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Abstract

We investigate algebraic multigrid (AMG) methods for the linear systems arising from the discretization of Navier—Stokes
equations via the finite pointset method. In the segregated approach, three pressure systems and one velocity system need to
be solved. In the coupled approach, one of the pressure systems is coupled with the velocity system, leading to a coupled
velocity-pressure saddle point system. The discretization of the differential operators used in FPM leads to non-symmetric
matrices that do not have the M-matrix property. Even though the theoretical framework for many AMG methods requires
these properties, our AMG methods can be successfully applied to these matrices and show a robust and scalable convergence

when compared to a BiCGStab(2) solver.

Keywords Algebraic multigrid - Finite pointset method - Meshfree method - Saddle point problem

1 Introduction

In the past years, meshfree methods have gained an increas-
ing popularity in computational science and engineering,
as they offer a number of advantages over mesh-based
methods. For instance, the time-consuming and not com-
pletely automatable generation of meshes is avoided. This is
especially beneficial in transient simulations, where the com-
putational domain may change from time step to time step,
for example due to geometry movement, free surface evolu-
tion in multi-phase flow simulations, or topology changes.
Mesh-based techniques need to re-mesh in such situations,
while meshfree methods that do not rely on a fixed connec-
tivity structure can naturally adapt themselves to the new
situation.

The finite pointset method (FPM) [7] is a meshfree method
for the approximation of continuum mechanics equations.
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It employs a moving point cloud to discretize the partial
differential equations using generalized finite differences
(GFDM). The points are mass-less, so they may be deleted or
inserted as needed to resolve the computational domain to the
desired accuracy, while the differential operators are set up
using an automated differentiation procedure. However, the
resulting linear systems may be very ill-conditioned. A thor-
ough description of FPM including the latest developments
can be found in [17].

Algebraic multigrid (AMG) methods provide robust and
scalable linear solvers for a wide class of problems. They
are in principle a natural choice for meshfree discretizations
since the intrinsic “multigrid” hierarchy is constructed auto-
matically. However many AMG heuristics assume that the
system matrix is a symmetric M-matrix (or at least is not
“too far” from one, i.e. negative off-diagonal entries should
dominate the positive ones). The matrices produced by FPM
do not fall within this category. They are non-symmetric even
for self-adjoint operators, and the automatic differentiation
mechanism produces mixed-signed matrix rows. Further-
more, FPM not only discretizes scalar elliptic PDEs, but also
systems of elliptic equations or even saddle point systems.

Several approaches have been proposed [14] to construct
FPM stencils such that the resulting matrices at least possess
the M-matrix property. These approaches introduce strong
restrictions on the point cloud geometry of boundary condi-
tions. Thus, in general, the resulting linear systems are not
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M-matrices and the linear solver must be applicable to non-
M-matrices.

In Sect. 2, we give an introduction to FPM. In Sect. 3,
we briefly recapitulate the algebraic multigrid method and
describe our AMG techniques to solve the matrices produced
by FPM, while we demonstrate their applicability in Sect. 4.
Finally, we give some remarks in Sect. 5.

2 The finite pointset method

In this section, we introduce the finite pointset method. In par-
ticular, we focus on the derivation of the linear systems that
need to be solved. We refer to [7] for a more detailed descrip-
tion, especially for all aspects not mentioned here such as the
point cloud management.

2.1 Equations to be solved

The fluid flow is modeled by three conservation equa-
tions, which describe the relation between the velocity v =
(u, v, w)T, the pressure p, and the temperature 7. Let

4_3 +vl.v €))
dt 0t

denote the material derivative, which models the change of a
physical property along the trajectory of a fluid particle. As
the material derivative is “naturally” represented by FPM’s
discretization technique, we will employ this operator wher-
ever a time derivative is involved. For the scope of this paper,
we restrict ourselves to the case of incompressible fluids. In
particular, we have constant density along the path of a fluid
particle (£ p = 0).

The three conservation equations are:

— The conservation of momentum, which is given by

(v = (V's) = Vp+ps 2)

where p denotes the density, S is the stress tensor (see
below), and g contains the external body forces.

— The conservation of mass, which is enforced by the con-
tinuity equation

vl pv=0 3

— The conservation of energy, which is controlled by the
temperature equation

(pc )iT =V -vy—vls) v
T “)
—p(VIV) + VI (kVT) 4+ ¢
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where T denotes the temperature, k the heat conductivity,
and ¢, the heat capacity.

Within the scope of this paper, we limit ourselves to the case
of viscous stress tensors,

de
S = Svisc = flz’ (5)

where 71 denotes the viscosity of the fluid, and

de 1 T 1

€ _|lvwm? (v T) ——[VT]I. 6
i) [ W +{(Vm 3 \4 (6)
is the strain rate tensor. Equation (2) hence can be re-written
as

de

T
-V 7
dl) p+pg @)

L ow = (v
J— V) =

dr o n
Before we turn ourselves to the discretized counterparts of

the Egs. (2) and (3), we first describe the FPM discretization
technique.

2.2 Organization of the point cloud

For each phase (water, air, oil, etc.) a separate point cloud
P = {xi} is defined. The density of the point cloud is deter-
mined by the smoothing length h = h(x, t), which can be
given as a function of space and time (but is constant per
phase in most applications). Via this parameter, the resolu-
tion of the discretized problems is steered.

In order to discretize the differential operators, the compu-
tational domain needs to be covered by balls of radius ryoe - 2
around each point. However, points may not be too close to
each other, i.e. they have to keep a minimum distance of
rmin - 1. Typical values of ryole = 0.45 and rpi, € [0.1, 0.2].
This leads to a point cloud where between 20 and 50 points
can be found within each ball of radius & (independent of /).
The boundaries of the domain are also filled with points, see
Sect. 2.5.

