D'Ambra, P. S. Vassilevski

January 28, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Computing and Visualization in Science manuscript No.
(will be inserted by the editor)

Adaptive AMG with coarsening based on compatible
weighted matching

Pasqua D’Ambra · Panayot S. Vassilevski

Received: date / Accepted: date

Abstract We introduce a new composite adaptive Al-
gebraic Multigrid (composite αAMG) method to solve
systems of linear equations without a-priori knowledge
or assumption on characteristics of near-null compo-
nents of the AMG preconditioned problem referred to
as algebraic smoothness. Our version of αAMG is a com-
posite solver built through a bootstrap strategy aimed
to obtain a desired convergence rate. The coarsening
process employed to build each new solver component
relies on a pairwise aggregation scheme based on max-
imum weighted matching in a graph and on principles
of compatible relaxation. The latter replaces the com-
monly used characterization of strength of connection
in both the coarse space selection and in the interpo-
lation scheme. The goal is to design a method leading
to scalable AMG for a wide class of problems that go
beyond the standard elliptic Partial Differential Equa-
tions (PDEs). In the present work, we introduce the
method and demonstrate its potential when applied to
symmetric positive definite linear systems arising from
finite element discretization of highly anisotropic ellip-
tic PDEs on structured and unstructured meshes.

Keywords Adaptive AMG · weighted matching ·
strength of connection · compatible relaxation

This work of the second author was performed under the aus-
pices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

P. D’Ambra
Institute for High-Performance Computing and Networking, Na-
tional Research Council of Italy, Naples, Italy.
E-mail: pasqua.dambra@cnr.it

P. S. Vassilevski
Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory, Livermore, CA, USA.
E-mail: panayot@llnl.gov

Mathematics Subject Classification (2000) 65F10,
65N55

1 Introduction

We are interested in solving large and sparse linear sys-
tems of equations

Ax = b,

where A ∈ Rn×n is assumed symmetric positive definite
(s.p.d.), by algebraic multigrid (AMG) and more specif-
ically by aggregation based AMG. The AMG methods,
originated in [5], together with the smoothed aggrega-
tion AMG (or SA AMG) [20], have become a powerful
tool for solving problems of linear algebraic equations
that typically arise from discretization of elliptic PDEs.
In recent years substantial progress has been made to
extend the applicability of AMG to more general sparse
linear systems by developing methods that use appro-
priate adaptive strategies (cf., [2,3,7,8,14], etc.) that
are aimed at capturing the near-null components of
the error (sometimes referred to as algebraically smooth
components) that the current solver cannot efficiently
handle so that they are then used to improve the solver
by modifying its hierarchy of coarse spaces.

The approach that we utilize builds upon the adap-
tive AMG ideas however presents several new features.
It is also fairly general in the sense that we do not as-
sume any specific knowledge of the near-nullspace of A

(or of a preconditioned version of A, such as B−1A).
The main philosophy is the same as in the original
adaptive AMG papers (cited above); namely we test
the current method (represented by an operator B)
applied to the trivial system Ax = 0 starting with a
nonzero random initial iterate x, by computing x :=

2

(I −B−1A)x, which effectively provides an approxima-
tion to the eigenvector of B−1A corresponding to the
minimal eigenvalue of B−1A. If during this process a
slow convergence is encountered, we use the most re-
cent iterate to form a new coarse hierarchy. This is the
first main difference with the previously studied adap-
tive AMG methods. As a result, we end up with a com-
posite AMG solver B, given by the product formula

I −B−1A =
∏
j

(I −B−1
j A),

where each Bj corresponds to a separate hierarchy con-
structed driven by a particular algebraically smooth
vector.

Another difference in our approach is in the coarsen-
ing process employed to obtain a multilevel hierarchy.
We consider coarsening by pairwise aggregation based
on a maximum weighted matching (for definitions, see
Section 2) applied to the matrix adjacency graph. At
each level of the hierarchy, starting from a maximum
product matching of the graph associated with the cur-
rent matrix, we generate two complementary coarser
vector spaces by simple piecewise constant interpola-
tion of a given algebraically smooth vector. We select
the coarse space based on the principles of compati-
ble relaxation (originated in [1]), i.e., we test the con-
vergence of a pointwise smoother on homogeneous sys-
tems associated to the two available coarser matrices
and choose as new coarse matrix and new algebraically
smooth vector those for which slower convergence is
observed. In fact, if we use matching so that the aggre-
gates gather together pairs of fine degrees of freedom
(or dofs) that are “strongly connected” the complemen-
tary space gives rise to a hierarchically complement
matrix that is well-conditioned (when preconditioned
by the smoother). In general, the procedure can end
up building a binary tree of multiple coarse spaces by
matching-based aggregation where, at each level, selec-
tion of coarsening branch is based on compatible relax-
ation of a given vector. We use both optimal solution for
maximum product matching and an approximation al-
gorithm and demonstrate the performance of our adap-
tive AMG on the difficult (for multigrid) s.p.d. linear
systems arising from discretization of anisotropic PDEs
on structured and unstructured meshes. In particular,
we demonstrate that our coarsening strategy clearly de-
tects the direction of anisotropy in both structured and
unstructured mesh cases.

The remainder of the paper is organized as follows.
In Section 2, we recall the notion of graph associated
to a sparse matrix and remind the relation between
maximum product matching and linear algebra appli-
cations. Then we describe the algorithm for pairwise ag-

gregation based on maximum product matching. In Sec-
tion 3, we introduce two algebraic coarsening processes
based on the pairwise aggregation, depending on the
weights we used for matching. The actual coarse vector
space is chosen based on compatible relaxation princi-
ples. In Section 4, we outline the bootstrap strategy em-
ployed to build a composite αAMG with a prescribed
convergence rate, whereas in Section 5 we present an
extensive set of numerical results illustrating our ap-
proach. Finally, some remarks and future work are in-
cluded in Section 6.

2 Pairwise aggregation based on weighted
matching

To find matching in a graph is a classical problem in
combinatorial optimization which has wide range of
applications in Sparse Linear Algebra [10]. The start-
ing point is the representation of the sparse matrices
in terms of graphs [18]. Let A = (aij)i,j=1,...,n be a
sparse matrix, the graph associated with A is the pair
GA = (V,E), where the vertex set V corresponds to
the row/column indices of A and the edge set E corre-
sponds to the set of nonzeros of the matrix A so that
(i, j) ∈ E iff aij 6= 0. In the case of matrices with sym-
metric sparsity pattern, the edges (i, j) are undirected
pairs of vertices, i.e. (i, j) = (j, i) ∈ E iff aij 6= 0 and
aji 6= 0, and GA is called undirected graph. In the case
of a graph GB = {Vr∪Vc, E}, where the vertex set con-
sists of two disjoint sets corresponding to the rows and
columns of A, respectively, and (i, j) ∈ E iff aij 6= 0
for i ∈ Vr and j ∈ Vc, the graph is called bipartite. A
matching M ⊆ E in a graph (GA or GB) is a set of
edges such that no two edges share the same vertex.
The number of edges in M is called the cardinality of
the matching and a matching for GA or GB is referred
to as perfect one if its edges touch all vertices. We refer
to [10] and the reference therein for conditions which
guarantee the existence of perfect matching. A perfect
matching M for GA or GB corresponds to n nonzeros
no two of which are in the same row or column and can
be represented in terms of a column permutation

πji =
{

1, if (i, j) ∈M
0, otherwise

such that the matrix Aπ has a zero-free diagonal. Gen-
erally, in linear algebra applications, we are interested
in finding matching that controls the size of the diag-
onal elements of Aπ, and such a requirement is formu-
lated in terms of maximum weighted bipartite matching
problem. In particular, matrices with larger entries on
the diagonal can be obtained by solving the following

3

optimization problem.

