
International Journal on Digital Libraries manuscript No.
(will be inserted by the editor)

Visual Exploration and Retrieval of XML Document Collections
with the Generic System X2

Holger Meuss2, Klaus U. Schulz1, Felix Weigel1, Simone Leonardi1, François Bry3

1 Centre for Information and Language Processing, University of Munich (LMU), Germany
2 European Southern Observatory (ESO), Garching, Germany
3 Institute for Computer Science, University of Munich (LMU), Germany

Received: date / Revised version: date

Abstract. This article reports on the XML retrieval system
X2 which has been developed at the University of Munich
over the last five years. In a typical session with X2, the user
first browses a structural summary of the XML database in
order to select interesting elements and keywords occurring
in documents. Using this intermediate result, queries com-
bining structure and textual references are composed semi-
automatically. After query evaluation, the full set of answers
is presented in a visual and structured way. X2 largely ex-
ploits the structure found in documents, queries and answers
to enable new interactive visualization and exploration tech-
niques that support mixed IR and database-oriented querying,
thus bridging the gap between these three views on the data to
be retrieved. Another salient characteristic of X2 which dis-
tinguishes it from other visual query systems for XML is that
it supports various degrees of detailedness in the presentation
of answers, as well as techniques for dynamically reordering
and grouping retrieved elements once the complete answer
set has been computed.

Key words: XML, graphical user interfaces, interactive in-
formation retrieval, schema browsing, answer exploration, re-
sult visualization, semi-automatic query creation

1 Introduction

Two tendencies for the current and future development of dig-
ital libraries are crucial for the purpose of this paper. First,
the amount of books, journals, articles that are made avail-
able in a typical digital library grows continously. For exam-
ple, more than 15 million citations are now available in the
PubMed (MEDLINE) database [14], and460, 000 references
have been added in 2002. The PubMed Central digital archive

Send offprint requests to: Holger Meuss
Correspondence to: hmeuss@eso.org

[20], launched in 2000, currently contains issues of some
160 journals as searchable documents. Second, an increas-
ing number of documents in digital libraries come with their
logical structure and appropriate meta-information made ex-
plicit and accessible. The eXtensible Markup Language XML
[2] has become a generally accepted standard for representing
such aspects of structure and contents. Often all documents in
a digital library – or all entries indexed by a scientific search
engine – are annotated with XML, following a common doc-
ument grammar. In some of our own experiments, e.g., we
used a large collection of textual XML documents from the
Bertelsmann company, as well as the complete INEX 2004
collection containing more than 12,000 scientific articles to-
talling to 500 MB [13].

As far as adequate IR technologies are concerned, the
continous growth of information represents a serious prob-
lem, whereas the explicit encoding of structural aspects and
the annotation with meta-information represents a chance.
Improved retrieval techniques that take advantage of the struc-
tural information to be found in document repositories might
represent one key for successfully dealing with large data
sets. Two specific challenges are relevant for the system pre-
sented in this paper.

First, special querying technologies for XML documents
exploiting both their structure (or meta-information) and con-
tents may help to improve the behaviour of traditional flat-
text IR systems in terms of the common performance param-
etersprecisionand recall. In fact, structured document re-
trieval occupies a position in between classic (vague) IR and
database technology. On the one hand, suitable references to
structure can be used to formulate strict and non-vague con-
ditions on answer documents and thus increase retrieval pre-
cision. In a “documents as databases” paradigm, this allows
direct access to the more database-like parts of a document,
such as its title, author, year of publication, or keywords. On
the other hand, queries that are more precise in one part can
be made more liberal in other parts, which explains that also a
higher recall can be achieved. The improvement of precision

2 Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2

and recall seems to be the guiding idea in the heart of most
approaches to structured document retrieval.

The second challenge, ignored by many approaches to
structured document retrieval, is of equal importance from
our point of view. The structural conditions of queries used in
XML retrieval induce a specific structure on each answer. It is
natural to ask which new forms of user interaction are within
reach if this additional information is used in an appropri-
ate way. New interaction paradigms should allow for visual
exploration of XML documents, their schema and query re-
sults, involving both structure and content in an integrated
way. We should depart from the naive idea of classical IR
systems which assume that the task is solved merely by pass-
ing an ordered list of documents to the user. Some obvious
questions are: How can we use the inherent structure of an-
swer documents in order to support new forms of visual and
interactive navigation in the answer space, to simplify the se-
lection of relevant documents and (perhaps more importantly,
e.g. in the “documents as databases” paradigm) of relevant
document parts? How can we use the inherent structure in
order to group and order answer documents and their parts,
enabling a “bird’s eye” perspective, and to adjust the retrieval
granularity dynamically?

In this paper we describe the XML retrieval systemX2

(for querying and eXploring XML), concentrating on the vi-
sual and interactive exploration of (1) the database schema
and (2) answer sets to queries. X2 has been conceived, im-
plemented and tested at the University of Munich over the
last five years. While in the beginning we concentrated on
algorithmic problems related to query evaluation [15], the fo-
cus of our recent work is the second of the aforementioned
challenges. After a series of practical tests, a third general
objective has been added: In order to formulate a query with
interesting structural conditions, the user must have an idea of
the structure of documents in the repository. Hence the sys-
tem should offer some kind of active support for exploring the
structure of entries of the library, and for formulating suitable
structural conditions in queries. This advocated the integra-
tion of a schema browsing facility into X2 which tightly inter-
acts with the module for visual query creation. As a common
frontend to the different interactive modules (schema explo-
ration, query formulation, answer exploration), X2 provides
a graphical user interface (GUI) that helps users to identify,
formulate and satisfy their information needs.

Before explaining, at the end of the following section, the
structure of the paper which parallels the system architecture
to a certain extent, we start with a brief overview of X2.

2 System overview

The current retrieval model used for X2, which takes all the
abovementioned aspects into account, is shown in Figure1.

Structure and contents of the database (DB) are summa-
rized in theDB schema, which visualizes existing label paths
and occurrences of keywords under particular label paths. Us-
ing a well-defined set of operations, the user may generate

Fig. 1. The retrieval model of X2. The numbers©3 to©6 refer to related
sections in the remainder of this article.

distinct simplifiedviewson the DB schema, hiding parts that
are not of interest. The resulting restricted view, which only
contains label paths and keywords that seem relevant to the
user, defines a “sphere of interest”. Thisvisual exploration
of the DB schemaends with theautomated generation of a
tree-structured querybased on the final view. Of course, the
generated query may be post-edited. Alternatively, an expe-
rienced user may directly compose a (textual or graphical)
query. These additional possibilities are not indicated in the
figure.