2.3 Construction of differential operators

The differential operators are discretized using generalized
finite differences defined via the points x;,i = 1,..., N of
the cloud. The method is very similar to the Moving Least
Squares method (MLS) by Lancaster and Salkauskas [8]. For
each physical quantity f, we identify its value at the point
Xi,

fi = f&xi) ®)
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and let the derivatives be approximated by sums of the form

0°f =) el ©)

JEN;

where * denotes the desired derivative, e.g. * = 0 (function
evaluation), * = x (first derivative in x-direction), * = A
(Laplacian). N; is the neighborhood of point x; consisting
of the nearest points x; within a ball of radius 4 around x;.
The set N; must be large enough such that all derivatives
needed for the PDE’s discretization can be set up, we usually
have | N;| = 40 for second order PDEs. Note that the relation
J € N; is not symmetric.

The coefficients C;'kj need to be independent of f to avoid
expensive computations, thus, we compute them such that
they exactly reproduce the considered differential operator
for monomials up to a certain (typically: second) order.

We therefore define, for each point x;, a set of M discrete
)M

test vectors (klm m—1» Where each k" = (klf"j) . repre-
- W/ JEN;

sents the discretization of a test function (monomial) within
the neighborhood N;, while b;"m contains the value of its
derivative * at the point Xx;. In this terms, the requirements of

exact differentiation for the test functions translates to

> KMl =bf,, forallm=1,... M, (10)
JEN;

or, in matrix form,

KTt = b, (a1

where the m-th row of K iT consists of the entries (k,’” j> e
1/ JEN;

M
k k : koo k
and the vectors b} and c; are given by by = (bi’m>m=1
ij
should be taken into account. To this end, we introduce a
weight function,

and c;" = (c* ) . Furthermore, the distance of the points
JEN;

exp(—4 - r?) — exp(—4), ifr; j <1
wir ) =150 P M)
0, otherwise
where the distance function 7; ; is given by
rij=rx,x;) =2 Ixi = ;1 (13)

h(xi) + h(x;)’

We group, for each i, the weights into a diagonal matrix
w1

W; = T : (14)

Wi, |N;|

where w; ; = w(r; ;) = w(r(x;,x;)). With the aid of the
matrices K; and W;, we formulate the conditions for c;k in a
least-squares sense, i.e.

1
> (c;k)T Wl,_zc;k — min (15)
Kler = b7 (16)

We solve these small least-squares systems for each point
x; directly and construct the discretized differential operator
).

Note that at the boundary we can use the same ideas as in
the interior of the domain: For Dirichlet boundaries, we set
the central stencil value c}? = 1 and the other stencil values to
0. For Neumann boundary conditions, we need to compute
the normal based on the neighbors that are also boundary
points and then solve a least squares problem in order to find
a discretization of the normal derivative. See [17] for more
details on boundary conditions.

2.4 FPM discretization of the conservation laws

In this section, we describe the implicit Euler time step-
ping scheme used to solve the partial differential equations
introduced in Sect. 2.1. We present two different methods:
First, the segregated approach, where the velocity is com-
puted using a Chorin projection-like ansatz, and the coupled
approach, where a divergence-free velocity field is computed
directly by the solution of a saddle point system.

The finite pointset method employs a Lagrangian approach,
i.e. the points move with the velocity field v. This allows us
to approximate material derivative of the velocity at the i-th
point by

Vn+l(xfl+1) — VI (x™")
—v(x;) ~ : !
dt At

) 7

where the superscript n is used to indicate a quantity at a
specific time step n.

We integrate the momentum equation (7) for each particle
x; and obtain

Vn_H(X:-H_l) o V"(X;’) B l VT d_€| T
At Top T I+

1
=SV + g,

(18)

where Z—f bl denotes the evaluation of the strain rate ten-
sor at time step n + 1. In the following, we omit the point

coordinates (x}').
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de

From (6), we know that 7 only depends on v and its
derivatives, hence we define
., de T
() =V (HE) . (19)

(For example, for incompressible flow with constant viscos-
ity, we have ¥, (v) = vT nVv).)

We now re-organize (18) such that all terms referring to
time step n + 1 move to the left hand side, while the terms
depending on time step n are on the right hand side. At this
point, in the segregated approach we need to replace p"*! by
an intermediate pressure p. In consequence, we only solve
for a velocity predictor ¥+ here,

At At
<I - —11/,7> (G”“) =v'— —Vp+ At- g"'H. (20)
o P

The spatial discretization of this equation yields a sparse lin-
ear system of equations A‘A/Z'H = f;,. The velocity solution
¥7+1 of (20) does not yet satisfy the continuity equation for
incompressible fluids,

vl .v=o, 2D

and also does not take into account the pressure at the new
time step p"t1l.

To this end, let us reconsider (20) and replace p by the
corrected pressure p" ! = p + peorr as well as the predicted
velocity ¥ by the corrected velocity v"*!,

At

At At
(I - —'1/,]> VY = v vp——Vprtl L Ar gL
p o o

corr

(22)
Subtracting (20) from (22) and taking the divergence yields
VT . V}‘l+1 _ VT . i‘,n‘Fl

At At
_ VT |:7Vl1/,7(vn+l _ 0}1+1)i| — _vT (7vpg;;rl) .
(23)

We assume that we can neglect the viscous term
At R
o

if the time step is small enough. In addition, for incompress-
ible flow we require V7 v**! = 0. It remains to solve the
Poisson equation

corr

At
VT <7vpn+l) — (VTQH‘FI)’ (24)
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and use the gradient of the pressure correction pg’;;rl to update
the velocity field.

A drawback of the segregated approach is the lack of accu-
racy in the case of low Reynolds numbers, i.e. when the
magnitude of the term W, (v**! — ¥"*1) would require time
steps that are too small to allow for an effective simulation,
see e.g. [18] and the references therein for a detailed dis-
cussion. An option to overcome this problem is to solve for
velocity and correction pressure in one single linear solve
(coupled approach). The correction pressure then serves as a
Lagrangian multiplier, i.e. we solve the saddle point system

At At
< 0 71) 0 corr
At
=Vv'— —Vp+ Ar-g"t! (25)
0

corr

(VTQI’!"F]) _ VT (ﬂvpnﬁ‘l) — O, (26)
P

or, in matrix form,

Ay By Vi _ (&
(Ch —Dh> (Ph) N <fh> @7)

The virtual time step Atyir¢ is chosen as a fraction of the time
step At. Theoretically, the best possible value is Atyix = 0,
but smaller values make the linear system harder to solve.

