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Abstract Asymptotic homogenization is employed as-

suming a sharp length scale separation between the pe-

riodic structure (fine scale) and the whole composite

(coarse scale). A classical approach yields the linear

elastic-type coarse scale model, where the effective elas-

tic coefficients are computed solving fine scale periodic

cell problems. We generalize the existing results by con-

sidering an arbitrary number of subphases and general

periodic cell shapes. We focus on the stress jump condi-

tions arising in the cell problems and explicitly compute

the corresponding interface loads. The latter represent

a key driving force to obtain nontrivial cell problems

solutions whenever discontinuities of the coefficients be-

tween the host medium (matrix ) and the subphases oc-

cur. The numerical simulations illustrate the geometri-

cally induced anisotropy and foster the comparison be-
tween asymptotic homogenization and well established

Eshelby based techniques. We show that the method

can be routinely implemented in three dimensions and

should be applied to hierarchical hard tissues whenever

the precise shape and arrangement of the subphases

cannot be ignored. Our numerical results are bench-

marked exploiting the semi-analytical solution which

holds for cylindrical aligned fibers.
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1 Introduction

The theory of composite materials (see, e.g., [6, 16, 17,

19]) concerns the study of the structural and functional

arrangement of two or more different constituents and

the analysis of the effective properties of the resulting

material. The motivation for these studies resides in a

large variety of engineering applications in, for exam-

ple, metallurgy, polymer technology, fracture mechan-

ics, and biomimetic material design. The primary goal

is typically either finding the constituents’ optimal ar-

rangement in terms of desired physical, chemical, or

mechanical properties of the composite material (e.g.,

toughness, stiffness, corrosion resistance, thermal con-

ductivity, etc.) or pursuing a thorough understanding

of the properties of a given composite material on the

basis of its constituents’ characteristics.

The properties of the composite material depend,

in principle, on the local interplay among the individ-

ual constituents. These interactions might be extremely

complex and usually take place on a spatial scale (the

fine scale) which is typically much smaller than the one

characterizing the composite material as a whole (the

coarse scale).

For practical purposes, it is crucial to highlight the

dependence of the effective properties of the composite

on (at least some of) the fine scale phenomena. Nev-

ertheless, a complete analysis of everything occurring

on such a scale may often be prohibitive from a com-

putational viewpoint, such that, in the last decades, a

large literature has been devoted to the development

of homogenization techniques. In general, these strate-

gies aim to describe a composite material on the coarse

scale, thus reducing computational complexity, and en-

code fine scale information concerning its constituents’

structure and properties in the effective properties.
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The existing literature, when restricting the analysis

to linear elastic composite materials, develops accord-

ing to two main approaches; average field theory and

asymptotic homogenization (the two are compared in

the review paper [15]).

Average field techniques aim to find the effective

elastic properties which relate the fine scale strain and

stress averages over a representative volume (RV) which,

in a possibly idealized manner, represents the material

heterogeneity. For example, the RV can be identified

with a finite experimental sample. The application of

average theorems and the prescription of uniform load-

ings on the RV boundary then provide the necessary

conditions to deduce the effective material properties

(see, e.g., [34]). Clearly, the effective elastic constants

should be uniquely determined and independent of the

boundary loadings; when this is the case, the chosen RV

is called a representative volume element (RVE). The

latter condition is fulfilled for a sufficiently large RV.

However, the RV should also be reasonably small for the

sake of computational efficiency. For example, in [11],

the authors investigate the minimum RVE size in the

context of cortical bone. Alternatively, the RV can be

identified with an idealized infinite medium composed

of a number of ellipsoidal shaped homogeneous phases.

This approach can then be used to exploit the well-

known analytical results due to Eshelby [9], who proved

that the state of strain inside an ellipsoidal inclusion

within the matrix is constant and depends only upon

each individual constituent property and the inclusion

aspect ratios (i.e. the ratios between its semi-axes). This

fundamental result led to the development of several

schemes for the approximation of the effective elastic

constants, such as the dilute approximation (where in-

teractions among inclusions are neglected), the Mori-

Tanaka method [20] (weak interactions between the ma-

trix and the inclusions are taken into account), and the

self-consistent scheme [13] (interactions among phases

are taken into account and no clear distinction between

matrix and inclusions is made). This way, the effective

properties are computed semi-analytically and struc-

turally only depend on the inclusions’ volume fraction

and aspect ratios. For example, in [30], the authors in-

vestigate the key parameters affecting the mineralized

turkey leg tendon elastic properties exploiting the Mori-

Tanaka and self-consistent schemes, then comparing the

results to experimental data.

The asymptotic homogenization technique (see, e.g.,

[1, 2, 3, 14, 18, 21, 28]) exploits the sharp separation

between the fine and the coarse scale to decouple spa-

tial variations and employs multiple scale expansions of

the fields. This approach, under the assumption of fine

scale periodicity, yields the set of effective governing

equations which describe the coarse scale mechanics of

the composite material. The geometrical information

of the fine scale structure is encoded in the effective

model coefficients, which are to be computed solving

boundary value problems on the (fine scale) periodic

cell. Although fine scale variations within the periodic

cell are no further approximated, computational feasi-

bility is achieved as the cell problems are to be solved

only once (provided that coarse scale variations of the

fine scale structure are neglected) for the whole coarse

scale model.

In the current work we start from the asymptotic

homogenization problem for a multiphase elastic com-

posite with discontinuous material properties. We show

a generalization of the pioneering results that can be

found in [3, 21, 28] accounting for an arbitrary number

of subphases and general periodic cell shapes. We ex-

plicitly highlight the role of the interface loads which

drive nontrivial cell problems solutions. Next we per-

form three-dimensional numerical simulations of the aris-

ing cell problems to track the dependence of the effec-

tive elastic constants on key parameters characterizing

the fine scale geometry. The symmetry of the result-

ing coarse scale elastic tensor is pointed out and the

model outcome is compared to that obtained via Es-

helby based techniques. Finally, the cell problems nu-

merical solution is benchmarked exploiting the semi-

analytical solution for aligned cylindrical fibers, see [23].

The novel numerical results highlight for the first time

the main model features compared to well-known, rou-

tinely implemented schemes. The paper is organized as

follows:

– In Section 2 we introduce the asymptotic homog-

enization technique and present the derivation of

the generalized asymptotic homogenization model

for multiphase linear elastic composites.

– In Section 3 we describe our numerical approach to

compute the effective elasticity tensor.

– In Section 4 we present numerical results and com-

pare them with Eshelby based techniques. A bench-

mark comparison of the numerical results versus

the semi-analytical solution which holds for aligned

cylindrical fibers, cf. [23], is also provided. The equiv-

alence of the two models for aligned cylindrical fibers

is shown in Appendix A.

– In Section 5 we discuss the results and present future

perspectives.

