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Abstract

As we stride toward the exascale era, due to increasing complexity of supercomputers, hard

and soft errors are causing more and more problems in high-performance scientific and engineer-

ing computation. In order to improve reliability (increase the mean time to failure) of computing

systems, a lot of efforts have been devoted to developing techniques to forecast, prevent, and

recover from errors at different levels, including architecture, application, and algorithm. In this

paper, we focus on algorithmic error resilient iterative linear solvers and introduce a redundant

subspace correction method. Using a general framework of redundant subspace corrections,

we construct iterative methods, which have the following properties: (1) Maintain convergence

when error occurs assuming it is detectable; (2) Introduce low computational overhead when no

error occurs; (3) Require only small amount of local (point-to-point) communication compared

to traditional methods and maintain good load balance; (4) Improve the mean time to failure.

With the proposed method, we can improve reliability of many scientific and engineering appli-

cations. Preliminary numerical experiments demonstrate the efficiency and effectiveness of the

new subspace correction method.
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domain decomposition, additive Schwarz method
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1 Introduction

Simulation-based scientific discovery and engineering design demand extreme computing power

and high-efficiency algorithms. This demand is one of the main driving forces to pursuit of

extreme-scale computer hardware and software during the last few decades (Keyes 2011). Large-

scale HPC installations are interrupted by data corruptions and hardware failures with increasing

frequency (Miskov-Zivanov and Marculescu 2007) and it becomes more and more difficult to main-

tain a reliable computing environment. It has been reported that the ASCI Q computer (12,288

EV-68 processors) in the Los Alamos National Laboratory experienced 26.1 radiation-induced CPU

failures per week (Michalak et al. 2005) and a BlueGene/L (128K processors) experiences one soft

error in its L1 cache every 4–6 hours due to radioactive decay in lead solder (Bronevetsky and

Supinski 2008).

Computer dependability is, in short, a property that reliable results can be justifiably achieved;

see, for example, Laprie 1995. Without promising reliability of a computer system, no application

can promise anything about the final outcome. Design computing systems that meet high reliability

standards, without exceeding fixed power budgets and cost constraints, is one of the fundamental

challenges that present and future system architects face. It has become increasingly important

for algorithms to be well-suited to the emerging parallel hardware architectures. Co-design of

architecture, application, and algorithm is particularly important given that researchers are trying

to achieve exascale (1018 floating-point operations per second) computing (Mukherjee, Emer, and

Reinhardt 2005; Abts, Thompson, and Schwoerer 2006; Dongarra et al. 2011). To ensure robust

and resilient execution, future systems will require designers across all layers (hardware, software,

and algorithm) of the system stack to integrate design techniques adaptively (Reddi 2012).

As we enter the multi-petaflop era, frequency of a single CPU core does not increase beyond

certain critical value. On the other hand, the number of computing cores in supercomputers is

growing exponentially, which results in higher and higher system complexity. For example, in
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the recent released HPC Top 500 list (Top500.org), the Tianhe-2 system at the National Super-

computing Center in Guangzhou has claimed the first spot in the Top 500. Tianhe-2 consists of

16,000 computer nodes, each comprising two Intel Ivy Bridge Xeon processors and three Xeon

Phi coprocessors (3,120,000 processing cores and 1.37TB RAM in total). Tianhe-2 delivers 33.86

petaflops of sustained performance on the HPL benchmark, which is about 61% of its theoretical

peak performance.

All components of a computing system (hardware and software) are subject to errors and

failures. Inevitably, more complex the system, lower the reliability. Exascale computing systems are

expected to be consist of massive number of computing nodes, processing cores, memory chips, disks,

and network switches. It is projected that the Mean Time To Failure (MTTF) for some components

of an exascale system will be in the minutes range. Fail-stop process failures is noticeable and is

a common type of hardware failures on large computing systems, where the failed process stops

working or responding and it will cause all data associated with the failed process lost. Soft errors

(bit flips) caused by cosmic radiation and voltage fluctuation are another type of significant threads

to long-running distributed applications. Large cache structures in modern multicore processors are

particularly vulnerable to soft errors. Recent studies (Bronevetsky and Supinski 2008; Shantharam,

Srinivasmurthy, and Raghavan 2011; Malkowski, Raghavan, and Kandemir 2010) show that soft

errors could have very different impact on applications, from no effect at all or silent error to

application crashes.

For many PDE-based applications, solution of linear systems often takes most of the comput-

ing time (usually more than 80% of wall-time for large simulations). Providing low overhead and

scalable fault-tolerant linear solvers (preconditioners) is the key to improve reliability of these appli-

cations. Fault-tolerant iterative methods have been considered and analyzed by many researchers;

see Roy-Chowdhury and Banerjee 1993; Hoemmen and Heroux 2011; Shantharam, Srinivasmurthy,

and Raghavan 2012 and references therein. Other fault-tolerant techniques in the field of numerical

linear algebra can also be applied to iterative solvers (Chen and Dongarra 2008). Most of existing

fault-tolerant techniques fall into the following three categories:

1. Hardware-Based Fault Tolerance. Memory errors are one of the most common reasons of

hardware crashes; see Mukherjee, Emer, and Reinhardt 2005; Zhang 2005 and references therein.

Impact of soft errors in caches on the resilience and energy efficiency of sparse iterative methods

are analyzed in Bronevetsky and Supinski 2008. Hardware-based error detection and correction has

been employed on different levels to improve system reliability. Different kinds of Error Correcting

Code (ECC) schemes have been employed to protect the memory data from single or multiple bit

flips. However, using more complex ECC schemes not only result in higher cost in hardware and

energy, but also undermine the performance (Malkowski, Raghavan, and Kandemir 2010).