While the coupled approach is more generally applicable
than the segregated approach, it also takes more computa-
tional efforts. In Sect. 4.2 we give an example where the
segregated approach fails, while the coupled approach pro-
duces a valid solution.

Regardless whether approach is used, we need an inter-
mediate pressure p. To this end, we take the divergence of
the momentum equation (2),

1 d
P dt

(28)
1
VT <gﬂ+1 p (VTSn+1)T) )

and split the pressure into two parts p"t! = pfl';fil + pg;;l.

First, we formulate the equation for the hydrostatic pressure
n+1
phyd s

1
VT (;Vp}rll;;ll> — VTgl’l+1 (29)
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which can be computed without knowing the new velocity
v"*1 In contrast, to update the dynamic pressure via

1 d
T n+l\) _ _ T n+1
Y% <;Vpdyn>— Y% <—dth )
1
(30)

the updated velocity v"*t1 is needed. Hence, in (20) we use
p= pﬁ;fil + pgyn, i.e. we use the dynamic pressure from the
previous time step and the hydrostatic pressure of the current
time step.

The discrete form of (29), (30) and (24) lead to scalar
linear systems of the form Dp; = f},. If the same boundary
conditions are enforced, the matrices are equal within a time
step.

Finally, the new temperature 77! needs to be determined.
As for velocity and pressure, we use an implicit scheme,

(pey) - T — At (k . vr”“)
= (pCy) - T"

31
+ At (VT(Sn—H . Vﬂ+1) _ (VTsi’l-Fl) . Vn—H) ( )

_ At (pn"r](vTVn"rl) +q> — é

The right hand side ¢ only depends on quantities known at
this stage. For the left hand side, we introduce I — O =
(pcy) — AtVT . (kV) and obtain the heat equation

(Ir —Op) " =4. (32)

To conclude this section, we recapitulate the equations we
need to solve in every time step,

1. Compute the hydrostatic pressure pg;:il according to (29),

2. Setp = pﬁ;ﬁl + Py and compute the new velocity field

n+1

v as well as the correction pressure p/itl,

— either by the segregated approach: First compute the
velocity predictor (20), then solve the Poisson equa-
tion (24),

— or by the coupled approach: Solve the saddle point
system (27).

In both cases, use the gradient of pit! to correct the
velocity.
: +1
3. Compute the dynamic pressure pgyn
4. Update the temperature using (32).

according to (30).

Now that the velocity and pressure values are known, we
use the velocity field to move the point cloud, re-organize it

where necessary and start the next time step. Note that we do
not need to solve a non-linear equation in the whole solution
process, the non-linearity is absorbed in the splitting of the
pressure (the right hand side of (30) depends non-linearly
on the velocity). Instead, we need to solve three (segregated)
or two (coupled) scalar Poisson-like equations as well as
a three-dimensional elliptic system (segregated) or a four-
dimensional saddle point system (coupled). In practice, the
temperature equation as well as the vectorial velocity equa-
tion in the segregated approach can be solved easily using an
one-level method like BiCGStab(2) [15]. In the next section,
we hence focus on the solution of the Poisson-like pressure
equations and the saddle point systems using AMG.

2.5 Matrix properties

The matrices constructed by the finite pointset method differ
in several aspects from more common finite difference, finite
volume, or finite element discretization. First, as already
pointed out in [ 14], this discretization leads to non-symmetric
matrices even for symmetric operators like the Laplacian
as the point neighborhood relation is not symmetric, see
Sect. 2.3. In addition, FPM employs a row-wise scaling of
the matrix such that the diagonals are normalized to one.

Furthermore, the least-squares approach generally does
not guarantee that all off-diagonal matrix entries are non-
positive. Suchde [17, section 2.5.5] describes a method to
improve the diagonal dominance of the matrix, which in
turn makes positive off-diagonal coefficients less likely, but
still it is not guaranteed that no positive off-diagonal coef-
ficients occur. This means that not only will the matrix be
non-symmetric, but it also will not have the M-matrix prop-
erty. Both symmetry and the M-matrix property are build-
ing blocks of most AMG convergence theories, although
there has also been work on convergence theories for non-
symmetric M-matrices, e.g. [10,11].

To the best of the authors’ knowledge, there is no method
to overcome the non-symmetry of the matrix. The M-matrix
property on the other hand can be ensured by using the
method described in [14], which uses a linear minimization
approach instead of the least-squares approach presented in
Sect. 2.3. This method ensures the M-matrix property, and,
in addition it yields minimal stencils, i.e. stencils that have
a minimal number of entries among all consistent stencils.
The numerical results in [14] show that the improvements
in performance of the considered AMG algorithm mostly
are a consequence of the increased sparsity of the matrix,
rather than a consequence of the M-matrix property. Since
the linear minimization approach needs additional work in
the point cloud organization and is not as general applicable
as the least-squares approach in terms of boundary condi-
tions and conditions on the point cloud, we based this work
on the least-squares approach.

@ Springer
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The boundary conditions of the partial differential equa-
tions are not eliminated from the system. For each boundary
point x; and its associated degrees of freedom, the matrix
row represents the respective boundary condition discretized
using the techniques described in Sect. 2.3.

3 AMG for FPM
3.1 Algebraic multigrid

In this section, we briefly recapitulate the basic Ruge—Stiiben
AMG algorithm [16]. Suppose the linear system is given as

Au = f. (33)

where A € RV*YN and u, v € RV,

The key AMG idea is to automatically construct a multi-
grid hierarchy, that is, a hierarchy of coarse grids $2,
interpolation operators /;, and coarse grid operators A; based
on the fine grid matrix A; = A and the initial “grid” (index
set) 21 ={1,..., N}.