Although the topic of this work is of crucial im-

portance in a large variety of applications, systematic

three-dimensional numerical simulations of the asymp-

totic homogenization problem for discontinuous mate-

rial properties are still missing. The main literature has

been focusing mostly either on fine scale oscillations of
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the elastic coefficients (see, e.g., [25], where the classical

results derived in [3] are exploited and also extended to

strain gradient linear elasticity and the solution of the

periodic cell problems is driven only by volume forces)

or on fiber reinforced composites, where structural sym-

metries lead to a dimensional reduction and simplifica-

tion in the elastic moduli computation. In [22, 23], the

authors apply asymptotic homogenization to determine

the effective elastic response of periodic fibre reinforced

elastic composites. In the latter context, local structural

changes are assumed to occur in the plane perpendic-

ular to the fiber axis only, hence spatial scales decou-

pling is carried out in two dimensions. As a result, the

solution can be found via a semi-analytic approach by

means of complex variable methods and multipole ex-

pansions. For example, in [24], the authors apply this

technique to determine the effective elastic properties

of cortical bone, identifying the matrix phase with the

bony matrix and the fibers with the Haversian canals

and resorption cavities.

Notwithstanding that our model is developed for a

generic multiphase elastic composite (hence retaining

a wide range of applicability), the chief motivation for

this work is the study of hierarchical (biological) hard

tissues, such as the human bone (see [33] for a detailed

review of the bone hierarchical organization). Possible

candidate systems are the mineralized collagen fibril

and the extrafibrillar space. In the first example, the

mineral inclusions and the collagen network can be con-

sidered as the subphases and the matrix, respectively.

According to this scenario, asymptotic homogenization

can be applied to identify the mechanical properties of

the coarser hierarchical level, namely, the mineralized

collagen fibril bundle, see, e.g., [30].

2 Multiscale modeling

We consider a bounded domain Ω ⊂ R3, such that Ω =

int(Ω̄c ∪ Ω̄m) where Ωc and Ωm are disjoint open sets.

Here, Ωc represents the matrix phase and Ωm a number

N of disjoint subphases Ωα, namely:

Ωm =

N⋃
α=1

Ωα. (1)

The choice of subscripts c (collagen) and m (mineral)

reflects the scenario depicted in the introduction. We

assume that both the matrix and the inclusions behave

as linear elastic materials and we neglect inertia and

body forces in Ω. At this stage, every field and material

property is supposed to be a function of space x ∈ Ω

and the stress balance equations read

∇ · σc = 0 in Ωc, (2)

∇ · σα = 0 in Ωα; α = 1...N. (3)

From now on, α = 1...N is understood every time the

index α appears in a relationship, unless otherwise spec-

ified. The constitutive relationships for the stress ten-

sors σc and σα are given by:

σc = Cc∇uc, (4)

σα = Cα∇uα, (5)

where uc(x) and uα(x) denote the restrictions of the

elastic displacement u(x) to Ωc and Ωα, namely

uc = u|Ωc ; uα = u|Ωα . (6)

The fourth rank tensors Cc(x), Cα(x) (with compo-

nents Ccijkl, C
α
ijkl for i, j, k, l = 1, 2, 3) are the elasticity

tensors in Ωc and Ωα, respectively. They are equipped

with major symmetry

Ccijkl = Ccklij ; C
α
ijkl = Cαklij (7)

and left and right minor symmetry

Ccijkl = Ccjikl; C
α
ijkl = Cαjikl, (8)

Ccijkl = Ccijlk; Cαijkl = Cαijlk, (9)

the latter implying

Cc∇uc = Ccξ(uc); Cα∇uα = Cαξ(uα), (10)

where

ξ ( r) =
∇( r) +∇( r)T

2
, (11)

i.e. ξ(uc) and ξ(uα) are the matrix and subphase elastic

strain tensors, respectively. Interface conditions across

every interface Γα: = ∂Ωc ∩ ∂Ωα, together with proper

conditions on the external boundary ∂Ω, are needed

to close the elastic problem (2,3). We impose continu-

ity of stresses and further assume that the matrix and

the subphases are perfectly bonded, such that also the

elastic displacements are continuous across every Γα.

Thus, the complete boundary value problem reads

∇ · σc = 0 in Ωc, (12)

∇ · σα = 0 in Ωα, (13)

σcn
α = σαn

α on Γα, (14)

uc = uα on Γα, (15)

+ boundary conditions on ∂Ω. (16)

Here, nα denotes the unit vector in x ∈ Γα normal

to the interface Γα pointing into the α-subphase and
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σc, σα are given by the constitutive relationships (4)

and (5), respectively. The elasticity tensors Cc and Cα
are assumed as smooth functions of x in Ωc and Ωα,

respectively. In general, however:

Cc(x) 6= Cα(x) on Γα. (17)

Next, we apply the asymptotic homogenization tech-

nique and exploit the length scale separation in the sys-

tem to derive the coarse scale elastic model and the re-

lated cell problems. The results that can be found in

[21] ensure that a linear elastic problem with discontin-

uous coefficients of the type (12-16) admits a rigorous

two-scale convergence limit. Furthermore, this problem

has also been tackled in [28], where the due modifica-

tions to standard asymptotic homogenization for elastic

composites, which apply for discontinuous coefficients,

are suggested and formally appear as a volume contri-

bution. In [3], a more general asymptotic homogeniza-

tion procedure is carried out to formally derive averaged

equations of infinite order of accuracy, which can be ex-

ploited, for example, for strain gradient elasticity as in

[25]. The cell problems involved in the leading order

equations are derived and interface loadings across the

composite interfaces appear, although their dependence

on the difference in the elastic constants is not clearly

pointed out. In this section, we present a revisited and

generalized formulation of the problem accounting for

an arbitrary number of subphases and general periodic

cell shapes. We explicitly derive the volume and inter-

face loadings which drive nontrivial cell problem solu-

tions.

2.1 Asymptotic homogenization

We consider a typical length scale d, which locally char-

acterizes the fine scale structure, and the characteristic

size L of the whole domain Ω. We then assume that the

following sharp length scale separation between d and

L holds:

d

L
= ε� 1. (18)

We now perform a formal two-scale asymptotic expan-

sion widely exploited in the literature to derive the

effective governing equations which represent the me-

chanical behavior of the composite on the coarse scale

L and retain information about variations on the fine

scale characterized by the length d. We enforce condi-

tion (18) relating d (the fine scale) and L (the coarse

scale), defining:

y: =
x

ε
. (19)

Following the usual approach in multiscale analysis,

from now on x and y denote independent variables,

representing the coarse and fine spatial scales, respec-

tively. We further assume that both the displacements

and the elasticity tensors are functions of these inde-

pendent spatial variables, i.e.,

uc = uc(x,y), uα = uα(x,y), (20)

Cc = Cc(x,y), Cα = Cα(x,y), (21)

such that the differential operators transform accord-

ingly:

∇ → ∇x +
1

ε
∇y. (22)

We formally define the following multiple scales expan-

sion of the elastic displacement u in powers of ε:

uε(x,y) =

∞∑
l=0

u(l)(x,y)εl. (23)

We apply the power series representation (23) to the

restrictions uc and uα, i.e., we define

u(l)
c = u(l)|y∈Ωc ; u(l)

α = u(l)|y∈Ωα , (24)

and substitute the result, accounting for relationship

(22), into the system (12-15) and equations (4,5). The

resulting differential system, multiplying each equation

by a suitable power of ε and exploiting (10), reads

∇y · (Ccξy(uεc)) + ε ∇y · (Ccξx(uεc))

+ε∇x · (Ccξy(uεc)) + ε2∇x · (Ccξx(uεc)) = 0 (25)

in the matrix Ωc,

∇y · (Cαξy(uεα)) + ε ∇y · (Cαξx(uεα))

+ε∇x · (Cαξy(uεα)) + ε2∇x · (Cαξx(uεα)) = 0 (26)

in the subphases Ωα, as well as

Ccξy(uεc)n
α − Cαξy(uεα)nα

= εCαξx(uεα)nα − εCcξx(uεc)n
α (27)

and

uεc = uεα (28)

on the interfaces Γα.