2. Software-Based Fault Tolerance. The most important form of software fault tolerance tech-

niques is probably checkpointing; see Treaster 2005 and references therein for details. If a failure

occurs in one of the independent components, the directly affected parts of the system or the

whole system is restarted and rolled back to a previously-stored safe state. The checkpointing

and restarting techniques ensure that the internal state of recovered process conforms to the state

before failure. There are several ways to design checkpoints, such as disk checkpointing, diskless
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checkpointing, and message logging (Plank, Li, and Puening 1998; Langou et al. 2007; Liu et al.

2008). Checkpoint/restart is usually applied to treat fail-stop failures because it is able to tolerate

the failure of the whole system. However, the overhead associated with this approach is also very

high—If a single process fails, the whole application needs to be restarted from the last stored state.

Another approach is to utilize optimizing compilers to improve resilience; see, for example, Chen

et al. 2005; Li et al. 2005.

3. Algorithm-Based Fault Tolerance. Algorithm-based fault tolerance (ABFT) schemes based

on various implementations of checksum are proposed originally by Huang and Abraham 1984.

Later this idea was extended to detect and correct errors for matrix operations such as addition,

multiplication, scalar product, LU-decomposition, and transposition; see, for example, Luk and

Park 1986; Boley et al. 1992. Another interesting work worth-noticing is an algorithm-based fault

tolerant technique for fail-stop type of failures and its applications in ScaLAPACK (Chen and

Dongarra 2008). Error resilient direct solvers have recently been considered when single and multiple

silent errors are occurred in Du, Luszczek, and Dongarra 2011 and in Du, Luszczek, and Dongarra

2012, respectively. Fault-tolerant iterative methods such as SOR, GMRES, and CG for sparse linear

systems have also been considered in Roy-Chowdhury and Banerjee 1993; Hoemmen and Heroux

2011; Shantharam, Srinivasmurthy, and Raghavan 2012 (in the event when there is at most one

error). Selective reliability for iterative methods can be achieved using the ideas by Hoemmen and

Heroux 2011. Stoyanov and Webster 2013 propose a new analytic approach for improving resilience

of iterative methods with respect to silent errors by rejecting large hardware error propagation.

In this paper, we focus on resilient iterative solvers/preconditioners from a completely different

perspective. Our main goal is to increase mean time to failure (MTTF) in the algorithm level

by introducing local redundancy to the iterative procedure. We first introduce a virtual machine

model, based on which we propose a framework of space decomposition and subspace correction

method to design iterative methods that are reliable in response to errors. The general idea of

subspace correction is to use a divide and conquer strategy to decompose the original solution

space into the summation of a number of subspaces and then to make corrections on subspaces

in an appropriate fashion. We mainly explore the intrinsic fault/error tolerance features of the

method of subspace corrections:

• In the implementation of subspace correction method, we introduce redundant subspaces

locally and make an appropriate mapping between subspaces and processors;

• The proposed iterative algorithm still converges when single or multiple processes fail and it

does not introduce heavy overhead in case no error occurs;

• The proposed algorithm can be combined with existing hardware, software, and algorithm

based fault tolerant techniques to improve reliability of spare-solver related applications.

The rest of the paper is organized as follows: In Section 2, we describe a virtual machine

model which will be used in the numerical experiments. In Section 3, we discuss a parallel subspace

correction method framework. In Section 4, we discuss a multiplicative subspace correction method.
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In Section 5, we give some preliminary numerical results to test the proposed algorithms. And we

conclude the paper with a few general remarks in Section 6.

2 A virtual machine model

In order to describe our algorithm framework, we need to introduce a simplified reliability model

based on the seven-level model proposed by Parhami (Parhami 1994; Parhami 1997). In our model,

we assume that an application could be in one of the four states—ideal, faulty, erroneous, or failed;

see Figure 1.

Figure 1: System states in a simplified reliability model

Models of reliability have been also discussed by Hoemmen and Heroux 2011. Notice that in

our model, we distinguish fault and error. These terms are not exactly the same as the ones other

people might be using where fault and error are usually interchangeable. We now describe these

four states in details:

• Ideal state is the reliable operating condition under which expected output can be justifiably

obtained.

• A fault refers to an abnormal operating condition of the computer system due to a defective

hardware or software. A fault could be transient or permanent—A transient fault is some

incorrect data which affects the application temporarily and will be replaced by correct data

in later time (e.g., a bit flip in cache which will be flushed later by the data in main memory).

On the other hand, a permanent fault stands for incorrect data which will not be changed

automatically (e.g., incorrect data in the main memory). A fault may not eventually cause

error(s) (e.g., a bit-flip in cache might never be used); only if a fault is actually exercised, it

may contaminate the data flow and cause errors.

• An error could be “hard” or “soft”: A hard error is due to hardware failures (or unusual

delays) and may be caused by a variety of phenomena, which include, but are not limited to,
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an unresponsive network switch or an operating system crashing; A soft error, on the other

hand, is an one-time event, such as a bit-flip in main memory (and this bit is actually used

in the application) and a logic circuit output error, that corrupts a computing systems state

but not its overall functionality. This concept of “error” can also be extended for the case

when a node does not respond within an expected time period. Errors can be detected and

corrected by the application in our model.

• A failed state means that some part of or whole application does not produce the expected

results. As long as a system enters the “failed” state, interference from outside is necessary

to fix the problem and the program itself cannot do anything to fix it. Resilience is a measure

of the ability of a computing system and its applications to continue working in the presence

of fault and error.

Based on the reliability model described above, we introduce a virtual machine (VM), that

ensures isolation of possibly unreliable phases of execution. A virtual machine can support in-

dividual processes or a complete system depending on the abstraction level where virtualization

occurs (Smith and Nair 2005). The concept of virtualization can be applied in various places, for

example subsystems such as disks or an entire cluster. To implement a virtual machine, developers

add a software layer to a real machine to support the desired architecture. By doing so, a VM can

circumvent real machine compatibility and hardware resource constraints.

