
Noname manuscript No.
(will be inserted by the editor)

A Non-Intrusive Parallel-in-Time Adjoint Solver
with the XBraid Library

Stefanie Günther · Nicolas R. Gauger ·
Jacob B. Schroder

Received: date / Accepted: date

Abstract In this paper, an adjoint solver for the multigrid-in-time software
library XBraid is presented. XBraid provides a non-intrusive approach for
simulating unsteady dynamics on multiple processors while parallelizing not
only in space but also in the time domain [60]. It applies an iterative multi-
grid reduction in time algorithm to existing spatially parallel classical time
propagators and computes the unsteady solution parallel in time. Techniques
from Automatic Differentiation are used to develop a consistent discrete ad-
joint solver which provides sensitivity information of output quantities with
respect to design parameter changes. The adjoint code runs backwards through
the primal XBraid actions and accumulates gradient information parallel in
time. It is highly non-intrusive as existing adjoint time propagators can eas-
ily be integrated through the adjoint interface. The adjoint code is validated
on advection-dominated flow with periodic upstream boundary condition. It
provides similar strong scaling results as the primal XBraid solver and offers
great potential for speeding up the overall computational costs for sensitivity
analysis using multiple processors.

S. Günther, N.R. Gauger
TU Kaiserslautern
Chair for Scientific Computing
Paul-Ehrlich-Straße 34 – 36
67663 Kaiserslautern
Tel.: +49-631-205-5637
Fax: +49-631-205-3056
E-mail: stefanie.guenther@scicomp.uni-kl.de

J.B. Schroder
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808
L-561, Livermore, CA 94551
This work performed under the auspices of the U.S. Department of Energy by Lawrence Liv-
ermore National Laboratory under Contract DE-AC52–07NA27344, LLNL-JRNL-730159.

ar
X

iv
:1

70
5.

00
66

3v
2 

 [
m

at
h.

O
C

] 
 1

9 
Ja

n 
20

18



2 S. Günther et al.

Keywords parallel-in-time · multigrid-in-time · parareal · optimization ·
adjoint sensitivity · unsteady adjoint · high performance computing

1 Introduction

With the rapid increase in computational capacities, computational fluid dy-
namics (CFD) has nowadays become a powerful tool to predict and analyze
steady and unsteady fluid flows. For unsteady dynamics, a numerical CFD
simulation approximates the state u(t) of a dynamical system (e.g. density,
velocity or temperature), given problem specific design parameters denoted by
ρ (such as geometry, boundary and initial conditions or material coefficients),
while the state is determined through a set of unsteady partial differential
equations (PDEs):

du(t)

dt
= g(u(t), ρ) ∀t ∈ (0, T ) (1)

u(0) = g0. (2)

Here, the right hand side g involves spatial derivatives, source terms, etc.
as well as the design parameters ρ. Accounting for the unidirectional flow
of information in the time domain, an approximation to the unsteady PDE
solution is typically evolved forward in time in a step-by-step manner applying
a time marching algorithm [4,16,57]. Starting from the initial condition, these
schemes march forward in discrete time steps applying nonlinear iterations in
space to approximate a pseudo-steady state at each time step as for example
in the dual-time stepping approach [33].

However, in many applications, the primal flow is not the only computation
of particular interest. The ability to compute sensitivities is also needed to
determine the influence of design changes to some objective function J that
computes the time-average of instantaneous quantities of the flow dynamics

J(u, ρ) =
1

T

∫ T

0

f(u(t), ρ)dt. (3)

The ability to compute sensitivities can improve and enhance the simulation
tool, as for example through parameter estimation for validation and verifi-
cation purposes [45], error estimation and adaptive grid refinement [59,48,24]
or uncertainty quantification techniques [3]. Further, it broadens the applica-
tion range from pure simulation to optimization as for example in an optimal
control or shape optimization framework [32,43,42].

If the number of independent design parameters is large, the adjoint ap-
proach for sensitivity computations is usually preferred since its computational
cost does not scale with the design space dimension [49,22]. In that approach,
only one additional adjoint equation needs to be solved in order to set up
the gradient of the objective function J with respect to ρ. For unsteady time
marching schemes, solving the adjoint equation involves a reverse time inte-
gration loop that propagates sensitivities backwards through the time domain



A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library 3

starting from a terminal condition [43,9,52,41,46]. Hence evaluating the gra-
dient is a rather computationally expensive task as it involves a forward loop
over the time domain to approximate the PDE solution followed by a back-
wards time marching loop for the adjoint.

One way to mitigate this costly procedure of forward and backward sweeps
over the time domain is to parallelize the time dimension. Overall, the need for
parallel-in-time methods is being driven by changes in computer architectures,
where future speedups will be available through greater concurrency, not faster
clock speeds, which are stagnant. Previously, ever faster clock speeds made it
possible to speedup fixed-size sequential time stepping problems (strong scal-
ing), and also to refine problems in time and space without increasing the
wall-clock time (weak scaling). However with stagnate clock speeds, speedups
will only be possible through the increasing concurrency of future architec-
tures. Thus, to overcome this serial time stepping bottleneck, time stepping
codes must look for new parallelism from the time dimension. This bottleneck
is particularly acute for adjoint solvers because of the many sweeps over the
time domain.

Research on parallel-in-time methods goes at least back to the 1964 work
by Nievergelt [47]. Since then, a variety of approaches have been developed, in-
cluding parareal, which is perhaps the most popular parallel-in-time method [39].
For a recent literature review and a gentle introduction, see [18]. The method
used here is multigrid reduction in time (MGRIT) and is based on multi-
grid reduction [12,50,51]. MGRIT is relatively non-intrusive on existing codes
and when restricted to two grid levels, is equivalent to parareal [12,20]. This
multilevel distinction is important, because it allows for optimal parallel com-
munication behavior, as opposed to a two-level scheme, where the size of the
coarse-level limits concurrency. This work uses XBraid, an open source imple-
mentation of MGRIT developed at Lawrence Livermore National Lab [60].