We assume y-periodicity for every field and mate-

rial property (denoted collectively by ψ), that is, there

exists a family of vectors

R(η, κ, υ): = ηI1 + κI2 + υI3, (29)

with fixed I1, I2, I3 ∈ R3 such that

ψ(x,y) = ψ(x,y +R), ∀η, κ, υ ∈ Z. (30)
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The periodic vector introduced in definition (29) is the

three-dimensional generalization of that proposed in

[23] and enables us to consider, in principle, arbitrarily

shaped periodic cells, thus not necessarily cuboid (the

latter one is obtained for the particular case I1 ∝ e1,

I2 ∝ e2, I3 ∝ e3, where e1, e2, e3 denote the standard

Cartesian basis vectors). From now on, we identify the

domain Ω with its corresponding periodic cell and Ωc,

Ωα denote the corresponding matrix and α-subphase in

the cell, respectively. We also denote by N the number

of distinct subphases within the periodic cell. The fine

scale length d introduced above Eq. (18) is then iden-

tified as the minimum (linear) periodic cell size which

can completely represent the fine scale structure, see

Figure 1.

In the following section, we equate coefficients of εl

for l = 0, 1, 2, ... in (25-28) to obtain a homogenized

model in terms of the leading (zeroth) order elastic dis-

placement field in the coarse scale domain ΩH (see Fig-

ure 1). Since the quantities involved in the definition

of this problem can also vary on the local scale y, it is

useful to define the following cell average operators

〈 r〉 =
1

|Ω|

∫
Ω

rdy; 〈 r〉c =
1

|Ω|

∫
Ωc

rdy;

〈 r〉α =
1

|Ω|

∫
Ωα

rdy, (31)

where |Ω| represents the periodic cell volume.

2.2 The coarse scale model derivation

Equating coefficients of ε0 in (25-28) we obtain

∇y ·
(
Ccξy(u(0)

c )
)

= 0 in Ωc, (32)

∇y ·
(
Cαξy(u(0)

α )
)

= 0 in Ωα, (33)

Ccξy(u(0)
c )nα = Cαξy(u(0)

α )nα on Γα, (34)

u(0)
c = u(0)

α on Γα, (35)

whereas equating coefficients of ε1 in (25-28) yields

∇y ·
(
Ccξy(u(1)

c )
)

+∇x ·
(
Ccξy(u(0)

c )
)

= −∇y ·
(
Ccξx(u(0)

c )
)

in Ωc, (36)

∇y ·
(
Cαξy(u(1)

α )
)

+∇x ·
(
Cαξy(u(0)

α )
)

= −∇y ·
(
Cαξx(u(0)

α )
)

in Ωα, (37)

Ccξy(u(1)
c )nα − Cαξy(u(1)

α )nα

= Cαξx(u(0)
α )nα − Ccξx(u(0)

c )nα on Γα, (38)

u(1)
c = u(1)

α on Γα. (39)

Finally, when equating coefficients of ε2 in (25-27) we

obtain

∇y ·
(
Ccξy(u(2)

c )
)

+∇y ·
(
Ccξx(u(1)

c )
)

= −∇x ·
(
Ccξy(u(1)

c )
)
−∇x ·

(
Ccξx(u(0)

c )
)

in Ωc,

(40)

∇y ·
(
Cαξy(u(2)

α )
)

+∇y ·
(
Cαξx(u(1)

α )
)

= −∇x ·
(
Cαξy(u(1)

α )
)
−∇x ·

(
Cαξx(u(0)

α )
)

in Ωα,

(41)

Ccξy(u(2)
c )nα − Cαξy(u(2)

α )nα

= Cαξx(u(1)
α )nα − Ccξx(u(1)

c )nα on Γα.

(42)

The only periodic solutions of the cell problem (32-

35) are y-constant functions. Hence, since continuity

across the interfaces Γα holds, the leading order dis-

placement field reads

u(0)(x) = u(0)
c (x) = u(0)

α (x) =: ū(x) . (43)

Employing relationship (43) in equations (36-39),

we obtain the following differential problem for the fields

u
(1)
c (x,y), u

(1)
α (x,y):

∇y ·
(
Ccξy(u(1)

c )
)

= −∇y · (Ccξx(ū)) in Ωc, (44)

∇y ·
(
Cαξy(u(1)

α )
)

= −∇y · (Cαξx(ū)) in Ωα, (45)

Ccξy(u(1)
c )nα − Cαξy(u(1)

α )nα

= (Cα − Cc) ξx(ū)nα on Γα, (46)

u(1)
c = u(1)

α on Γα. (47)

The problem (44-47) is a linear elastic-type periodic

boundary value problem equipped with displacement

continuity and stress jump interface conditions on Γα.

Exploiting linearity, the solutions u
(1)
c and u

(1)
α are given

by the following ansätze

u(1)
c = χcξx(ū); u(1)

α = χαξx(ū). (48)

The third rank tensor χ,

χ =

{
χc : y ∈ Ωc

χα : y ∈ Ωα,
(49)

is the solution of the following cell boundary value prob-

lems

∂

∂yj

(
Ccijpqξ

kl
pq(χ

c)
)

= −
∂Ccijkl
∂yj

in Ωc, (50)

∂

∂yj

(
Cαijpqξ

kl
pq(χ

α)
)

= −
∂Cαijkl
∂yj

in Ωα, (51)

Ccijpqξ
kl
pq(χ

c)nαj − Cαijpqξklpq(χα)nαj

= (Cα − Cc)ijklnαj on Γα, (52)

χcikl = χαikl on Γα, (53)
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Fig. 1 A two-dimensional cartoon representing the fine and coarse scales. On the right hand side, the coarse scale domain,
where the fine scale structure is homogenized, is shown. On the left hand side, a sample periodic unit representing the fine
scale is shown and the different subphases are clearly visible.

where we set

ξklpq(χ
c) =

1

2

(
∂χcpkl
∂yq

+
∂χcqkl
∂yp

)
,

ξklpq(χ
α) =

1

2

(
∂χαpkl
∂yq

+
∂χαqkl
∂yp

) (54)

and sum over repeated indices p, q, j is understood. The

problem (50-53) is then closed by periodic conditions on

∂Ω, whereas a further condition is required to obtain

uniqueness, for example, simply fixing the solution in

one point or requiring

〈χcikl〉c = 〈χαikl〉α = 0 i, k, l = 1, 2, 3 . (55)

