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Abstract

To classify and search various kinds of scientific data, it is useful to annotate those data with keywords from a controlled
vocabulary. Data providers, such as researchers, annotate their own data with keywords from the provided vocabulary. However,
for the selection of suitable keywords, extensive knowledge of both the research domain and the controlled vocabulary is
required. Therefore, the annotation of scientific data with keywords from a controlled vocabulary is a time-consuming task
for data providers. In this paper, we discuss methods for recommending relevant keywords from a controlled vocabulary for
the annotation of scientific data through their metadata. Many previous studies have proposed approaches based on keywords
in similar existing metadata; we call this the indirect method. However, when the quality of the existing metadata set is
insufficient, the indirect method tends to be ineffective. Because the controlled vocabularies for scientific data usually provide
definition sentences for each keyword, it is also possible to recommend keywords based on the target metadata and the
keyword definitions; we call this the direct method. The direct method does not utilize the existing metadata set and therefore
is independent of its quality. Also, for the evaluation of keyword recommendation methods, we propose evaluation metrics
based on a hierarchical vocabulary structure, which is a distinctive feature of most controlled vocabularies. Using our proposed
evaluation metrics, we can evaluate keyword recommendation methods with an emphasis on keywords that are more difficult
for data providers to select. In experiments using real earth science datasets, we compare the direct and indirect methods to
verify their effectiveness, and observe how the indirect method depends on the quality of the existing metadata set. The results
show the importance of metadata quality in recommending keywords.
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useful to annotate these data with metadata. Metadata are not
data in their own right but rather describe information related

1 Introduction

1.1 Background

To accurately classify vast amounts of scientific data and
to allow the desired information to be quickly obtained, it is
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to data. The annotation of each distinct datum or dataset
with semantic information such as metadata can support the
understanding of the data themselves and allow relevant data
to be quickly extracted from a vast amount of available data.
Examples of metadata for a scientific dataset include the title,
creation date, author, data format, abstract text and keywords
of an entry. Of these types of metadata, we particularly focus
on keywords because of their importance. Viewing anno-
tated keywords enables us to roughly understand the content
of the corresponding dataset, to determine the associations
between related datasets, and to support the searching, brows-
ing and classification of various datasets. Therefore, keyword
annotation of every dataset is very important for building a
convenient and useful database of scientific datasets.

In the folksonomy approach to keyword annotation, which
is adopted in many social networking service (SNS) sys-
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tems, any user is allowed to freely annotate various data
with keywords [1,11,13]. Because many general users are
continuously adding keywords to a single dataset or other
data object, the advantage arises that the keywords added to
that data object will ultimately converge to a useful keyword
set based on how the data are used. Unlike in such a folk-
sonomy approach, in the keyword annotation of scientific
data, data providers themselves add keywords to their own
highly specialized data [4,9,19,22,24]. In this case, because
the data provider is the only person to annotate his own data
objects with descriptive keywords provided in their metadata,
the utilization value of such keyword sets depends solely on
the data providers. Therefore, once the metadata have been
defined, their value will not be further improved by general
users. Furthermore, in many cases, the keywords that can be
added are restricted through the use of a specific controlled
vocabulary for the relevant domain. This restriction effec-
tively eliminates noise in data retrieval that may be caused
by differences in word form and orthographic variations.
We focus on the latter case, in which data providers
annotate their own scientific data, and consider methods for
recommending suitable keywords from a controlled vocab-
ulary for the annotation of scientific data. The selection
of suitable keywords from a controlled vocabulary requires
extensive knowledge of both the research domain and the
controlled vocabulary, which typically includes thousands
of keywords. Therefore, even an expert data provider will
experience difficulty in selecting suitable keywords from
the provided vocabulary. Controlled vocabularies exist in
various research domains; examples for earth science, agri-
culture and biology, and the life sciences include GCMD
Science Keywords [7], the Centre for Agricultural Bioscience
(CAB) Thesaurus,! and Medical Subject Headings (MeSH),>
respectively. Because it is hard to understand the whole
context of a controlled vocabulary, keyword annotation is
regarded as a very time-consuming task for data providers.
We investigated metadata for earth science data that are
managed by the metadata portal called the Global Change
Master Directory (GCMD)? and the project called the Data
Integration Analysis System (DIAS)* [10] as examples. Both
the GCMD and DIAS datasets are annotated with keywords
from GCMD Science Keywords [7], and the GCMD Sci-
ence Keywords vocabulary includes about 3000 keywords.
Figures 1 and 2 show the distributions of the number of
keywords from the GCMD Science Keywords vocabulary
with which each dataset is annotated. An investigation of the
metadata in the GCMD and DIAS databases revealed many

! https://www.cabi.org/cabthesaurus/.
2 https://www.nlm.nih.gov/mesh/.