The query isevaluatedin the database. The full answer
space for the query is computed and represented in the form
of a so-calledComplete Answer Aggregate (CAA)[15]. The
CAA collects all nodes (elements) of the database that con-
tribute to some answer, avoiding redundancies. It also en-
codes structural relationships between relevant elements and
organizes document nodes in a way that reflects the structure
of the query. Consequently users can easily relate parts of the
answer space with nodes and conditions in their query, and
therefore fully understand the topology of the answer space.
Owing to these properties, CAAs offer a good basis for the
last retrieval step to be described next.

The finalvisual exploration of the answer spaceis again
supported by a rich set of manipulation techniques for the vi-
sual representation of CAAs. Using these operations, the user
may display, group, re-order, or hide elements in the answer
set. In this way, the interactive separation of relevant and ir-
relevant parts of the original answer space is supported. Even-
tually the exploration leads to a reduced answer space that is
nearer to the intended retrieval result and presents elements
that are judged relevant, organizing them in a structured way.
This reduced answer space represents the final retrieval re-
sult, which may be visualized, exported and used in different
ways. If the user is not satisfied with the result, the explo-
ration of the answer space might have given valuable hints
as to how to create a modified query which better covers the
user’s real information need. In this sense, our approach is
open to query refinement and iteration.

Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2 3

It is important to note that X2 is a genericretrieval sys-
tem for all sorts of XML documents in digital libraries, in-
dependent of the actual domain being described in the docu-
ments. It has been used and tested with document collections
from a broad range of domains, such as scientific literature
databases, linguistic corpora, judicial text documents, lexico-
graphic data and documents containing travel information.

Organization of the paper.In the remaining sections, the cen-
tral components and ideas behind X2 are explained in greater
detail, following the organisation indicated in Figure1: Sec-
tion 3 explains the formal document model underlying X2

and describes the syntax and semantics of the query language.
The database schema, which builds on the notion of aContent-
Aware DataGuide[25], is introduced in Section4 where we
also describe operations and strategies for the visual explo-
ration of the database schema and for the automated genera-
tion of queries. Section5 introduces Complete Answer Ag-
gregates and explains how this data structure is used to rep-
resent the set of all answers to a given tree query in a struc-
tured, condensed and non-redundant way. Section6 describes
the visual exploration of the answer space, presenting in more
detail a typical retrieval session with X2. It also covers the in-
tegration of result ranking with the system. In Section7 we
sketch some ideas for future work and describe related work.

3 Preliminaries

We briefly comment on possible problems related to distinct
information needs that motivate the techniques for user in-
teraction supported by X2. Afterwards we sketch the formal
query model employed in X2. A more detailed discussion of
the mathematical foundations of X2 can be found e.g. in [15].

3.1 Information needs and complex information spaces

From an abstract point of view, the purpose of any informa-
tion system is to map the currentinformation needof a user
into theinformation spacespanned by the underlying data re-
source. To satisfy the information need, appropriate parts of
the data must be selected and possibly reorganized, at least in
case of structured retrieval, to produce a meaningful and per-
tinent answer to the user’s inquiry. In his influential work on
the notion of relevance in Information Retrieval (IR), Mizzaro
[16] distinguishes various manifestations of the information
need of a user. In a typical retrieval situation, the objective
real information needunderlying an inquiry, which the user
is often not fully aware of, is perceived by the user in a par-
ticular way. Thisperceived information needis transformed
into an (informally)expressed information needand finally
translated into aformalized information need, i.e. a query in
a formal query language of an information system, be it a
database, a digital library, a web search engine, etc.

Mizzaro’s work explains the problems and errors that may
occur in this complex transformation process, emphasizing
that retrieval systems should offer strong support to the user

in order to avoid failure and useless work. Interestingly, less
attention has been paid to the reverse translation process, in
which users have to relate the query result to their formulated
query and perceived information need. Few retrieval systems
try to support the user in this “backward” translation process,
to the best of the authors’ knowledge none of them being an
XML system. XML retrieval systems consider their task fin-
ished as soon as the formal result has been delivered in the
form of XML documents, as they regard only a formalized
query as input, ignoring the long way a perceived informa-
tion need has to go before becoming a formalized information
need.

This paper deals with retrieval of XML documents, a sit-
uation where both the forward and backward translation pro-
cess is complex since queries and documents are structured
in a non-trivial way. For a typical user who is not quite famil-
iar with the (details of the) document structure, it is difficult
to bridge the gap between the perceived and the formalized
information need. He may not even be familiar with the in-
formation need formalized by a given query he is running,
which might have been created earlier by himself or someone
else. Therefore the system should offer special assistance in
expressing and formalizing the queries. Since answers come
with their own structural relations, additional support is also
required for relating the items in answer sets to the formal-
ized and to the perceived information need. The graphical
user interface of X2 addresses all these issues by providing
iterative, interactive and visual access to queries, documents
and answers.

3.2 XML documents as trees

XML documents are formalized as finite ordered labeledtrees.
The set ofnodesis given by the elements of the document;
edgesdescribe the direct inclusion of document parts. We
distinguish betweentext nodesand structure nodes. Labels
of structure nodes are members of a given set of node labels
L (corresponding to XML element types). Text nodes are al-
ways leaves and labeled with text. The alphabet of text tokens
is Σ. The symbol< denotes theleft-to-right ordering of sib-
lings, which relates two distinct nodes iff they have a com-
mon parent node, whereas<lr stands for thedocument order
(capturing XPath’spreceding andfollowing axes).

In the remainder of the paper, standard notions from tree
(graph) theory such aschild, ancestor, descendantetc. are
used without further explanations. A textual nodev is said
to containa keywordk iff the label (textual contents) ofv
containsk as a token. By contrast,v governsk iff k is con-
tained byv or any of its descendants.

For simplicity, attributes, namespaces, etc. are ignored in
this informal presentation. Nonetheless, these features can be
used in our framework; the current implementation of X2 dis-
tinguishes between attributes, structure nodes (elements) and
textual nodes.

4 Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2

3.3 Simple tree queries and full query language

We present the syntax and semantics of the kernel query lan-
guage of X2. This language subsumes the core of the W3C’s
XML Path LanguageXPath [6] and adds extra features like
optional nodes and wildcards for search terms. Ignoring ad-
ditional constraints, our queries have the form of trees that
are to be matched against document trees. Using the standard
X2 mode for query formulation, queries are represented in a
graphical way in the form of trees (see Figure4 on page7 for
an example). This (1) makes it easy to understand the mean-
ing of a query; (2) leads to a more concise representation than
the term-based linear syntax used in XPath (with its inherent
syntactical redundancy [18]); (3) supports various forms of
visual user interaction like query formulation, manipulation
and presentation; and (4) simplifies the correct association
between image nodes in documents and the corresponding
query nodes in the visual presentation of the answer space.

From a purely formal point of view, tree queries are de-
scribed as conjunctive queries over trees [12], which facil-
itates the use of additional constraints (like horizontal or-
der conditions) as well as the analysis of expressivity and
tractability properties [12].