Due to defective hardwares and/or faulty data, a computer system could be compromised by

errors. In a distributed memory cluster system, there could be deadlocks and other failures due to

unresponsive computer nodes. In this conceptive VM under consideration, an error can be detected

and resolved by system- or user-level error correction mechanisms. For example, a hanging guest

process can be killed and resubmitted∗; a bit-flip data error in the memory can be corrected by

ECC.

For proof-of-concept, we assume that our virtual machine guarantees the following reliability

properties:

A1. At any specific time in (0, T ] during the computation, there could be at most one processing

unit in the erroneous/failed phase. Note that this assumption can be relaxed later on in §4.3.

A2. An erroneous processing unit Ui can be detected and corrected within a fixed amount of time.

A3. A processing unit could be in any state for arbitrarily long time. For example, it could

take more time to fix an erroneous or failed process than the actual computing time of the

application.

Depending on the programming model, a processing (or computing) unit could be a processing

core, a multicore processor, or a computing node of a cluster.

∗A static Message Passing Interface (MPI) program has very limited job control and a single failed processor

could cause the whole application to fail. Hence, the assumption A1 might not be satisfied for the current MPI

standard. However, in the dynamic MPI standard, this could be implemented in practice (Fagg and Dongarra 2000).

Fault-tolerant MPI has been discussed by Gropp and Lusk 2004.
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3 Method of subspace corrections

Let (·, ·) be the L2-inner product on Ω ⊂ Rd (d = 1, 2, 3) and a n-dimensional vector space V ; its

induced norm is denoted by ‖ · ‖. Let A be a symmetric positive definite (SPD) operator on V ,

i.e., AT = A and (Av, v) > 0 for all v ∈ V \{0}. The adjoint of A with respect to (·, ·), denoted

by AT , is defined by (Au, v) = (u,AT v) for all u, v ∈ V . As A is SPD with respect to (·, ·), the

bilinear form (A·, ·) defines an inner product on V , denoted by (·, ·)A, and the induced norm of A

is denoted by ‖ · ‖A. The adjoint of A with respect to (·, ·)A is denoted by A∗. In this paper, we

consider solution methods for the linear equation

Au = f. (1)

3.1 Spatial Partition

Suppose the computational domain Ω has been one-dimensionally† partitioned into several subdo-

mains D1, . . . , DN and each of these subdomains is owned by one processing (or computing) unit;

see Figure 2 (Left). Note that, although we use geometric partitioning to demonstrate the ideas,

the method is applicable to the algebraic versions. These simplifications (including the geomet-

ric domain decomposition assumption) have been made to make the discussion easier and are not

essential.

In general, we can view this partition in an algebraic setting: Let D be the set of all indices for

the degrees of freedom (DOFs) (number of the DOFs is assumed to be n) and

D := {1, 2, . . . , n} =
N⋃
i=1

Di.

be a partition of D into N disjoint, nonempty subsets. For each Di we consider a nested sequence

of larger sets Dδ
i with

Di = D0
i ⊆ D1

i ⊆ D2
i ⊆ · · · ⊆ D,

where the nonnegative integer δ is the level of overlaps.

Suppose the vector space V be the solution space on D. And, V is provided with a space

decomposition

V =

N∑
i=1

Vi, (2)

where the nonempty subspaces Vi ⊆ V associated to the unknowns in the set Dδ
i . To solve for the

degrees of freedom in Di, we might need data in Dδ
i . We assume that all the necessary data for Dδ

i

is owned by the processing unit Ui for each i. With abuse of notation, we call this set of data Dδ
i

as well.

†This assumption is only for the sake of discussion and can be removed easily.
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Dδ
2

Ω

D1 D2 D3 D4

Processor Data

U1

U2

U3

U4

Dδ
1

Dδ
2

Dδ
3

Dδ
4

Figure 2: Partition of the physical domain for overlapping additive Schwarz methods

3.2 Subspace Corrections

To solve large-scale linear systems arising from partial differential equations (PDEs), precondi-

tioned iterative methods are usually employed (Hackbusch 1994). It is well-known that the rate of

convergence of an iterative method (in particular a Krylov space method) is closely related to the

condition number of the preconditioned coefficient matrix. A good preconditioner B for Ax = b

should satisfies:

• The condition number κ(BA) of the preconditioned system is small compared with κ(A);

• The action of B on any v ∈ V is computationally cheap and has good parallel scalability.

A powerful tool for constructing and analyzing (multilevel) preconditioners and iterative methods

is the method of (successive and parallel) subspace corrections. A systematic analysis of subspace

correction methods for SPD problems has been introduced by Xu 1992. Here we give a brief review

of method of subspace corrections.

Let Ai : Vi → Vi be the restriction of A on the subspace Vi, i.e.,

(Aiui, vi) = (Aui, vi), ∀ui, vi ∈ Vi.

Assume that Qi : V → Vi is the orthogonal projection with respect to the L2-inner product, namely,

(Qiu, vi) = (u, vi), ∀vi ∈ Vi.

In a similar manner, we define the projection with respect to the A-inner product, i.e.,

(Piu, vi)A = (u, vi)A, ∀vi ∈ Vi.

For each 1 ≤ i ≤ N , we introduce a SPD operator Si : Vi → Vi that is an approximation of the

inverse of Ai such that

‖I − SiAi‖A < 1. (3)
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We can construct a successive subspace correction (SSC) method by generalizing the Gauss-Seidel

iteration: Let v = um−1 be the current iteration and

v = v + SiQi(f −Av) i = 1, 2, . . . , N. (4)

And the new iteration um = v. By denoting Ti = SiQiA : V → Vi for each i = 1 : N , we get

u− um = (I − TN )(I − TN−1) · · · (I − T1)(u− um−1).