In any multigrid method, the coarse grid correction must
reduce the error components not efficiently damped by the
smoother M;. Common choices for the smoother are Jacobi,
Gauss—Seidel, or (S)SOR relaxation. For symmetric positive
definite M-matrices A;, the smooth error (i.e. the error com-
ponents e that remain after a few iterations, Mje =~ e) can
be characterized using the matrix A;: A smooth error only
varies slightly along large off-diagonal negative couplings
a;jj. We hence define, for each index i € £2;, the set S; of
strong couplings by identifying all i for which the negative
respective matrix coupling a;; exceeds a certain threshold,

S,-:{j;/:i: —a,-jzocmax—aik}. (34)
k#i

The strong couplings define the edges of a graph whose nodes
are given by £2;. We then determine a maximal independent
set (the coarse grid points) C; C §2; such that each fine grid
point i € F; = §;\(; is strongly connected to at least one
coarse grid point j € C;. Then, we build the interpolation
operator I row by row using standard interpolation, such that
each value at point i € Fj is interpolated from the values at
(directly or indirectly) strongly connected coarse grid points
around i. The resulting interpolation row is truncated to avoid
large stencils: All entries that are smaller (by absolute value)
than a factor €, of the largest entry are dropped and the
interpolation row is re-scaled such that its row sum remains
unchanged.

The set C; serves as coarse mesh £2;1, while the coarse
level matrix is computed by the Galerkin product,

A =1TAL (35)

@ Springer

with [ lT being the restriction operator.

We apply this procedure recursively until the size of the
matrix is reasonable small for direct solution. Then, we can
start the usual V-cycle.

1. Smooth the error by applying vy iterations of a relaxation
operator M; to the current approximation u7:

i = M uj (36)
2. Compute and restrict the residual to the coarse level:
rip =1 (fi = Ariiy) (37)

3. Solve the coarse level equation either recursively or
directly:

err1 = Aj s (38)
4. Interpolate the computed correction back to the fine level:
e = liep (39)

5. Apply the correction and another v, iterations of the
relaxation:

uf ™ = u)? (A + er) (40)

6. Continue with step 1 until the approximation u}’“ fulfills
a specified termination criterion.

3.2 AMG for the Poisson equations in FPM

For the Poisson equations (29), (26), and (30), we employ
standard AMG coarsening as well as standard interpolation.
To improve the performance of our AMG method, we use an
aggressive coarsening technique on the first level. Aggres-
sive coarsening reduces the number of coarse level points by
extending the definition of strong couplings to long-range
strong couplings, that is, each fine grid point i € F; is not
required to be directly coupled to a coarse grid point j € Cj,
but, in the graph of strong connections, has one a path of
at most length 2 to a coarse grid point. Interpolation (the
so-called multi-pass interpolation) then also follows these
paths, see [16, Section 7.1.2] for details.

In our numerical experiments, the non-symmetry of the
problem as well as the positive couplings did not produce any
difficulties here. We need however take care of the decom-
position of the linear system into disconnected subsystems:
The point cloud may disintegrate into smaller sub-clouds,
not only due to the discrete geometry (separate isolated
domains), but also resulting from splashes that move away
from the main part of the fluid. In particular, the modeling
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of these splashes may involve all-Neumann boundary condi-
tions, which leads to singular linear systems. As the splashes
are small (typically < 100 points), we employ a direct lin-
ear solver here that produces a solution perpendicular to the
constant kernel vector.

As the two (or three) pressure systems computed in each
time step share the same matrix if the boundary conditions
are not changed, the AMG setup can be re-used.

3.3 AMG for coupled velocity-pressure equations

For the coupled saddle point systems, standard AMG tech-
niques cannot be applied directly. The resulting matrix

A B
IC:(C _D> (41)

is neither definite nor diagonally dominant. Thus, the usual
relaxation schemes (Jacobi, Gauss—Seidel) cannot be used.
Instead, we employ an inexact Uzawa scheme [13]

v o« Vit +A—1 (f _Avit _ Bpit) , (42)
pilJrl <« pif + 371 (g _ CV* + Dpil) , (43)
virtl o yit 4 A1 <f — AV — Bpit+1> _ (44)

Here, A denotes the diagonal of A scaled such that A—Ais
positive definite. The diagonal matrix S is formed such that
S—CA'B—Dis positive definite.

There are many approaches to AMG for systems of equa-
tions, see [2] for an overview. We employ unknown-based
AMGT12] to construct coarse grids and interpolation opera-
tors for the three velocity components as well as the pressure
component separately . Let us decompose /C by the velocity
components u, v, w, and the pressure p,

A Aww  Auw Bup
A A A B

,C: vu VU vw Up , 45
Awe Aws Aww  Bup “45)
Cou Cpv Cpw —Dpp

where each block X, describes the connections between the
(scalar) unknowns y and z. Now, for each of the unknowns u,
v, w, and p, we use the corresponding diagonal block A,
Ay, Aww, Dpp = D and obtain interpolation operators 1y,
Iy, Iy, and I, respectively, so that the overall interpolation
operator takes the block-diagonal form

(40)

In the case of non-constant viscosity n, the off-diagonal
velocity matrix blocks Ayy, x # y can also contain signif-
icant non-zero entries. In this case, simple unknown-based
AMG might not be sufficient and a pre-processing of the
matrix on the finest level is needed: We use the alternate-
block-factorization idea [1]. To this end, let us re-order the
matrix /C by the discretization points,

1?11 1?12 1§1N
K> K Koy

K= ) . , 47
Kni Kn2 Knn

where each small matrix K € R*** represents the couplings
between point i and point j,

il i i b
e _ (A B\ _an” ey an” ey
U= \c@.h _pGh)— a,(f;’j) agbj) az(/j{i;i) bg’j)
u
Cl(j'j) c]()i,j) Cg'j) By N))
(48)

We scale KC from the left using a block diagonal matrix,
where each diagonal block takes the form

((A(i‘i))_l ) . (49)
1

Hence, all cross-velocity couplings inside a point are elim-
inated. We obtain (now re-ordering the system back by
unknowns) the linear system

=

)

v . (50)
w

C. C, C, -D

=
S
TR T

lay
Il
2> b N
S
:'>lc:l>| >
2| RN
<
S

Now, we apply unknown-based AMG to the block-scaled
matrix . (Note that the off-diagonal blocks Axy, X #£ Yy,
are not necessarily empty but are ignored for coarse grid and
interpolation construction.)