Definition 1 (Atomic path constraint). Let X be a finite
set of variables,x, y ∈ X, A ∈ L,w ∈ Σ. An atomic path
constraintis an expression of the form (and meaning)

– x →1 y (y is a child ofx)
– x →+ y (y is a descendant ofx)
– A(x) (structure nodex has labelA)
– w#x (tokenw occurs in the label of text nodex).

Definition 2 (Simple tree query). A simple tree queryis a
conjunction of atomic path constraints such that child and
descendant constraints impose a tree structure on the set of
query variables.

Since child and descendant constraints impose a tree struc-
ture on a simple tree query, we may use terms likeroot, child,
sibling etc. in the context of such queries. When referring
to the tree structure of a query, the aforementioned child con-
straints and descendant constraints are treated as interchange-
able, i.e. both are considered as simple edges of the query.
Descendant constraints are calledsoft edges, whereas child
constraints are referred to asrigid edges.

Definition 3 (Answer to a simple tree query in a docu-
ment). An answerto a simple tree queryQ in a document
is a variable assignmentµ mapping each query variablex in
Q to a document node (i.e. XML element)µ(x), such that all
atomic path constraints ofQ are satisfied. If we consider a
collectionC of documents, then any answer toQ in a docu-
mentT of C is called ananswer toQ in C.

The full query language of X2 is given by the class oftree
queries. These queries are more expressive than simple tree
queries, extending them with additional constraints:

Order: Siblings in a tree query can be specified to stand in
one of two possible order relations:document order<lr

or direct order<.
Optional subtrees:A full subtree of a query can be marked

asoptional. An answerµ may be partial in the sense that
variables of the optional subtree do not receive images,
and constraints involving these variables are ignored.

Root preservation:A full tree query can be marked to beroot-
preserving. An answerµ of a root-preserving tree query
has to map the root of the query to the root of a document.

Leftmost/rightmost children:A query node can be marked to
be aleftmostor rightmostchild. An answerµ must map
leftmost and rightmost children to nodes having no left or
right siblings, respectively.

Text wildcards:The alphabetΣ is enriched such that the re-
served symbols* (representing an arbitrary sequence of
letters) and% (representing one arbitrary letter) can be
used in labels of textual query nodes.

Keyword conjunctions and disjunctions:Keywords in labels
of text nodes can be either disjoined or conjoined.

XML attributes: Structural nodes can be equipped with con-
straints specifying attribute names and values.

This selection of additional constraints has proved to cover
a range of useful and expressive constructs while guarantee-
ing efficient evaluation.

4 Visual schema exploration and query generation

In Section3.1 we explained Mizzaro’s [16] observation that
the successful translation of the real information need of a
user into a formalized information need is a difficult process.
From this picture it is clear that the usability and effectiveness
of a retrieval system crucially depends on the kind of support
that is offered to formulate queries which really cover the ac-
tual information need.

We now decribe theSchemaBrowserused inX2. The mo-
tivation for such a browser has been discussed in the introduc-
tion. Before explaining the functionality of this tool, a few
words on the kind of schema we use are in order.

4.1 DTDs versus DataGuide and CADG

Consider a DTD as the one shown in Figure2, which de-
scribes the documents used in the following examples. We
call DTDsnormative schemata, since they impose a structure
on a document collection that must be obeyed by XML docu-
ments. Typically a DTD permits a variety of content mod-
els that might not occur in a given conforming document
collection. This is contrasted by structural summaries like
the DataGuide[11] or Content-Aware DataGuide (CADG)
[25], which aredescriptive schemataof a document collec-
tion: a DataGuide summarizes the currently expressed docu-
ment structure in tree structure such that all document nodes
with the same label path to the root are represented by a single
node in the index tree, called anindex node.

Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2 5

<!-- library -->
<!ELEMENT library (publication*)>

<!-- publication -->
<!ELEMENT publication (meta, content)>
<!ATTLIST publication type (article|book|proceedings|

technicalReport|thesis) #REQUIRED>

<!-- metadata -->
<!ELEMENT meta (authors, title, subtitle?,

inPublication?, volume?,
number?, pages?, editor?,
publisher?, date?, uri?)>

<!ELEMENT authors (author+)>
<!ELEMENT author (#PCDATA)>

<!ELEMENT title (#PCDATA)>
<!ELEMENT subtitle (#PCDATA)>
<!ELEMENT inPublication (#PCDATA)>

<!ELEMENT volume (#PCDATA)>
<!ELEMENT number (#PCDATA)>
<!ELEMENT pages (#PCDATA)>

<!ELEMENT editor (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>

<!ELEMENT date (month?, year)>
<!ELEMENT month (#PCDATA)>
<!ELEMENT year (#PCDATA)>

<!ELEMENT uri (#PCDATA)>

<!-- content -->
<!ELEMENT content (abstract?, section+, bibliography?)>

<!ELEMENT abstract (paragraph+)>
<!ELEMENT paragraph (#PCDATA)>

<!ELEMENT section (title, subsection+)>
<!ELEMENT subsection (title?, paragraph+)>

<!ELEMENT bibliography (reference+)>
<!ELEMENT reference (meta)>

Fig. 2.Sample DTD

The DataGuide has originally been designed as a main
memory index structure for semistructured documents. Eval-
uating a query against a DataGuide involves (1) finding doc-
ument nodes with the right label path by matching query
paths to index paths, and then (2) filtering out those document
nodes whose textual content (held in secondary storage) does
not contain the query keywords.

The CADG enhances this concept by storing additional
keyword information in the index nodes (not necessarily phys-
ically, as shown in [25]). Thus the relevance of an index node
(and all document nodes it represents) for a given query key-
word may be decided during the path matching process, which
drastically reduces access to secondary storage. For a detailed
description and evaluation of the CADG, see [25].

4.2 A SchemaBrowser based on the CADG

In our work, the CADG not only serves as an index structure
for the document collection being queried. It is also the basis
for the SchemaBrowser, which visualizes the CADG in the
form of a GUI tree, thus providing a compact and simplified
view on the database schema.

From the internal representation of the CADG, other use-
ful information about the database is obtained and displayed
on demand to give a more precise picture of its contents. This
extra-schema information includes e.g. the list (or else the
number) of keywords contained in or governed by an index
node1, as well as the number of label paths in the database
with a given prefix or where a given keyword occurs.

Query generation.As described in the sequel, the user inter-
actively adapts the view on the database schema provided by
the SchemaBrowser until he has obtained enough informa-
tion to formulate a query. Simultaneously, the user decides
which part of the schema should be mentioned in the query.
To reflect the user’s “sphere of interest”, the resulting query
typically not only contains nodes for selecting parts of doc-
uments with a specific content, but also “output” nodes rep-
resenting parts of the documents the user wishes to see re-
gardless of the text they contain (see Query1 for an exam-
ple). The SchemaBrowser then feeds this subschema as input
into a QueryGenerator, which produces an editable graphi-
cal query representation according to the user’s selection. In
terms of Mizzaro, this translation is meant to support users
in the error-prone transformation process from perceived to
formalized information need.