Previous time parallel approaches to optimization include multiple shoot-
ing methods [31], parareal approaches applied to a reduced Hessian [8,40],
and the Schwarz preconditioner approaches in [2,19,37]. Further, [25] uses the
time-parallel PFASST approach to solve the state and adjoint equations for
parabolic optimal control problems. While these previous approaches were ef-
fective, applying XBraid for optimization offers some possible advantages, e.g.,
XBraid offers multilevel scalability, and the potential for greater parallelism
over the Schwarz approaches. The parallelism for the Schwarz approaches is
limited by the size of fine-grid “subdomains” which must each be solved se-
quentially, but for XBraid, the size of such subdomains is determined by the
temporal coarsening factor, which can be as small as 2.

When considering the intersection of optimization, CFD, and parallel-in-
time, a prerequisite is that parallel-in-time be effective for standard fluid dy-
namics problems, and recent advances indicate that parallel-in-time can in-
deed be an effective tool here. In [15], the Parallel Implicit Time-Integration
Algorithm (PITA) was proposed, which enjoys success for highly advective
problems, targeting in part fluid dynamics [53]. It essentially uses a parareal
framework, but creates a massive Krylov space to stabilize and accelerate the



4 S. Günther et al.

method. While effective, the memory usage of this algorithm is discourag-
ing. When considering unmodified parareal, the works [17,55,36] show that
parareal can be effective for fluids problems when sufficient physical (not arti-
ficial) diffusion is present. Similar success with XBraid was shown for vortex
shedding [13]. Lastly, the work [58] showed a path forward for XBraid and
purely advective problems that relies only on artificial dissipation.

The XBraid package will be presented in Section 2. Section 3 reviews the
adjoint approach for computing sensitivities. Then, in Section 4, an approach
to modifying XBraid in order to integrate existing adjoint time stepping codes
into the XBraid framework is developed. Exploiting techniques from Auto-
matic Differentiation (AD) [29], the primal XBraid iterations are enhanced
by an adjoint iteration that runs backwards through the XBraid actions and
computes consistent discrete adjoint sensitivities. Similar to the primal XBraid
solver, the resulting adjoint solver is non-intrusive in the sense that existing
adjoint simulation codes can easily be integrated through the extended user
interface. Finally, the adjoint code is validated in Section 5 by applying it to
advection-dominated flow with a periodic upstream boundary.

2 Multigrid Reduction in Time using XBraid

To describe the MGRIT algorithm implemented by XBraid, let u(t) be the
solution to a time-dependent problem on the interval [0, T ]. Let ti = iδt, i =
0, 1, ..., N be a time grid of that interval with spacing δt = T/N , and let
ui ∈ Rn be an approximation of u(ti).

Classical time marching schemes successively compute ui based on infor-
mation at previous time steps ui−1,ui−2, . . . , and the design ρ where ρ ∈ Rp
in a discretized setting. Implicit methods are often prefered due to better sta-
bility properties leading to nonlinear equations at each time step that need
to be solved iteratively for ui. Wrapping these iterations into a time stepper
Φi : Rn × Rp → Rn, a general one-step time marching scheme can be written
as

ui = Φi(ui−1, ρ), for i = 1, 2, ..., N, (4)

with given initial condition u0 = g0. Application to multi-step methods which
involve more than one previous time step can be found in [11] and are based
on a reformulation into a block one-step scheme.

We consider first the linear case (only as motivation), so that Φi(ui−1, ρ)
is equivalent to the matrix-vector product Φiρu

i−1, yielding ui = Φiρu
i−1 + giρ.

Thus, time stepping is equivalent to a forward sequential solve of the block



A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library 5

t0 t1 t2 t3
...

tm

T0 T1

tNt

∆T = mδt

δt

Fig. 1 Fine grid (ti) and coarse grid (Tj) for coarsening factor m = 5. The coarse grid
induces a decomposition of the fine grid into C-points (red) and F -points (black).

lower bidiagonal system Au = g,1
I
−Φ1

ρ I
. . .

. . .

−ΦNρ I




u0

u1

...
uN

 =


g0

g1ρ
...
gNρ

 . (5)

The MGRIT algorithm replaces the O(N) sequential time stepping algorithm
with a highly parallel O(N) multigrid algorithm [56]. Essentially, a sequence of
coarser temporal grids are used to accelerate the solution of the fine grid (5).
The MGRIT algorithm easily extends to nonlinear problems with the Full Ap-
proximation Storage (FAS) nonlinear multigrid method [6], which is the same
nonlinear multigrid cycling used by PFASST [10]. MGRIT solves the discrete
space-time system in equation (4); i.e., MGRIT converges to the same solution
produced by sequential time stepping on the finest grid. Lastly, while sequen-
tial time stepping and MGRIT are optimal, the constant for MGRIT is higher,
often by a factor of 10 or 20 for a straight-forward application of MGRIT, (an
optimal direct sequential method has been replaced with an optimal iterative
method). This creates a crossover point where a certain number of resources
are required to overcome the extra computational work of MGRIT.

The MGRIT algorithm forms its sequence of coarse time grids from the
original fine grid by successively coarsening with factor m > 1. When a time
grid is coarsened, it is decomposed into two sets called C-points (points that
will go on to form the next coarser grid) and F -points (points that exist only
on the fine grid). Figure 1 illustrates an example of this. This decomposition
then in turn, induces the relaxation method and coarse-grid correction step,
which together form the basis of a multigrid method.

Relaxation is a block Jacobi method that alternates between the F - and
C-points. An F-relaxation updates F -point values ui on interval (Tj , Tj+1) by
propagating the C-point value umj with Φi. Each F -interval is independent,
and can be computed in parallel. Likewise, C-relaxation uses Φmj to update
each C-point value umj based on the previous F -point value. These updates
can also be carried out in parallel. Thus, FCF-relaxation corresponds to three
relaxation sweeps over F -points, C-points and F -points.

The coarse time grid problem is constructed by rediscretizing the prob-
lem using only the red C-points, as depicted in Figure 1. This corresponds
to eliminating the F -points in equation (5), followed by the substitution of a

1 In this work, the application of Φiρ represents the approximate inversion of an operator
(implicit scheme), but in principle, explicit schemes may be considered as well.



6 S. Günther et al.

cheaper coarse time step operator for the exact fine-grid time step operator.
Injection is used to transfer vectors between grids (see [12] for more details).
When the algorithm is done recursively, using FAS, a multilevel algorithm
capable of solving complex nonlinear problems is produced (see [13,14]). Stan-
dard multigrid cycling strategies, e.g., V-cycles and F-cycles (see [56]), can
then be applied.