Remark 1 Note that, from a practical point of view, the

cell problem (50-53) stated in terms of third and fourth

rank tensors, corresponds, accounting for right minor

symmetry of the constituents’ elasticity tensors, to six

elastic-type cell problems, one for each fixed (k, l), k ≥
l. Each of these problems is equipped with periodic con-

ditions on the cell boundary and nontrivial solutions are

not driven by prescribed tractions or displacements, as

for example in [29]. Here, nontrivial solutions are due

to local variations of the elastic constants within the

composite subphases, which formally appear as volume

forces on the right hand side of (50,51), and due to

the interface loadings which appear in the stress jump

conditions (52). In the latter case, the contribution is

directly related to the difference in the elastic constants

between the matrix and each phase, as well as to the

geometrical properties of the interface. The interface

loadings are nonzero even when the elastic properties of

the subphases are constant. Whenever this is the case,

these interface loadings are the unique driving force for

the cell problems (50-53). 2

We now aim to formulate the effective governing

equations for the elastic composite material. We apply

the integral average operators (31) over Ωc and Ωα in

equation (40) and equations (41) for α = 1...N , respec-

tively. We then sum every resulting contribution and

apply the divergence theorem in y, such that, rearrang-

ing terms, we obtain:

N∑
α=1

1

|Ω|

[∫
Γα

Ccξy(u(2)
c )nα dS−

∫
Γα

Cαξy(u(2)
α )nα dS

+

∫
Γα

Ccξx(u(1)
c )nα dS−

∫
Γα

Cαξx(u(1)
α )nα dS

]
+

1

|Ω|

∫
Ωc

∇x ·
(
Cc(ξy(u(1)

c ) + ξx(ū))
)

dy (56)

+
N∑
α=1

1

|Ω|

∫
Ωα

∇x ·
(
Cm(ξy(u(1)

α ) + ξx(ū))
)

dy = 0,

where the contributions over the cell boundaries ∂Ω

cancel due to y-periodicity. We account for relationship

(42), such that also the contributions over the interfaces

Γα in (56) cancel. Finally, we enforce ansätze (48) to

deduce the following effective governing equations for

every x ∈ ΩH , namely

∇x ·
(
C̃(x)ξx(ū)

)
= 0. (57)

The effective elasticity tensor C̃ is given by

C̃ = 〈Cc + CcMc〉c +

N∑
α=1

〈Cα + CαMα〉α (58)
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or componentwise by

C̃ijkl =
〈
Ccijkl + CcijpqM

c
pqkl

〉
c

+

N∑
α=1

〈
Cαijkl + CαijpqM

α
pqkl

〉
α
.

(59)

In the above equation, the auxiliary fourth rank tensors

Mc and Mα are defined componentwise as

M c
pqkl = ξklpq(χ

c) =
1

2

(
∂χcpkl
∂yq

+
∂χcqkl
∂yp

)
,

Mα
pqkl = ξklpq(χ

α) =
1

2

(
∂χαpkl
∂yq

+
∂χαqkl
∂yp

)
.

(60)

3 Computational setup and procedure

In this section we give specific details about the com-

posite material which we will investigate in Section 4

and describe the computational procedure to numeri-

cally compute the effective elasticity tensor C̃, cf. (58).

In general, the numerical computation of C̃(x) is

carried out according to the following scheme:

(a) Fix the geometry of the periodic cell Ω at x, in-

cluding the number N of the embedded subphases.

(b) Fix the material properties Cc(x,y) and Cα(x,y)

for y ∈ Ω.

(c) Solve the elastic-type cell problems (50-53) to de-

termine the tensors Mc(x) and Mα(x), cf. (60).

(d) Compute the effective elasticity tensor C̃(x), cf.

(58).

The coarse scale elastic problem (57) holds for gen-

eral heterogeneous and anisotropic properties Cc(x,y)

and Cα(x,y) of the constituents. However, in order to

emphasize the effect of the fine scale geometry on the

effective elasticity tensor (both quantitatively and in

terms of symmetries), we focus on the simplest possible

choice, that is, we assume y-constant and x-constant

isotropic elastic phases. Furthermore, we assume that

the elasticity tensor of all subphases is the same. Thus

we write

Ccijkl = λcδijδkl + µc(δikδjl + δilδjk) ,

Cαijkl = Cmijkl = λmδijδkl + µm(δikδjl + δilδjk) ,
(61)

where (λc, µc) and (λm, µm) represent the matrix and

subphases Lamé constants, respectively, and we con-

sider the following matrix-subphase discontinuity

(λc, µc) 6= (λm, µm) . (62)

In all computations we use the following parameter set

λc = 2.88 [GPa] , µc = 1.92 [GPa],

λm = 54.69 [GPa] , µm = 42.97 [GPa],
(63)

which is obtained from the Young’s moduli and Pois-

son’s ratios reported for the collagen and mineral (hy-

droxyapatite) bone constituents in [30], namely

Ec = 5 [GPa] , νc = 0.3 ,

Em = 110 [GPa] , νm = 0.28 .
(64)

The x- and y-constant nature of Cc and Cα simpli-

fies the cell problems (50-53) to

∇y · (Ccξy(χckl)) = 0 in Ωc, (65)

∇y · (Cαξy(χαkl)) = 0 in Ωα, (66)

(Ccξy(χckl))n
α − (Cαξy(χαkl))n

α = fαkl on Γα, (67)

χckl = χαkl on Γα, (68)

for k, l = 1, 2, 3, k ≥ l, where the auxiliary displacement

vectors χckl, χ
α
kl are defined as

χckl = (χc1kl, χ
c
2kl, χ

c
3kl) ; χαkl = (χα1kl, χ

α
2kl, χ

α
3kl) . (69)

The forces driving each of the six elastic-type cell prob-

lems (65-68) are the interface loads fαkl only, which de-

pend on the jump in the elastic constants between the

matrix and each subphase and on the geometry of the

subphases as encoded in the normal unit vectors nα, see

Equation (52). Enforcing the assumption of isotropic

matrix and subphases, i.e. (61), the interface loads fαkl
take the specific form

fα11 = λ∗nα + 2µ∗e1n
α
1 , (70)

fα22 = λ∗nα + 2µ∗e2n
α
2 , (71)

fα33 = λ∗nα + 2µ∗e3n
α
3 , (72)

fα23 = fα32 = µ∗(nα3 e2 + nα2 e3), (73)

fα13 = fα31 = µ∗(nα3 e1 + nα1 e3), (74)

fα12 = fα21 = µ∗(nα2 e1 + nα1 e2), (75)

where

λ∗ = λm − λc; µ∗ = µm − µc. (76)

For each boundary load given in (70-75), we com-

pute a corresponding numerical solution of the elastic-

type problem (65-68) using the finite element software

Comsol Multiphysics employing its Structural Mechan-

ics Module and Matlab LiveLink scripting. This combi-

nation of software is also employed to then compute the

36 defining entries of each of the both, left and right,

minor symmetric tensors Mc and Mα using (60) and

eventually to obtain C̃ via (59). We give some detail of

this process below.