Adjusting focus and selectivity.During the exploration of the
schema, the aforementioned statistical information provided
by the SchemaBrowser helps the user estimate the expected
size of the answer space. He may choose to include or avoid
particular labels and keywords in his query in order to ren-
der it more selective and keep the query result reasonably
small. For instance, realizing that the keyword “markup” oc-
curs too frequently, the user may decide to search for “XML”
instead. Returning to Mizzaro’s picture, in this phase the user
(1) compares his perceived information need with the content
and structure of the document collection, thus getting closer
to his real information need, and (2) expresses this informa-
tion need – in terms of a subschema and the resulting query –
such that it can be successfully matched to the documents in
the collection.

Browser details.Figure3 shows the SchemaBrowser, which
visualizes the schema of an XML literature database con-
forming to the DTD from Figure2. In this representation,
index nodes can beactivated(shown in red/bold) with the
mouse or by using the widgets on the right: the user can acti-
vate all nodes with a certain label, of a certain type (element
oder attribute), or nodes that contain or govern a given key-
word. In Figure3 all title nodes were selected by using the
operationactivate all nodes with label ’title’. One can also
inspect contained or governed keywords of a marked node
(highlighted in blue) in a separate window, as shown for the
author node in Figure3. Various inheritance and set oper-
ations are supported for propagating node activations, such

1 An index node contains (governs) a keyword if any of the document
nodes it represents contains (governs) that keyword, as defined in Sec-
tion 3.2.

6 Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2

Fig. 3.View of the SchemaBrowser

as intersection, set complement, propagation to ancestors etc.
Activated nodes can be hidden and, most importantly, they
can serve as a basis for automatically generating a query tree.

The panel on the lower right in Figure3 depicts some of
the extra-schema information obtained from the underlying
CADG. We plan to extend this rudimentary statistic summary
with some data mining functionality.

Schema exploration and query generation: an example.The
following sample information need illustrates the capabilities
of the SchemaBrowser and QueryGenerator:

Query 1. “I would like to see interesting recent papers on
XML written by Sally Sonntag.”

This (expressed) information need is transformed into a
formalized information need (query) step by step: First, we
look at the list of all available authors by marking the up-
perauthors node and clicking the buttonshow governed key-
words. In this way we see that there is no author with surname
“Sonntag”. We realize that there has been a slight mismatch
between our expressed information need and the real infor-
mation need, which might refer to the surname “Sontag”, a
name that in fact appears in the list of authors.

As we are interested in papers on XML by Sally Son-
tag, we activate all nodes containing the keyword “Sontag”
or governing the keyword “XML” and hide all other nodes
in the index tree. The resulting keyword-specific tree in Fig-
ure4, containing only nodes which are potentially relevant to
the above information need, is much smaller and hence eas-
ier to browse. After manually deactivating some nodes not

to be reflected in the answer (likelibrary , e.g.), we let the
SchemaBrowser generate a query which we will further edit
to reflect our above mentioned information need: A textual
query node with the keywords “Sally Sontag” is added to
theauthor node, and a textual query node with the keyword
“XML” to the section node. Eventually we add an optional
year node to thepublication node.2 The resulting query is
shown in Figure4. This query contains nodes that seem un-
necessary at first sight, since they do not restrict the query
(like the optionalyear node or thesection node). They are
included nonetheless as “output nodes”, reflecting part of the
“sphere of interest” during exploration of the answer set, as
we will see later. Every query node is represented by a rect-
angle, structural nodes are annotated with the node’s label,
textual query nodes are labelled with the word<text> and
show the keyword being queried. A rigid edge is expressed
by a solid line, while for soft edges a dashed line is used.

Generating query trees automatically from nodes selected
in the index tree has several advantages. While inspecting the
index tree the user learns about the structure of the underlying
document. In our example he will become aware of the fact
that there areauthor nodes on two different levels, thus being
able to specify in his query whether he is interested in authors
of publications in the document collection or authors of cited
papers. This underlines the fact that the free use of the full
XML structure (as opposed to the restricted field search in
database-oriented query systems, see Section7.1) allows for
the formulation of new and more precise queries.

2 In the visual query representation optional query nodes are represented
by a dashed rectangle.

Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2 7

Fig. 4.The generated and post-edited Query1

5 Complete Answer Aggregates

For the sake of usability, XML retrieval systems should not
present a query result as a simple enumeration of individual
answer mappings (see Defintion3 on page4), as suggested
by the following observations:

– There might be exponentially many answer mappings,
which aggravates the user’s burden of conquering the re-
sult space.

– Distinct answer mappings may share common parts (sub-
mappings). This again makes it difficult for a user to un-
derstand the topology of the result space completely, com-
pare and analyze distinct answers and relate them to each
other.

– An answer mapping, in its basic form, is a flat concept
(list of query node/document node pairs) that ignores the
geometric form of tree queries and document trees. This
makes it less amenable to visual presentation and explo-
ration.

In particular, these issues discourage the presentation of
search results as a list of flat documents, which is common
in traditional IR systems. In X2, by contrast, the full set of
answers is computed and visually represented in the form of
a Complete Answer Aggregate (CAA). This data structure is
introduced informally here, a formal definition can be found
in [15]. CAAs collect answers in a structured, condensed and
non-redundant way, using mechanisms for structure sharing.
From a complexity point of view, this leads to query evalu-
ation in polynomial time (see below), even though the total

number of single answer mappings may be exponential. The
visual presentation of CAAs (see Figure5) encourages and
supports various exploration and browsing techniques to be
presented in the next section.

A CAA inherits its macro structure from the tree structure
of the queryQ: For each query node (variable)v, aslot sv is
computed that collects all possible images ofv in answers
to Q. In the GUI, distinct slots are represented as boxes and
graphically arranged in a way that directly reflects the struc-
ture of the query, as shown in Figure5. Each box/slotsv for a
given variablev is graphically partitioned into subrectangles
that represent the possible image nodes ofv. In the following,
these subrectangles are calledfields. For both slots and fields,
the GUI provides a variety of display modes (views) differing
for example in their degree of detailedness. These views are
chosen individually for each slot and field in a context menu.

In the internal representation of a CAA, pointers are used
to encode the following relationship: assume that inQ there
exists a (soft or rigid) edge from variableu to v (i.e., v is a
child of u in Q). Let d ande respectively denote possible im-
ages ofu andv that are listed insu andsv and represented as
fields. Thend is linked toe iff there exists an answer toQ that
mapsu to d andv to e. Guaranteeing that all single answer
mappings can be reconstructed from the CAA, these links are
used in the GUI to display structural dependencies between
image nodes (fields) of distinct variables. In this way, e.g., the
matching part of each retrieved document can be visualized.