3 https://gemd.nasa.gov/.

4 https://www.diasjp.net/.
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Fig.2 Distribution of the number of annotated keywords per dataset in
DIAS

poorly annotated datasets. In the GCMD metadata portal,’
the total number of datasets is 32,731, and approximately
one-fourth of these datasets have fewer than 5 keywords.
In DIAS, among 437 datasets® annotated in English, 220
are annotated with no keywords from the GCMD Science
Keywords vocabulary, and the average number of GCMD
Science Keywords with which each dataset is annotated is
only approximately 3. Therefore, there is a need to increase
the number of keywords with which each dataset is anno-
tated by recommending keywords for each dataset. Note that
the focus of this paper is keyword recommendation methods,
and we are assuming the framework that the final selection
of right keywords from recommended keywords is done by
data providers.

3 As of August 2019.
6 As of August 2019.
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1.2 Outline of our contributions

In this paper, we discuss methods for recommending key-
words when data providers create their metadata. We con-
sider the indirect method, which recommends keywords
based on similar existing metadata, and the direct method
which recommends keywords based on the keyword defini-
tions. This study makes the following three contributions:

1. We consider the importance of metadata quality in recom-
mending suitable keywords from a controlled vocabulary
for annotating scientific data, and we compare the indi-
rect method of keyword recommendation with the direct
method.

2. We propose evaluation metrics that consider a controlled
vocabulary with a hierarchical structure. By applying our
evaluation metrics, we can evaluate the extent to which
the cost of keyword annotation is reduced through key-
word recommendation.

3. We present experiments conducted on real datasets man-
aged by the GCMD and verify the effectiveness of the
indirect and direct methods.

Below, we describe each of the contributions listed above
in greater detail.
Considering metadata quality in keyword recommendation
As the first contribution of this paper, we discuss keyword
recommendation methods from the viewpoint of metadata
quality. The text information that is provided in metadata
is often used for keyword recommendation. In general, this
text information typically includes an abstract text, which is
a free-text description of the data. For example, in the case
of an earth science dataset, information regarding the items
observed, the observation methods, the usage of the data and
so on is provided in the abstract text, and this information
is considered to be useful for recommending suitable key-
words. Figure 3 shows an example of the abstract text for
a dataset managed by DIAS. In this paper, we assume the
abstract text in the metadata of a target dataset for which
we wish to recommend keywords is available, and we uti-
lize it for the recommendation. Previous studies on keyword
recommendation [13,24] have typically proposed methods
for recommending keywords to be added to a target dataset
based on those associated with similar existing data by cal-
culating the similarity between the text information in the
metadata of the target and in similar existing metadata. We
call this method the indirect method. Figure 4 illustrates the
underlying concept of the indirect method. However, because
this method relies on existing metadata, the effectiveness of
the indirect method depends on the quality of the existing
metadata set, such as the number of existing datasets with
available metadata, the keywords with which the datasets
are annotated, and the words contained in the abstract texts.

Abstract text for the dataset DSNDVI_J managed by DIAS

This dataset contains the daily value of the Normalize Differ-
ence Vegetation Index (NDVI) from 1982 to 2000 over the terres-
trial areas of the Japan Islands that was derived from Pathfinder
AVHRR Land (PAL) dataset. The horizontal resolution is 8 x
8 km. To reduce the cloud contamination, the original daily
NDVI was temporally smoothed by Temporal Window Opera-
tion (TWO) method.