– Maximum Product Bipartite Matching Prob-
lem: Given graph GB corresponding to a sparse
matrix A, find a matching M that maximizes the
product of the matched entries, i.e., find a permuta-
tion matrix π such that

∏
abs((Aπ)ii) is maximum

among all permutations.

Therefore, if row i is matched to column j in a maxi-
mum product bipartite matching problem, we can con-
clude that |aij | ≈ maxk 6=i|aik|, which in terms of the
classical AMG characterization of the strength of ma-
trix connections is equivalent to say that index i is
strongly connected to index j. The difference is that
the maximum product bipartite matching problem op-
timizes a global measure, whereas in classical AMG the
strength of connection is a local notion. We demon-
strate in the present paper that this global matching is
able to capture very accurately the direction of strong
anisotropy for difficult AMG test problems with aniso-
tropy that is not grid-aligned. We note however that the
maximum product bipartite matching problem if im-
plemented exactly can become too costly, on the other
hand a similar matching problem can be described for
undirected graphs, so in practice we use approximation
of the maximum product matching problem in undi-
rected graph to end up with setup cost of order O(n)
and still be able to capture the direction of strong anisotropy
as in the more expensive accurate solution of the max-
imum product bipartite matching problem.

Motivated by the above considerations, we propose
a coarsening process based on the pairwise aggrega-
tion described in Algorithm 1. It builds a partition
ak, k = 1, . . . , nc of the index set {1, . . . , n}, where
each aggregate ak is generally a pair of matched indices.
In the general case of possible unmatched indices, i.e.,
in the case of non-perfect matching (structurally rank-
deficient matrices) or sub-optimal solutions, we can ob-
tain a partition with possible singletons.

We observe that Algorithm 1 is an automatic ag-
gregation procedure only using information on matrix
entries and it does not depend on any user-defined stro-
ng/weakly connection threshold. Computation of a max-
imum product perfect matching of a graph is a chal-
lenging problem in terms of computational complexity,
indeed classical algorithms require a running time of
O(n3) [4]. On the other hand, the problem can be solved
for bipartite graphs with the widely used algorithm de-
scribed in [9] and implemented in the HSL-MC64 subrou-
tine [13], whose computational complexity is O(n(nnz+
n) log n), where nnz is the number of nonzeros of the
matrix. The latter cost is a worst case estimate. At any

Data: matrix A of dimension n
Result: np, ns, nc and sets of aggregates a1, . . . anc

compute M weighted matching for A;
nc = 0, np = 0, ns = 0;
U = [1, . . . , n];
while U 6= ∅ do

Pick an i ∈ U ;
if ∃j ∈ U \ {i} such that (i, j) ∈M then

np = np + 1;
nc = nc + 1;
anc = {i, j};
U = U \ {i, j};

else
ns = ns + 1;
nc = nc + 1;
anc = {i};
U = U \ {i};

end

end

Algorithm 1: Pairwise aggregation based on
weighted matching

rate, from AMG perspective the latter cost is still un-
acceptable since our ultimate goal is aiming at O(n)
algorithm. For that reason, we also use an approximate
version of a maximum weighted matching algorithm in
an undirected graph that uses O(n) operations. We
demonstrated that, although in the case of approxi-
mate matching, the coarsening ratio of our approach
is reduced with respect to the coarsening by a factor
of two in the exact perfect matching, the overall per-
formance of the adaptive process does not deteriorate
substantially.

3 Coarsening based on compatible weighted
matching

3.1 Main ingredients for coarsening

Given a set of aggregates a1, . . . anc , built by Algorithm
1, and a starting (arbitrary) vector w, per each pair
al = {i, j}, l = 1, . . . , np, let

wal
=

1√
w2

i + w2
j

[
wi

wj

]
, w⊥al

=
1√

w2
i + w2

j

[
−wj

wi

]
be the normalized restrictions of w to the set al and its
orthonormal complement. We then define the following
matrices:

P̃c = blockdiag(wa1 , . . . ,wanp
) ∈ R2np×np ,

P̃f = blockdiag(w⊥a1
, . . . ,w⊥anp

) ∈ R2np×np .

For the singletons al = {k}, l = 1, . . . , ns, (nc = np +
ns, n = 2np + ns), we introduce the diagonal matrix:

W = diag(wk/|wk|) ∈ Rns×ns .

4

From the above matrices, we obtain two prolongation
matrices corresponding to two complementary coarse
index sets:

Pc =
(

P̃c 0
0 W

)
∈ Rn×nc , Pf =

(
P̃f

0

)
∈ Rn×np . (3.1)

The n × nc matrix Pc, referred to as tentative pro-
longator, maps vectors associated with the coarse in-
dex set {1, 2, . . . , nc} on the original fine-grid set
{1, 2, . . . , n}, whereas Pf , referred to as complemen-
tary tentative prolongator, is an n × np matrix which
transfers vectors associated with the complementary
coarse index set {1, 2, . . . , np} also on the fine-grid
index set {1, 2, . . . , n}. We recall that nc = np + ns

and n = 2np + ns, where np is the number of pairwise
aggregates and ns is the number of singletons. Note that
Rn = Range(Pc)⊕⊥ Range(Pf), where Range(Pc) 3 w
and Range(Pf) 3 w⊥ form an orthogonal decomposi-
tion of Rn. In other words, we have that the matrix
P = [Pf , Pc] is orthogonal.

After proper reordering of A, the following two coar-
ser matrices can be formed via the Galerkin triple ma-
trix products

Ac = PT
c APc ∈ Rnc×nc , Af = PT

f APf ∈ Rnp×np .

(3.2)

These are the diagonal blocks of the transformed fine-
grid matrix PT AP under the orthogonal transforma-
tion P , i.e., we have

PT AP =
[

Af Afc

Acf Ac

]
.

The off-diagonal blocks read: Afc = PT
f APc and Acf =

PT
c APf .