For the following examples, the reader should keep in
mind that only those database nodes are added to the CAA
and represented as fields that participate in at least onefull

8 Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2

answer mapping. Hence the set of fields assigned to a variable
depends on the conditions imposed on other query variables.
In this sense, the CAAexactlyrepresents the document nodes
of the answer space.

The algorithm for computing the CAA (described in [15])
for a queryQ runs in timeO(|Q| · |D| · hD · log(|D|)) where
|Q| and|D| respectively denote the size of the query and the
database, andhD denotes the maximal depth of a path in a
document. If no ordering constraints are used, then the com-
plexity isO(|Q| · |D| · hD), which is optimal [15]. We devel-
oped a special index structure for textual XML documents,
the CADG [25]. Using CADGs, typically only a small por-
tion of the database has to be visited during query processing,
which contributes to the high overall efficiency of X2.

6 Interactive and Visual Result Exploration

This section deals with the graphic representation and han-
dling of Complete Answer Aggregates, illustrating the main
exploration capabilities of X2 in a real-world retrieval sce-
nario. The exploration techniques, while presented in a small-
scale example for didactic reasons, also apply to larger an-
swer sets. A systematic overview of all exploration features is
given in Section6.2. The last part addresses scalability issues
which arose during our experiments with very large test col-
lections. We show how integrated result ranking and thresh-
olding cope with unselective queries and large answer sets.

6.1 A Sample Exploration Session with X2

Suppose the user runs two queries against a digital library
of scientific papers (contents and metadata) conforming to
the DTD shown in Figure2. The first query is driven by the
following information need:

Query 0. “I would like to know in which papers Sally Sontag
cited her colleague Jim Jones.”

which is expressed by the query shown in Figure5. The user
would like to end up with a list of cross-references as a basis
for further literature research. The example is meant to show
how the user implicitly takes advantage of the higher preci-
sion and result specificity3 provided by structured document
retrieval (as opposed to flat-text search), e.g. for inspecting an
interesting document excerpt.

The CAA obtained for the query, also given in Figure5,
has the same tree-shaped macro structure as the query. Ini-
tially, all slots in the aggregate tree simply display the respec-
tive number of their fields (initial view). Curious about which
papers were selected, the user switches to thesummary view
on thepublication slot (see Figure6). In this view, the slot
expands in size to show the individual fields it contains, each
accompanied by a short descriptive label extracted from the

3 Retrieval precision is defined as the percentage of relevant documents
among those retrieved. The fewer irrelevant parts of documents a structured
query result contains, the more specific it is.

Fig. 5.Query0 and initial view on the corresponding CAA

corresponding document. As shown in the figure, the descrip-
tion here consists of the paper’s title. By contrast, the user
activates theexhaustive viewon the reference slot, which
provides more detailed information on its fields. As depicted
in Figure6, the authors and title of each cited paper are dis-
played, along with an optional URI and publication date. The
exhaustive view thus provides the user with a linked list of
all relevant references. The twoauthor slots, collecting the
document nodes where the authors Sontag and Jones appear
in the metadata, were only needed for selecting the right doc-
uments during query processing and can be hidden during
browsing, as indicated in Figure6.

In the above example, a flat retrieval result would con-
sist of a set of entire documents, each with much irrelevant
content besides the actual references. Moreover, since there
would be no means to specify that “Sally Sontag” must occur
as author of a paper and “Jim Jones” as author in a reference,
the user would need to filter out manually those documents
where Jones cited Sontag, or Jones and Sontag published to-
gether, or someone else cited both Sontag and Jones, etc.

A second example is meant to illustrate the various explo-
ration modes supported by CAAs, including clustered and
re-ordered views of slots, as well as activation, inheritance,
and inspection of fields and slots at different granularity lev-
els. It shows how answer sets can be scaled down during an-
swer exploration by (1) aggregation and (2) hiding answer
elements. These techniques prove especially valuable when
dealing with larger result sets (but see Section6.3 for a dis-
cussion of scalability issues). The information need in this
example is expressed by the query from Section4.2(see Fig-
ure4 on page7):

Query 1. “I would like to see interesting recent papers on
XML written by Sally Sontag.”

Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2 9

Fig. 6.List of references obtained from the CAA in Figure5

Fig. 7. Initial view on the CAA for Query1 (see Figure4)

As can be seen from the field counts in Figure7, the
matches for this query do not fit the rendering space available.
One way to structure this query result is to cluster and order
salient parts of the documents according to their textual con-
tent. For instance, enabling thecluster viewon theyear slot,
the user can browse through the XML-related publications
by Sally Sontag published in 2003, 2002 and so on (see Fig-
ure8). In a situation where the document collection in ques-
tion provides appropriate mark-up, categories like “database
systems”, “information retrieval” etc., assigned to each publi-
cation, could be used to cluster matching documents accord-
ing to the research field they belong to.

In a next step, the user aims to reduce the number of items
being displayed in the CAA. To this end, heactivatesfields
by a mouse click (activating all fields of a cluster can be done

Fig. 8. Clustering and activating fields in the CAA from Figure7. Fields
belonging to papers published in 2003 are highlighted red.

in one step by using the respectivemark all button). In our
example, the user activates all fields in the 2003 cluster of
theyear slot. Activated fields are highlighted red (e.g. in Fig-
ure 8). Activations can be passed through to other fields by
choosing one of severalinheritancemechanisms for the full
CAA. In our example the inheritance mechanism is simple
co-occurrence in the same document, i.e. all fields belonging
to the same document as one of the activated fields are now
activated, too. By pressing a dedicatedshow activated-only
button in the menu bar, only activated nodes are displayed in
the CAA, as can be seen in Figure9. Note that as a result, all
slots contain only the highlighted fields belonging to papers
published in 2003.

Faced with this reduced number of documents, the user
starts exploring the remaining fields in thepublication slot.
A small floating frame, similar to the quick info or tool tip in
common GUIs and triggered by a button in the menu bar, dis-
plays afield info for each slot entry being hovered, as shown
in Figure 9. The field info data is automatically extracted
from the documents. In this scenario, some metadata of the
publication in question is listed.

The article on XML indexing techniques, whose field info
is displayed in Figure9, arouses the user’s interest. He now
wishes to see the sections on XML in a restricted table of
contents, which is not part of the document schema (see the
DTD in Figure2 or alternatively the CADG in Figure3 on
page6). To this end, he abandons the previous activations
and activates only the respective field in thepublication

slot, along with all fields belonging to the desired document.
Again this is achieved by inheritance. Since we are still in the
show activated-onlymode, only parts of that particular publi-
cation are now displayed in the aggregate (see Figure10). The
user may now simply inspect the list of highlightedsection

10 Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2

Fig. 9. Field info for a particular paper in the CAA from Figure8. The ag-
gregate now only contains fields belonging to documents published in 2003.