The finite element mesh of the periodic cell Ω is

constructed such that, firstly, surface meshes are cre-

ated for the interfaces Γα, α = 1, ...N , and then, sec-

ondly, those surface meshes are extended into a three-

dimensional mesh covering the whole periodic cell. This
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approach provides for the definition of interface con-

ditions via boundary pairs and allows to combine a

particularly fine surface mesh on the interfaces, which

then also extends into their vicinity, with a gradually

coarser volume mesh as the distance from the interface

increases. This is illustrated in Figure 2. Recall that

the stress-jump condition on the interfaces is one of the

primary drivers of the solution of the cell problems and

thus a sufficiently fine mesh around the interfaces is

paramount for an accurate numerical solution. Further

below, see Remark 2, we give information on the em-

ployed mesh refinement strategy to ensure a sufficiently

accurate numerical solution.

Fig. 2 A representative computational mesh for a single
spherical inclusion. The mesh on the interface between the
matrix and the inclusion is more refined to better capture
the boundary loads contribution.

The parametrization of the stress balance equations

(65,66) is straightforward in our case: we have zero vol-

ume loads and a constant, isotropic elasticity tensor per

subdomain Ωc and Ωα. The stress jump and auxiliary

displacement continuity conditions across the interfaces

Γα, i.e. (67,68), are enforced via respective conditions

on a boundary pair for each subphase. Finally, the pe-

riodic boundary conditions on the outer boundary ∂Ω

are implemented. These settings render the solution of

the elastic-type problem unique up to a constant. This

constant is not important for our purpose since it van-

ishes when the partial derivatives of the solution are

taken as in (60). However, computationally we require

a unique solution of the elastic-type problems in the

periodic cell and this is achieved by additionally de-

manding that the auxiliary displacement is zero in one

corner point of Ω, thus fixing the constant.

The principle of virtual work is employed by Comsol

Multiphysics to implement the elastic-type problem de-

scribed above in weak form. We use quadratic Lagrange

elements on our finite element mesh for representing the

auxiliary displacements. The resulting sparse linear sys-

tem is solved with a sparse direct solver (Pardiso) after

preordering of the unknowns and equations such that

fill-in, and thus excessive memory requirements, are re-

duced. This provides the finite element solutions χckl,

χαkl.

All entries of the third rank tensors χc and χα are

numerically approximated by piecewise quadratic finite

element functions once the six elastic-type problems

(65-68) corresponding to the six interface loads fαkl,

cf. (70-75), have been solved. Their derivatives are lin-

ear functions on each element and they can be evalu-

ated conveniently (and without additional error) and so

can all entries of the both, left and right, minor sym-

metric auxiliary fourth rank tensors Mc and Mα using

(60). The entries of the effective elasticity tensor C̃ are

then computed following (59) by calculating the aver-

ages without additional errors. The whole process from

the finite element approximations for χc and χα to the

effective elasticity tensor C̃ is expressed in Comsol Mul-

tiphysics using its integral postprocessing capability.

Remark 2 (Refinement of the finite element mesh) Re-

call that the auxiliary displacements χkl are completely

driven by the boundary loads fαkl on the interfaces Γα.

Therefore, in order to faithfully capture this informa-

tion, our mesh in Ω is more refined around the bound-

ary pairs representing the interfaces Γα than in the

bulk away from these interfaces. Furthermore, we use

a sequence of increasingly refined meshes of Ω. These

meshes are constructed using Comsol Multiphysics’ pre-

defined mesh parameter settings ranging from extremely

coarse to extremely fine meshes. In order to ensure an

appropriate level of accuracy in the computed effective

elasticity tensor, we accept the numerical solution for

all χkl on a finer mesh A when the componentwise dif-

ference between C̃A computed on that mesh and C̃B
computed on the next-coarser mesh B satisfies the fol-

lowing mixed absolute-relative criterion:

max
β, γ=1,...6

∣∣∣C̃Aβγ − C̃Bβγ∣∣∣ /(|C̃Aβγ |+ 1
)
≤ tol� 1. (77)

The number tol in (77) represents a suitable tolerance

value. In Equation (77) and from now on, the elasticity

tensor C̃ is represented as a 6× 6 symmetric matrix by

adopting the so called Voigt notation, e.g., [7]. 2

Finally we state that for every numerical test which

we report in the following Section 4, the above criterion

(77) is satisfied for tol = 10−2.
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4 Numerical results

In this section we make use of the computational

framework described in Section 3 and explore the vari-

ations of the effective elasticity tensor C̃, cf. Eq. (58),

as they arise from geometrical changes of the fine struc-

ture of the composite material. We in particular con-

sider the case when there exists a substantial jump be-

tween the matrix and the subphases elastic properties,

as exemplified by the vastly different Young’s moduli,

see Eq. (64). The geometrical settings are chosen to

highlight the main features of the asymptotic homoge-

nization technique and to compare the results to those

obtained by Eshelby based techniques. In the following

subsections we present three numerical test cases, see

Table 1, which differ in the number N of subphases and

their shape within the periodic cell Ω, the shape of the

periodic cell Ω itself, as well as the subphases volume

fraction φm defined as:

φm =
|Ωm|
|Ω|

; |Ωm| =
N∑
α=1

|Ωα| . (78)

The test case presented in Section 4.3 can be reduced

to a two-dimensional setting where a semi-analytic solu-

tion is available and thus also provides a benchmark for

our three-dimensional numerical simulation approach.

Section shape of inclusion shape of Ω N φm(%)

4.1 spherical cubic 1 0− 30
4.2 cubic cubic 2 10
4.3 cylindrical fiber prismatic 1 0− 30

hexagonal

Table 1 Overview of the numerical test cases.

4.1 Single spherical inclusion in a cubic periodic cell

We consider the case of a single spherical inclusion in

a cubic cell and perform a parametric study by vary-

ing the inclusion volume fraction φm. This way we can

highlight the coarse scale elastic response, given by the

effective elasticity tensor C̃, via a reduced number of pa-

rameters. In particular, the analysis of a single spherical

inclusion represents the simplest possible example that

can be compared to Eshelby based methods, such as

the Mori-Tanaka and the self-consistent schemes. The

overall cell geometry is invariant under permutation of

the three orthogonal coordinate axes. However, even

this simplest possible fine scale structure is not geo-

metrically isotropic and, as a consequence, we obtain

an elasticity tensor with cubic symmetry, i.e. C̃ can be

written as

C̃ =



C̃11 C̃12 C̃12 0 0 0

C̃12 C̃11 C̃12 0 0 0

C̃12 C̃12 C̃11 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃44 0

0 0 0 0 0 C̃44


, (79)

see, e.g., [8]. Three independent parameters are there-

fore needed to completely specify the elastic behavior

of the material. In particular, exploiting standard en-

gineering notation (see, e.g., [4]), we can deduce the

effective Young’s modulus EH , Poisson’s ratio νH , and

shear modulus µH via the general definitions

EH =
C̃11(C̃11 + C̃12)− 2C̃2

12

C̃11 + C̃12

;

νH =
C̃12

C̃11 + C̃12

; µH = C̃44 .