The choice of the best coarse matrix Ac for a mul-
tilevel hierarchy can be driven by the basic principle
of compatible relaxation first introduced by Brandt in
[1] and extended in [11] (see also [21]). The compatible
relaxation is defined as a relaxation scheme which is
able to keep coarse-level variables invariant. It gives a
practical way to measure the quality of a set of coarse
variables, indeed, since in an efficient multigrid method
relaxation scheme has to be effective on the fine vari-
ables, the convergence rate of a compatible relaxation
scheme can be used as a measure of the quality of a set
of coarse variables. This basic idea was used in differ-
ent approaches to select coarse grids [6,15]. Here, we
apply the principle of compatible relaxation to choose
the best coarse matrix from the two available matri-
ces in (3.2), and the corresponding coarse index set,
by applying a simple point-wise relaxation scheme to

the homogeneous systems associated to each of the ma-
trices, starting from a random initial guess and then
relaxing on the two complementary vector spaces sep-
arately. If the vector w is chosen based on a relaxation
scheme applied to the original matrix A so that it is in
the near-null space of A, it is natural to expect that Af

will be better conditioned than Ac. For a more general
iterative process, we allow the option to choose between
Af and Ac when selecting the coarse-level variables.

3.2 The multilevel adaptive coarsening schemes

Our overall adaptive multilevel coarsening strategy can
be described as follows. We propose two versions. The
first one, referred to as coarsening based on compati-
ble matching, rel.1 is sketched in Algorithm 2. We start
with the given system matrix and a given smooth vec-
tor, for example the unitary vector. Then, we apply Al-
gorithm 1 for building the two complementary coarse
matrices in (3.2). After that, we test the convergence
of a simple smoother on homogeneous systems asso-
ciated with the two available matrices and choose as
new coarse matrix and new algebraically smooth vec-
tor those for which slower convergence is observed. The
process can be applied in a recursive way until a desired
small size of the coarse matrix is obtained. Therefore,
our procedure builds a binary tree of multiple coarse
spaces by matching-based aggregation, where, at each
level, selection of the new coarsening branch is based
on compatible relaxation of a given vector.

Data: A matrix, w (smooth) vector, maxsize maximum
size for the coarsest matrix

Result: hierarchy of coarse matrices Ak (and intergrid
operators)

A1 = A, k = 1;
relax ν1 times on A1w1 = 0 starting with w;
while size(Ak) > maxsize do

compute partition al by Algorithm 1 applied to
Ak − diag(Ak);
build Ak

c and Ak
f from al and wk;

relax ν1 times on Ak
cwc = 0 and on Ak

fwf = 0

starting with a random guess;
estimate convergence rates ρf and ρc;
if ρf < ρc then

Ak+1 = Ak
c , wk+1 = wc;

else
Ak+1 = Ak

f , wk+1 = wf ;

end
k = k + 1;

end

Algorithm 2: Coarsening based on compatible
matching, rel. 1

5

Note that, as shown in [17], in the case of strongly
diagonally dominant or s.p.d. matrices maximum prod-
uct matching produces permutation matrices equal to
the identity matrices, i.e. it produces a set of n self-
aggregated indices. Therefore, in order to obtain an ef-
fective pairwise aggregation, in Algorithm 2, we apply
the maximum product matching to the matrix Ak −
diag(Ak), where diag(Ak) is the diagonal matrix ob-
tained by the diagonal elements of Ak. We also observe
that in Algorithm 2, when we build the two comple-
mentary coarse matrices Ac and Af , we need to com-
pute the normalized restriction of the smooth vector w
on each set of the partition computed by Algorithm 1.
It may happen that during the coarsening process, the
smooth vector components corresponding to some set of
the partition are very small, i.e. the corresponding error
components are sufficiently damped by the smoother. In
these cases we associate the corresponding unknowns to
the vector space Range(Pf). Convergence rates in Algo-
rithm 2 can be estimated as the ratios of the A-norm of
two successive iterates, that is ρc = ‖wk

c ‖Ac/‖wk−1
c ‖Ac

and ρf = ‖wk
f‖Af

/‖wk−1
f ‖Af

.
There is an alternative to Algorithm 2 that we con-

sider, still using both the orthogonal decomposition of
Rn defined by the matrices in (3.1) and the principles
of compatible relaxation to build an effective coars-
ening process. Indeed, after we have built the matri-
ces in (3.2), we select Ac as the coarse matrix if the
corresponding complementary matrix Af is diagonally-
dominant, i.e., if Af has the compatible relaxation fast
to converge. We observe that given the original matrix
A, its associated graph GA, and a vector w, the di-
agonal entries of the resulting Af are a subset of the
following values:

âi,j =
1

w2
j + w2

i

[
−wj

wi

]T (
ai,i ai,j

aj,i aj,j

) [
−wj

wi

]
, (i, j) ∈ E.

(3.3)

Consider the thus modified symmetric matrix Â = âi,j ∈
Rn×n having a null diagonal and the same sparsity pat-
tern as A. Note that building Â has a computational
cost of O(nnz). Then, if we compute a maximum prod-
uct weighted matching M ⊆ E from Â and build the
corresponding aggregates, we see that the complemen-
tary tentative prolongator Pf in (3.1) produces a matrix
Af which has on its diagonal entries âi,j , (i, j) ∈ M
with maximal product. The latter can be seen as an
approximation to the notion of diagonal dominance giv-
ing rise to a fast convergent compatible relaxation. The
process can be applied in a recursive way to define a
new adaptive coarsening algorithm which we refer to
as coarsening based on compatible matching, rel 2. It

is sketched in Algorithm 3. Note that also in this algo-
rithm, at each level possible small smooth vector entries
are not associated to any coarse unknown.

Data: A matrix, w (smooth) vector, maxsize maximum
size for the coarsest matrix

Result: hierarchy of coarse matrices Ak (and intergrid
operators)

A1 = A, k = 1;
relax ν1 times on A1w1 = 0 starting with w;
while size(Ak) > maxsize do

build bAk from Ak and wk;

compute partition al by Algorithm 1 applied to bAk;
build Ak

c from al and wk;
relax ν1 times on Ak

cwc = 0 starting with a random
guess;
Ak+1 = Ak

c , wk+1 = wc;
k = k + 1;

end

Algorithm 3: Coarsening based on compatible
matching, rel. 2

The above two compatible matching based coars-
ening algorithms can be used to define a hierarchy of
coarse vector spaces and matrices from which a multi-
level method B can be designed. In the following, we
describe an adaptive strategy to improve the efficiency
of an initial multilevel method obtained with compati-
ble matching based coarsening by successively building
a composite method with a prescribed convergence rate.