- /

Fig.3 An example of an abstract text
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Fig.4 Indirect method
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Fig.5 Direct method

For example, if the datasets that are similar to the target
dataset are poorly annotated with keywords, then the indi-
rect method cannot provide useful recommendations even if
similar datasets are available in a given portal. In fact, even
beyond earth science metadata portals such as DIAS and the
GCMD, it has been reported that the quality of the available
metadata set is also a pressing problem in Europeana [5],
which is the largest-scale digital library portal in Europe. The
scope and the quantification of metadata quality as addressed
in this paper will be discussed in detail later. The examples
given above show that many cases exist in which the existing
metadata quality is insufficient.

In this paper, we also consider a keyword recommen-
dation method that does not depend on the quality of the
existing metadata set, which we call the direct method. In
the direct method, instead of existing metadata information,
the definition sentences provided for each keyword are used
in combination with the abstract text provided for the target
data. Figure 5 illustrates the underlying concept of the direct
method. In most cases, each keyword in a controlled vocab-
ulary is associated with a keyword definition that explains
its meaning; this is also the case for GCMD Science Key-
words. Figure 6 shows an example of the definition of a
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Keyword definition for ACID_RAIN in GCMD Science Key-
words

Definition: Rain having a pH lower than 5.6, representing the pH
of natural rainwater; the increased acidity is usually due to the
presence of sulfuric acid and/or nitric acid, often attributed to
anthropogenic sources.

Fig.6 An example of a keyword definition

keyword in GCMD Science Keywords. If a data provider
provides an abstract text that includes sufficient information
to describe his dataset, which is a target dataset of keyword
recommendation, then the direct method can be applied to
recommend suitable keywords for the dataset even if the qual-
ity of the existing metadata is insufficient. Therefore, if each
data provider improves the quality of the abstract text asso-
ciated with his data, then the direct method can be used to
improve the quality of an entire metadata portal by increasing
the number of annotated keywords. By contrast, if the exist-
ing metadata quality is insufficient, the indirect method will
be unable to recommend suitable keywords for a dataset even
if the data provider improves the quality of the associated
abstract text. Therefore, the indirect method is less likely to
increase the number of annotated keywords or to improve the
quality of an entire portal. Note that if the existing metadata
quality is sufficient, then the indirect method can be effec-
tively applied for keyword recommendation. Hence, we can
say the direct method, which is independent of the metadata
quality, is preferable while the existing metadata quality is
insufficient, and it can contribute to creating an environment
in which the indirect method can function effectively.

Evaluation metrics considering a hierarchical vocabulary
structure As the second contribution of this paper, we pro-
pose evaluation metrics based on a hierarchical vocabulary
structure, which is a distinctive feature of most controlled
vocabularies. The purpose of this study is to reduce the
cost incurred by data providers for keyword annotation.
Many controlled vocabularies, including GCMD Science
Keywords, are hierarchically structured. We consider that the
cost of keyword annotation differs depending on the position
of the keyword in the controlled vocabulary thatis being used.
For example, because keywords in upper layers, which rep-
resent category names, such as “OCEANS,” tend to be easier
to select, the cost of selecting such keywords is smaller. By
contrast, because keywords in lower layers, such as “SEA
SURFACE TEMPERATURE,” tend to be more difficult to
select because they are buried under many higher keywords,
the cost of their selection is larger. Considering that the value
of recommending a keyword in a lower layer should not be
considered equal to that of recommending a keyword in a
higher layer, we propose evaluation metrics that consider
a hierarchical vocabulary structure, with greater emphasis
placed on keywords that are more difficult for data providers

@ Springer

to select. The difficulty of selecting a keyword is considered
to depend on either the hierarchical depth to which the key-
word belongs or the number of descendants and siblings of
the keyword in the controlled vocabulary. Moreover, when a
method mistakenly recommends an incorrect keyword that
is not desired by the data provider, we apply a penalty for
that mistake.

Experiments on real datasets As the third contribution of this
paper, we present experiments conducted on real datasets. We
assume that the indirect method, which relies on an existing
metadata set, cannot provide useful recommendations when
the quality of the existing metadata is insufficient. In this
paper, to verify this assumption, we consider several existing
metadata sets that differ in their degrees of metadata quality.
We consider several quantitative measures related to the qual-
ity of the existing metadata sets. These measures include the
average number of words in each abstract text, the average
number of annotated keywords per dataset and the number of
existing datasets. Moreover, using different sets of existing
metadata generated by varying these quantitative measures,
we compare the direct and indirect methods of keyword rec-
ommendation to verify their effectiveness.