For simplicity we often define the successive subspace correction operator BSSC implicitly as follows

I −BSSCA = (I − TN )(I − TN−1) · · · (I − T1). (5)

The convergence analysis of SSC has been carried out by several previous work and a sharp

estimate of the convergence rate has been originally given by Xu and Zikatanov 2002:

Theorem 1 (X-Z Identity). If (2) and (3) hold, then the successive subspace correction method

(4) converges and the following identity holds:

‖I −BSSCA‖2A = 1− 1

C
,

where the non negative constant

C = sup
‖v‖A=1

inf∑N
i=1 vi=v

N∑
i=1

∥∥∥T− 1
2

i (vi + T ∗i Pi
∑
j>i

vj)
∥∥∥2
A

and T i = Ti + T ∗i − T ∗i Ti.

Remark 1 (Exact Solver for Subspace Correction). A common choice of the subspace solver is

Si = A−1i , i.e. the problems on subspaces Vi are solved exactly. In this case, the constant in

Theorem 1

C = sup
‖v‖A=1

inf∑N
i=1 vi=v

N∑
i=1

∥∥∥Pi(∑
j≥i

vj)
∥∥∥2
A
.

This identity has been utilized to analyze convergence rate of the multigrid methods and the domain

decomposition methods.

Remark 2 (Parallel Subspace Correction). The operator BSSC in (5) is often used as a precon-

ditioner of the Krylov methods. An additive version of subspace correction method, the so-called

parallel subspace correction (PSC) preconditioner, can be defined as

BPSC :=

N∑
i=1

SiQi. (6)

The preconditioned system

BPSCA =
N∑
i=1

SiQiA =

N∑
i=1

Ti.

This type of preconditioners is often used for parallel computing as all the subspace solvers can be

carried out independently and simultaneously, which is clear from the above equation.
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Remark 3 (Colorization). For parallel implementation of SSC, we need to employ colorization:

Suppose we partition the computational domain into NC colors, i.e., D =
⋃NC
t=1

⋃
i∈C(t)Di such that,

for any t = 1, 2, . . . , NC ,

PiPj = 0 ∀ i, j ∈ ∪i∈C(t)Di.

Namely, Pi and Pj are orthogonal to each other if they belong to the same color t. This makes

the parallelization among the same color possible. In this sense, SSC can be written as several

successive PSC iterations using colorization:

v = v +
∑
i∈C(t)

SiQi(f −Av) t = 1, 2, . . . , NC .

So we can use PSC as an example to demonstrate what will happen to subspace correction methods

with presence of errors. This is because PSC is much easier to understand in the parallel setting.

3.3 Parallel subspace correction in a faulty environment

A special case of parallel subspace correction method is the widely-used classical additive Schwarz

method (Toselli and Widlund 2005). Here, as an example, we consider an overlapping version of

the additive Schwarz method (ASM), which is often employed for large-scale parallel computers

because of its efficiency and parallel scalability. A typical program flow chart of the additive Schwarz

method in a not-error-free world (under the assumptions A1–A3) is given in Figure 3 (We use the

Parallel Activity Trace graph or PAT by Deng 2013 to denote the main ideas of the algorithms.‡)

When the processing unit U2 fails to respond, the other processing units will be forced to wait

timeIter 1 Iter 2 Iter 3

U1

U2

U3

U4

Dδ
1 Dδ

1 Dδ
1

Dδ
2

Failure
Back online Dδ

2 Dδ
2

Dδ
3 Dδ

3 Dδ
3

Dδ
4 Dδ

4 Dδ
4

Figure 3: Parallel subspace correction without error resilience

until U2 has been put back online; see, for example Iteration 2, in Figure 3. Apparently this is not

efficient as the processing unit could be offline for arbitrary length of time; see Assumption A3.

When δ is large enough, we can introduce a naive approach which makes use of the redun-

dancy introduced by the overlaps and allows each processing unit to carry extra information from

neighboring processing units. On the processing unit i, we use the redundant information in the

‡The y-axis is processing units and the x-axis is time. The solid bars stand for computational work and springs

stand for inter-process communication.
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overlapping region Dδ−γi
i \D0

i (buffer zone), when the processing unit who owns these DOFs fails.

Here, 0 ≤ γi ≤ δ and is usually not equal to 0 to reduce boundary pollution effects. As an example,

timeIter 1 Iter 2 Iter 3

U1

U2

U3

U4

Dδ
1 Dδ

1
Send to U4 Dδ

1

Dδ
2

Failure
Back online Dδ

2

Dδ
3 Dδ

3
Send to U4 Dδ

3

Dδ
4 Dδ

4 Restore Dδ
2 Dδ

4

Figure 4: Parallel subspace correction using data in δ-overlapping areas to recover lost data

the union of the buffer zone on U1 and U3 could cover part of the degree of freedoms in D2. When

U2 fails, we can request data for preconditioner as well as iterative method from U1 and U3; see

Figure 4.

Due to the pollution effect, the convergence rate of this method deteriorates when there are

failed processing units. It is easy to see that the approach discussed above is not realistic and it

requires to introduce enough redundancy in order to achieve error resilience.

4 Method of redundant subspace corrections

In the previous section, we have discussed the behavior of method of subspace corrections (MSC)

in a non-error-free environment. There are several possible ways to improve resilience of MSC and

the key is to introduce redundancy. In fact, if we review the decomposition (2), there is nothing

to prevent us from repeating the subspaces Vi’s—We can have same subspace Vi multiple time on

different processing units.

4.1 Redundant subspaces

One simple approach to introduce redundancy is to use multiple processes to solve each subspace

problem. This is in the line of process duplication approach which is often used to enhance reliability

of important and vulnerable components of an application. However this approach associates with

high computation/communication overhead and shall not be applied for the whole system.

We now introduce another approach: We pair processing units and each processing unit carries

its own data as well as the data for its brother (in the same pair) as redundancy information.