The FAS nonlinear multigrid method is a general nonlinear solver method,
and as such, the solution of the global space-time system is a fixed-point
of the MGRIT algorithm. For instance, the paper [58] shows that the error
propagator of MGRIT is a contraction for many linear cases. Thus, letting
uk =

(
u1
k, . . . ,u

N
k

)
∈ RNn denote the solution to the space-time system af-

ter k MGRIT iterations, and the operator H : RNn × Rp → RNn represent
the application of one MGRIT iteration, the overall solution process can be
represented as

uk+1 = H(uk, ρ), (6)

where uk+1 is converging to a fixed-point u = H(u, ρ) with ui = Φi(ui−1, ρ)
at all time steps i = 1, . . . , N .

2.1 XBraid Interface

The XBraid interface places a high value on non-intrusiveness and is designed
to wrap existing time stepping codes. The goal is for the user to generate
only a small amount of new wrapper code that then yields a new parallel-in-
time capability. XBraid is written in C, but also has an object oriented C++
interface and a Fortran90 interface. The time parallelism is handled with MPI.

To use XBraid, the user is responsible for defining and implementing the
following. See [60] and the associated User’s Manual for more details.

– A user App (application) structure must be defined and is globally available
to the user in all wrapper routines such as my Step. This C-style structure
generally holds time independent information such as the time-grid defini-
tion, MPI communicators as well as the design variable ρ and the current
time-averaged objective function J .

– A state vector structure must be defined so that it captures a complete
solution snapshot at a single time point. This C-style structure gener-
ally holds time dependent information, e.g., unknown values ui and time-
dependent spatial mesh information.

– The key user-written routine is the my Step function which takes as input
a state vector at time step i − 1 and advances it to time step i. This
function is called everywhere, i.e., on coarse and fine time-grids for large
and small time step sizes. This function wraps the user’s existing time
stepping routine and defines Φ, i.e. ui = Φi(ui−1, ρ).

– The user also writes the output routine my Access. This function is called
after each XBraid iteration to access and possibly modify the state vectors



A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library 7

and to pass information on the instantaneous quantity of interest f(ui, ρ)
to the user App. It is called individually for each time step value on the
finest time grid.

– The user must further define a variety of wrapper functions that provide
XBraid with additional information for handling the vector structure. For
instance, my Init and my Clone must initialize and clone a vector, respec-
tively. The wrapper my Sum must compute a vector sum of two vectors,
i.e., vi = αui+βvi. Other functions must free a vector structure and take
the norm of a vector, typically an Euclidean norm.

– Additionally, the user must define how to pack and unpack an MPI buffer
so that vectors can be sent between processors. These my BufPack and
my BufUnpack functions are generally straightforward and require the user
to flatten a vector into a buffer, and then unpack that buffer into a vector.

3 Adjoint Sensitivity Computation

The presented XBraid solver determines a global space-time solution by iter-
atively solving the fixed-point equation

u = H(u, ρ), (7)

for a fixed design ρ. Small changes in the design variable δρ result in a per-
turbed state δu which induces a perturbation in the objective function δJ both
explicitly from the design itself and implicitly through the solution of fixed-
point equation (7). This change is quantified by the sensitivity (or derivative)
of J with respect to ρ.

One way to determine the sensitivity numerically is the finite difference ap-
proach which approximates the derivative for design perturbations with unity
directions ej ∈ Rp by evaluating

dJ

dρj
≈
J(uρ+εej , ρ+ εej)− J(u, ρ)

ε
∀ j = 1, . . . , p, (8)

for small ε > 0, where uρ+εej is the space-time solution of the fixed-point equa-
tion for the perturbed design parameter. However, a full unsteady simulation
would be necessary to compute uρ+εej such that the computational cost for
computing the full gradient of J , which consists of the derivatives in all unity
directions in Rp, grows proportional to the design space dimension p.

3.1 Adjoint sensitivities via Lagrangian formalism

A well-established alternative approach to computing the gradient of J with
respect to ρ is the adjoint method [38,49,23]. In that approach, an additional
equation is derived by differentiating H and J partially with respect to u and
ρ. Its solution, the so-called adjoint variable, is then used to determine the
gradient of J for a computational cost that does not scale with the number of



8 S. Günther et al.

design parameters. The adjoint equation can be derived using an augmented
function (the so-called Lagrangian function)

L(u, ū, ρ) := J(u, ρ) + ūT (H(u, ρ)− u) , (9)

which adds a multiple of the fixed-point equation (7) to the objective function
with a multiplier ū ∈ RNn . If u is a solution to the fixed-point equation, the
derivatives of J and L with respect to ρ coincide and are computed from the
chainrule as

dJ

dρ
=

dL

dρ
=
∂J

∂u

du

dρ
+
∂J

∂ρ
+ ūT

(
∂H

∂u

du

dρ
+
∂H

∂ρ
− du

dρ

)
(10)

=
∂J

∂ρ
+ ūT

∂H

∂ρ
+

(
∂J

∂u
+ ūT

∂H

∂u
− ūT

)
du

dρ
. (11)

The term du/dρ represents the sensitivity of the flow solution with respect
to design changes whose numerical computation is extremely expensive as
it would require p primal flow simulations in a finite difference setting. The
adjoint approach avoids these computations by choosing the multiplier ū in
such a way that terms containing these sensitivities add up to zero: Choosing
ū such that it satisfies the so-called adjoint equation

ū = ∇uJ +

(
∂H

∂u

)T
ū, (12)

the gradient of J is then given by

∇J =

(
dJ

dρ

)T
= ∇ρJ +

(
∂H

∂ρ

)T
ū, (13)

according to equation (11), where ∇ denotes transposed derivative vectors.
Instead of solving the fixed-point equation p times for each unity direction
in the design space, the adjoint approach requires only the solution of one
additional (adjoint) equation for the adjoint variable ū in order to determine
the gradient of J with respect to ρ.