4 Composite AMG with prescribed
convergence rate

Following the αAMG methodology, once an algebraic
multilevel solver B has been constructed, we test its
performance by solving the homogeneous problem Ax =
0, i.e. by performing the following iterations:

xk = (I −B−1A)xk−1, k = 1, 2, . . . ,

starting with a random initial iterate x0 and monitor-
ing convergence through two successive values of the
A-norm of the error (which is equal to the respective
iterate, since the exact solution is zero). The above it-
erates provide approximation to the lowest eigenmode
of B−1A, which is commonly referred to as algebraic
smooth vectors with respect to the current AMG me-
thod. If the convergence factor of the method is close
to one, we can select w = xk/‖xk‖A and apply one
of the coarsening algorithms described in the preced-
ing section to generate a new method B1 based on this
new vector w. Assuming that we have constructed two
(or more) methods Br, r = 0, 1, ..., m via the above
bootstrap scheme aimed at improving the initial AMG,

6

we consider the homogeneous system and monitor the
convergence of the following composite method, start-
ing with a random initial guess x0,

xk =
m∏

r=1

(I −B−1
r A)xk−1, k = 1, 2, . . . , (4.1)

or of its symmetrized version:

xk =
2m+1∏
r=0

(I −B−1
r A)xk−1, k = 1, 2, . . . , (4.2)

where Bm+r = Bm+1−r, r = 1, . . . , m + 1. The pro-
cess may be repeated by computing at each stage a
new multilevel method until the convergence rate of
the composite AMG is acceptable. The final adaptive
procedure is sketched in Algorithm 4.

Building Phase: build a new AMG component

1. let m = 1 and w1 (be an initial vector, e.g. w1 = 1);
2. apply Algorithm 2 or Algorithm 3 to A and wm

for building hierarchy of coarser matrices Ak and
prolongators P k;

3. define Bm as a standard (V, W, or FM)-cycle based
on the new hierarchy;

Testing Phase: apply the composite AMG and expose (further)
smooth errors

3. let x0 a random vector;
4. apply iterations (4.1) or (4.2) for ν2 times

on Ax = 0;
5. estimate convergence rate ρ of the composite AMG;
6. if ρ > ρdesired, set wm+1 = xν2/‖xν2‖A,

m = m + 1, go to 2.

Algorithm 4: Composite αAMG - Setup Phase

5 Results

In this Section we illustrate the performance of our com-
posite αAMG in terms of the cost of the setup phase
described in Algorithm 4 and the ability of the coars-
ening procedures based on maximum product matching
to obtain effective coarse grids.

We considered the following anisotropic PDE posed
in the unit square, when homogeneous Dirichlet bound-
ary conditions are considered:

−div(K ∇u) = f,

where K is the coefficient matrix

K =
[

a c

c b

]
, with


a = ε + cos2(θ)
b = ε + sin2(θ)
c = cos(α) sin(θ)

The parameter 0 < ε ≤ 1 defines the strength of
anisotropy in the problem, while the parameter θ spec-
ifies the direction of anisotropy. In the following we dis-
cuss results related to ε = 0.001 and θ = 0, π/8, π/4,
π/3, π/2 for a total of 5 test cases, which we refer to as
Test Case 1 to 5, respectively. The above problem was
discretized by the Matlab PDE toolbox, using bilinear
finite elements on triangular and rectangular meshes.

We measure the setup cost in terms of AMG com-
ponents (stages) built by the adaptive process in Algo-
rithm 4, both in the case of the coarsening described in
Algorithm 2 and in the case of Algorithm 3. In addition
to the number of the components, we also report, per
each test case and per each mesh, the convergence fac-
tor (rho) of the composite solver, the average number
of levels (nlev) of all built solver components and the
average of their operator complexity (cmpx). This last
parameter is commonly defined as the ratio between
the sum of nonzero entries of the matrices of all levels
and the number of nonzero entries of the fine matrix;
it gives an estimate of the cost of application of a cy-
cle. Many algorithmic and parameter choices are possi-
ble to test our method; here we discuss results related
to the following particular choices. The desired conver-
gence factor required for the composite AMG was set to
ρdesired = 0.7 and a symmetrized multiplicative compo-
sition of the AMG components as in (4.2) was applied.
The number of iterations used to estimate solver conver-
gence rates at each stage was set to ν2 = 15. Weighted
Jacobi was applied as relaxation scheme in Algorithm
2 and Algorithm 3, where we have fixed the number
of iterations equal to ν1 = 20. We stop the coarsen-
ing process when the size of the coarsest matrix was at
most maxsize = 100. Note that we did various experi-
ments with increased values of ν1 and ν2 but estimated
values of the obtained convergence rates did not differ
significantly.

We developed a Matlab implementation of the com-
posite αAMG and we analyze its behavior when the
coarsening algorithm is based on algorithm HSL-MC64
(Section 5.1), or based on a Matlab implementation
of the linear complexity half-approximation maximum
weighted matching algorithm for undirected graphs de-
scribed in [19] (Section 5.2).

5.1 Composite AMG based on exact matching

In the following we analyze the setup cost of our boot-
strap strategy for building a composite multigrid of
type 4.2, when each AMG component was a W(1,1)-
cycle, with one sweep of symmetric Gauss-Seidel used
as both pre/post smoother and as coarsest level solver.
Here we discuss results obtained using the HSL-MC64

7

routine which, for non-singular matrices, is able to com-
pute a perfect weighted matching for bipartite sparse
matrix graphs. In this case, Algorithm 1 has a coars-
ening factor less but close to two, since it can produce
a (small) number of singletons (unaggregated DOFs),
essentially due to possible unsymmetric matching (e.g.
row i matched at column j and row j matched at col-
umn k, with k 6= i).

5.1.1 Unstructured mesh

In this Section we present results for matrices corre-
sponding to discretization of our test cases on unstruc-
tured triangular meshes with a total number of nodes
n = 2705, 10657, 42305, that correspond to three differ-
ent mesh sizes. We report, in the first five pairs of tables
(Tables 5.1–5.5), all parameters leading to the setup
cost of the composite AMG achieving convergence rate
not larger than the prescribed one, ρdesired = 0.7.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

2705 1 0.69 6 1.96
10675 3 0.63 8 1.98
42305 6 0.66 10 1.99

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

2705 1 0.69 6 1.94
10657 3 0.64 8 1.98
42305 5 0.69 11 2.00

Table 5.1 Test Case 1: (θ = 0). Setup cost for different mesh
sizes when exact bipartite matching is used for aggregation.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

2705 1 0.29 6 1.96
10675 1 0.38 8 1.99
42305 1 0.50 10 2.00

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

2705 1 0.29 6 1.95
10657 1 0.36 8 1.99
42305 1 0.50 10 2.00

Table 5.2 Test Case 2: (θ = π/8). Setup cost for different mesh
sizes when exact bipartite matching is used for aggregation.