1.3 Application to earth science data

In this paper, we consider the field of earth science as one
possible target research domain. Earth science data include
satellite observation data, vegetation index data, data on
earthquakes and so on. In earth science, the desire is to inte-
grate these diverse data and apply them in heterogeneous
domains. Therefore, to promote the use of such data, we
need to support their classification and the ability to extract
relevant data through keyword annotation.

Earth science metadata portal By virtue of recent advances
in observation technologies and progress in information tech-
nologies, the total amounts of earth science data that are
available in various fields, such as atmospheric studies and
oceanic studies, have increased at an explosive pace. In addi-
tion, each of these fields is developing in the direction of
increasing subdivisions or greater specialization. Therefore,
because it is difficult to share the information from each
field and to utilize data between fields in an integrated man-
ner, metadata portals must be properly managed to allow
the associated metadata to be effectively collected, handled
and searched. For instance, the GCMD collects various kinds
of earth science data and manages controlled vocabularies
related to project names and platform names in addition to
GCMD Science Keywords. In addition, the GCMD portal
provides a search function for searching and classifying var-
ious metadata using those keywords. Moreover, in Japan,
DIAS provides various search functions for earth science
data based on keywords contained in controlled vocabularies
and the spatiotemporal information of the data of interest.
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Atmosphere > Atmospheric Water Vapor > Humidity
Atmosphere > Atmospheric Water Vapor > Water Vapor
Atmosphere > Precipitation > Precipitation Amount
Oceans > Ocean Temperature > Sea Surface Temperature
Cryosphere > Snow/Ice > Snow Water Equivalent

Land Surface > Soils > Soil Moisture/Water Content

Fig. 7 Keywords added to the Aqua AMSR-E dataset managed by
DIAS

The aim is to build a database that promotes the application
of earth science data in heterogeneous domains and the inte-
grated use of diverse data collected in multiple fields from
different places and at different times. For example, by apply-
ing precipitation data from the meteorological domain in the
geological domain, it is possible to use those data for disas-
ter prevention. Moreover, considering that global warming
is likely to be a factor in fostering viral infections, global
warming data can be applied in the field of medical science.
In addition, a simulator has been developed that enables the
prediction of the cultivation prospects for individual species
of rice in a given area by integrating data on rice growth
with meteorological observation data. To promote the cross-
domain application and integrated use of data, each dataset
should be annotated with sufficient keywords. Therefore, it is
necessary to recommend sufficient keywords to allow users
to easily classify various kinds of data and identify data of
high relevance for a given purpose.

Keyword annotation for earth science data Metadata key-
words for earth science data are added to a dataset by
selecting keywords that are relevant to that dataset from
a controlled vocabulary. For example, using the GCMD
Science Keywords vocabulary, a dataset containing rainfall
observations can be annotated with the keyword “PRECIPI-
TATION AMOUNT.” In addition, as mentioned in Sect. 1.2,
each keyword is managed hierarchically in GCMD Science
Keywords. For example, consider the top-layer keyword
“OCEANS”; below this keyword, “OCEAN TEMPERA-
TURE” is one of the keywords in the second layer, and
“SEA SURFACE TEMPERATURE” is a keyword in the
next deeper layer. In this paper, we represent these key-
words in their hierarchical structure as follows: “OCEANS
> OCEAN TEMPERATURE > SEA SURFACE TEMPER-
ATURE.” We provide examples of the hierarchical structures
of several GCMD Science Keywords in Fig. 7.7

1.4 Outline of the paper
The remainder of this paper is organized as follows. Section 2
introduces previous studies on keyword recommendation for

web pages, earth science data and academic research papers.

7 AMSR-E is a microwave sensor that estimates various physical quan-
tities related to water.

This section also introduces research on metadata quality.
Section 3 explains the two methods of keyword recommen-
dation for scientific datasets. One is the indirect method,
which relies on an existing metadata set, and the other is
the direct method, which relies on the metadata of the target
itself and the keyword definitions. In addition, we consider
the role of metadata quality in relation to these two methods.
Section 4 proposes evaluation metrics that consider a con-
trolled vocabulary with a hierarchical structure. In Sect. 5,
we present experiments conducted on real datasets managed
by the GCMD and compare the results obtained using the
direct and indirect methods by applying our evaluation met-
rics. Section 6 concludes the paper and discusses possibilities
for future work.