3.2 Simultaneous piggyback iteration for the primal and adjoint variable

The adjoint equation is linear in the adjoint variable. Hence, ifH is contractive,
it can be solved with the linear fixed-point iteration

ūk+1 = ∇uJ(u, ρ) +

(
∂H(u, ρ)

∂u

)T
ūk for k = 0, 1, . . . , (14)

starting from ū0 = 0 where the right hand side is evaluated at a feasible state
u that satisfies (7). However, it is shown in [27] that the adjoint iteration can



A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library 9

also be performed simultaneously with the primal iterations in the following
piggyback approach:

For k = 0, 1, . . . :

uk+1 = H(uk, ρ) (15)

ūk+1 = ∇uJ(uk, ρ) +

(
∂H(uk, ρ)

∂u

)T
ūk. (16)

This approach is especially attractive for simultaneous optimization algo-
rithms as for example the One-shot method where small changes to the design
are introduced in each piggyback iteration based on the current evaluation of
the gradient [26,5,21,30]. For the case considered here of a fixed design ρ, the
piggyback iterations converge to the feasible primal u and adjoint solution ū
at the same asymptotic convergence rate determined by the contraction rate
of H. Due to the dependency of the adjoint solution on a feasible state, the
adjoint variable is expected to lag a bit behind the primal iterates which has
been analyzed in [28]. If the contractivity assumption is slightly violated such
that eigenvalues close to or even outside the unit sphere are present, the ad-
joint iteration can be stabilized using the recursive projection method (RPM),
see for example [54,1].

4 The adjoint XBraid solver

While the primal XBraid solver provides an iteration for updating the primal
state as in (15), an adjoint XBraid solver has been developed that updates the
adjoint variable as in (16) and evaluates the gradient at the current iterates.
For current primal and adjoint input variables uk, ūk, it returns[

ūk+1

ρ̄

]
=

[
∇uJ(uk, ρ) + ∂uH(uk, ρ)T ūk
∇ρJ(uk, ρ) + ∂ρH(uk, ρ)T ūk

]
, (17)

where ūk+1 is the new adjoint iterate and ρ̄ holds the current approximation of
the sensitivity of J with respect to ρ as in (13). Since H and J refer to numer-
ical algorithms, their partial derivatives are computed by adopting techniques
from Automatic Differentiation (AD) [29,44].

AD is a set of techniques that modify the semantics of a computer program
in such a way that it not only computes the primal output but also provides
sensitivities of the outputs with respect to input variations. It relies on the fact
that any computer program for evaluating a numerical function can at runtime
be regarded as a concatenation of elemental operations whose derivatives are
known. Thus, the derivative of the output can be computed by applying the
chain rule to the elemental operations. Two modes are generally distinguished:
while the forward mode computes directional derivatives, the reverse mode
returns transposed matrix-vector products of the sensitivities which is hence
the method of choice for setting up the adjoint iteration.



10 S. Günther et al.

To be more precise, consider a numerical algorithm for evaluating z = F (x)
with input x ∈ Rn and output z ∈ Rm which at runtime is a concatenation of
elemental operations denoted by hl such that

z = F (x) = (hL ◦ hL−1 ◦ · · · ◦ h1)(x). (18)

Given a vector z̄ ∈ Rm, the reverse mode computes the sensitivity x̄ ∈ Rn
with

x̄ =

(
∂F (x)

∂x

)T
z̄, (19)

by applying the chain rule to the elemental operations. First the primal output
itself is evaluated in a forward loop

vl+1 = hl(vl) l = 0, . . . , L− 1, (20)

with v0 = x, which yields z = vL. Then a reverse loop evaluates and concate-
nates the local sensitivity of the elemental operations

v̄l =

(
∂hl(vl)

∂vl

)T
v̄l+1 l = L− 1, . . . , 0, (21)

using the reverse input v̄L = z̄, which yields the transposed sensitivity product
x̄ = v̄0 as in (19).

Following the above methodology, the adjoint XBraid solver is constructed
by concatenating local sensitivities of elemental operations that produce the
output z = (u, J) = (H(u, ρ), J(u, ρ)) = F (x) from the input x = (u, ρ) which
yields

x̄ =

(
ū
ρ̄

)
=

(
∂H
∂u

∂H
∂ρ

∂J
∂u

∂J
∂ρ

)T (
ū
J̄

)
=

(
∂F

∂x

)T
z̄. (22)

Choosing the reverse input vector z̄ = (ū, J̄) = (ūk, 1), this produces the de-
sired sensitivities as in (17). Since XBraid modifies its input solely by calling
the user-defined interface routines as introduced in Section 2.1, these interface
routines are identified with the elemental operations hl. The primal XBraid
iteration manages the control flow of these actions and performs a forward
loop for computing the primal output as in (20). The adjoint XBraid solver
marches backwards through the same control flow in a reverse loop as in (21)
calling the differentiated routines h̄l that evaluate the local sensitivities. A
Last-In-First-Out (LIFO) data structure, called action tape therefore memo-
rizes the control flow of the primal actions hl. The actions are overloaded in
such a way, that they still calculate their primal output vl+1 but as a side
effect, they record themselves, their arguments vl and a pointer to the corre-
sponding intermediate adjoint v̄l+1 on the action tape. After the execution of
a primal XBraid iteration, the reverse adjoint loop pops the elements from the
action tape and calls the corresponding differentiated action h̄l which updates



A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library 11

Table 1 Original and differentiated XBraid actions.

Action Original hl Differentiated h̄l

my Step ui = Φi(ui−1, ρ) ūi−1 += (∂ui−1Φi(ui−1, ρ))T ūi

ρ̄ += (∂ρΦi(ui−1, ρ))T ūi

my Access f(ui, ρ) ūi += ∇uif(ui, ρ)

ρ̄ += ∇ρf(ui, ρ)

my Clone vi = ui ūi += v̄i

v̄i = 0

my Sum vi = αui + βvi ūi += αv̄i

v̄i = βv̄i

my BufPack MPI Send(ui) MPI Recv(ūi)

my BufUnPack MPI Recv(ui) MPI Send(ūi)

the corresponding intermediate adjoint and the gradient with the correct lo-
cal sensitivity information. This essentially creates a separate adjoint XBraid
solver that reverses through the primal XBraid actions collecting sensitivities.
Thus, an equation of the form (5) is solved but going backwards in time.

