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Abstract Digital libraries and information management
systems are increasingly being developed according to
component models with well-defined APIs and often Web-
accessible interfaces. In parallel with metadata access
and harvesting, Web 2.0 mashups have demonstrated
the flexibility of developing systems as independent dis-
tributed components. It can be argued that such dis-
tributed components also can be an enabler for scalabil-
ity of service provision in medium to large systems. To
test this premise, this article discusses how an existing
component framework was modified to include support
for scalability. A set of lightweight services and exten-
sions were created to migrate and replicate services as
the load changes. Experiments with the prototype sys-
tem confirm that this system can in fact be quite effec-
tive as an enabler of transparent and efficient scalability,
without the need to resort to complex middleware or sub-
stantial system re-engineering. Finally, specific problems
areas have been identified as future avenues for explo-
ration at the crucial intersection of digital libraries and
high performance computing.
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1 Introduction

Digital libraries often have to deal with scalability con-
cerns as either information collections grow or a greater
need for services is expressed by users. Many researchers
have already identified the growing size of digital col-
lections as a major problem that needs to be addressed
[2,10,13] and a growing size of data invariably means
more processing, both internally and for end-user ser-
vices. Such data collections may experience quality of
service problems as a result of both increased user re-
quests and larger data collections. Content delivery net-
works (CDNs) such as Akamai [28], for example, have
solved this problem by making use of distributed net-
works of servers to deliver content to consumers. The
drawback of such CDNs is that they merely provide a
mechanism to deliver content and do not provide com-
putational support for purposes such as indexing and
querying, which are sufficiently expensive during peak
periods to force a system to shutdown. The infamous
public Web launch of Encyclopaedia Britannica, which
was completely swamped by user requests and forced to
shut down operations [9], is a reminder that developers
of digital collections need to build scalability into their
systems to seamlessly handle increases in demand for
services.

More recently, analyses of systems such as DSpace
and EPrints have brought to the fore some of their inade-
quacies - notably, their poor support for large collections
and the potential for long processing times [6]. These is-
sues are actively being addressed by many communities,
with much promise demonstrated by the Fedora [22] and
Greenstone [7] communities. In the former case, there
has been an emphasis on building stable core compo-
nents while the latter project has concentrated more re-
cently on Web interfaces to create separable system com-
ponents. These mutually-compatible approaches suggest
that maybe discrete components are part of the solution
to achieve a higher level of scalability.

A number of component and service frameworks have
been developed in the digital library community, includ-
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ing Dienst [14], OpenDLib [5] and ODL [23]. These frame-
works and related work in defining protocols for inter-
component interaction all suggest that DL systems should
be built as collections of cooperating components rather
than as monolithic systems, in keeping with current best
practices in modern software engineering. It may be pos-
sible to then extend this notion and use components that
operate in parallel on multiple machines as the basic
building blocks of a high performance digital library sys-
tem.

It is proposed in this article that such parallel pro-
cessing in a component-based digital library system can
be effective in making the systems transparently scalable
and extensible as more resources are required, and with-
out much overhead. Two fundamental scalability prob-
lems are addressed by giving components the ability to
migrate and replicate. Migration may be defined as the
movement of a service from one machine to another while
replication is when a copy of the service is created on
another machine. Migration may be beneficial when a
machine is overloaded due to multiple co-existing ser-
vices. Replication may be beneficial when a machine is
overloaded due to a single very popular service. Figure 1
illustrates the difference in these approaches.

Migration and replication on-demand are necessary
when the digital library grows over time. This is a cru-
cial issue when digital library systems are initially de-
veloped and resourced for small collections, as is typical
for many fledgling preservation projects. It must be pos-
sible to then add processing power without requiring a
re-engineering of the system or a switch to a different
software platform.

The rest of this article begins with an overview of
recent and relevant work in digital library architectures
and scalable systems. It then presents the architectural
changes needed to convert a simple static component
model into a dynamic scalable framework. Initial exper-
iments with a reference implementation of this system
are discussed. Finally, the outcomes are analysed and
the implications for future systems discussed.

2 Background

This section aims to give some background into exist-
ing digital library systems and component frameworks,
high performance computing models and scalable service
models, in order to provide a foundation and context for
the work that was done.