Fig. 10.Table of contents obtained from the CAA in Figure9. The CAA has
been further restricted to display only one particular publication from 2003.
A document viewershows that paper with the search keywords highlighted.

fields in the summary view, which assembles all headings of
top-level sections in the order of their appearance in the paper
(see Figure10).

In the last step of this example, the user chooses to see
the paper about indexing XML in afull-text view. Triggered
by the field context menu, the entire document content is dis-
played in a separatedocument viewerwindow, as illustrated
in Figure10. The formatted document content is automati-
cally generated from the XML source using a stylesheet for
transformation. In order to establish the relation to the user’s
information need, all occurrences of the query keywords are
highlighted in the text. After inspecting the full document,

the user may either terminate the retrieval session or continue
browsing the CAA, or else enter a new retrieval step by refor-
mulating the query.

6.2 Exploration Techniques in X2

The sample exploration session above has demonstrated many
features of X2. We will now briefly review these features in a
more systematic way and explain others that have not been
mentioned so far. Note that while not all of the following
functionality makes sense for the sample document collec-
tion used in this paper, it proved to be useful for most of the
collections X2 has been tested with.

Views. In general, a view defines how a field corresponding
to an XML node is displayed in the CAA. Views can be se-
lected individually for slots and fields. Apart from theinital
view, thesummary view, and theexhaustive viewalready de-
scribed, the current implementation of X2 provides atechni-
cal viewdisplaying the internal CAA structure in more detail,
a minimal viewfor hiding a slot and its descendants, and a
cluster view(see below). Novel views can easily be plugged
into the system in order to adapt X2 to special requirements of
new document collections. While this is currently done pro-
grammatically (without modifying the document collection),
we plan to define views using XSLT stylesheets in the future.

Node activation and inheritance.The context menu associ-
ated with fields in a slot allows to activate arbitrary many doc-
uments nodes individually, which are then highlighted red.
In order to display hierarchic relations and order relations
between nodes, there are a number ofinheritancemecha-
nisms that propagate activations through the CAA. An in-
heritance mechanism is always chosen for the entire CAA.
Nodes having inherited an activation which are not individ-
ually activated by the user do not propagate activation them-
selves. They are displayed in a lighter red than individually
activated nodes. The buttonshow activated-onlyin the menu
bar of the CAA window serves to hide all document nodes
not being activated (whether inherited or individually). Apart
from inheritance based on document co-occurrence, which
has already been used in the example, there is a variety of
inheritance mechanism based on hierarchic node relation like
ancestor/descendant, and on order relations.

Node ordering. Each slot’s context menu provides a variety
of ordering mechanisms for fields in that slot, based on their
textual content, attribute values or the number of children
they have in the CAA. Alternatively, fields may be sorted ac-
cording to their relevance score (see Section6.3). They are
displayed in ascending or descending order according to ei-
ther numerical or lexicographical comparison.

Clusters. Fields can be clustered according to their textual
content, attribute values, or the number of their children. In
the current implementation, all fields contained in a cluster
are still visible, whereas we plan in the future to treat field

Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2 11

Fig. 11.Fields sorted by decreasing relevance w.r.t. a query against the INEX
2004 collection [13]. Only the 50 most relevant fields in this slot are dis-
played, corresponding to nearly 7% of the answer set (top-k thresholding).

clusters like individual fields with respect to display and most
interaction functionality.

Windows: favourites, field info, document viewer.There are
three extra windows supporting the user in browsing and nav-
igation. Thefavourites windowallows to store selected nodes
from a CAA temporarily. This is helpful when the user needs
to keep track of visited nodes in a large answer space. The
field info and thedocument viewerwindows have already
been introduced in the examples above.

6.3 Result ranking and scalability issues

While the aforementioned visualization techniques help to or-
ganize the query result and reduce the number of fields to
be displayed simultaneously, they are not entirely satisfactory
when applied to large answer sets. As a matter of fact, visual-
izing a slot containing some hundred or even more fields in a
compact and useful manner requires refined techniques which
allow the user to (1) reduce the number of fields displayed in
the slot, and (2) sort the remaining fields by decreasing rele-
vance w.r.t. the query. Figure11 shows a CAA computed for
a rather unselective query against the 500-MB INEX 2004
collection [13] which gives rise to the scalability issues just
mentioned. The user searches sections talking about the vec-
tor space model as well as Information Retrieval in general.
As indicated in the upper left corner of thesec slot in Fig-
ure 11, the system retrieves 736 sections, each with a rele-
vance score computed according to one of the implemented
ranking models, currently eitherXPRES[27] or s-term[22].
(For a comparison of these and other models, see [26].)

The exhaustive view on thesec slot visualizes the rele-
vance distribution over all fields in a small histogram. Each
vertical bar in the histogram represents one or more fields
(depending on the total number of fields in the slot) whose
greatest relevance score determines the height of the bar. The
red vertical line in Figure11symbolizes the number of fields

currently displayed in this slot, which we refer to as therank
threshold. Those bars which are left of the threshold are high-
lighted, such that the user can tell from a quick glance at the
histogram which portion of the answer set is currently visi-
ble. The four numerical displays next to the histogram serve
both to visualize the exact threshold value and to accept a
new threshold, which immediately affects the histogram and
the displayed fields. The lower two displays, labelled “max.
rank”, hold the rank threshold both as an absolute value and
relatively to the total number of fields in this slot. The up-
per two displays, labelled “min. relevance”, represent therel-
evance score threshold, i.e. the minimal relevance score of
any field displayed in the slot, again both as an absolute value
and as the percentage of the greatest relevance score of any
field in the answer set, respectively. The relevance threshold
is visualized as a horizontal line in the histogram, as shown
in Figure12, and triggers highlighting of those bars reaching
above the threshold.

In order to reduce the num-

Fig. 12. Threshold selection by
relevance score

ber of fields to be displayed, the
user sets either the rank thresh-
old or the relevance score thresh-
old by typing an appropriate ab-
solute or relative value into the
corresponding text field. When
the upper text boxes are updated with a new relevance score
threshold, the corresponding rank threshold is displayed au-
tomatically in the lower boxes, and vice versa. Alternatively,
the user may drag the red line in the histogram to a new posi-
tion. To this end, mouse-sensitive threshold selectors appear
next to the histogram, a vertical one for setting the relevance
score threshold and a horizontal one for the rank threshold.
Histogram and text fields are synchronized and update each
other when receiving user input. No matter which way the
thresholds are modified, the slot is updated immediately to
show the appropriate number of fields in descending order of
relevance.