In the case of small virtual time steps (Atyirr < 0.1At), the
approach described above is not sufficient. In this case, the
entries of D become relatively small and it is no longer pos-
sible to ignore the sub-matrices B and C in the AMG setup.
To take these into account, we use the saddle point AMG
method introduced in [9]. The propagation of the respective
errors ey and e, of the velocity and the pressure during each

@ Springer
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Uzawa iteration step (42)—(44) is expressed by
—A'B

e it+1_ ] I 0
ep - 0 1) \§'c 1

I—A7'A 0 e\
' 0 -8 (CA”BJFD) '(e,,) '

An efficient AMG method needs to reduce the error compo-
nents that cannot be quickly damped by the smoother. The
rightmost factor in Eq. (51) suggests that the error propaga-
tion of the Uzawa method is, at least partly, described by a
Jacobi-like iteration using the matrix

(S

A 0
(o CA™'B + D) ' (52)

This heuristically motivates us to use the matrices A and
CA~'B + D to build the coarse spaces and interpolation
operators for velocity and pressure, respectively. As B rep-
resents the gradient operator, and C the divergence operator,
the approximate Schur complement CA~!'B —like D — has
the characteristics of a discretized Poisson operator and hence
can be used to build the coarse grid and interpolation for the
pressure. For the velocity components, as before we use the
diagonal blocks A, Ayy, and Ay, (or Ay, Ayy, and Ay
if the alternate block factorization is employed on the first
level) to construct the coarse grids and interpolation opera-
tors for each of the velocity components. Again, we obtain
an interpolation operator of the form (46).

We can optionally enhance the quality of the interpolation
by an additional stabilization factor. To this end, let us sort
the velocity variables (regardless whether they belong to u,
v, or w) by coarse and fine grid points

_(VF
v= <Vc) , (53)

and, correspondingly, re-write iC,

Arr Arc Br
Acr Acc Bc |, (54)
Cr Cc -—-D

K=

as well as (46),

(55)
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Now, we compute the F-stabilized interpolation by [9]

~ (1rr O —AppBL\ [(Ir 0
I = 0 1CC 0 IC 0 (56)
0 0 1 0 I,

This interpolation operator is no longer block-diagonal
and requires more memory than (46). Its advantage is the
increased stability, i.e. the coarse grid operator

(lCH - fTin.) (57)

satisfies an inf-sup-condition if the fine grid operator C sat-
isfies one, see Lemma 4.6 in [9] for details. In contrast, if
we just use the block diagonal interpolation operator (46),
the coarse grid matrix may even become singular depending
on the interplay between the coarse velocity and pressure
spaces.

4 Numerical results

The following benchmarks were carried out on compute
nodes with Intel(R) Xeon(R) E5-2660 processors running at
2.20 GHz and 16 GB of memory. We used the SAMG library
developed at Fraunhofer SCAI, which implements a num-
ber of AMG components. We used the FPM implementation
developed at Fraunhofer ITWM. This implementation uses a
BiCGStab(2) solver by default, hence this serves as baseline
for our experiments. Note that the matrices generated by the
FPM discretization are normalized, i.e. scaled such that their
diagonal entries equal one, so no additional Jacobi precondi-
tioning is employed. For the scalar pressure systems, in our
AMG experiments weuse a V (1, 1) cycle with Gauss—Seidel
(or, in the parallel case, hybrid Jacobi/Gauss—Seidel) smooth-
ing as a preconditioner for a classical BiCGStab method.
In case of the coupled velocity-pressure equations, we use
Uzawa smoothing (42)—(44) on every level and use AMG
as a preconditioner for GMRES(30) unless stated otherwise.
The iteration is stopped if the /! norm of the residual vector
r satisfies

lr - sl < 1.0, (58)

where s is a scaling vector provided by FPM. It is chosen
so that the scaled residual represents a measure for the error
reduction in the gradient of the function that is being solved
for rather than the values of the function themselves. It also
accounts for jumping coefficients in the physical properties
of the model, e.g. jumping thermal diffusivity at material
interfaces. As a result, the error is reduced evenly across the
whole domain, even in very heterogeneous situations.
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Table 1 AMG statistics for a 3D Poisson equation on a 40 x 40 x 40-
cube using a regular 9-point FD stencil. 16-processes case with 4k rows
each

Table 2 AMG statistics for the hydrostatic pressure system in a 3D
cube using meshfree GFDM operators from FPM. 16-processes case
with &~ 4.3k rows each

Standard Al Standard Al

Setup time (s) 0.164 0.098 Setup time (s) 0.094 0.039
Time per cycle (s) 0.004 0.003 Time per cycle (s) 0.004 0.003
Overall time (s) 0.184 0.121 Overall time (s) 0.109 0.062
Cycles 5 9 Cycles 4 8
Levels 4 4 Levels 3 2

Co 2971 2.142 Co 1.532 1.382
Ca 3.096 1.608 Ca 1.097 1.005
nz/row 7.29 5.26 nz/row 28.653 29.088

Standard standard coarsening, A1 aggressive coarsening on level 1, Cg
grid complexity, C4 operator complexity, nz/row average non-zero
entries per row

We employ classical Ruge—Stiiben coarsening and stan-
dard interpolation on all levels, except on the first (finest)
level, where aggressive coarsening and multi-pass interpola-
tion are used (see Sect. 3.2). We truncate the interpolation at
€;r = 0.2 to avoid too large interpolation stencils. In both the
segregated and the coupled approach we ignore all positive
couplings and use « = 0.25 in the definition of strong cou-
plings (34) for scalar (pressure) systems. We terminate the
coarsening if the number variables drops below 100 - ,/np,
where np denotes the number of processes, and use a direct
solver on the coarsest level.