(80)

The material resistance to shear and uniaxial loading

is given by the effective coefficients EH and µH , re-

spectively, whereas the Poisson’s ratio νH measures the

ratio of transverse to axial strain. The deviation from

isotropy of the composite material is quantified by

DEV = C̃11 − (C̃12 + 2C̃44) (81)

and shown in Figure 3. This effect is driven by the pe-

riodic cell geometry and accounts for the arrangement

of the inclusions within the fine scale domain.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

φm

D
E
V
[G

P
a
]

Deviation from isotropy for a cubic symmetric structure

 

 

Single spherical inclusion

Fig. 3 The deviation from isotropy is shown as a function
of the volume fraction φm for a single spherical inclusion in
a cubic cell.

Assume, for the moment, that C̃ satisfies the classi-

cal Voigt [31] and Reuss [27] upper and lower bounds,

namely

A : (CRA) ≤ A : (C̃A) ≤ A : (CV A) (82)
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Asymptotic homogenization Young’s modulus EH

Voigt Young’s modulus EV

Reuss Young’s modulus ER

Mori-Tanaka Young’s modulus
Self-consistent Young’s modulus

Fig. 4 The asymptotic homogenization Young’s modulus for a single spherical inclusion compared to Eshelby based methods.
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Shear modulus: Asymptotic homogenization vs Eshelby based techniques

 

 

Asymptotic homogenization shear modulus µH

Voigt shear modulus µV

Reuss shear modulus µR

Mori-Tanaka shear modulus
Self-consistent shear modulus

Fig. 5 The asymptotic homogenization shear modulus for a single spherical inclusion compared to Eshelby based methods.

for every second rank tensor A where

CR =
〈
C−1

〉−1
and CV = 〈C〉 . (83)

Then it follows that

ER ≤ EH ≤ EV and µR ≤ µH ≤ µV , (84)

where ER, µR, EV , µV are the Reuss and Voigt Young’s

and shear moduli, respectively. This can be shown by

applying in (82) the following second rank tensors

e1 ⊗ e1 ; e1 ⊗ e1 + e2 ⊗ e2 ;

e1 ⊗ e1 − e2 ⊗ e2 ; e1 ⊗ e2 ,
(85)

to obtain the corresponding bounds for the effective

elasticity tensor components C̃11, C̃11 + C̃12, C̃11− C̃12,

C̃44, respectively, and in turn, when accounting for def-

initions (80), for the effective Young’s and shear mod-

uli. The relationships (84) are satisfied in our numerical

tests as shown in Figures 4 and 5. Quantitatively, we ob-

serve a significant deviation of the effective Young and

shear moduli from their corresponding upper bound es-

timates, i.e. EH � EV and µH � µV .

Above, the bounds (82) have been assumed. How-

ever, they should be rigorously proved since classical

results, which apply to representative volume elements

(see, e.g., [6, 19, 34]), rely on Hill’s condition (see, e.g.,

[12]), i.e. on the equivalence between the coarse scale

energy and the average fine scale energy, which does

not apply to asymptotic homogenization. In the lat-

ter case, the periodic cell problem properties are to be

taken explicitly into account, as done in [18], where the

authors exploited variational arguments to obtain the

standard Voigt and Reuss bounds for an heterogeneous

two-phase material composite without elastic constants

discontinuities at the interface. It is beyond the scope

of this computational study to address delicate theo-

retical issues such as rigorous proofs of energy bounds

and symmetry of the effective elasticity tensors, which

we address, instead, in [The other work].

The major difference between the asymptotic ho-

mogenization scheme and Eshelby based methods re-

sides in the lack of isotropy of the former, cf. Figure 3.

Recall that the Mori-Tanaka method is derived assum-
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Fig. 6 The asymptotic homogenization Poisson’s ratio for a single spherical inclusion compared to Eshelby based methods.

ing an infinitely extended matrix which comprises iden-

tically shaped ellipsoidal inclusions at fixed volume frac-

tion and aspect ratios. The self-consistent scheme is

derived assuming that such a domain is composed of

a number of interacting phases and no clear distinc-

tion between the matrix and the inclusions is made,

such that volume fraction and aspect ratios are to be

specified for each phase. For the sake of simplicity of

the following analysis, we set every aspect ratio for the

matrix phase to one, i.e. corresponding to spherical “in-

clusions”.

In both Eshelby models, anisotropy can only arise as

a consequence of the inclusion aspect ratios, and spher-

ical inclusions lead to coarse scale isotropy. The elas-

tic response predicted by asymptotic homogenization

(which accounts, in principle, for an arbitrary complex

geometry of the inclusions) is, instead, also affected by

the periodic cell geometry itself, which is supposed to

represent the structural organization of the subphases

within the matrix. In the particular test case considered

in this section, the cubic shape of Ω induces the cubic

symmetry in C̃.

The explored techniques differ also quantitatively

for this simple example. The asymptotic homogeniza-

tion and self-consistent method both predict the stiffer

behavior for uniaxial loading, see Figure 4, as a conse-

quence of the interaction between the matrix and the in-

clusion (although we remind that, according to the self-

consistent scheme assumptions, each phase is character-

ized by an idealized ellipsoidal shape).ToDo: Raimondo:

what do you want to express with the last sentence?

The stiffer response with respect to torsional loading is

predicted by the self-consistent scheme, see Figure 5,

whereas the greater resistance to transverse compres-

sion (at fixed uniaxial loading) is given by asymptotic

homogenization, see Figure 6. ToDo: Raimondo: maybe

discuss this a bit more precisely or intuitively?

4.2 Two cubic inclusions in a cubic periodic cell

We now consider two parallel aligned cubic inclusion

Ω1 and Ω2 at fixed (combined) volume fraction φm, see

Table 1. We define a growth index p ∈ {0, 1, ...20} such

that

φ1 =
|Ω1|
|Ω|

=
pφm
20

⇒ φ2 =
|Ω2|
|Ω|

=
(20− p)φm

20
. (86)

The limit cases p = 0 and p = 20 correspond to single

cubic inclusions. For reasons of symmetry, we perform

a parametric analysis in the range 1 ≤ p ≤ 10. For

every growth index p the two inclusions are identically

shaped and differ by their size only. The geometric set-

tings corresponding to p = 1 and p = 10 are shown in

Figure 7.

Fig. 7 Visualization of the double cubic inclusion geometry
for p = 1 (top) and p = 10 (bottom).

The resulting structure is invariant under permuta-

tion of the axes which span the e1 and e3 directions. As

a consequence, we obtain an effective elasticity tensor

C̃ with tetragonal symmetry, i.e.
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Fig. 8 The growth of the anisotropy ratio C̃22/C̃11 as a function of the growth index p.