We can see that in all the cases our method, for both
coarsening algorithms (Algorithm 2 and Algorithm 3),

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

2705 1 0.69 6 1.93
10675 3 0.68 8 1.98
42305 6 0.68 10 2.00

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

2705 2 0.58 6 1.94
10657 3 0.67 8 1.98
42305 5 0.70 10 2.00

Table 5.3 Test Case 3: (θ = π/4). Setup cost for different mesh
sizes when exact bipartite matching is used for aggregation.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

2705 1 0.70 6 1.95
10675 3 0.63 8 1.99
42305 6 0.65 10 2.00

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

2705 2 0.51 6 1.94
10657 3 0.63 8 1.98
42305 6 0.70 10 2.00

Table 5.4 Test Case 4: (θ = π/3). Setup cost for different mesh
sizes when exact bipartite matching is used for aggregation.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

2705 1 0.70 6 1.96
10675 2 0.70 8 1.99
42305 5 0.67 10 2.0

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

2705 1 0.70 6 1.95
10657 3 0.59 8 1.99
42305 5 0.69 10 2.00

Table 5.5 Test Case 5: (θ = π/2). Setup cost for different mesh
sizes when exact bipartite matching is used for aggregation.

shows very similar results and it is able to achieve a con-
vergence factor less than the desired one with a mod-
erate number of components (denoted as nstages in the
tables). This demonstrates feasibility and robustness of
our approach. If we look closer at the convergence be-
havior in the different test cases, we can observe that
the method shows very good efficiency and scalability
on Test Case 2, where a convergence rate much lower
than the required one is obtained, for all mesh sizes, by
building only 1 AMG component. An increase in the

8

number of coarsening levels corresponding to increased
mesh size produces only a slight degradation in the con-
vergence rate of the solver. In all other test cases, the
convergence behavior appears mesh dependent, show-
ing an increase of the number of solver components
when the mesh gets refined. Indeed, in all cases with
the exception of Test Case 2, we need 5 or 6 compo-
nents to get the desired convergence rate for the finest
mesh versus 1 or 2 components needed in the case of
the smallest mesh size. In all cases the average opera-
tor complexity over all constructed solver components
is about two.

Concerning the performance of the coarsening pro-
cess, we observe that both versions of the compati-
ble weighted bipartite matching generate similar coars-
ening trees. More specifically, we see that Algorithm
2 based on an adaptive choice of the coarsening tree
branch which depends on the convergence behavior of
the relaxation scheme applied to two orthogonal vector
spaces always chooses (at each level) the tree branch as-
sociated with the matrix Ac. This shows that the pair-
wise aggregation algorithm based on maximum product
matching of the original system matrix (that is A, not
the modified one, Â) is able to detect strong matrix
connections (since then Af has faster to converge com-
patible relaxation) for our test cases. In Figures 5.1 and
5.2, we can see that the estimated convergence factors
ρc and ρf of the compatible relaxation applied to the
matrices Ac and Af respectively produced by our two
coarsening schemes, Algorithm 2 and Algorithm 3, have
very similar pattern.

A1

%c=0.98

↙
%f =0.81

↘
A1

c = A2 A1
f

%c=0.98

↙
%f =0.79

↘
A2

c = A3 A2
f

%c=0.99

↙
%f =0.78

↘
A3

c = A4 A3
f

%c=0.99

↙
%f =0.71

↘
A4

c = A5 A4
f

%c=0.99

↙
%f =0.74

↘
A5

c = A6 A5
f

Fig. 5.1 Test Case 5 (θ = π/2), n = 2705. Coarsening tree
based on Algorithm 2 and exact bipartite matching.

The coarsening trees depicted in Figs. 5.1-5.2 are
representative of the behavior of the coarsening process
for each component of the composite αAMG solvers
built for all considered test cases and various mesh sizes.

A1

%c=0.98

↙
%f =0.82

↘
A1

c = A2 A1
f

%c=0.99

↙
%f =0.79

↘
A2

c = A3 A2
f

%c=0.99

↙
%f =0.79

↘
A3

c = A4 A3
f

%c=0.99

↙
%f =0.77

↘
A4

c = A5 A4
f

%c=0.99

↙
%f =0.77

↘
A5

c = A6 A5
f

Fig. 5.2 Test Case 5 (θ = π/2), n = 2705. Coarsening tree
based on Algorithm 3 and exact bipartite matching.

More specifically, we observe that the estimated con-
vergence factor of the compatible relaxation, that is, of
the weighted Jacobi applied to the homogeneous system
associated with Af built at each coarsening level, de-
creases fairly when the number of levels increases and
stays within the range [0.71, 0.85] for all tested mesh
sizes. Such bounded convergence rates of the compati-
ble relaxation when the number of levels and the prob-
lem size increase are good indication that our two coars-
ening schemes are capable of producing scalable AMG.
In the following figures, Figs. 5.3-5.4, we show illustra-
tion of the pattern of the aggregates (or sparsity of the
interpolation matrices) built by our two coarsening al-
gorithms for two different test cases corresponding to
the smallest problem size. Note that points correspond-
ing to fine grid are represented in the figures by sym-
bol + in black, while orange lines and boxes represent
aggregates built at the coarsest level. The number of
aggregates at the coarsest level is nc = 93 for both pic-
tures in Fig. 5.3, while in Fig. 5.4 we have nc = 92 for
the picture on the top, corresponding to Algorithm 2,
and nc = 91 and nc = 92, for the pictures in the middle
and on the bottom, respectively, corresponding to the
2-stages AMG built when Algorithm 3 is applied.

In Figures 5.3 and 5.4 we can clearly see that both
coarsening algorithms were able to produce semi-coar-
sening which detects the direction of anisotropy by build-
ing aggregates aligned with the x−direction for Test
Case 1 and with the main diagonal for Test Case 3.

5.1.2 Structured mesh

In this subsection we report results for linear systems
arising from three of the test cases presented in the pre-
vious subsection, corresponding to θ = 0, π/4 and π/3,
now using rectangular mesh with increasing number of

9

Fig. 5.3 Test case 1 (θ = 0), n = 2705. Coarsest interpolation
matrices pattern built by Algorithm 2 (top) and Algorithm 3
(bottom) with exact matching.

nodes in the discretization. The goal is to demonstrate
that our coarsening algorithms can easily detect grid-
aligned anisotropy (cases θ = 0 and π/4) and after some
additional work, the adaptive procedure can produce
semi-coarsening also in the non-grid aligned anisotropic
case (π/3). This is indeed the case and is illustrated
in Figs. 5.7-5.8-5.9 for a mesh with 40 internal nodes
per each direction, where the number of aggregates at
the coarsest level are nc = 58 for both the pictures of
Fig. 5.7; nc = 63 and nc = 60 for the pictures at the
top and the bottom of Fig. 5.8, respectively; nc = 56
and nc = 58 for the pictures at the top and the bottom
of Fig. 5.9, respectively. Note that in Figure 5.8, at the
top left and bottom right, black bullets correspond to
nodes not aggregated due to near zero smooth error at
these points obtained after relaxation.

The parameter setting to construct the solver, the
smoother and the algorithmic choices are the same as
in the previous unstructured mesh case.