4.1 Coarsening compared to finite differences

The stencils produced by FPM’s discretization technique are
quite denser than those produced by usual FD, FE, or FV
discretizations of Poisson-like problems. We investigate the
impact of this property by comparing a 9-point finite differ-
ence discretization of a Laplacian equation on a unit 3D cube
with Dirichlet boundary conditions to the hydrostatic pres-
sure system (29) on the same cube discretized using FPM.
For the finite differences stencil case, we use a random right
hand side for the linear system and for the FPM cube we
use the right hand side induced by gravity in the hydrostatic
pressure system. In both cases, we reduce the residual by 8
orders of magnitude. For the finite differences discretization,
we choose a 40 x 40 x 40-grid, leading to exactly 64k matrix
rows. For the generalized finite difference method (GFDM)
used in FPM, we cannot prescribe an exact number of points
/ matrix rows. We choose a smoothing length of 2~ = 0.07 to
obtain ~ 67k points.

Tables 1 and 2 show that the effect of the aggressive coars-
ening strategy is very similar in both discretizations: The
setup time and the time per cycle is reduced at the cost of
some extra cycles. Furthermore, the numbers of iterations as
well as the time per iteration are very comparable.

All abbreviations are as in Table 1

A larger key difference can however is in the complexities.
These give an indication of the memory overhead of the AMG
hierarchy compared to the fine grid matrix. To this end, we
introduce the operator complexity

_ Zle nz(A;p)

C
A nz(Ay)

)

where nz(A;) is the number of non-zero elements of the
matrix Ay, the grid complexity

DYyt

Co
[£21]

’

and, in addition, compare the average number of non-zero
entries per row throughout the multigrid hierarchies.

Since the GFDM matrix has a lot of strong couplings, the
coarsening is a lot faster than in the FD case. Note that we
limit the number of neighbors for interior points to 40 and
those are chosen based on their distance to the central point,
preferring points that are closer to the central point. Because
of the weights in the least squares problem, these points have
quite strong couplings to the central point, resulting in a fast
coarsening rate, as can be seen from the operator and grid
complexities in Tables 1 and 2 For the 9-point stencil, the
standard coarsening yields a coarsening rate of exactly 0.5 on
the first level, whereas for the GFDM discretization it yields
0.06, which means in the latter case, the second level already
has one order of magnitude less rows than in the FD case.
Note however that the costs per cycle are the same in both
cases because the FD matrices are a lot more sparse. This is
not only true for the fine level matrix, but for the hierarchy of
matrices as a whole as well: The average number of non-zero
coefficients per matrix row across all levels is about a factor
4-6 higher in the FPM case. Still, AMG only needs very
limited additional memory compared to the original matrix,
especially in the case of aggressive coarsening on the first
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Fig. 1 Cross section of a pipe, segregated approach, vop = 1.0, L =
10 mm,d=2mm, p = 1000kg/m3, n = 1000 kg/ms, t = 0.0002 s

level. Hence, we employ this setting for all scalar problems
considered in the following examples.

4.2 Coupled versus segregated approach

In order to give an example which clearly shows that the seg-
regated approach is not always sufficient, we look at a simple
pipe with an inflow at one end and an outflow on the other
end. At the inflow we set a constant velocity boundary con-
dition of vg = 1.0 m/s and a Neumann boundary condition
for the velocity at the outflow. With a Reynolds Number of
1073, the viscous forces are dominant in this laminar flow.
Owing to the low Reynolds Number, the coupled approach
should be used. For this problem we know that for any cross
section of the pipe that is far enough away from the inflow,
we expect the maximum velocity vmax = 2v¢ to occur in
the center of the pipe with a quadratic fall-off to the sides.
After t = 0.0002 s, using the segregated approach, our sim-
ulation has already produced velocities of v & 100 m/s and
does not show the parabolic profile in the cross sections, see
Fig. 1. With the coupled approach and a virtual time step
size of Atyiyy = 0.1At though, we get vnax = 2.0 m/s both
atr = 0.0002sand r = 0.1 s, showing that the scheme repro-
duces the physical behavior over time. With this approach, the
method shows the parabolic velocity distribution in the cross
sections as well, see Fig. 2. In both cases, roughly 31,000
FPM points are used.

On the other hand, for larger Reynolds numbers, the segre-
gated approach is usually faster. In Table 3, we give the num-
ber of BiCGStab(2) and AMG-preconditioned BiCGStab (or,
in the case of the coupled system, GMRES(30)) iterations
needed to solve the various linear systems for the same exam-
ple but now we used a Reynolds number &~ 1. As we have
neglected the gravity in our model, we do not have to solve
for the hydrostatic pressure component. We see that the iter-
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Fig.2 Cross section of a pipe, coupled approach, Atyi = 0.1, vg = 1.0,
L=10mm,d=2mm, p = 1000 kg/m3, n = 1000 kg/ms, t = 0.0002 s

Table 3 Average number of BiCGStab(2) and AMG iterations for the
linear systems

Useg Ucoup Pcorr Pdyn
Segregated 52 - 3777 9/4
Coupled - 33/13 - /4

Vseg Segregated velocity system, veoup coupled velocity-pressure system,
Peorr COTTECtiON pressure system, pgyn dynamic pressure system

ation count coupled velocity-pressure system is significantly
higher than for the segregated velocity system, which is due
to the properties of the saddle point structure of the linear sys-
tem in the coupled case. Note that while all linear systems
for the different pressures have as many equations as there
are points in the point cloud, the segregated velocity system
has three equations for every point (x-, y- and z-velocity
components) and the coupled velocity system even has four
equations per point (x-, y- and z-velocity components plus
one equation for the correction pressure). In addition, this
system also has more entries per row as the additional cou-
plings to the pressure are included. In the general case, we can
expect that the total number of non-zero entries in the coupled
matrix is ~ 16/9 times the number of non-zeros in the veloc-
ity system. If there are no couplings between the different
velocity components, this factor can even grow up to 10/3,
hence the computational cost of every matrix-vector product
also increases by this factor. AMG can be used to reduce the
number of iterations needed, but still the coupled system is
harder to solve than the segregated velocity system. Hence,
the segregated method will be faster whenever it can be used.
Moreover, in these situations the segregated velocity system
typically can be solved efficiently using BiCGStab(2). On
the other hand, this experiment shows that in situations with
small Reynolds numbers the segregated approach cannot be
used and the coupled approach is the only option giving real-
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Fig.3 Single-phase flow through a Kenics mixer (cross-section). High
velocities red, low velocities blue. Artifacts due to visualization

istic results. For a more detailed discussion on the advantages
and disadvantages of the various approaches we refer to [18].