In our sample result from the INEX collection, the user
decides first to explore the 50 most relevant sections about
the vector space model and Information Retrieval (Figure11),
and then expands the view to see all section reaching at least
10% of the maximal relevance score (Figure12). Using these
two variants oftop-k queries, X2 allows for an intuitive and
dynamic adaption of the result size which is most useful when
searching particular information in large answer sets. By con-
trast, the presented methods like ranking, reordering and clus-
tering offer only limited support for data mining purposes on
XML documents. Here suitable interaction and visualization
techniques are yet to be developed.

7 Conclusion

7.1 Related work

Before surveying related approaches to visual retrieval and
exploration, a brief comparison of common form- or field-

12 Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2

based query interfaces to native XML systems like X2 is in
order. In the more database-oriented query facilities for struc-
tured documents which are currently most common especially
in a web context, retrieval is restricted to occurrences of search
terms in a static set of predefined fields. While field-based
search interfaces are easy to use, they cannot capture the full
hierarchical structure of XML documents which they there-
fore hide rather than exploit in the way X2 does: (1) to in-
crease retrieval precision and (2) to present the search results
in a structured, explorable form that relates them to the exact
part of the query they matched. Moreover, field search must
be tailored specifically to the schema of a given document
collection (like e.g. the Entrez search interface for MEDLINE
[14], or the various systems related to computational biology
surveyed in [3]) and therefore needs manual adaption to acco-
modate new collections or changes to the schema of a collec-
tion. We argue that the hierarchic nature of XML documents
calls for a generic treatment in query systems in order to ex-
pose its powerful features in retrieval and maintenance.

An early predecessor of graphical query languages in the
field of semistructured data isGOOD [9], a retrieval sys-
tem for graph databases. In the retrieval model employed by
GOOD, a query result is a subgraph of the database graph
which matches the query. The structure of the query, how-
ever, is lost in the answer, and GOOD does not offer explo-
ration techniques for the answer subgraph.

Most query languages for XML exploit visualization tech-
niques for query construction and representation only [17,7,
23]. Closest in spirit to our work are theDataGuide(when
used for schema browsing as in [10], or for query genera-
tion as described in [11]) and XML-GL [5]. The latter is a
full-fledged XML query language for retrieval and manipu-
lation of XML documents that uses visual syntax elements
only. XML-GL does not support interactive query formula-
tion and result exploration. The DataGuide as a means for
schema browsing is introduced in [10]. A simple and intuitive
formalism in [11] sketches how to use the DataGuide to con-
struct a path query incrementally and explore the document
collection at the same time. The DataGuide browser relies
on a graphical tree representation with expandable nodes like
the one presented in Section4. In contrast to our work, this
model cannot handle queries that are more complex than sim-
ple paths or contain descendant (i.e., soft) edges. Besides, the
CADG [25] underlying our SchemaBrowser exploits its addi-
tional keyword information to provide a content-specific view
on the database schema. Neither [11] nor [25] covers tech-
niques for exploring the query result. [15] introduces CAAs
in this context, but does not investigate schema browsing or
query creation.BBQ[17] provides interactive and visual query
generation. Users select elements from the DTD underlying
a given document collection and arrange these elements into
queries. Compared to the query generation approach presented
here, this has the disadvantage that DTDs, being normative
schemata (see Section4.1), generally allow for content mod-
els that do not occur in the current document collection. In
addition, queries generated with BBQ can only be post-edited
in a textual form.

Obviously, ranking mechanisms are another means to sim-
plify the inspection of large answer sets. Dedicated ranking
schemes for structured document retrieval currently attract
much attention in IR research [21,22,8,27,24,26]. X2 is a
system that is to a large extent independent of the ranking
mechanism used, hence the research papers mentioned above
are complementary to the issues discussed in the paper at
hand.

Interactive and iterative techniques have a strong tradi-
tion in IR. For instance, various methods for iterative query
refinement and relevance feedback stem from IR research.
However, since “mainstream” IR focusses on flat textual doc-
uments, visual exploration techniques are less common. Sys-
tems likeScatter/Gather[19], being based on visualizations
of document distance metrics, are completely complementary
in their visual metaphors, so that they can hardly be compared
to the approach presented here.

Related work from the field of database systems has been
collected and carefully analyzed in a survey by Catarci et al.
[4]. Visual retrieval systems are categorized according to (1)
the graphic representations that are used for data and queries
on the one hand and for query results on the other hand, (2)
the kind of interaction strategies that are offered to help users
in understanding the database content and in formulating ap-
propriate queries, and (3) syntax, semantics and expressivity
of the query languages they support.

As to the kernel languages and functionalities, there are
also similarities between X2 and wrapper generation tools
such asLixto [1]. Lixto comes with a sophisticated GUI to
allow users to interactively construct wrappers that locate and
collect valuable pieces of information in structured documents.

7.2 Discussion and Future Work

The contributions of X2 can be summarized as follows:

– full-fledged and seamlessly integratedvisualaccess to the
XML documents, schemata, queries, and retrieval results

– novel exploration, aggregation and rudimentary data min-
ing techniques for visualizing the structure of retrieval re-
sults and the entire document collection

– use of CAAs for relating structured search results to the
structure of the query and documents in an interactive ex-
ploration process

– integration of database and IR techniques with special
consideration of the hierarchic nature of the underlying
XML data, to access the more database-like parts of a
document

– improved precision w.r.t. flat-text retrieval

We tested the applied techniques with a wide spectrum
of applications, among others: (1) linguistic data containing
XML representations of syntax trees, (2) touristic data con-
taining descriptions of cities with hotels, sightseeing sites,
restaurants, traffic information etc., and (3) the INEX 2004
collection of the IEEE Computer Society’s journal publica-
tions from 1995 to 2002 [13]. We observed that although
our query and answer representations are flexible and generic

Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2 13

enough to cope with such heterogeneous domains, some ap-
plications needed special query constructs not foreseen in our
initial design. Among these constructs added later were e.g.
a variety of mechanisms for querying order relations which
proved helpful in linguistic research. Similarly, the way el-
ement content is displayed in a CAA must be tailored to a
given document collection sometimes. However, a generic
solution which does not alter the collection is indispensable
for obvious reasons. We therefore developed a simple and
generic framework for specifying how element descriptions
are generated, which is yet to be improved (see Section6.2).

The development of X2 is still work in progress. Accom-
panying the system development, prototypes have been pre-
sented and used in Information Retrieval courses at the Uni-
versity of Munich in 2002 and 2003, and positive and nega-
tive aspects have been discussed. The main features approved
by the students include (1) the way search results are ex-
plored interactively and systematically, (2) the fact that users
can choose between different views on individual parts of the
search results, and new domain-specific views can be inte-
grated into the system, and (3) the flexible and expressive
query formalism which can refer to all parts of the XML
structure, unlike retrieval systems allowing access to a pre-
defined set of fields only. Major occasions for criticism were
the following:

1. It is difficult to formulate queries if the XML structure is
unknown or only partially known to users.

2. The visualization should be based more upon standard-
ized techniques and widgets, e.g. for displaying trees.

3. When faced with a large search result, users easily get
lost, even if techniques to scale down the number of dis-
played elements (see Secions6.1and6.2) are used.