2.1 Digital Library Components and Systems

Numerous efforts have been made to create component
frameworks. While there is little agreement on a compo-
nent standard for digital library systems, some systems
have emerged as a platform for experimentation, mostly

based on a common understanding and acceptance of
Web and metadata harvesting standards.

2.1.1 Open Digital Library

The Open Digital Library (ODL) project is character-
ized as an attempt to infuse interoperability into all as-
pects of the digital library [23], and make the provision
of services as simple as the provision of data, effectively
facilitating the development, management and interop-
erability of digital libraries. This is achieved by mak-
ing use of a component-based approach, where compo-
nents communicate by using standard network protocols
wherever possible and custom protocols where necessary,
while attempting to deviate as little as possible from ex-
isting best practices. This approach allows different com-
ponents to be run on different machines, yet still function
as one system. This powerful, modular and distributed
design lends itself well to the field of cluster and grid
computing, which is discussed in the next section. These
features of the ODL framework make it a suitable can-
didate for this research.

2.1.2 OpenDLib

OpenDLib [5], like ODL, is a component-based digital
library framework. These components - or services - are
linked to each other using the OpenDLib protocol (OLP),
an open protocol in which URLs are embedded in HTTP
requests.

Like most current systems, OpenDLib promotes in-
teroperability between itself and other digital library sys-
tems - it allows data to be harvested using the OAI-PMH
[15] and it can ingest data from other systems using the
same mechanism.

Another feature of OpenDLib that makes it more
scalable than other digital library implementations is
that it has support for load balancing among components
or services. Where components are replicated to multiple
servers, a service known as the Manager Service calcu-
lates the optimal component instance to which a request
should be routed. The decisions for this routing are based
on workload, availability and bandwidth metrics that the
Manager Service maintains. Each OpenDLib component
keeps data that the Manager Service collects in order
to use for this purpose. Although OpenDLib promotes
scalability by making use of load-balancing, it has no
inherent notion of component migration or transparent
increasing of resources available to a DL system.

2.1.8 Dienst and Fedora

Dienst is a component- or service-based distributed dig-
ital library where components communicate by making
use of an open protocol, making it possible to combine
services in innovative ways [14].
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Fig. 1 Migration and replication of components

The distributed and component-based nature of the
Dienst architecture ensures that large collections may be
efficiently processed, for example when large document
collections need to be indexed.

The service model of digital library systems has led
more recently to the Fedora project [22], which has de-
veloped a well-defined interface to interact with a dig-
ital repository. The reference implementation of Fedora
demonstrates the flexibility available to system designers
and claims to be reasonably scalable (tested to 10 million
objects). However, Fedora does not have a built-in mech-
anism to scale further as collections or service requests
grow.

2.1.4 aDORe

The aDORe digital object repository developed by the
Los Alamos National Laboratory (LANL) was designed
to host a vast number of digital objects. Following a
standards-based, modular approach, this system is made
up of a number of components where interaction between
these components is protocol-based [30].

Unlike other digital library systems that make use
of externally hosted content, the aDORe system hosts
the entire collection locally, thus removing the need to
route users to external sites in order to acquire content,
thereby improving control over digital assets and ensur-
ing a high level of object availablity. In terms of scal-
ablity, the aDORe system has data replication support
in which it replicates digital objects ingested using the
standard OAI-PMH protocol into Autonomous Repos-
itories. A module known as the Identifier Locator can
then be used to locate a particular object, upon request,
from one of these repositories.

The modular, scalable approach taken in the design
of the aDORe system should ensure that larger collec-
tions are able to be supported in the future. However, the
current implementation cannot be run in a distributed
Web environment, although this was mentioned as a pos-
sible future addition.

2.1.5 Greenstone

Greenstone is a system produced by the University of
Waikato with the aim of making digital library software
easy to deploy and use by a wide variety of organisations,
including those in developing countries [7].

The Greenstone software has undergone many changes
over the past years, probably the most noticeable of
which is, with the release of Greenstone 3, the transition
to a component-based approach. This component-based
approach has provided Greenstone with the ability to op-
erate as a distributed system, with well-defined SOAP
interfaces to communicate among parts of the system.
Now it is possible to separate the interface from the un-
derlying service layer, and create systems that are both
more flexible and remotely deployed.