We use a simple example to explain the main idea: We keep two distinctive subspaces in each

processing unit as illustrated by the following distribution for a simple 4-subspace on 4-process

11



case in Figure 5:
Process Owned Subspace Redundant Subspace

U1 V1, D
δ
1 V2, D

δ
2

U2 V2, D
δ
2 V1, D

δ
1

U3 V3, D
δ
3 V4, D

δ
4

U4 V4, D
δ
4 V3, D

δ
3

where Ui is the i-th processing unit and Vj is the j-th subspace. Suppose U1 has its owned subspace

dataDδ
1; in addition, it also has the data forDδ

2; see Figure 5 (Right). This way, when one processing

unit (U2) fails, its subspace solver S2 can be carried out on the corresponding redundant processing

unit (U1).

Dδ
2

Ω

D1 D2 D3 D4

Processor Data Redundancy

U1

U2

U3

U4

Dδ
1

Dδ
2

Dδ
3

Dδ
4

Dδ
2

Dδ
1

Dδ
4

Dδ
3

Figure 5: Partition of the physical domain and redundant data storage

Algorithmically, if we solve Dδ
2 subproblem without using the solution in D1 which has been

calculated on U1, then this method is equivalent to the classical additive Schwarz method; see

Figure 6.§ An apparent drawback of this method is that, when one processing unit fails, the load

balance of the parallel program is destroyed.

timeIter 1 Iter 2 Iter 3

U1

U2

U3

U4

Dδ
1 Dδ

1 Dδ
2 Dδ

1

Dδ
2

Failure
Back online Dδ

2

Dδ
3 Dδ

3 Dδ
3

Dδ
4 Dδ

4 Dδ
4

Figure 6: Parallel subspace correction using redundant information to perform subspace solver for

an erroneous processing unit

§In this figure, we distinguish regular subspace and redundant subspace corrections by different colors.
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Remark 4 (Subspace Corrections with Redundancy). When U2 fails (see Figure 6), we can use

the solution obtained in D1 (because it is easily available) before we solve the subspace problem

in Dδ
2 and obtain a slightly better solution for D2. This method in turn improves the convergence

rate. However, it still causes most of the processing units to be idle during the erroneous states,

which makes the method not desirable.

4.2 Compromised redundant subspace corrections

To improve load balance of the method in §4.1 (as illustrated in Figure 6) in massively parallel

environment, we choose to use a computationally cheap subspace solver Scj instead of Sj for the

erroneous processing unit j.

We consider the same example as in §4.1. Assume that U2 fails. We then have the following

parallel subspace correction:
U1 : V1 S1
U1 : V2 Sc2
U3 : V3 S3
U4 : V4 S4

Here, Si is the usual (approximate) inverse or a preconditioner of the local matrix associated

with subspace Vi. On the other hand, Scj is a compromised subspace solver/preconditioner—This

operator will be used to replace Sj when the j-th processing unit fails and part or whole information

of the subspace Vj is not available. When a processing unit (U2 for example) fails to return correct

results, we could make use of the redundant subspace information (stored on U1) for this erroneous

process to recover the corresponding subspace solver results.

The compromised subspace solver Scj can be simply a proper scaling αjI, where αi is a positive

scaling parameter. In fact, it is equivalent to replace the exact subspace solver by the Richardson

method for the subspace problem on Vj . Of course, we can also choose to use weighted Jacobi

method instead. We now arrive at the following iterative scheme: Replacing the iterative method

(4) in SSC by

v = v + SiQi(f −Av) i = 1, 2, . . . , j − 1 (7)

v = v + ScjQj(f −Av) (8)

v = v + SiQi(f −Av) i = j + 1, . . . , N. (9)

This yields the compromised redundant subspace correction method

I −Bc
SSCA = (I − TN ) · · · (I − Tj+1)(I − T cj )(I − Tj−1) · · · (I − T1). (10)

By choosing Scj = αjI, we have

T cj = ScjQjA = αjQjA = αjAjPj .

It is easy to see that, if αj is small enough, then ‖I − ScjAj‖A = ‖I − αjAj‖ < 1 and T
c
j is

symmetric positive definite (Xu and Zikatanov 2002, Lemma 4.1). We can then obtain the following

convergence result using Theorem 1:
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Corollary 2 (Convergence of Compromised Redundant Subspace Corrections). If the j-th pro-

cessing core is in the erroneous state and αj is small enough, ‖I−Bc
SSCA‖ < 1. Hence the iterative

method (7)–(9) converges.

Remark 5 (Residual Computation). The coefficient matrix A, the solution vector v, and the right

hand side f are stored in distributed memory model with redundancy. The residual r = f−Av can

be computed by the redundant data when an error or failure is captured. On the 4-process case as

in Figure 6, A = (AT1 , A
T
2 , A

T
3 , A

T
4 )T , v = (v1, v2, v3, v4)

T and f = (f1, f2, f3, f4)
T are stored as:

Process Owned Data Redundant Data

U1 A1, v1, f1 A2, v2, f2
U2 A2, v2, f2 A1, v1, f1
U3 A3, v3, f3 A4, v4, f4
U4 A4, v4, f4 A3, v3, f3

Subspace data Ai and fi remain the same in each iteration and the redundant vi (e.g. v1 on U2)

must be updated when owned vi (e.g. v1 on U1) is changed and vice versa. This introduces an extra

point-to-point communication (in each processor pair). When there is an error or failure captured

on U2, we can use the redundant A2, v2 and f2 stored on U1 to compute the residule vector which

requires one matrix-vector operation and one vector-vector operation on U1 .

4.3 Improving parallel scalability and efficiency

We have introduced a new subspace correction method with redundant information above. How-

ever, this approach is not desirable as all processing units except U1, when it carries out the

subspace solver Sc1. Even though Scj is much cheaper than the usual subspace solver Sj , it still

cause undesirable idle for the majority of the processing units. In this subsection, we discuss how

to improve parallel scalability and efficiency of the compromised redundant subspace correction

method (7)–(9).