According to the reverse mode of AD, the local sensitivities are transposed
matrix-vector products of the sensitivities of hl multiplied with the intermedi-
ate adjoint vectors. Table 1 lists the original interface routines and their differ-
entiated versions. Note, that the differentiated routines perform updates of the
intermediate variables using the “a += b” notation for assigning “a← a+ b”
rather then overwriting “a ← b”. This results from the fact that instead of
storing the entire program state vl during the forward loop (20), only the local
input variables for each action are pushed to the tape. Hence, it is possible
that their intermediate adjoint variables are modified elsewhere in the code
which necessitates updates rather than overwriting the variables (see e.g. [29]
for implementational details on the reverse mode of AD).

While the primal memory de-/allocation is managed by calling the pri-
mal user routines my Init and my Free, memory management of the inter-
mediate adjoint variables is automated by the use of shared pointers with
reference counting. The current implementation uses the smart pointer class
std :: shared ptr defined in the C++11 standard library [34]. It counts the
number of pointer copies to a specific object and destroys it automatically as
soon as the last reference is removed.

4.1 Adjoint XBraid interface

Only two of the user-defined routines hl are nonlinear, namely my Step and
my Access, such that their differentiated versions h̄l are non-constant and con-
tain problem specific functions. The adjoint XBraid interface therefore consists
only of two additional routines that provide their derivatives:



12 S. Günther et al.

– my Step adjoint: This function corresponds to taking one adjoint time
step backwards in time. Given a design ρ, a state variable ui−1 at time
step i − 1 and an adjoint input variable ūi at time step i, it updates the
adjoint variable ūi−1 at that time step i− 1 and the gradient ρ̄ according
to

ūi−1 +=
(
∂ui−1Φi(ui−1, ρ)

)T
ūi (23)

ρ̄ +=
(
∂ρΦ

i(ui−1, ρ)
)T

ūi. (24)

– my Access adjoint updates the adjoint variable ūi at time step i and the
gradient ρ̄ according to the partial derivatives of the instantaneous quantity
f(ui, ρ):

ūi += ∇uif(ui, ρ) (25)

ρ̄ += ∇ρf(ui, ρ). (26)

Similar to the primal XBraid solver, the adjoint user interface is non-intrusive
to existing adjoint time marching codes as they propagate the same sensitiv-
ities of the time stepper Φi and f backwards through the time domain in a
step-by-step manner. Even though the adjoint XBraid solver has been derived
utilizing techniques from AD, the adjoint user interface is not restricted to
the use of AD for generating the desired derivatives of Φ and f . The adjoint
interface rather enables integration of any standard unsteady adjoint solver
into a parallel-in-time framework.

5 Numerical Results

The adjoint XBraid solver is validated on a model problem that mimics un-
steady flow behind bluff bodies at low Reynolds numbers. Such flows typi-
cally contain two dominant flow regimes: In the near wake, periodic vortices
are forming asymmetrically which shed into the far wake where they slowly
dissipate, known as the Karman Vortex street. The Van-der-Pol oscillator, a
nonlinear limit cycle ODE, is used to model the near wake oscillations while
the far wake is modeled by an advection-diffusion equation whose upstream
boundary condition is determined by the oscillations [35]:

∂tv(t, x) + a∂xv(t, x)− µ∂xxv(t, x) = 0 ∀x ∈ (0, 1), t ∈ (0, T ) (27)

v(t, 0)− µ∂xv(t, 0) = z(t) ∀t ∈ (0, T ) (28)

∂xxv(t, 1) = 0 ∀t ∈ (0, T ) (29)

v(0, x) = 1 ∀x ∈ [0, 1], (30)

while the advection term dominates with a = 1 and a small diffusion param-
eter µ = 10−5 is chosen. The Van-der-Pol oscillator determines the upstream
boundary z(t) with(

ż(t)
ẇ(t)

)
=

(
w(t)

−z(t) + ρ
(
1− z(t)2

)
w(t)

)
∀t ∈ (0, T ), (31)



A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library 13

using the initial condition z(0) = w(0) = 1. The parameter ρ > 0 influences
the nonlinear damping term and serves as design variable that determines
the state u(t, x) := (z(t), w(t), v(t, x))

T
through the model equations. The

objective function measures the space-time average of the solution

J =
1

T

∫ T

0

‖u(t, ·)‖22 dt. (32)

The time domain is discretized into N time steps with ti = iδt for i =
1, . . . , N while a fixed the final time tN = 30 and varying N and δt are used to
set up different problem sizes with N = 60000, 120000, 240000 and correspond-
ing δt = 0.0005, 0.00025, 0.000125, respectively. The implicit Crank-Nicolson
time marching scheme is chosen to approximate the transient term of the
model equations while the spatial derivatives are approximated with a second
order linear upwind scheme for the advection and central finite differencing
for the diffusive term on the spatial grid xj = jδx, j = 1, . . . , n with δx =
0.01, n = 100. The nonlinear equations at each time step are solved by apply-
ing functional iterations for ui := (zi, wi, vi1, . . . , v

i
n) ∈ R2+n. These iterations

are wrapped into the core user routine my Step that moves a state ui−1 to the
next time step. The user routine my Access then evaluates the instantaneous

quantity ‖ui‖22 at time step i. The sensitivities
(
∂ui−1,ρΦ

i(ui−1, ρ)
)T

ūi and
∇ui,ρf(ui, ρ) that are needed in the adjoint interface routines my Step adjoint

and my Access adjoint are generated using the AD-Software CoDiPack for
differentiating through their corresponding primal routines in reverse mode [7].
The time grid hierarchy for the multigrid iterations in the primal and adjoint
XBraid solver use a coarsening factor of m = 4 with a maximum of three time
grid levels. Adding more levels generates coarse grid time step sizes incompat-
ible with the nonlinear time step solver, leading it to diverge. However, even
with three levels, a reasonable speedup can be demonstrated. Implementing a
more stable nonlinear time step routine, that would allow for more coarsening
in time, is future work. The consideration of spatial coarsening is also future
work, which would control the δt/δx ratio on coarser grids, which often has
the effect of making the nonlinear time step solver more stable.