4.3 Scalability with problem size

To evaluate the scalability of our method, we simulate a flow
through a Kenics mixer. A Kenics mixer is a helical mixing
element used for mixing fluids (see Fig. 3, [4]). We succes-
sively refine the point cloud by reducing the smoothing length
h. Table 4 shows timings and iteration counts for both AMG
and BiCGStab(2) running on one core solving the hydro-
static pressure system. We use the segregated approach in this
experiment, however since the hydrostatic pressure system
is identical in both approaches, the results are not different
for the coupled approach.

AMG scales almost linearly with the number of points,
whereas BiCGStab(2) does not. Even for the smallest model,
AMG is significantly faster. In all cases, operator and grid
complexities remained below 1.1. The convergence rates of
AMG in these examples are around 0.25, keeping the num-
ber of iterations needed at 11 to 12. This is not the case for
BiCGStab(2), which needs a growing number of iterations
as we would expect from a classical one-level solver.

The table also shows the time needed to assemble
the matrix. This predominantly includes solving the least-
squares problem (15)—(16) at every point. When applying
AMBG, the assembly takes more computational effort than
the linear solver, indicating that in this situation, improv-
ing the overall performance of the method is now a question
of speeding up the assembly rather than the linear solver.
With BiCGStab(2) on the other hand, the linear solver
highly outweighs the assembly. These observations may vary
depending on the model, of course. Also note that the num-
bers we are giving here refer to the assembly of the matrix

Table 4 Linear solver times for the Kenics mixer model. Time for
solving one hydrostatic pressure system

h Points BiCGStab(2) AMG Assembly
0.01 303k 90.4s (639) 5.6s (11) 9.9s
0.009 398k 153.0s (764) 7.8s (11) 13.3s
0.008 535k 235.5s (835) 11.25 (11) 18.1s
0.007 758k 500.6s5 (1125) 16.9s (11) 26.3s
0.006 1.1m 1220.9s (1621) 28.6s (12) 40.0s

Iteration counts in brackets

Fig. 4 Single-phase flow through a bifurcating tube. High velocities
red, low velocities blue. The length of the tube as been compressed by
a factor of 4 for better visualization

only. In FPM, there are other task like managing the point
cloud that also take some computational effort.

4.4 Parallel speed-up

In this section, we show the (MPI-)parallel strong scalability
of SAMG for a bifurcating tube model with &~ 3.5m points
and a high Reynolds number of 1000 (Fig. 4). In this case,
we can again use the segregated approach and consider the
correction pressure. (The hydrostatic pressure equals 0 as no
external forces are modeled).

We employ local, per-processor coarsening on the first 3
levels. On higher levels, the splitting into coarse and fine
grid points is carried out on a single processor, while the
computation of the interpolation operators and the Galerkin
operator is performed in parallel.

From the last column in Table 5 we see that the grid
complexity increases as more processors are involved. In
consequence, for 256 processors the coarsest grid becomes
relatively large (& 4500 points compared to &~ 3350 points
in the 128 core case). While this improves the convergence
factor, it increases the costs for the iteration (see column z,;)
Therefore, the overall speed-up stagnates with 256 cores. On
the other hand, we have good speed-ups up to 128 cores. Note
that the 32 cores run needed 14 iterations rather than 13 due
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Table 5 AMG setup (), solution (z5,;), overall AMG time solution
(t;01), convergence rates (p), Iteration counts (in brackets), and grid
complexities Cg for solving the correction pressure bifurcating tube
model

Cores Iser (8) fso1 (8) tror (8) P Co

16 2.8 5.9 8.7 0.247 (15) 1.11
32 1.0 2.3 33 0.230 (14) 1.15
64 0.6 1.1 1.7 0.232 (13) 1.17
128 0.3 0.8 1.1 0.247 (13) 1.21
256 0.2 0.9 1.1 0.198 (11) 1.28

to a small change in the initial residual that is caused by the
slightly different point cloud.

4.5 Two-phase sloshing with free surface

An example for a simulation with a free surface is a sloshing
fluid. In this case, we simulated a two-phase sloshing exper-
iment with two different fluids, see Fig. 5. The “upper” fluid
has a density of 500kg/m?>, while the “lower” fluid has a
density of 1000 kg/m?. For both phases, the viscosity is set
to n = 0.001 kg/(ms).

Rather than moving the surrounding box, the gravity
affecting each point was varied over space and time. At the
free surface, we impose different boundary conditions for the
“upper” (light) and “lower” (heavy) phase: For the “upper”
phase, the interface acts as a moving boundary with slip con-
ditions. The “lower” phase has a free boundary condition at
the interface, and the pressure of the “upper” phase bound-
ary is added to the boundary conditions for the “lower” phase
boundary. Neither a pressure jump nor an additional surface
tension are modeled. The smoothing length Aypper for the
upper phase is chosen as hjower/2. We consider the coupled
approach to investigate how the AMG method introduced in
Sect. 3.3 performs for the pressure-velocity-systems. Since
the model uses Atyiry = 0.2A¢, itis sufficient to use the (diag-
onal blocks) of A and D to coarsen the velocity and pressure
components respectively. There is no need to assemble the
Schur complement CA~!'B+ D. Asin the case of the scalar
systems, the operator complexities remain below 1.1 even
though we employed standard (not aggressive) coarsening
on the first level here. We obtain grid complexities of 1.34
for the smaller and 1.30 for the larger problem.