In order to remove this idle part of the algorithm completely, we choose Scj = 0 in the compro-

mised redundant subspace correction method, i.e.,

v = v + SiQi(f −Av) i = 1, 2, . . . , j − 1 (11)

v = v + SiQi(f −Av) i = j + 1, . . . , N. (12)

We use the example in Figure 5 to demonstrate the idea. In this case the iteration operator

I −Bc
SSCA = (I − T4)(I − T3)(I − T1). (13)

Of course this method will not be reliable as one the subspace never been corrected when the

process is erroneous. This is because we completely ignore the redundant information.

Now we add another iteration step to compensate the loss information with the help of the

redundant subspace to make another “compromised” subspace correction using

U1 : V2 S2
U3 : V4 S4
U4 : V3 S3

14



This gives another iteration operator:

I − B̃c
SSCA = (I − T3)(I − T4)(I − T2). (14)

We then have the successive redundant subspace correction (SRSC) method

I −BSRSCA = (I − B̃c
SSCA)(I −Bc

SSCA). (15)

See the flow chart in Figure 7 for an illustration.

timeIter 1 Iter 2 Iter 3

U1

U2

U3

U4

Dδ
1 Dδ

2 Dδ
1 Dδ

2 Dδ
1 Dδ

2 Dδ
1

Dδ
2 Dδ

1 Dδ
2

Failure
Back online Dδ

2

Dδ
3 Dδ

4 Dδ
3 Dδ

4 Dδ
3 Dδ

4 Dδ
3

Dδ
4 Dδ

3 Dδ
4 Dδ

3 Dδ
4 Dδ

3 Dδ
4

Figure 7: Redundant subspace correction method

Remark 6 (Error/Failure Handling). We now consider error and failure handling in the virtual

machine environment discussed in §2. In the redundant subspace correction method, when errors

are detected in a process, we directly put this process into the failed state and take it out from the

redundant subspace correction iteration. After the error on that process has been corrected, we

recover this process from the failed state and resynchronize it with other processes for the iterative

procedure. This error handling can also be applied for a fail-stop process caused by non-responsive

nodes, which makes local failure local recovery (LFLR) possible.

Remark 7 (Overhead of RSC). The main idea of RSC is that, by locally keeping redundant

subspaces in appropriate processing units, lost information can be retrieved from the redundant

subspaces to keep the iterative method as well as the preconditioning procedure to continue without

compromising convergence rate when failure of some processing threads or computing processing

units occurs. The overhead in computing work and communication is marginal when no failure

occurs.

Remark 8 (SRSC When Error-Free). We can see that the convergence rate of SRSC is at least

as good as the corresponding SSC method in the worse case scenario. In fact, if there is no error

occurs, then the identity (15) yields that

I −BSRSCA = (I − B̃SSCA)(I −BSSCA),

i.e., the SRSC method converges twice as fast as the corresponding SSC method.
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Theorem 3 (Convergence Estimate of Redundant Subspace Correction). If an error occurs during

computation, the convergence rate of the successive redundant subspace correction method (15)

satisfies

‖I −BSRSCA‖A ≤ ‖I −BSSCA‖A. (16)

If there is no error during computation, the convergence rate satisfies that

‖I −BSRSCA‖A ≤ ‖I −BSSCA‖A ‖I − B̃SSCA‖A. (17)

Proof. With loss of generality, we assume that the processing unit which contains the data for the

subspace V1 (and V2 as the redundant subspace) fails or is taken out of the iteration due to errors.

Let Wi = Vi if 1 ≤ i ≤ N , and Wi = Vi−N+2 if N < i ≤ 2N − 2. In this case, we have the space

decomposition

V =
N∑
i=1

Vi +
N∑
k=3

Vk =
2N−2∑
i=1

Wi,

where Vk (k = 3, . . . , N) are the redundant subspaces. For any v ∈ V , we have a decomposition

v =

2N−2∑
i=1

vi and vi ∈Wi (i = 1, . . . , 2N − 2).

Moreover, we have a special case of this decomposition is

v =

2N−2∑
i=1

wi =

N∑
i=1

wi, wi ∈Wi.

In another word, wi = 0 if N < i ≤ 2N − 2. We then immediately obtain that

inf
v=

∑2N−2
i=1 vi

2N−2∑
i=1

‖T−
1
2

i

(
vi + T ∗i Pi

∑
j>i

vj

)
‖2A ≤

N∑
i=1

‖T−
1
2

i

(
wi + T ∗i Pi

∑
N≥j>i

wj

)
‖2A.

As wi ∈Wi = Vi (i = 1, 2, . . . , N) could be anything, we have

inf
v=

∑2N−2
i=1 vi

2N−2∑
i=1

‖T−
1
2

i

(
vi + T ∗i Pi

∑
j>i

vj

)
‖2A ≤ inf

v=
∑N

i=1 vi

N∑
i=1

‖T−
1
2

i

(
vi + T ∗i Pi

∑
j>i

vj

)
‖2A.

The inequality (16) of the theorem then follows from the above inequality and Theorem 1. The

equality (17) is straightforward from Remark 8.

Remark 9 (More Erroneous Processing Units). Although we assume only one processing unit can

be in the erroneous state (Assumption A1), we can easily see, from Theorem 3, that the method

still converges as long as at least one processing unit from each pair works correctly.
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The corresponding preconditioner of the parallel subspace correction method (6) can be written

as follows:

Bc
PSC := S1Q1 + S3Q3 + S4Q4. (18)

Using a similar approach as in SRSC, we then apply a parallel subspace correction from the redun-

dant copy of subspace preconditioner to make another “compromised” subspace correction using

B̃c
PSC := S2Q2 + S4Q4 + S3Q3. (19)

Finally, we combine the above two incomplete subspace correction preconditioners, Bc
PSC and B̃c

PSC,

in a multiplicative fashion to obtain a new preconditioner BPRSC:

I −BPRSCA = (I − B̃c
PSCA)(I −Bc

PSCA).

This is an example of the Redundant Subspace Correction (RSC) method; see Figure 7.