While it is possible to connect together multiple Green-
stone systems, it is not possible to duplicate popular
parts of a single Greenstone system.

2.2 High Performance Computing

Many digital libraries contain very large collections of
digital objects. Providing services over such large collec-
tions can be made scalable - and sometimes even possible
- by leveraging the power of high performance comput-
ers, often referred to as supercomputers.

High performance computing can be accomplished
using a number of different approaches - of these cluster
and grid computing are very popular because they can
be built using commodity computers.

This section aims to give a short overview of each
of these classes of high performance computing, as they
relate to digital library systems.

2.2.1 Cluster computing

A cluster computer is a group of machines that are lo-
cated in a single geographical location (although this re-
quirement is not strongly maintained), have high-speed
network interconnections, have low-overhead and high
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availability, are dedicated resources and are built in such
a way as to facilitate expansion.

Clusters are used to solve a variety of problems, how-
ever, the most common use is when large problems are
broken down into smaller parts that can then be divided
amongst the nodes of the cluster. The way in which these
problem divisions are made is somewhat of an art, how-
ever there are many tools available to assist application
programmers with this task. An application built using
these tools is known as a cluster-aware application as it
is specifically designed to work on this parallel platform.
Tools such as MPI [17] and PVM [27], which enable mes-
sage passing for communication among nodes, allow an
application programmer to make use of parallel resources
by making high-level function calls. This software is in-
stalled on all nodes in a cluster in order for the compo-
nents to communicate with one another while solving a
problem collaboratively.

On the other hand, clusters are just as widely used
for parameter studies, where the same application is used
to perform computation over different sets of data. This
type of application, called a cluster-unaware application,
derives its parallelism from the data and not the appli-
cation. No tools such as MPI or PVM are necessarily
required for such types of cluster applications.

In both cases, a cluster management suite (such as
OSCAR [18] or ROCKS [20]) or a scheduling system
(such as CONDOR [29] or PBS [11]) is required in order
to schedule jobs and monitor their progress on cluster
nodes.

Clusters provide an ideal environment for scalability
of digital library systems because the resources are dedi-
cated and the high-speed networks support movement of
data and computation as required. Cluster-unaware ap-
plications can provide service-level scalability while fine-
grained functionality, such as is required by distributed
indexing, can be more cluster-aware.

2.2.2 Grids

A grid is a collection of computers on a wide area net-
work that are made to cooperatively work towards solv-
ing problems. Machines on a grid are generally owned by
multiple parties, are not dedicated as in the case of clus-
ters and also do not necessarily belong to a cluster. Fur-
thermore, grid resources usually include machines that
have heterogeneous architectures and operating systems
as well as hardware specifications that range from ordi-
nary desktop machines to servers.

Grids are an attractive option to many organisations
because they are a cheap alternative to potentially ex-

pensive clusters - existing equipment and equipment owned

by external parties can be utilized.

Grids have many drawbacks, including an inherent
instability as components are not necessarily controlled
by a central authority - owners of grid resources may opt
to remove their machines from the grid at any time and

hence any computation in progress may be affected. The
heterogeneous architectures and operating systems also
complicate the design of grid middleware and application
software. Further, the slow communications links restrict
the range of applications suited to grids.

These disadvantages notwithstanding, the potential
computational power that can be attained with grids can
far exceed the capacity of even the largest cluster. This
is evident in projects such as SETI@Home [1] and the
World Community Grid [12], where such studies would
be almost impossible to perform with any other high
performance architecture.

The EU-funded DILIGENT project is currently look-
ing into how to combine the architectures of digital li-
brary systems and grids to provide digital library design-
ers with a flexible and scalable framework [4]. Based on
initial extensions to OpenDLib and the European grid
and Globus toolkit [8], DILIGENT is one of the few
attempts to create scalable systems based on a strong
component framework foundation.

The study reported on in this article is similar to
DILIGENT, but it diverges by looking into the feasibility
of a lightweight framework rather than the often complex
APIs provided by existing grid toolkits.

2.2.8 Summary

High performance computing systems such as clusters
and grids can provide a solid grounding for solving dig-
ital library scalabilty problems. In this area, digital li-
braries would be more concerned with the distributed
storage capabilities that clusters and grids provide as
compared to their computational benefits. However, dis-
tributed querying and indexing systems, which by their
nature are computationally intensive problems, can ben-
efit greatly from high performance computing installa-
tions.