Figure 2 shows the residuals of the primal and adjoint iterates, ‖uk −
H(uk, ρ)‖2 and ‖ūk−∇uJk− (∂uHk)T ūk‖2 during a piggyback iteration as in
(15)–(16) using a fixed design ρ = 2. As expected, both residuals drop simul-
taneously while the adjoint iterates exhibit a certain time lag. The gradient
provided by the adjoint XBraid solver is validated in Table 2 which shows
good agreement with those computed from finite differences with a relative
error below two percent.

5.1 Parallel scaling for the primal and adjoint XBraid solver

A weak scaling study for the primal and the adjoint XBraid solver is shown
in Table 3. The reported speedups are computed by dividing the runtime of



14 S. Günther et al.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

0 1 2 3 4 5

R
es

id
ua

ls

Iteration

primal
adjoint

Fig. 2 History of simultaneous piggyback iteration of primal and adjoint XBraid (N =
60000).

Table 2 Validation of the gradient computed from the adjoint XBraid solver with finite
differences.

ρ ε finite differences adjoint sensitivity rel. error

N = 60000 2 10−6 0.231079186674421 0.230724810643109 0.15%
N = 60000 3 10−6 0.224847819918494 0.223017099689057 0.81%
N = 60000 4 10−6 0.200429607133401 0.196451436058937 1.98%

N = 120000 2 10−6 0.231679529338891 0.232395575709547 0.31%
N = 120000 3 10−6 0.225517896579319 0.225073911851428 0.19%
N = 120000 4 10−6 0.199769404352068 0.198695760225926 0.54%

N = 240000 2 10−8 0.232875008165934 0.234781281565824 0.81%
N = 240000 3 10−8 0.227025065413500 0.228025754956746 0.44%
N = 240000 4 10−8 0.201409511291217 0.204046297945359 1.31%

the primal and adjoint XBraid solver by that of a classical time-serial primal
forward and adjoint backward time stepper, respectively.

For these test cases, the runtimes of the adjoint XBraid solver show an
overhead factor of about 12 when compared to the corresponding runtimes
of the primal one. However, a very similar factor of about 10 can be ob-
served for the time-serial computations. Thus, the observed overhead fac-
tor is mostly dominated by the adjoint time-stepping routine that computes(
∂ui−1,ρΦ

i(ui−1, ρ)
)T

ūi, which is needed in both the time-serial as well as the
time-parallel computations. The additional overhead created by the AD-based
derivation of the adjoint XBraid solver itself can therefore be estimated from
12/10 = 1.2.

Strong scaling results for primal as well as the adjoint runtimes are visual-
ized in Figure 3, where the slope of reduction for the adjoint runtimes closely



A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library 15

Table 3 Weak scaling study for the primal and adjoint XBraid solver.

Primal

Number of Number of Iterations Runtime Runtime Speedup
time steps Cores XBraid XBraid Serial

60000 64 5 0.49 sec 1.13 sec 2.84
120000 128 4 0.50 sec 2.97 sec 5.97
240000 256 4 0.76 sec 4.81 sec 6.31

Adjoint

Number of Number of Iterations Runtime Runtime Speedup
time steps Cores XBraid XBraid Serial

60000 64 6 6.54 sec 14.49 sec 2.22
120000 128 4 6.12 sec 26.27 sec 4.23
240000 256 4 9.44 sec 49.18 sec 5.21

0.25

0.5

1

2

4

8

2 4 8 16 32 64 128 256
4

8

16

32

64

128

R
un

ti
m

e
pr

im
al

(s
ec

)

R
un

ti
m

e
ad

jo
in

t
(s

ec
)

Cores

N = 60000
N = 120000
N = 240000

primal
adjoint

Fig. 3 Strong scaling of primal (solid lines) and adjoint XBraid (dashed lines) solver for
three different problem sizes.

follows that of the primal one. This confirms that the adjoint XBraid solver
indeed inherits the scaling behavior of the primal solver which is expected from
its AD-based derivation. Since the primal XBraid solver is under active de-
velopment, this property is particularly beneficial as improvements on primal
scalability will automatically carry over to the adjoint code. The same data is
used in Figure 4 to plot speedup when compared to a time-serial primal and
adjoint time marching scheme. It shows the potential of the time-parallel ad-
joint for speeding up the runtime of existing unsteady adjoint time marching
schemes for sensitivity evaluation.



16 S. Günther et al.

0.125

0.25

0.5

1

2

4

8

16

2 4 8 16 32 64 128 256 512

Sp
ee

du
p

Cores

N = 60000
N = 120000
N = 240000

primal
adjoint

Perfect Slope

Fig. 4 Speedup of primal and adjoint XBraid solver over serial forward and backward time
stepping.

6 Conclusion

In this paper, we developed an adjoint solver that provides sensitivity computa-
tion for the parallel-in-time solver XBraid. XBraid applies nonlinear multigrid
iterations to the time domain of unsteady partial differential equations and
solves the resulting space-time system parallel-in-time. It operates through a
high-level user interface that is non-intrusive to existing serial time marching
schemes for solving unsteady PDEs. This property is of particular interest for
applications where unsteady simulation tools have already been developed and
refined over years, as is often the case for many CFD applications.

While the primal XBraid solver computes a space-time solution of the PDE
for given input parameters and also evaluates objective functions that are of
interest to the user, the proposed time-parallel adjoint XBraid solver com-
putes derivatives of the objective function with respect to changes in the in-
put parameters. Classical adjoint sensitivity computations for unsteady PDEs
involve a forward-in-time sweep to compute the unsteady solution followed
by a backwards-in-time loop to collect sensitivities. The parallel-in-time ad-
joint XBraid solver offers speedup by distributing the backwards-in-time phase
onto multiple processors along the time domain. Its implementation is based
on techniques of the reverse-mode of AD applied to one primal XBraid itera-
tion. This yields a consistent discrete adjoint code that inherits parallel scaling
properties from the primal solver and is non-intrusive to existing adjoint se-
quential time marching schemes.

The resulting adjoint solver adds two additional user routines to the primal
XBraid interface: one for propagating sensitivities of the forward time stepper



A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library 17

backwards in time and one for evaluating partial derivatives of the objective
function at each time step. In cases where a time-serial unsteady adjoint solver
is already available, this backwards time stepping capability can be easily
wrapped into the adjoint XBraid interface with little extra coding.