Remark 10 (PRSC When Error-Free). If we use a nested sequence of subspaces V1 ⊂ V2 ⊂ · · · ⊂
VN ≡ V , then the method is actually the BPX preconditioner (Bramble, Pasciak, and Xu 1990).

When no error occurs during the iterative procedure, we have

I −BPRSCA = (I −BPSCA)2 = (I −BBPXA)2.

5 Numerical Experiments

In this section, we design a few numerical experiments to test the proposed redundant subspace

correction methods with a few widely used partial differential equations and their standard dis-

cretizations.

5.1 Test problems

The numerical experiments are done for the Poisson equation, the Maxwell equation, and the

linear elasticity equation in three space dimension with the Dirichlet boundary condition. The

computational domain is the unit cube Ω = (0, 1)3. The domain partitioning has been done using

the METIS package (Karypis and Kumar 1998) and a sample partition is given in Figure 8.

Example 1. The Poisson’s equation {
−∆u = f, in Ω

u = g, on ∂Ω
(20)

The first order lagrange element is used for discretization. We use the continuous piecewise linear

Lagrange finite element (FE) discretization to solve this equation.
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Figure 8: A sample domain partition of a unit cube for the Poisson equation

Example 2. The Maxwell equation{
∇× µ−1∇× ~E − k2 ~E = ~J, in Ω

~E × ~n = ~g × ~n, on ∂Ω
(21)

The parameters µ = 1 and k2 = −1. The exact solution is chosen to be xyz(x− 1)(y − 1)(z − 1)(x− 0.5)(y − 0.5)(z − 0.5)

sin(2πx) sin(2πy) sin(2πz)

(1− ex)(e− ex)(e− e2x)(1− ey)(e− ey)(e− e2y)(1− ez)(e− ez)(e− e2z)

 .

The lowest order edge element is used for discretization.

Example 3. The linear elasticity equation{
∇ · τ = ~f, ~x ∈ Ω

~u = ~g, ~x ∈ ∂Ω
(22)

where

τij = 2µεij + λδijεkk, εij =
1

2
(ui,j + uj,i) (i, j = 1, 2, 3), (23)

and ui,j = ∂ui/∂xj . The parameters are given by{
λ = Eν

(1+ν)(1−2ν)
µ = E

2(1+ν) ,
(24)

where E = 2.0 and ν = 0.25. The continuous piecewise quadratic Lagrange finite element is used

for discretization.
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5.2 Implementation details

All numerical tests are carried out on the LSSC-III cluster at State Key Laboratory of Scientific

and Engineering Computing (LSEC), Chinese Academy of Sciences. The LSSC-III cluster has

282 computing nodes: Each node has two Intel Quad Core Xeon X5550 2.66GHz processors and

24GB shared memory; all nodes are connected via Gigabit Ethernet and DDR InfiniBand. Our

implementation is based on PHG (Parallel Hierarchical Grid). http://lsec.cc.ac.cn/phg/ , which

is a toolbox for developing parallel adaptive finite element programs on unstructured tetrahedral

meshes and it is under active development at the LSEC.

We use MPI distributed memory parallelism paradigm and a processing unit is just one core

in a multicore cluster in our experiments. We simplify the non-error-free environment by setting

one of the process to be fail and not responding from beginning to end of iterative methods. This

way, the failed core does not contribute to the solution of linear systems at all. This removes

the complication for considering detecting and fixing the error, which allows us to focus on the

convergence and scalability of the proposed RSC methods. Furthermore, this also free us from

considering the overhead introduced by detecting and fixing errors and we can obtain a good idea

on the algorithmic overhead introduced by the error resilience feature of our algorithm.

In the following of this section, we present a few preliminary numerical examples for the per-

formance of the proposed methods on a virtual machine as discussed in §2. We mainly interested

in testing the following: (1) convergence of the successive redundant subspace correction (SRSC)

method as an iterative method; (2) algorithmic overhead introduced by SRSC compared with reg-

ular SSC; (3) performance of the parallel redundant subspace correction (PRSC) method as a

preconditioner and its overhead; (4) weak scalability of PRSC as a preconditioner.

Since the preconditioner action might change during the iteration, we should use flexible ver-

sions of the Krylov space iterative methods together with PRSC, such as the Flexible Conjugate

Gradient (FCG) or the Flexible Generalized Minimal Residual (FGMRES) method with restart.

We employ the Flexible GMRES method (Saad 1996) as the iterative solver and we need a resilient

iterative method as well. In all our numerical experiments, FGMRES with restarting number

30 is used and the maximum iteration number is set to be 10000. One can consider to combine

the FT-FGMRES (Hoemmen and Heroux 2011) with the proposed redundant subspace correction

preconditioners to improve convergence rate of sparse iterative solvers.

In the numerical experiments, we choose an extensively studied algorithm, the domain decom-

position method with out the coarse space, which can be analyzed as a special case of the method

of subspace correction; see Chan and Mathew 1994; Toselli and Widlund 2005 for a comprehensive

overview of the field. We employ the multiplicative Schwarz method (a SSC method) and the ad-

ditive Schwarz method (a PSC method) with overlapping level δ = 2.¶ To make a fair comparison,

we always start the iterative procedure from a zero initial guess in our tests. We terminate the

iterative procedure when the relative Euclidean residual less than a fixed tolerance tol = 10−8. In

the tables, “#Iter” denotes the number of iterations, “DOF” denotes the degree of freedom, and

¶Note that additive and multiplicative Schwarz methods with coarse mesh correction are not be the best options

for the test problems under consideration; see more discussions in §5.4.
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“Time” denotes the wall time for computation in seconds.