3 System Design

In order to validate the premise that a coarse-granularity
component-based system can provide scalability as a con-
sequence of its distributed nature, a prototype system
was developed as an extension to an existing component
framework.

The system was designed to require a minimal num-
ber of changes to the core framework. The ODL frame-
work and components were adopted as being typical com-
ponent technology - naturally the ideas are equally ap-
propriate to other frameworks. Static DL systems were
then constructed using instances of these components
and these then were modified to introduce additional
functionality needed to support scalability of services.
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3.1 The ODL Framework Table 1 Parts of Logical Naming Scheme
Description Purpose Example
Before discussing the scalability extensions, it is essential P P P
to present some fundamental ideas of the ODL frame- ~ user name / in- to support multiple james
work stance owner overlapping systems
’ o ) ) sharing one cluster
An ODL digital library system is made up of a set component name  to bind instances to ODL_search

of independent software tools that communicate using
standard or custom-developed Web-based protocols [26].
In the discussion that follows, a component refers to the
installed files of the software tool. An instance is created
when the software tool has been configured to provide
services, typically via a Web interface that is its ser-
vice endpoint. In object-oriented terminology, the com-
ponents are classes and the instances are objects. Most
ODL components may have multiple instances - for ex-
ample, there can be multiple search engines using one
set of shared libraries.

ODL instances communicate among themselves us-
ing protocols such as the OAI-PMH [15], which is used
by a search engine to obtain data from an archive. This
is a trivial but popular use case. Other components have
been developed to provide browse services, recommen-
dations, peer review, etc.

In the typical system, a user experience layer (or
interface) communicates with back-end instances using
RESTful ODL protocols, with requests encoded as HTTP
GET operations. The back-end instances may then com-
municate with other instances in the process of fulfilling
the request. The XML-encoded response is finally sent
back to the user experience layer, where it is parsed and
acted upon.

ODL components have been demonstrated to be at
an appropriate granularity to support a wide range of
systems and do so with a reasonable level of efficiency
[24].

3.2 Design Overview

Figure 2 illustrates the high-level architecture of part of
a component-based DL system, with subsystems needed
for scalability services included.

At its core, this DL system is made up of two in-
stances - a search engine and an archive - that commu-
nicate with each other in order to provide services to
end-users. For simplicity, the diagram does not depict
the user experience layer (or interface), or other parts of
the larger DL system.

There are two scalability-related subsystems: the ser-
vice resolution subsystem, that is used to map logical to
physical URLs for services; and the load balancing sub-
system, that is used to redistribute the instances to make
better use of computational resources.

Each of these is discussed in the following sections.

their software imple-
mentation

to uniquely identify 1.1
instances with dif-
ferent machine inter-
faces

to select an instance
from a pool associ-
ated with a compo-
nent

version number

instance name ndltd

3.3 Service Abstraction

The first step in achieving scalability is to separate the
instances from the physical machines they reside on, thus
making it possible to relocate instances. Each service
instance is therefore given an abstract or logical ser-
vice endpoint name, comprising: user name, component
name, version number and instance name, as described
in Table 1.

Thus, a typical logical name for an instance could be:

james/0DL_search/1.1/ndltd

This logical service endpoint must then be mapped to
a physical service endpoint or URL using an appropriate
resolution service. This is analogous to the name reso-
lution provided by the DNS system for machine names
mapped to IP addresses, or DOIs mapped to URLs for
digital objects.

3.4 Service Resolution Subsystem

Service resolution was modelled on the DNS system,
with resolution of logical service names to physical ser-
vice URLs taking place at a resolver in each node, but
with a lightweight global registry maintaining informa-
tion about all mappings.

In Figure 2, when the instance named search on Server A

wishes to connect to the instance named archive on ServerB,

it first connects to the resolver on ServerA (1) to request
resolution of the logical service endpoint. If the phys-
ical service is local to the machine, the resolver sends
back the details of the physical service endpoint (4). In
the figure, however, the physical service is on a remote
machine, so the resolver contacts the registry (2). The
registry then looks up the physical service endpoint and
sends it back to the resolver (3) on ServerA, which in
turn sends it back to the search instance (4). The search
instance can now connect to the archive instance (5).
Each resolver maintains a list of instances and asso-
ciated mappings of logical to physical names on its local
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Fig. 2 Architecture of service resolution and load balancing

machine and communicates changes to the registry. The
registry maintains a global state mapping of logical to
physical services endpoints.