4. The system’s performance degrades when exploring (not
computing) large answer sets, causing exploration of big
CAAs to become sometimes tedious.

The first problem was solved to a large extent with the
integration of the SchemaBrowser into X2 (see Section4).
We plan to address the second issue by using well-known
visual metaphors in the near future. We would also like to
investigate whether a form-based web query interface could
be adapted to offer at least part of the flexibility of structured
document retrieval with X2. In response to the third objection,
we equipped the system with ranking mechanisms recently
proposed for XML documents (see Section6.3). Combined
with thresholding facilities for hiding elements whose rele-
vance score is too low, they provide the most intuitive way
for a user to organize the answer space. Finally, we are still
struggling to decrease the response time of the GUI in the
case of big CAAs, which is partly due to the Java GUI li-
braries we use.

Apart from the points mentioned above, we currently con-
centrate on the following major goal:

Fully interleaving query formulation and result exploration.
In the current version of X2, users first formulate their queries,
supported by the SchemaBrowser, and afterwards browse the

query result. We plan to depart from this strictly sequential
model, visualizing query and result in the form of a single
query/result object that is extended, manipulated and explored
at the same time. The development of such a model is facili-
tated by the fact that CAAs inherit their macro-structure from
the query.

Acknowledgements

We would like to thank Marcus Schilling and all other stu-
dents who helped with their programming skills and motiva-
tion to make X2 a working system. We also thank the anony-
mous referees for their detailed and helpful comments on a
preliminary version of this paper.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Infor-
mation Extraction with Lixto. InThe VLDB Journal, pages
119–128, 2001.

2. T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Ex-
tensible Markup Language (XML) 1.0 (Second Edition). W3C
Recommendation, 2000.

3. F. Bry and P. Kr̈oger. A Computational Biology Database Di-
gest: Data, Data Analysis, and Data Management.Distributed
and Parallel Databases, 13(1):7–42, 2002.

4. T. Catarci, G. Santucci, and J. Cardiff. Graphical Interaction
with Heterogeneous Databases.The VLDB Journal, 6(2):97–
120, May 1997.

5. S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and
L. Tanca. XML-GL: a graphical language for querying and
restructuring XML documents.Computer Networks, 31(11-
16):1171–1187, May 1999.

6. J. Clark and S. DeRose. XML Path Language (XPath), version
1.0. W3C Recommendation, November 1999.

7. S. Cohen, W. Nutt, and A. Serebrenik. EquiX - Easy Querying
in XML Databases. InWebDB’99, Proc. Int. Workshop on the
Web and Databases, 1999.

8. N. Fuhr and K. Großjohann. XIRQL: A Query Language for
IR in XML Documents. InResearch and Development in IR,
pages 172–180, 2001.

9. M. Gemis, J. Paredaens, and I. Thyssens. A visual database
management interface based on GOOD. InProc. Int. Workshop
on Interfaces to Database Systems, 1993.

10. R. Goldman and J. Widom. DataGuides: Enabling Query
Formulation and Optimization in Semistructured DBs. InProc.
23rd Int. Conf. on Very Large DB, 1997.

11. R. Goldman and J. Widom. Interactive Query and Search in
Semistructured Databases. InInternational Workshop on the
Web and Databases, pages 52–62, 1998.

12. G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries
over trees. InPODS’04 Symposium on Principles of Database
Systems, 2004.

13. Initiative for the Evaluation of XML
Retrieval (INEX). Available at
inex.is.informatik.uni-duisburg.de:2004 ,
2004. Organised by the DELOS Network of Excellence for
Digital Libraries.

14 Meuss, Schulz, Weigel, Leonardi, Bry: Visual Exploration and Retrieval of XML Document Collections with X2

14. MEDLINE – Querying with PubMed. Available at
www.ncbi.nlm.nih.gov/PubMed . A service offered by
the U.S. National Library of Medicine.

15. H. Meuss and K. U. Schulz. Complete Answer Aggregates for
Tree-like Databases: A Novel Approach to Combine Query-
ing and Navigation.ACM Transact. on Information Systems,
19(2):161–215, 2001.

16. S. Mizzaro. How Many Relevances in Information Retrieval?
Interacting with Computers, 10(3):303–320, 1998.

17. K. D. Munroe and Y. Papakonstantinou. BBQ: A Visual Inter-
face for Browsing and Querying of XML. In5th IFIP Working
Conf. on Visual Database Systems, pages 277–296, 2000.

18. D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking
forward. InProc. of the EDBT Workshop on XML Data Man-
agement (XMLDM), volume 2490, pages 109–127. Springer,
2002.

19. P. Pirolli, P. Schank, M. A. Hearst, and C. Diehl. Scatter/Gather
Browsing Communicates the Topic Structure of a Very Large
Text Collection. InACM SIGCHI Conference on Human Fac-
tors in Computing Systems (CHI).

20. PubMed Central. Available at
www.pubmedcentral.nih.gov . A service offered
by the U.S. National Library of Medicine.

21. T. Schlieder. Similarity Search in XML Data using Cost-Based
Query Transformations. InProc. 4th Intern. Workshop on the
Web and Databases, 2001.

22. T. Schlieder and H. Meuss. Querying and Ranking XML Doc-
uments.JASIS Spec. Top. XML/IR 53(6):489-503, 2002.

23. A. Sengupta and A. Dillon. Query by templates: A general-
ized approach for visual query formulation for text dominated
databases. InConf. on Advanced Digital Libraries (ADL’97),
1997.

24. A. Theobald and G. Weikum. The index-based XXL search
engine for querying XML data with relevance ranking. InProc.
8th Int. Conf. on Extending DB Technology, pages 477–495,
2002.

25. F. Weigel, H. Meuss, F. Bry, and K. U. Schulz. Content-Aware
DataGuides: Interleaving IR and DB Indexing Techniques for
Efficient Retrieval of Textual XML Data. InProc. 26th Europ.
Conf. on IR, 2004.

26. F. Weigel, H. Meuss, K. U. Schulz, and F. Bry. Content and
Structure in Indexing and Ranking XML. InProc. 7th Intern.
Workshop on the Web and Databases, 2004.

27. J. E. Wolff, H. Fl̈orke, and A. B. Cremers. Searching and brows-
ing collections of structural information. InProc. IEEE Forum
on Research and Technology Advances in Dig. Lib., pages 141–
150, 2000.

	1 Introduction
	2 System overview
	3 Preliminaries
	4 Visual schema exploration and query generation
	5 Complete Answer Aggregates
	6 Interactive and Visual Result Exploration
	7 Conclusion