C̃ =



C̃11 C̃12 C̃13 0 0 0

C̃12 C̃22 C̃12 0 0 0

C̃13 C̃12 C̃11 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃55 0

0 0 0 0 0 C̃44


, (87)

such that six independent elastic constants arise.

The anisotropy ratio of the composite is defined as

the ratio of C̃22 to C̃11 and is shown for 1 ≤ p ≤ 10 in

Figure 8. According to these results, anisotropy can de-

velop in a preferential direction also with two identically

shaped inclusions and the growth index p can serve as

a control. The reason is that asymptotic homogeniza-

tion predicts the coarse scale elastic constants on the

basis of the whole periodic cell structure and symmetry

and in the case considered here the geometric variation

along the e2 direction and the cubic symmetry of the

cell result in the tetragonal structure given by (87). This

anisotropy, in contrast, cannot be captured by Eshelby

based techniques as the aspect ratios of the inclusions

are the same (same shape) and the structural organiza-

tion of the subphases has no impact on the results. Thus

Eshelby based techniques provide an effective stiffness

tensor independent of the growth index p.

Remark 3 Note that we did not specify the distance

between the two inclusions, although the results are,

in principle, also affected by this geometrical feature.

However, the dependence of the effective elastic con-

stants on the distance between inclusions proved to be

extremely weak (of the order of magnitude of our nu-

merical tolerance, see Eq. (77)). We attribute this weak

effect to the strong influence of periodicity on the cell

boundaries ∂Ω. 2

4.3 Single cylindrical fiber in a prismatic hexagonal

periodic cell

We consider a single cylindrical fiber Ω1 embedded in

a prismatic hexagonal cell as illustrated in Figure 9.

The resulting effective elasticity tensor is transverse

isotropic, i.e.

C̃ =



C̃11 C̃11 − 2C̃66 C̃13 0 0 0

C̃11 − 2C̃66 C̃11 C̃13 0 0 0

C̃13 C̃13 C̃33 0 0 0

0 0 0 C̃44 0 0

0 0 0 0 C̃44 0

0 0 0 0 0 C̃66


. (88)

Fig. 9 Illustration of the cylindrical inclusion embedded in
a prismatic hexagonal cell.

In this geometrical setting, the three-dimensional

problems in our our asymptotic homogenization scheme,

which we solve by finite elements in our computational

approach, can be reduced equivalently to problems in

two dimensions, see Appendix A. The authors in [22, 23]

propose a semi-analytical technique to solve the latter
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C̃33 Our asymptotic homogenization approach

C̃33 Parnell and Abrahams (2008)

C̃11 Our asymptotic homogenization approach
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Fig. 10 The numerical and semi-analytical outcome for the components C̃11 and C̃33 is shown. The results match almost
exactly.

problems and, using the same code as exploited in the

study of cortical bone in [24], we can compute the ef-

fective stiffness tensor of the composite. Since the un-

derlying problems of the two approaches are equivalent

for the study of fibers, but rely on completely different

solution techniques, this particular test case can be re-

garded as a benchmark for the two numerical solution

procedures.

In particular, we applied both techniques in a para-

metric study by varying the volume fraction of the fiber

φm, see Table 1. The results of both schemes coincide up

to numerical errors. We report a maximum component-

wise relative error of the order of ≈ 2%, which is due to

both the numerical approximation of the cell problems

solutions via finite elements and to the errors encoded

in the semi-analytical approximation, which is based

on truncated series expansions, see [23]. In Figure 10

we present a comparison between the two methods for

the representative components C̃11 and C̃33.

Remark 4 Note that in the particular case considered

in this section we do not obtain a tetragonal symmet-

ric structure, since the two-dimensional cross section,

i.e. the hexagon with an embedded circle, represents a

plane of isotropy. Anisotropy can thus only develop in

the orthogonal direction, such that a transverse isotropic

elasticity tensor is obtained. Should we move the pre-

vious sentence to above the effective stiffness tensor?

Should the remeining part of the remark go somewhere

to discussion? It makes to me nosense at this place

in relation to the embedded fibre; the goal of these

statements must be given. However, when exploiting

asymptotic homogenization, it is not possible to ob-

tain a purely isotropic result, neither via a cubic cell

nor via a prismatic one, as both the subphases and the

cell structure contribute to the overall symmetry of the

elasticity tensor. For example, a spherical inclusion em-

bedded into a prismatic hexagonal cell would also result

in a transverse isotropic coarse scale elasticity tensor,

with anisotropy dictated by the direction orthogonal to

the plane of isotropy. 2

5 Discussion and concluding remarks

In this work we have exploited the classical asymp-

totic homogenization technique to provide a generalized

theoretical and computaional framework which fosters

three-dimensional numerical computation of the effec-

tive elastic properties of a composite elastic material.

The effective model coefficients are to be calculated

solving the periodic cell problems (50-53), where the

interface loads depend on the discontinuities in the com-

posites’ elastic coefficients. The most important fea-

tures of our asymptotic homogenization approach for

elastic composites are listed below.

– We can account for any kind of geometrical com-

plexity in terms of number and shape of subphases

within the periodic cell. We are not forced to as-

sume a specific shape representing the subphases

(as the ellipsoidal one characterizing Eshelby based

techniques), as shown, for example, in Sections 4.2

and 4.3, where cubic and cylindrical subphases are

taken into account.

– The model encodes a clear distinction between the

matrix and the embededded subphases.

– We fully account for interactions among phases in

the periodic cell and each consituent is neither di-

luted nor approximated when formulating the cell

problems. Should the following sentence not go to

the item above (removing the “although accounting

for interactions among idealized ellipsoidal phases”
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part? This is, for example, in contrast to the self-

consistent scheme which, although accounting for

interactions among idealized ellipsoidal phases, has

no clearly identifiable host medium.

– Geometrically induced anisotropy, which develops

starting from isotropic constituents, reflects all sub-

phases relative dimensions (such as the aspect ratios

for ellipsoidal inclusions) and the whole periodic cell

structure, including:

(a) The periodic cell geometry. For example, in Sec-

tion 4.1, the cell geometry induces an effective

elasticity tensor with cubic symmetry for the

particular case of a single spherical inclusion.

In Section 4.3, the hexagonal prismatic periodic

cell, together with the cylindrical fibre, provides

for the existence of a plane of isotropy which

in turn results in a transverse isotropic effective

elasticity tensor.

(b) The arrangement of subphases within the cell.

For example, in Section 4.2, the arising tetrag-

onal symmetry is dictated by the inclusions ar-

rangement (which induces geometrical variation

along the e2 direction) and the cubic periodic

cell geometry. Note that for the asymptotic ho-

mogenization it makes a difference if subphases

are identically shaped but of different size, whereas

that is not the case for Eshelby based techniques,

where only the total volume fraction is relevant.

– Whenever all subphases are aligned fibers, dimen-

sional reduction can be performed, see Appendix A.