We first note that, as in the case of unstructured
meshes, the two coarsening processes give similar re-
sults for all the test cases. In terms of setup cost, we

Fig. 5.4 Test case 3 (θ = π/4), n = 2705. Coarsest interpolation
matrices pattern built by Algorithm 2 (top) and Algorithm 3
(center and bottom) with exact bipartite matching.

observe that in the easy case of grid-aligned anisotropy,
Test Case 1 and Test Case 3, only 1 or at most 2
components are needed to achieve convergence factor
not greater than the desired one showing a very good
scalability of the method. On the other hand, as in
the unstructured grid case, for Test Case 4 when the
anisotropy is not grid-aligned, we observe a degrada-
tion of the scalability, i.e., the number of components

10

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

64× 64 1 0.63 7 2.0
128× 128 1 0.70 9 2.1
256× 256 2 0.61 11 2.1

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

64× 64 1 0.40 7 2.0
128× 128 1 0.63 9 2.1
256× 256 2 0.61 11 2.1

Table 5.6 Test Case 1: (θ = 0). Setup cost for different mesh
sizes when exact bipartite matching is used for aggregation.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

64× 64 1 0.36 7 1.95
128× 128 1 0.55 9 1.97
256× 256 2 0.56 11 1.98

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

64× 64 1 0.28 7 1.95
128× 128 1 0.53 9 1.97
256× 256 2 0.56 11 1.99

Table 5.7 Test case 3: (θ = π/4). Setup cost for different mesh
sizes when exact bipartite matching is used for aggregation.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

64× 64 2 0.66 7 1.97
128× 128 4 0.68 9 2.00
256× 256 8 0.67 11 2.00

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

64× 64 2 0.62 7 1.96
128× 128 4 0.64 8 1.98
256× 256 7 0.67 11 1.99

Table 5.8 Test case 4: (θ = π/3). Setup cost for different mesh
sizes when exact bipartite matching is used for aggregation.

needed to reach the desired convergence factor increases
when the mesh is refined. Also for these test cases the
average operator complexity is about two for each mesh
size similarly to the unstructured mesh case. As in the
unstructured mesh case described in the previous sec-
tion, we observe that the behavior of the coarsening
process is very similar per each AMG component of
the composite solver. It also appears comparable to
that obtained for the same test cases arising from dis-
cretization on unstructured grids and discussed before,

although here we observed almost constant convergence
rate of the compatible relaxation (≈ 0.8) at each level
of the coarsening tree, for all test cases and each mesh.
As representatives of the general behavior, we draw in
Figures 5.5 and 5.6 the coarsening trees built by two
versions of our matching-based coarsening methods for
the first component of the 2-stage composite AMG for
Test case 4 using the smallest size structured mesh.

A1

%c=0.97

↙
%f =0.80

↘
A1

c = A2 A1
f

%c=0.98

↙
%f =0.79

↘
A2

c = A3 A2
f

%c=0.99

↙
%f =0.77

↘
A3

c = A4 A3
f

%c=0.99

↙
%f =0.76

↘
A4

c = A5 A4
f

%c=0.99

↙
%f =0.76

↘
A5

c = A6 A5
f

%c=0.99

↙
%f =0.77

↘
A6

c = A7 A6
f

Fig. 5.5 Test case 4 (θ = π/3), n = 64 × 64. Coarsening tree
based on Algorithm 2 and exact bipartite matching.

A1

%c=0.98

↙
%f =0.80

↘
A1

c = A2 A1
f

%c=0.98

↙
%f =0.84

↘
A2

c = A3 A2
f

%c=0.98

↙
%f =0.83

↘
A3

c = A4 A3
f

%c=0.99

↙
%f =0.82

↘
A4

c = A5 A4
f

%c=0.99

↙
%f =0.80

↘
A5

c = A6 A5
f

%c=0.98

↙
%f =0.80

↘
A6

c = A7 A6
f

Fig. 5.6 Test case 4 (θ = π/3), n = 64 × 64. Coarsening tree
based on Algorithm 3 and exact bipartite matching.

11

Fig. 5.7 Test Case 1 (θ = 0), n = 40×40. Coarsest interpolation
matrices pattern built by Algorithm 2 (top) and Algorithm 3
(bottom) with exact bipartite matching.

5.2 Composite AMG based on approximate matching

As we remark at the end of Section 2, the HSL-MC64 sub-
routine used for computing a maximum product mat-
ching in a bipartite graph has a non-optimal computa-
tional complexity. This is not desirable if used in multi-
grid context, where we aim to obtain optimal O(n)
computational complexity method. In order to over-
come the super-linear computational complexity of the
algorithms for exact weighted matching, we tested an
algorithm which allows to obtain a matching in a gen-
eral graph with weight about 1/2 of the maximum, also
known as half-approximate matching, with O(n) com-
putational complexity [19].

Motivated by the wide range of applications, to ob-
tain linear-time approximate algorithms with increas-
ing performance ratio as well as effective parallel im-
plementations of such approximate algorithms is cur-
rently an active area of research (see for example, [4,
12,16]) Our aim here is to assess the impact of us-
ing half-approximate matching in Algorithm 1 during
the coarsening process described in Section 3 as well as

Fig. 5.8 Test Case 3 (θ = π/4), n = 40× 40. Coarsest interpo-
lation matrices pattern built by Algorithm 2 (top) and Algorithm
3 (bottom) with exact bipartite matching.

its impact on the convergence behavior and setup cost
of our composite αAMG. All results discussed in what
follows are obtained using our Matlab implementation
of the adaptive AMG where the HSL-MC64 subroutine
was substituted by a Matlab function implementing the
matching algorithm described in [19]. We report tables
that contain the parameters describing the setup cost
of the composite AMG for the same test cases intro-
duced in Section 5 for both unstructured and struc-
tured meshes. Algorithmic choices and parameter set-
tings are the same as before, however now instead of
using W (1, 1) cycle, in order to have optimal multigrid
components coupled with linear complexity matching,
we apply a hybrid V-W cycle which allows to obtain a
O(n) linear complexity cycle. Again, we use one sweep
of symmetric Gauss-Seidel both as pre/post smoother
and coarsest level solver.