The adjoint solver has been validated and tested on a model problem
for advection-dominated flow. The original primal and adjoint time march-
ing codes were limited to one processor such that a linear increase in the
number of time steps results in a linear increase in corresponding runtime.
This creates a situation analogous to the one where a spatially parallel code
has reached its strong scaling limit. The parallel-in-time primal and adjoint
XBraid solvers were able to achieve speedups of about 6 (primal) and 5 (ad-
joint) when compared to the serial ones, running on up to 256 processors for
the time parallelization. More importantly, the scaling behavior of the adjoint
code in this test case is similar to that of the primal one such that improve-
ments on the primal XBraid solver carry over to the adjoint implementation.

Acknowledgements The authors thanks Max Sagebaum (SciComp, TU Kaiserslautern)
and Johannes Lotz (STCE, RWTH Aachen University) who provided insight and expertise
on the implementation of AD.

References

1. Albring, T., Dick, T., Gauger, N.R.: Assessment of the recursive projection method for
the stabilization of discrete adjoint solvers. In: 18th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, AIAA Aviation (2017)

2. Barker, A.T., Stoll, M.: Domain decomposition in time for pde-constrained optimization.
Computer Physics Communications 197, 136–143 (2015)

3. Beyer, H.G., Sendhoff, B.: Robust optimization–a comprehensive survey. Computer
methods in applied mechanics and engineering 196(33), 3190–3218 (2007)

4. Blazek, J.: Computational fluid dynamics: principles and applications, 2nd edn. Elsevier
Ltd. (2005)

5. Bosse, T., Gauger, N.R., Griewank, A., Günther, S., Schulz, V.: One-shot approaches to
design optimzation. In: G. Leugering, P. Benner, S. Engell, A. Griewank, H. Harbrecht,
M. Hinze, R. Rannacher, S. Ulbrich (eds.) Trends in PDE Constrained Optimization,
pp. 43–66. Springer International Publishing (2014)

6. Brandt, A.: Multi–level adaptive solutions to boundary–value problems. Math. Comp.
31(138), 333–390 (1977)

7. CoDiPack - Code Differentiation Package (Version 1.0). http://www.scicomp.uni-kl.

de/software/codi/ (2017)
8. Du, X., Sarkis, M., Schaerer, C., Szyld: Inexact and truncated parareal-in-time krylov

subspace methods for parabolic optimal control problems. ETNA 40, 36–57 (2013)
9. Economon, T., Palacios, F., Alonso, J.: Unsteady aerodynamic design on unstructured

meshes with sliding interfaces. In: 51st AIAA Aerospace Sciences Meeting Including
the New Horizons Forum and Aerospace Exposition, p. 632 (2013)

10. Emmett, M., Minion, M.: Toward an efficient parallel in time method for partial differ-
ential equations. Communications in Applied Mathematics and Computational Science
7(1), 105–132 (2012)

11. Falgout, R., Friedhoff, S., Kolev, T.V., MacLachlan, S., Schroder, J., Vandewalle, S.:
Multigrid methods with space-time concurrency. SIAM J. Sci. Comput., submitted,
LLNL-JRNL-678572 (2015)

12. Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: Parallel time
integration with multigrid. SIAM J. Sci. Comput. 36(6), C635–C661 (2014). LLNL-
JRNL-645325

http://www.scicomp.uni-kl.de/software/codi/
http://www.scicomp.uni-kl.de/software/codi/


18 S. Günther et al.

13. Falgout, R.D., Katz, A., Kolev, T.V., Schroder, J.B., Wissink, A., Yang, U.M.: Parallel
time integration with multigrid reduction for a compressible fluid dynamics application.
Tech. Rep. LLNL-JRNL-663416, Lawrence Livermore National Laboratory (2015)

14. Falgout, R.D., Manteuffel, T.A., O’Neill, B., Schroder, J.B.: Multigrid reduction in time
for nonlinear parabolic problems. SIAM J. Sci. Comput. (to appear). LLNL-JRNL-
692258

15. Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: Theory and
feasibility studies for uid, structure, and fluid–structure applications. Int. J. Numer.
Meth. Engng 58, 1397–1434 (2003)

16. Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics, 3rd edn. Springer
Berlin Heidelberg (2002)

17. Fischer, P., Hecht, F., Maday, Y.: A parareal in time semi-implicit approximation of the
Navier-Stokes equations. In: Proceedings of the Fifteenth International Conference on
Domain Decomposition Methods, pp. 433–440. Springer-Verlag (2005)

18. Gander, M.J.: 50 years of time parallel time integration. In: T. Carraro, M. Geiger,
S. Krkel, R. Rannacher (eds.) Multiple Shooting and Time Domain Decomposition, pp.
69–114. Springer (2015)

19. Gander, M.J., Kwok, F.: Schwarz Methods for the Time-Parallel Solution of Parabolic
Control Problems. In: Domain Decomposition Methods in Computational Science and
Engineering XXII, Lecture Notes in Computational Science and Engineering, vol. 104,
pp. 207–216. Springer-Verlag (2016)

20. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration
method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)

21. Gauger, N., Griewank, A., Hamdi, A., Kratzenstein, C., Özkaya, E., Slawig, T.: Au-
tomated extension of fixed point PDE solvers for optimal design with bounded retar-
dation. In: G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz,
M. Ulbrich, S. Ulbrich (eds.) Constrained Optimization and Optimal Control for Partial
Differential Equations, pp. 99–122. Springer Basel (2012)

22. Giles, M., Pierce, N., Giles, M., Pierce, N.: Adjoint equations in CFD: Duality, boundary
conditions and solution behaviour. In: 13th Computational Fluid Dynamics Conference,
p. 1850 (1997)

23. Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. Flow,
Turbulence and Combustion 65(3), 393–415 (2000)

24. Giles, M.B., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis and post-
processing by duality. Acta numerica 11, 145–236 (2002)

25. Götschel, S., Minion, M.: Parallel-in-time for parabolic optimal control problems using
pfasst. Tech. Rep. 17-51, ZIB (2017)

26. Griewank, A.: Projected hessians for preconditioning in one-step one-shot design opti-
mization. In: G. Pillo, M. Roma (eds.) Large-Scale Nonlinear Optimization, pp. 151–171.
Springer (2006)