Our numerical results suggest that asymptotic homog-

enization for a multiphase elastic composite with dis-

continuos material properties should be implemented

whenever there is, on one hand, the need to minimize

the computational effort arising from simulating the

fully resolved small scale features and, on the other

hand, the need to account for the precise subphases

shape and structural arrangement. In fact, the main ad-

vantage of this approach is to foster computational fea-

sibility without altering the single subphase geometrical

properties and preserving the structural ordering within

the composite, provided that fine scale periodicity is

assumed. Whenever a medium merely consists of inclu-

sions that can be resonably approximated by spheres or

ellipsoids and there is no available information concern-

ing their arrangement, Eshelby based technique can be

chosen. These rely on semi-analytical schemes which ba-

sically require no computational effort, especially when

subphases interactions are not fully taken into account,

as in the Mori-Tanaka scheme. The asymptotic homoge-

nization scheme can be nontrivial to implement and re-

quires more computational effort whenever the number

of subphases, their geometrical complexity, and their

total volume fraction are substantially increasing, as,

in this case, the result is to be captured via a highly

resolved finite element mesh around the subphase in-

terfaces.

The mathematical model we explored in this work

comprises a number of simplifying assumptions, includ-

ing periodicity of the fine scale structure, macroscopic

uniformity, linearized elasticity, and perfectly bonded

subphases. We comment on these in turn.

Fine scale periodicity is classically assumed when

applying the asymptotic homogenization technique, and

the existence of a reference periodic cell is necessary

to actually solve the local problems on a reasonably

small subset of the whole fine scale domain. However,

when asymptotic homogenization is used to formally

derive the coarse scale equations only, local boundness

of the fine scale solution is sufficient, see for example

the derivation of the classical poroelasticity equations

carried out in [5].

A slow modulation of the fine scale geometry, that

is, admitting coarse scale variations of the fine scale

geometry, could be introduced although this, in gen-

eral, introduces additional apparent volume forces in

the coarse scale effective equations and could greatly

affect the computational cost, as the (locally periodic)

cell problems would have to be solved for each coarse

scale point. We refer to, for example, [26] for a thor-

ough discussion about macroscopic uniformity and ge-

ometrical modulation of local structure in the context of

poroelasticity. Whenever this scenario better represents

the actual physical system at hand, high performance

parallel computing could be exploited to solve the cell

problems via independent instances, thus reducing the
overall compuational cost.

Generalizations to nonlinear constitutive behavior

of the constituents are nontrivial when dealing with

asymptotic homogenization, especially when a practical

outcome is to be obtained as the solution of well-posed

cell problems. However, a few examples can be found

in the literature in the context of elasto-plasticity, e.g.,

[10].

We have not considered interface debonding among

phases, which in general modifies the mechanical prop-

erties of elastic composites. As an illustrating exam-

ple we refer to [32], where the authors experimentally

test the effect of interface debonding for bovine com-

pact bone. A challenging extension to the current model

then resides in deducing the qualitative and quantita-

tive properties of the arising effective elasticity tensor

with respect to various displacement jump prescriptions

dictated by the actual physiology at hand.

Finally, although the methodology derived and ex-

plored in this paper has focused on a generic elastic



Asymptotic homogenization for composite materials: A compuational study 15

composite, the next natural step is to apply this ap-

proach to hierarchical physical systems of practical in-

terest, such as musculoskeletal mineralized tissues. This

way, predictions based on realistic geometries will allow

model validation (by comparison against experimen-

tal data) and provide insights concerning the interplay

among the system constituents which could be directly

exploited for biomimetic materials development.

A The asymptotic model for aligned fibers

In order to compare our results to those found in [23], we spe-
cialize our model by matching any assumption enforced by the
authors of that paper. We identify our domain Ω with a peri-
odic composite reinforced by aligned fibers, where each sub-
phase Ωα is a fiber which extends up to the domain boundary,
whereas Ωc represents the host medium. Once periodicity is
exploited, the periodic cell then comprises a number N of
aligned fibers which extend from bottom to top of it. They
are, without loss of generality, aligned with the e3 axis. See
Figure 9, where the geometrical setting related to the partic-
ular case of a single cylindrical fiber in a regular prismatic
lattice is depicted.

Material properties Cc and Cα are assumed constant with
respect to both the fine scale y and the coarse scale x. Ac-
cording to this scenario, the cell problem (50-53) reads

Ccijpq
∂2χcpkl

∂yj∂yq
= 0 in Ωc, (89)

Crijpq
∂2χrpkl

∂yj∂yq
= 0 in Ωr, (90)

Ccijpq
∂χcpkl

∂yq
nrj + Ccijkln

r
j

= Crijpq
∂χrpkl

∂yq
nrj + Crijkln

r
j on Γ r, (91)

χcikl = χrikl on Γ r, (92)

r = 1, ...N and summation over repeated indices j, p, q =
1, 2, 3 is understood. In the above problem, we slightly rear-
ranged terms, we replaced the dummy index α with r, cf. [23],
and exploited property (10). We then recognize that the un-
knowns χc, χr do not depend on y3 for reasons of symmetry.
In particular, since

nr1 = nr1(y1, y2); nr2 = nr2(y1, y2); nr3 = 0, (93)

and the elasticity tensors Cc and Cr are y-constant, the so-
lution ansatz

χc(y1, y2); χr(y1, y2) (94)

satisfies the cell problems (89-92). Hence, the cell problems
(89-92) are now to be solved in two dimensions only and they
can be rewritten, setting Cc = C0, as

Criαsβ
∂2χrskl
∂yα∂yβ

= 0 in Dr, (95)

C0
iαsβ

∂χ0
skl

∂yβ
nrα + C0

iαkln
r
α

= Criαsβ
∂χrskl
∂yβ

nrα + Criαkln
r
α on ∂Dr, (96)

χ0
ikl = χrikl on ∂Dr, (97)

r = 0, 1, ...N , and summation over repeated indices s = 1, 2, 3,
α, β = 1, 2 is understood. The interface conditions are not to
be considered for r = 0, right? Here, the domain D ⊂ R2

represents the two-dimensional cross section of the periodic
cell Ω. We set Ω0 = Ωc and introduce the following notation
for the sake of convenience:

Ω = D × (0, 1); Ωr = Dr × (0, 1);

D̄ =

N⋃
r=0

D̄r; Γ r = ∂Dr × (0, 1). (98)

Accounting for notation (98), the componentwise definition
of the effective elasticity tensor (59), and continuity (97), we
finally have:

C̃ijkl =

N∑
r=0

φrC
r
ijkl +

N∑
r=1

(
Crijsβ − C0

ijsβ

) 〈
Mr
sβkl

〉
r
, (99)

φr =
|Ωr|
|Ω|

=
|Dr|
|D|

,

〈
Mr
sβkl

〉
r

=

〈
∂χrskl
∂yβ

〉
r

=
1

|D|

∫
∂Dr

χrskln
r
β dl. (100)

The functional form of the effective elasticity tensor (99), as
well as the corresponding cell problems (95-97) and auxil-
iary tensor (100), exactly coincide1 with those found in [23],
which were derived accounting for a periodic fiber reinforced
composite and applying asymptotic homogenization to the
domain cross section only.
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