While only a single central registry was used in the
prototype, replicating this using techniques analogous to
DNS and similar systems should pose no significant prob-
lems.

3.5 Load Balancing Subsystem

In sections 3.4 and 3.5, discussions on how to separate
component instances from the physical machines on which
they reside and then how the physical location of a ser-
vice endpoint is abstracted away have been given. With
these mechanisms in place, components may be migrated
or replicated in order to balance the workload in a cluster
of machines. This load balancing phase leads to increased
scalability as component instances can be shifted around
in order to minimise load on single machines. This sec-
tion will give an overview of how a load balancing scheme
was implemented in the experimental system.

3.5.1 Architecture

In order to determine whether or not a machine is over-
loaded and hence needs to be load balanced, each service
instance maintains a counter of the time taken to process
requests. A local load monitor on each machine, see Fig-
ure 3, then tracks the relative use of different instances.
The local load monitor also keeps track of the overall sys-
tem load on the machine, including the load caused by
processes other than ODL instances, acknowledging that
clusters are often multi-purpose systems rarely devoted
to a single application.

In addition to a local load monitor on each machine,
a central load monitor polls each local load monitor at
regular intervals (1) in order to gather load information

Overloaded
Underloaded Central
Instances | Local Load Machine Address Registry
Server 1| Monitor
‘l 3 7/9 6
LR
8 Central Load Monitor
Find 5|ves
Underloaded loaded?
Instances | Local Load machine Overloaded?
Server 2 Monitor
MNo
z 2 Yes | 4
%‘: No
E 1 Gather System 30 sec
Information Time Limit
Passed?
Underloaded 2ese
Instances | Local Load
Server 3 Monitor

0

Fig. 3 Load Balancing Subsytem Process Flow

(2). Based on the average load over all machines, the cen-
tral load monitor determines if any machine has a sig-
nificantly higher than expected load (4). A significantly
higher load is nominally defined as more than two stan-
dard deviations from the mean - though this was tested
experimentally, as discussed below. If an overloaded ma-
chine is identified, the central load monitor identifies a
corresponding underloaded machine (5) - this is defined
as the machine with the minimum load average. A mes-
sage is then sent to the local load monitor (6) on the
overloaded machine to redistribute some of its load to
the underloaded machine. The decision on how to re-
solve the load imbalance is made at the local level, while
the decision that an imbalance exists is made globally,
thus minimising global-level operations.

The overloaded machine then either replicates or mi-
grates one of its instances to a different machine.

— If there is only one instance on an overloaded ma-
chine, replication is selected, as it is assumed that
the load is caused solely because the instance cannot
handle the requests and not by multiple instances co-
existing.

— If there is more than one instance on an overloaded
machine, migration is selected because the load could
be caused by too many busy instances existing on a
single machine.

Once migration or replication has been triggered, the
instance is sent a message to initiate a transfer. The in-
stance immediately informs the central registry (7), via
the local resolver, that a transfer is in progress and the
central registry and local resolver will temporarily delay
any incoming requests for that logical service endpoint.
The instance then creates a package of its configuration
files and copies it across to the destination server (8)
where it is unpacked and installed. As a final step, the
registry and resolvers are informed that the process is
complete (9). The registry unblocks the logical service
endpoint, either with a new physical endpoint or an ad-
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ditional physical endpoint, depending on whether migra-
tion or replication was triggered respectively.

Static files are copied across but databases are ac-
cessed remotely. This is a complex problem to solve in
general as costs depend on data size as well, initialisation
penalties, etc. A more advanced algorithm could dynam-
ically quantify the cost of remote access as compared to
the cost of data transfer but this may be significantly
more complex.

Finally, with both service resolution and load balanc-
ing in operation, the instances are able to redistribute
themselves within a cluster of computers to make bet-
ter use of computational resources, without any explicit
actions or reconfiguration of the DL system.