27. Griewank, A., Faure, C.: Reduced functions, gradients and hessians from fixed-point
iterations for state equations. Numer. Algorithms 30, 113–139 (2002)

28. Griewank, A., Ponomarenko, A.: Time-lag in derivative convergence for fixed point
iterations. In: Proceedings of CARI’04, 7th African Conference on Research in Computer
Science, pp. 295–304 (2004)

29. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. SIAM (2008)

30. Günther, S., Gauger, N.R., Wang, Q.: Simultaneous single-step one-shot optimization
with unsteady pdes. Journal of Computational and Applied Mathematics 294, 12–22
(2016)

31. Heinkenschloss, M.: A time-domain decomposition iterative method for the solution of
distributed linear quadratic optimal control problems. J. Comput. Appl. Math. 173(1),
169–198 (2005)

32. Jameson, A.: Aerodynamic design via control theory. Journal of Scientific Computing
3(3), 233–260 (1988)

33. Jameson, A.: Time dependent calculations using multigrid, with applications to un-
steady flows past airfoils and wings. In: Proc. 10th Comp. Fluid Dyn. Conf., Honolulu,
USA, June 24-26, AIAA-Paper 91-1596 (1991)



A Non-Intrusive Parallel-in-Time Adjoint Solver with the XBraid Library 19

34. Josuttis, N.M.: The C++ standard library: a tutorial and reference. Addison-Wesley
(2012)

35. Kanamaru, T.: Van der pol oscillator. Scholarpedia 2(1), 2202 (2007)
36. Krause, R., Ruprecht, D.: Hybrid space–time parallel solution of Burgers equation. In:

Domain Decomposition Methods in Science and Engineering XXI, pp. 647–655. Springer
(2014)

37. Kwok, F.: On the time-domain decomposition of parabolic optimal control problems. In:
Domain Decomposition Methods in Science and Engineering XXIII, pp. 55–67. Springer
(2017)

38. Lions, J.L.: Optimal control of systems governed by partial differential equations
problèmes aux limites (1971)

39. Lions, J.L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps pararéel.
C.R.Acad Sci. Paris Sér. I Math 332, 661–668 (2001)

40. Mathew, T.P., Sarkis, M., Schaerer, C.E.: Analysis of block parareal preconditioners
for parabolic optimal control problems. SIAM Journal on Scientific Computing 32(3),
1180–1200 (2010)

41. Mavriplis, D.: Solution of the unsteady discrete adjoint for three-dimensional problems
on dynamically deforming unstructured meshes. In: 46th AIAA Aerospace Sciences
Meeting and Exhibit, p. 727 (2008)

42. Mohammadi, B., Pironneau, O.: Applied shape optimization for fluids. Oxford Univer-
sity Press (2010)

43. Nadarajah, S.K., Jameson, A.: Optimum shape design for unsteady flows with time-
accurate continuous and discrete adjoint method. AIAA journal 45(7), 1478–1491 (2007)

44. Naumann, U.: The Art of Differentiating Computer Programs: An Introduction to Algo-
rithmic Differentiation. Software, Environments, and Tools. Society for Industrial and
Applied Mathematics (2012)

45. Navon, I.: Practical and theoretical aspects of adjoint parameter estimation and identifi-
ability in meteorology and oceanography. Dynamics of Atmospheres and Oceans 27(1),
55 – 79 (1998)

46. Nielsen, E.J., Diskin, B., Yamaleev, N.K.: Discrete adjoint-based design optimization of
unsteady turbulent flows on dynamic unstructured grids. AIAA journal 48(6), 1195–
1206 (2010)

47. Nievergelt, J.: Parallel methods for integrating ordinary differential equations. Comm.
ACM 7, 731–733 (1964)

48. Pierce, N.A., Giles, M.B.: Adjoint recovery of superconvergent functionals from PDE
approximations. SIAM review 42(2), 247–264 (2000)

49. Pironneau, O.: On optimum design in fluid mechanics. Journal of Fluid Mechanics
64(1), 97110 (1974)

50. Ries, M., Trottenberg, U.: MGR-ein blitzschneller elliptischer löser. Tech. Rep. Preprint
277 SFB 72, Universität Bonn (1979)

51. Ries, M., Trottenberg, U., Winter, G.: A note on MGR methods. Linear Algebra Appl.
49, 1–26 (1983)

52. Rumpfkeil, M., Zingg, D.: A general framework for the optimal control of unsteady
flows with applications. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, p.
1128 (2007)

53. Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-
advection system. Computers & Fluids 59, 72–83 (2012)

54. Shroff, G.M., Keller, H.B.: Stabilization of unstable procedures: the recursive projection
method. SIAM Journal on numerical analysis 30(4), 1099–1120 (1993)

55. Steiner, J., Ruprecht, D., Speck, R., Krause, R.: Convergence of parareal for the Navier-
Stokes equations depending on the Reynolds number. In: A. Abdulle, S. Deparis,
D. Kressner, F. Nobile, M. Picasso (eds.) Numerical Mathematics and Advanced Ap-
plications - ENUMATH 2013: Proceedings of ENUMATH 2013, the 10th European
Conference on Numerical Mathematics and Advanced Applications, Lausanne, August
2013, pp. 195–202. Springer International Publishing, Cham (2015)

56. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, San Diego
(2001)

57. Tucker, P.: Unsteady computational fluid dynamics in aeronautics. Springer Science &
Business Media (2014)



20 S. Günther et al.

58. V. Dobrev Tz. Kolev, N.P., Schroder, J.: Two-level convergence theory for multigrid
reduction in time (MGRIT). Copper Mountain Special Section, SIAM J. Sci. Comput.
(submitted) (2016). LLNL-JRNL-692418

59. Venditti, D.A., Darmofal, D.L.: Grid adaptation for functional outputs: application to
two-dimensional inviscid flows. Journal of Computational Physics 176(1), 40–69 (2002)

60. XBraid: Parallel multigrid in time. http://llnl.gov/casc/xbraid

http://llnl.gov/casc/xbraid

	1 Introduction
	2 Multigrid Reduction in Time using XBraid
	3 Adjoint Sensitivity Computation
	4 The adjoint XBraid solver
	5 Numerical Results
	6 Conclusion