5.2.1 Unstructured mesh

As in the case of exact bipartite matching, we first dis-
cuss results obtained on triangular meshes with a total

12

Fig. 5.9 Test Case 4 (θ = π/3), n = 40× 40. Coarsest interpo-
lation matrices pattern built by Algorithm 2 (top) and Algorithm
3 (bottom) with exact bipartite matching.

number of nodes n = 2705, 10657, 42305, respectively,
corresponding to three different mesh sizes and all five
test cases (with angle of anisotropy θ = 0, π/8, π/3,
π/4, π/2). We report the results in Tables 5.9–5.13
the characteristics of the setup cost of the composite
AMG needed to achieve pre-selected convergence fac-
tor ρdesired = 0.7.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

2705 3 0.49 7 2.13
10675 4 0.62 9 2.16
42305 6 0.67 12 2.17

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

2705 3 0.54 7 2.12
10657 5 0.59 9 2.16
42305 6 0.68 12 2.17

Table 5.9 Test Case 1: (θ = 0). Setup cost for different mesh
sizes when approximate graph matching is used for aggregation.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

2705 1 0.47 7 2.12
10675 1 0.63 9 2.15
42305 2 0.54 11 2.16

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

2705 1 0.49 7 2.14
10657 1 0.64 9 2.17
42305 2 0.56 11 2.17

Table 5.10 Test Case 2: (θ = π/8) Setup cost for different mesh
sizes when approximate graph matching is used for aggregation.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

2705 3 0.59 7 2.12
10675 5 0.58 9 2.15
42305 7 0.65 12 2.16

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

2705 3 0.54 7 2.12
10657 4 0.69 9 2.16
42305 8 0.70 12 2.17

Table 5.11 Test Case 3: (θ = π/4) Setup cost for different mesh
sizes when approximate graph matching is used for aggregation.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

2705 3 0.46 7 2.12
10675 4 0.65 9 2.16
42305 6 0.70 12 2.17

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

2705 3 0.45 7 2.13
10657 5 0.57 9 2.16
42305 7 0.70 12 2.17

Table 5.12 Test Case 4: (θ = π/3) Setup cost for different mesh
sizes when approximate graph matching is used for aggregation.

A general observation is that as in the case of ex-
act bipartite matching, the two coarsening algorithms
give similar convergence behavior also in the case of ap-
proximate matching. Indeed, looking at the coarsening
trees obtained per each AMG component (see Figures
5.10 and 5.11) we observe the same behavior showed in

13

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

2705 3 0.55 7 2.12
10675 4 0.57 9 2.16
42305 6 0.67 12 2.17

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

2705 2 0.67 7 2.12
10657 4 0.62 9 2.16
42305 6 0.68 12 2.17

Table 5.13 Test Case 5: (θ = π/2) Setup cost for different mesh
sizes when approximate graph matching is used for aggregation.

Section 5.1. On the other hand, using half-approximate

A1

%c=0.98

↙
%f =0.83

↘
A1

c = A2 A1
f

%c=0.98

↙
%f =0.80

↘
A2

c = A3 A2
f

%c=0.99

↙
%f =0.80

↘
A3

c = A4 A3
f

%c=0.99

↙
%f =0.73

↘
A4

c = A5 A4
f

%c=0.99

↙
%f =0.74

↘
A5

c = A6 A5
f

%c=0.99

↙
%f =0.69

↘
A6

c = A7 A6
f

Fig. 5.10 Test Case 5 (θ = π/2), n = 2705. Coarsening tree
based on Algorithm 2 and approximate graph matching.

matching produces coarsening with factor less than two
due to a larger number of singletons than in the case of
aggregation based on exact matching. This happens be-
cause, while the exact weighted matching implemented
in HSL-MC64 computes weighted matching with maxi-
mum cardinality (perfect matching for non-singular ma-
trices), the approximate algorithm from [19] computes
a maximal weighted matching, not necessarily of maxi-
mum cardinality. The reduced coarsening factor affects
the number of coarsening levels (on average by one),
and as a result leads to a slight increase of the aver-
age operator complexity. We recall, that we stop the
coarsening process when the size of the coarse prob-
lem reaches certain threshold. On the other hand, as
expected, the use of the hybrid V-W cycle generally af-
fects the scalability of the composite AMG. Indeed in all
test cases, we observe a slight increase in the number

A1

%c=0.98

↙
%f =0.82

↘
A1

c = A2 A1
f

%c=0.98

↙
%f =0.84

↘
A2

c = A3 A2
f

%c=0.99

↙
%f =0.79

↘
A3

c = A4 A3
f

%c=0.99

↙
%f =0.77

↘
A4

c = A5 A4
f

%c=0.99

↙
%f =0.75

↘
A5

c = A6 A5
f

%c=0.99

↙
%f =0.77

↘
A6

c = A7 A6
f

Fig. 5.11 Test Case 5 (θ = π/2), n = 2705. Coarsening tree
based on Algorithm 3 and approximate graph matching.

of components (1 or 2 additional components, except
for Test Case 3 with the largest mesh and Algorithm
3, which requires 3 additional components) needed to
reach the desired convergence factor. In Figures 5.12–
5.13 we show the pattern of the aggregates built by the
two coarsening algorithms for the first component of
the composite AMG solvers built for Test Case 1 and
Test Case 3 with the smallest mesh. In these cases the
number of aggregates at the coarsest level is nc = 72
(top) and nc = 69 (bottom) in Figure 5.12, nc = 74
(top) and nc = 67 (bottom) in Figure 5.13. The figures
in both cases show that both coarsening algorithms are
able to fairly detect the direction of anisotropy however
not as accurately as the aggregates obtained using exact
matching (see Figures 5.3 and 5.4). The latter appear
better aligned with the direction of anisotropy than the
ones obtained using half-approximate matching.

5.2.2 Structured mesh

In the following we report the same results as in the
previous subsection corresponding to the construction
of composite AMG with a desired convergence rate, now
on structured meshes, using half-approximate matching
for aggregation. Also, in order to have optimal O(n)
setup complexity for each solver component, we apply
the hybrid V-W cycle (to compensate for the coarsening
factor less than two). All other algorithmic choices are
the same as in Section 5.1.2.

We observe from Tables 5.14–5.16, that using half-
approximate matching coupled with the hybrid V-W
does not affect in a significant way the convergence be-
havior of the constructed composite αAMG. We gen-
erally see, and not in all cases, only an increase of one

14

Fig. 5.12 Test case 1 (θ = 0), n = 2705. Coarsest interpolation
matrices pattern built by Algorithm 2 (top) and Algorithm 3
(bottom) with approximate graph matching.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

64× 64 1 0.62 7 2.12
128× 128 2 0.59 10 2.17
256× 256 3 0.66 12 2.19

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

64× 64 2 0.59 8 2.23
128× 128 3 0.67 10 2.30
256× 256 5 0.63 12 2.36

Table 5.14 Test Case 1: (θ = 0). Setup cost for different mesh
sizes when approximate graph matching is used for aggregation.

additional solver component versus the counterpart re-
sults discussed in Section 5.1.2.

In Figures 5.14–5.16, we show the pattern of the
interpolation matrices built by our two coarsening pro-
cesses for 40× 40 rectangular fine mesh.

The last figures also show that using half-approxi-
mate matching produces aggregates with fairly similar

Fig. 5.13 Test case 3 (θ = π/4), n = 2705. Coarsest interpo-
lation matrices pattern built by Algorithm 2 and Algorithm 3
(bottom) with approximate graph matching.

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

64× 64 1 0.58 8 2.00
128× 128 2 0.47 10 2.02
256× 256 3 0.62 12 2.04

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

64× 64 2 0.60 8 2.00
128× 128 2 0.57 10 2.05
256× 256 3 0.62 12 2.07

Table 5.15 Test case 3: (θ = π/4). Setup cost for different mesh
sizes when approximate graph matching is used for aggregation.

quality compared with the aggregates obtained by the
exact matching displayed in Figs. 5.7-5.8-5.9.