3.5.2 Performance

The criterion for migration, and even replication, can
lead to thrashing if the system is very lightly loaded or
there are lots of instances with no clear redistribution
that will better optimize resource usage. This is appar-
ent in transparent high performance computing environ-
ments such as OpenMosix [3], where the system works
well under heavy loads but can perform poorly under
light loads [25]. To avoid such problems, a combination
of strategies have been used to dampen the effects of the
dynamic system:

— Migration/replication may be triggered only at dis-
crete intervals of 30 seconds, to prevent rapid mi-
gration affecting overall system performance and to
allow the system to stabilize before further redistri-
bution.

— Migration/replication may only involve one instance
at a time, to prevent multiple operations attempting
to resolve a single problem.

— The effects of a migration are first simulated by the
local load monitor, using information about the source
and destination nodes. Since the local load monitor
knows the relative load of instances and the abso-
lute system load (on both nodes), it can simulate the
change in system load that will occur if each instance
is migrated. The criterion that is tested is: will the
candidate migration result in both source and desti-
nation nodes having a load average that is closer to
the global mean? If this is true, the best candidate is
chosen for migration - otherwise, it is assumed that
migration will not result in improvement and the op-
eration is cancelled.

4 Experiments and Results
4.1 Redistribution of Load
The prototype was evaluated for its ability to success-

fully balance the load in a small cluster of machines. 3
machines were set up to connect with a central registry

and central load monitor. A simple DL system was set
up, with instances for a search engine, browse index and
archive, all initially located on a single machine. 8 simul-
taneous clients were then used to generate 1024 browse
requests while another 8 simultaneous clients generated
1024 search requests.

Because of the imbalance in resource use, the system
quickly separated the three instances such that each ma-
chine only hosted one instance. The resulting response
times over the period of all 2048 requests is indicated in
Figure 4 and Figure 5.

It is clear from the results that there is a significant
improvement in performance for both search and browse
operations because of a better distribution of instances
to machines. The initial requests have a longer response
time because the load on the system had not yet been
spread across all the machines. After a short period of
overloading, around request 113 on the graphs, the load
balancer migrates instances to spread the load and both
services are then able to operate with faster response
times.

This experiment was repeated for combinations of ex-
perimental parameters [19] from the following:

— How often to redistribute the load on the system (var-
ied between 10 and 50 seconds)

— When to select a node as overloaded (varied between
1 and 5 times the standard deviation from the mean
global load)

— The rate of incoming requests (uniform, sawtooth,
random, periodic)

In all cases, the combinations of parameters that yielded
the best system response rate changed over the course of
the sequence of requests. However, the difference was al-
ways minimal, thus there was no clear reason to choose
a particular set of parameters over another. In an op-
erational system, these parameters could be explicitly
initialized or dynamically changed as the overall system
load changes - for example, a relatively stable system
would not need as much redistribution and the criteria
for overloading can be set to be lower.

4.2 System Overheads

Any system that uses indirect connections may incur the
penalties of extra communication to monitor and manage
global state and transfer data and processes among ma-
chines. This communication was monitored and analysed
to determine the exact impact on overall system per-
formance of the additional layers introduced to achieve
scalability.

Over a series of 400 requests, the search instance, on
average, sent a 90 byte request to the resolver and re-
ceived a 393 byte response. The average time taken to
process the requests was 0.079 seconds. Then, the re-
solver, on average, sent 45 bytes to the registry and re-
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Fig. 5 Response times for 1024 browse instance requests

ceived a 393 byte response, taking an average of 0.031
seconds.

These tests were conducted on a single machine as
remote connection overheads depend on specific of net-
working equipment and protocol stacks. Also, in many
instances, the registry will never be contacted because of
caching at the resolver.

The net result is that the overall time taken for inter-
component communication to maintain additional infor-
mation is minimal, so the extra housekeeping will not
have a major impact on most DL systems based on clus-
ters.

Migration and replication pose a greater concern as
the amount of time taken may cause the system to per-
form at its worst when it is needed the most. The time
to transfer instances was therefore measured and, of 86
recorded values, the average time taken to migrate an in-
stance was 0.790 seconds, where the instance was 277kB

in size on average. This reasonably low figure and the
quick stabilisation of the performance graphs above in-
dicate that migration and replication do not have a large
impact where the size of instances is not large. This
experiment did not consider transferring of databases -
that may cause problems but the database is not usually
moved around in a typical multi-tier application environ-
ment.