In this example, the detection of decoupled subsystems
is important, since droplets of water leave the main water
component frequently. The detection of these subsystems is
realized in parallel by using a local-diffusion based algorithm
as described in [3]. The cost for the detection and redis-
tribution of these subsystems among the 128 respectively
256 cores used in this example is below 7% of the overall
linear solver time. The convergence rate of our AMG algo-
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Table 6 BiCGStab(2) and AMG timings for solving the coupled
velocity-pressure system in the two phase sloshing model

Cores Points BiCGStab(2) AMG
128 ~ 2.4m 16.7s (119) 13.9s (14)
256 ~ 5.4m 116.45 (219) 17.5s (16)

Iteration counts in brackets

Table 7 BiCGStab(2) (denoted BCGS2) and AMG/BiCGStab itera-
tions for the bifurcating tube example with small virtual time steps

Atyir/ At BCGS2 AMG(D) AMG(S) AMG(ST)
0.01 812 1.3953 1.7770 3.2131
0.001 1359 - 1.6830 3.2436
0.0005 1449 - 1.6821 3.2300
0.00025 1823 - - 3.2424

AMG(D) denotes pressure coarsening based on D, S means coarsening
using CA-'B + D, and ST indicates interpolation stabilization. All
AMG runs were carried out with BiCGStab acceleration, dashes indicate
that the respective iteration did not converge within 500 steps

rithm stays below 0.7 for both problem sizes. In contrast, the
BiCGStab(2) solver has high communication cost due to the
increased number of iterations and cores especially in the 256
core case and hence cannot compete with AMG, see Table 6.

4.6 Small virtual time steps

In order to achieve a divergence-free velocity field, the virtual
time step Atyir in (26) must be chosen as small as possible.
In this section, we investigate the effects of small virtual time
steps on the robustness of the linear solvers. We compare the
BiCGStab(2) solver to the saddle point AMG solvers intro-
duced in section, which employ different techniques to set
up the coarse grid and interpolation operator for the pressure,
see 3.3.

1. Using just the entries of the lower right block D,
2. Using the Schur complement CA~'B + D,
3. Like 2, but with additional interpolation stabilization (56)

We again look at the bifurcating tube example introduced
in Sect. 4.4. This time though we change the viscosity
of the fluid so that the small diameter of the tube leads
to a low Reynolds number (Re = 0.0001) and the cou-
pled approach must be used. We consider a relatively small
example (289,830 points, i.e. the coupled linear system has
1,159,320 rows and columns) and carry out a sequential com-
putation only. As the viscosity is constant throughout the
domain, we omitted the block scaling (49). For this example
we set the strength threshold « = 0.5.

In Table 7 we give the iteration counts for four different
virtual time steps (given as fractions of the time step). We
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Fig.5 Two-phase sloshing at t = 0.53 s with a sloshing frequency of 20 Hz. Arrows indicate the flow of the upper fluid, which is also computed

by FPM using a second point cloud

Table 8 Operator and grid complexities for the various saddle point
AMG variants

Atyir/ At AMG (D) AMG (S) AMG (ST)
0.01 1.40/1.19 1.78/1.22 3.21/1.22
0.001 - 1.68/1.23 3.24/1.23
0.0005 - 1.68/1.23 3.23/1.23
0.00025 - - 3.24/1.23

The abbreviations are as in Table 7

see that with decreasing virtual time step, the iteration count
of all methods increases. While BiCGStab(2) is still feasible
for this small example (timings reached from 641 to 1424 s),
pressure coarsening using D only is not sufficient for time
step factors smaller than 0.01 (see column AMG(D)), so the
whole Schur complement C A~'B + D must be used (col-
umn AMG(S)) . For even smaller virtual time steps, we also
need to employ additional stabilization (column AMG(ST))
, which however increases the costs of setup and cycling (up
to 3255 s were needed in the worst case). This is also reflected
in the complexities given in Table 8: With stabilization, the
operator complexity is almost twice as large as without stabi-
lization. Here, further research efforts will be required. First,
as results from [20] indicate, it is not always required to sta-
bilize on all levels. Second, the diagonal scaling of the FPM
discretization may be replaced by a more physical scaling
such that the physical background of the B and C blocks
(which represent in fact operators that are adjoint to each
other!) can be better represented in the Schur complement.
As for larger systems standalone BiCGStab(2) will become
computationally expensive, a robust AMG method is also
needed here.

5 Conclusions and future work

In conclusion, we have created different AMG methods for
the linear systems arising in the FPM. Our method is espe-
cially efficient for large point clouds. For the segregated
pressure systems, our method is very close to a standard

Ruge-Stiiben method and works well in our test cases. How-
ever due to the lack of symmetry and the M-matrix property,
a theoretical framework for its convergence remains to be
explored. To this end we should mention that the work by
Seibold [14] shows how to enforce the M-matrix property
in FPM and work by Notay et al. [10,11] shows two-level
convergence for such matrices that need not necessarily
be symmetric. In contrast to our work, Notay et al. use
aggregation-based AMG. One should keep in mind, that
although the discretization we presented in Sect. 2.3 leads
to non-symmetric matrices, the operators we are discretizing
in the FPM are symmetric operators by nature. This obser-
vation could give rise to some theoretical considerations in
future work. But also the idea of aggregation-based AMG
algorithms deserves some more attention: In an aggregation-
based AMG it would be easier to reuse the setup across
more than one time step. This is difficult to achieve with
classical AMG methods, as the point cloud organization
might introduce and delete points from the point cloud. In
an aggregation-based algorithm this could be accounted for
by simply deleting points from aggregates or adding them.
Next, [14] also gives rise to the question whether the idea of
minimal stencils leads to a more effective coarsening algo-
rithm in the classical sense. The criterion for the existence
of minimal stencils could lead to a coarsening algorithm that
uses a minimal number of C-points.

As already pointed out in 4.6, the case of small time virtual
time steps requires further developments, as small virtual
time steps are important for accurate divergence-freeness of
the velocity field.

Last, there are a number of other methods, e.g. various
implicit SPH methods [5,6,19], that use discretizations lead-
ing to matrices with similar properties like the ones we have
seen here. A theoretical framework build for the matrices we
investigated here could also be applied to those methods.
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