6 Concluding Remarks

In this paper we have performed a preliminary study
about two coarsening algorithms based on exact and

15

Composite αAMG Setup, coarsening based on Algorithm 2

n nstages ρ nlev cmpx

64× 64 3 0.57 8 2.04
128× 128 4 0.61 10 2.06
256× 256 8 0.62 12 2.07

Composite αAMG Setup, coarsening based on Algorithm 3

n nstages ρ nlev cmpx

64× 64 3 0.62 8 2.08
128× 128 5 0.56 10 2.11
256× 256 8 0.65 12 2.12

Table 5.16 Test case 4: (θ = π/3). Setup cost for different mesh
sizes when approximate graph matching is used for aggregation.

Fig. 5.14 Test Case 1 (θ = 0), n = 40× 40. Coarsest interpola-
tion matrices pattern built by Algorithm 2 (top) and Algorithm
3 (bottom) with approximate graph matching.

approximate maximum product matching in a graph
employed in a new composite adaptive AMG process.
By performing a large set of experiments on difficult
for AMG non-grid aligned finite element 2nd order ani-
sotropic elliptic equations, we demonstrated that our
approach can lead to semi-coarsening and to overall
composite αAMG solver with desired pre-set conver-
gence factor. The composite solver can become expen-

Fig. 5.15 Test Case 3 (θ = π/4), n = 40×40. Coarsest interpo-
lation matrices pattern built by Algorithm 2 (top) and Algorithm
3 (bottom) with approximate graph matching.

sive since the number of components that are built
generally increase when refining the mesh. This is per-
haps to be expected for AMG solvers for such non-grid
aligned anisotropic problems when standard (pointwise)
smoothers are employed. In such cases one way to alle-
viate the cost might be to combine several components
in one cycle, by using larger aggregates and several al-
gebraically smooth vectors to build one tentative inter-
polation matrix.

Another direction to exploit in the future is to test
the method on systems of PDEs (like elasticity) and
more general sparse matrices not necessarily coming
from PDEs. Finally, parallel versions of (approximate)
matching algorithms can be exploited to construct AMG
solvers suitable for large-scale computations.

Acknowledgements We wish to thank Bora Uçar for stimulat-
ing discussions and advice on available algorithms and software
for computing weighted matching in bipartite and general graphs.

16

Fig. 5.16 Test Case 4 (θ = π/3), n = 40 × 40. Coarsest inter-
polation matrices pattern built by Algorithm 2 and Algorithm 3
(bottom) with approximate graph matching.

References

1. A. Brandt, General Highly Accurate Algebraic Coarsening,
Electronic Transactions on Numerical Analysis, Vol. 10, pp. 1–
20 (2000).

2. A. Brandt, Multiscale Scientific Computation: Review 2001,
in Multiscale and Multiresolution Methods: Theory and Appli-
cations, T. J. Barth, T. F. Chan, and R. Haimes, eds., Springer,
Heidelberg, pp. 1–96 (2001).

3. A. Brandt, J. Brannick, K. Kahl, I. Livshitz, Bootstrap
AMG, Siam Journal on Scientific Computing, Vol. 33, pp. 612–
632 (2011).

4. D. E. Drake, S. Hougardy, A Linear Time Approximation
Algorithm for Weighted Matchings in Graphs, ACM Transac-
tions on Algorithms, Vol. 11, pp. 107–122 (2005).

5. A. Brandt, S. McCormick, J. Ruge, Algebraic Multigrid
(AMG) for Sparse Matrix Equations. In Sparsity and its Ap-
plications, D. J. Evans ed. (1984).

6. J. Brannick, R. D. Falgout, Compatible Relaxation and
Coarsening in Algebraic Multigrid, SIAM Journal on Scientific
Computing, Vol. 32, pp. 1393–1416 (2010).

7. M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel,
S. McCormick, J. Ruge, Adaptive Smoothed Aggregation αSA
Multigrid, SIAM Review, Vol. 47, pp. 317–346 (2005).

8. M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel,
S. McCormick, J. Ruge, Adaptive Algebraic Multigrid, SIAM
Journal on Scientific Computing, Vol. 27, pp. 1261–1286 (2006).

9. I. S. Duff, J. Koster, On Algorithms for Permuting Large
Entries to the Diagonal of a Sparse Matrix, Rutherford Apple-
ton Laboratory Technical Report RAL-TR-1999-030.

10. I. S. Duff, B. Uçar, Combinatorial Problems in Solv-
ing Linear Systems, Rutherford Appleton Laboratory Techni-
cal Report RAL-TR-2008-014 and TR/PA/08/26, CERFACS,
Toulouse.

11. R. Falgout, P. S. Vassilevski, On Generalizing the AMG
Framework, SIAM Journal on Numerical Analysis Vol. 42, pp.
1669–1693 (2004).

12. M. Halappanavar, J. Feo, O. Villa, A. Tumeo, A.
Pothen, Approximate Weighted Matching on Emerging
Manycore and Multithreaded Architectures, Int. J. of High-
Performance Computing Applications, first published on Au-
gust 9, 2012 as doi:10.1177/1094342012452893.

13. HSL(2011). A Collection of Fortran Codes for Large Scale
Scientific Computation. http://www.hsl.rl.ac.uk.

14. I. Lashuk, P. S. Vassilevski, On Some Versions of the Ele-
ment Agglomeration AMGe Method, Numerical Linear Algebra
with Applications Vol. 15, pp. 595–620 (2008).

15. O. E. Livne, Coarsening by Compatible Relaxation, Numer-
ical Linear Algebra with Applications, Vol. 11, pp. 205–227
(2004).

16. F. Manne, R. H. Bisseling, A Parallel Approximation Algo-
rithm for the Weighted Maximum Matching Problem, in PPAM
2007, LNCS, Vol. 4967, Springer-Verlag, pp. 708–717 (2008).

17. M. Olschowka, A. Neumaier, A New Pivoting Strategy for
Gaussian Elimination, Linear Algebra and its Applications,
Vol. 240, pp. 131–151 (1996).

18. S. Parter, The Use of Linear Graphs in Gaussian Elimina-
tion, SIAM Review Vol. 3, pp. 119-130 (1961).

19. R. Preis, Linear Time 1/2-Approximation Algorithm
for Maximum Weighted Matching in General Graphs, in
STACS’99, LNCS, Springer-Verlag, Vol. 1563, pp. 259-269
(1999).

20. P. Vaněk, J. Mandel, and M. Brezina, Algebraic Multigrid
by Smoothed Aggregation for Second and Fourth Order Elliptic
Problems, Computing, Vol. 56, pp. 179–196 (1996).

21. P. S. Vassilevski, Multilevel Block Factorization Precon-
ditioners, Matrix-based Analysis and Algorithms for Solving
Finite Element Equations, Springer: New York, NY (2008).