4.3 Summary of Results

In summary, these experiments have verified that, inde-
pendently of a number of parameters that can be opti-
mized, the component-based digital library system with
minimal additional functionality is able to successfully
make use of additional resources to scale seamlessly and
with little overhead in most cases.



Lightweight Component-Based Scalability

5 Future Work

This section aims to give an overview of possible future
work with respect to component migration and replica-
tion and the potential benefits that can be gained from
such techniques.

5.1 Load Balancing

The load balancing techniques employed in this research
are not highly sophisticated but serve as a proof of con-
cept for component migration and replication. The satis-
factory results obtained thus far justify further study into
more effective and generalisable load balancing schemes.
Future work into this area could focus on drawing
together multiple metrics such as CPU usage time, I/0
time, number of database accesses and number of compo-
nents on the nodes. These metrics should provide more
accurate information on system usage and should result
in better load balancing decisions. A further extension
that requires some investigation would be to perform in-
ference over historical load-balancing data in order to
deduce trends in system load and therefore be able to
pre-empt component migration and replication. Lastly,
database access and migration must be considered. A
system that is capable of deciding when ideal conditions
are met for entire database migration or replication could
potentially enhance performance even further.

5.2 Security

Since this research was conducted by making use of a
secure cluster, there currently exists no mechanism to
ensure that instances are not tampered with during mi-
gration and replication. If one were to deploy such a
component-based digital library system, where instances
move from one distributed system to another, it may be
necessary to ensure that the instance is secured during
transit. Conventional encryption or hashing algorithms
could be used for this purpose. Security at the compo-
nent level will lead to a site-neutral framework, avoiding
the existing differences in security policies across ma-
chines. In particular, the security approach provided by
Globus could be adopted.

5.3 Cluster/Grid Hybrid

A natural next step is to consider grid middleware toolk-
its to provide scalability services, without incurring the
overheads of existing heavyweight frameworks such as
Globus. A campus grid, for example, based on Condor,
provides an ideal experimental framework to incorpo-
rate both clusters and desktop machines into a single
heterogeneous grid, with existing mechanisms for fault
tolerance and resource management.

How digital libraries will interact with cluster and
grid technology in the future is uncertain. Since core dig-
ital library components are critical to the operation of
the system itself, grids by themselves cannot be fully re-
lied upon to ensure the stability of the entire system.
Future work in this field then could benefit from a study
that contrasts the benefits of using a purely cluster-
based approach to digital library component migration
and replication with a purely grid-based approach, and
then a combination of the these approaches. As alter-
native high performance computing approaches emerge,
such as multi-core and cell processors, these also must be
considered as alternatives in increasing the scalability of
digital library systems.

5.4 Client-Side Computing

Most component-based systems assume that services are
provided on servers - however it is possible to migrate
some of the components to the client machines and have
them execute in the user’s browser. This approach to
scalability ensures minimal processing on the server and
scales the available processing resources with the num-
ber of users. With the emerging popularity of Ajax and
similar client-side technologies, this approach to scaling
of systems may yield substantial benefits and alter the
balance of distributed processing once again.

6 Conclusions

Digital libraries have an ever more urgent need to scale
to meet the demands of larger collections of data and
greater service requirements. This need may be satisfied
by a myriad of different solutions in disciplines ranging
from databases to high performance computing. This ar-
ticle has discussed an attempt to create scalable digital
library systems based on minimal extensions to an ex-
isting component framework for digital library systems.
The complexity inherent in incorporating transparent
scalability is certainly not a prohibitive factor, and for
some services and some digital library architectures this
may be a natural next step. Most importantly, this work
has validated the importance of component architectures
since the ability to scale efficiently and transparently
relies on the flexibility of the underlying architecture.
While this study has looked into minimal extensions for
cluster-based DL system, the feasibility of such architec-
tures extends naturally to more fully developed produc-
tion systems and validates the approach envisaged by
DILIGENT. As and when grid middleware matures and
is widely adopted by DL developers, digital library sys-
tems based on component architectures can easily make
the transition to utilize such lower level tools. Designers
of monolithic systems will have to return to the drawing
board.
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