5.3 Convergence and efficiency

First we test the convergence of the proposed redundant subspace correction method (SRSC) and

we are interested in the impact of one erroneous process. In this test, we use 16 processing cores

and the results are reported in Table 1. In a non-error-free case, we let processing core U1 fail from

the starting till the end of computation as we mentioned earlier. From the numerical results, we

Error-Free

Poisson Maxwell Elasticity

(2,146,689 DOFs) (1,642,688 DOFs) (823,875 DOFs)

#Iter Time #Iter Time #Iter Time

Yes 44 70.73 63 68.76 73 223.14

No 48 81.01 67 74.28 74 229.21

Table 1: Convergence of colorized SRSC as an iterative method in error-free and non-error-free

environments

find that the proposed SRSC method converges. Furthermore, even with 1
16 of the processes failed,

the convergence rate of the method does not deteriorate much—Number of iterations increase by

9% or less. This is exactly what we expect based on the theoretical estimates in §4.

Next we compare the performance of RPSC and the standard PSC method as a preconditioner of

FGMRES when no error occurs and when error occurs. In this test, we use 16 processing cores and

the results are reported in Table 2. Here we use the additive Schwarz method with overlap δ = 2.

In a non-error-free case, we let processing core U1 fail from the starting till the end of computation.

In Table 2 we notice that the overhead introduced by the redundant subspace correction method

Example DOF
BPSC Error-Free BPRSC Error-Free BPRSC With Error

#Iter Time #Iter Time #Iter Time

Poisson 1,335,489 23 7.92 12 8.09 13 8.13

Maxwell 468,064 42 4.09 21 4.23 24 4.48

Elasticity 436,515 16 10.18 9 11.01 10 11.35

Table 2: Performance of parallel redundant subspace correction preconditioner in error-free and

non-error-free environments

is small from two perspectives:

• When there is no error, the PRSC method is still efficient compared with the standard PSC

method.

• When there is error, the PRSC method converges and the extra cost in term of wall time is

less than 10% compared with the case when there is no error.
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5.4 Weak scalability

Now we focus on weak scalability of the proposed method and compare the results in the error-free

case with the case when the computation is affected by a single erroneous processing core. As before

we use the additive Schwarz method with overlap δ = 2. It is well-known that the additive Schwarz

method yields a preconditioner BAS whose performance deteriorates as the size of subdomains H

decreases. More precisely, if β is the ratio between the size of the overlapping region and H, then

the condition number of the preconditioned system

κ(BASA) ≤ CH−2(1 + β−2),

where the constant C is independent of the mesh size h or H (Dryja and Widlund 1989; Dryja and

Widlund 1992). This drawback can be fixed by introducing coarse grid corrections, which in turn

requires a global communication of information and needs careful implementation (Gropp 1992;

Bjorstad and Skogen 1992; Smith 1993).

Because we only wish to examine the impact of redundant subspace corrections, the Schwarz

methods without coarse grid corrections are good enough for this purpose. The number of itera-

tions, wall time in seconds, and parallel efficiency are reported in Tables 3, 4, and 5. From these

experimental results, we can see that the PRSC method is robust if there is one failed processing

core. Furthermore, the weak scalability of the preconditioner is reasonable and it is not contami-

nated much by the presence of failed processes. Note that the low parallel efficiency is mainly due

to the fact that the method itself is not optimal and number of iterations increases as the mesh

size decreases.

DOF #Cores
Error-Free With Error

#Iter Time Efficiency #Iter Time Efficiency

536,769 8 8 5.09 100% 10 5.51 100%

1,335,489 16 12 8.09 62.9% 13 8.13 67.8%

2,146,689 32 13 8.64 58.9% 15 8.99 61.3%

4,243,841 64 14 8.91 57.1% 16 9.37 58.8%

10,584,449 128 19 12.87 49.5% 20 13.95 39.5%

16,974,593 256 23 18.01 28.3% 25 19.13 28.8%

33,751,809 512 25 20.90 24.3% 27 26.11 21.1%

Table 3: Performance of the PRSC preconditioner for the Poisson equation

6 Concluding remarks

In this paper, we discussed a new approach to introduce local redundancy to iterative linear solvers

to improve their error-resilience—We introduce redundant subspaces to the method of subspace

corrections and they, in turn, can improve the resilience of the iterative procedure as well as the
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DOF #Cores
Error-Free With Error

#Iter Time Efficiency #Iter Time Efficiency

238,688 8 15 4.08 100% 17 4.48 100%

468,064 16 21 4.23 96.5% 24 4.88 91.8%

968,800 32 23 5.18 78.8% 26 5.46 82.1%

1,872,064 64 27 7.21 56.6% 30 8.16 59.8%

3,707,072 128 49 8.02 50.9% 54 8.84 54.9%

7,676,096 256 51 10.60 38.5% 56 11.99 37.4%

14,827,904 512 65 17.67 23.1% 73 19.52 23.0%

Table 4: Performance of the PRSC preconditioner for the Maxwell equation

DOF #Cores
Error-Free With Error

#Iter Time Efficiency #Iter Time Efficiency

206,155 8 7 8.65 100% 8 8.88 100%

436,515 16 9 11.01 78.6% 10 11.35 78.2%

823,875 32 9 18.99 45.6% 11 19.47 45.6%

1,610,307 64 12 20.48 42.2% 12 20.77 42.8%

3,416,643 128 11 24.14 35.8% 12 26.06 34.1%

6,440,067 256 17 30.42 28.4% 18 31.92 27.8%

12,731,523 512 21 33.74 25.6% 22 34.98 25.4%

Table 5: Performance of the PRSC preconditioner for the linear elasticity equation
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preconditioning step. The redundant subspace correction methods can be combined with other

error detection and correction mechanisms on different levels of the system stack to improve the

mean time to failure of extreme-scale computers. Exploring the intrinsic fault-tolerant features

of the iterative solvers (and other numerical schemes) can open a new door to improve reliability

of long-running large-scale PDE applications. We presented preliminary numerical examples to

demonstrate the advantages and potentials of the proposed approach. Although our numerical

tests are based on the one-level domain decomposition method, multilevel redundant subspace

correction methods can be developed to improve convergence and it will be our future topic of

research.
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