2 Related works

In recent years, keyword recommendation based on the folk-
sonomy approach has attracted attention from researchers
[1,11,13]. However, most of these studies have focused on
personalized keyword recommendations based on a user’s
history. In such works, it is common for users themselves to
annotate multiple data using arbitrary keywords rather than
a controlled vocabulary. By contrast, our focus is the cases
that only the data providers annotate their own data with
keywords from a controlled vocabulary. In this case, because
sufficient information on the histories of the data providers
is typically unavailable, content-based methods are consid-
ered to be more useful. This section presents several related
works that have proposed content-based methods of keyword
recommendation. In addition, we also introduce studies on
metadata quality.

2.1 Social tagging

Several studies have addressed the use of content-based
methods to support social tagging [1,11,13]. For social book-
marking services such as Delicious, Lu et al. proposed a
method of recommending suitable keywords for a web page
lacking tag information [13]. In their method, an assignment
probability is calculated for each potential tag for a web page
based on the similarities between web pages and how often
that tag appears in sets of tags added to similar web pages.
However, this approach presupposes that multiple users will
annotate a particular web page with the same tags as other
users will. Hence, this method cannot be applied to the cases
that only the data providers add keywords to their own data.
The cited authors also calculated the trustworthiness of a web
page based on the total number of tags added to that web page.
However, in research domains, the numbers of keywords
added to data have little relation to the reliability of those data.
Belem et al. proposed a formula for calculating the relevance
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of each tag for a resource using learning-to-rank technolo-
gies, combining various indicators such as tag co-occurrence,
descriptive power and term predictability [1]. However, a
controlled vocabulary is not used in this approach; instead,
recommended keywords are extracted from among all terms
present in a document. Krestel et al. suggested tags for a web
page by applying latent Dirichlet allocation (LDA) [2] to a
set of preassigned tags [11]. This method assumes that less
frequent or unique tags that have been added by only a few
users are inappropriate. However, in the case of scientific
data, such as earth science data, because controlled vocabu-
laries are used, important keywords are often assigned that
appear with low frequencies. Therefore, if LDA were to be
used in the earth science domain, appropriate but less fre-
quently used keywords would likely not be recommended.

2.2 Keyword recommendation for earth science data

In the context of keyword recommendation for earth science
data, Tuarob et al. [24] proposed a method of recommending
tags drawn from a controlled vocabulary for data lack-
ing tag information. In this method, the feature vector for
each dataset is created from the text information available
in the metadata, and tags are recommended to be added
to similar datasets by calculating the similarities between
feature vectors. Each document is represented by either a
term frequency-inverse document frequency (TF-IDF) vec-
tor [18] or an LDA probability distribution. However, when
the quality of the existing metadata set in a metadata portal
is insufficient, this method can be expected to be ineffective.
Therefore, we also consider the direct method, which does
not depend on an existing metadata set and can be applied
to a new controlled vocabulary that has not seen extensive
use. Shimizu et al. proposed a method of recommending key-
words that represent different earth science categories using
Labeled LDA [16,22]. They defined 14 keywords as labels for
learning the correspondence between the abstract text asso-
ciated with a dataset and the keywords added to that dataset.
Then, they recommended suitable keywords by applying the
learned results to a target dataset. As demonstrated in that
study, when the number of labels is small, labeled LDA is
useful for recommendation. However, it is very difficult to
prepare sufficient training data to define thousands of key-
words as labels.

2.3 Annotation for academic research papers
This section introduces several works that have addressed
methods of supporting annotation for academic research

papers. Chernyak proposed a method for recommending top-
ics based on a controlled vocabulary called the ACM Com-

@ Springer

puting Classification System® [4]. Using techniques such as
TF-IDF, BM25 and annotated suffix trees, this method cal-
culates the similarities between the topics and an abstract
text of a paper of interest. Santos and Rodrigues addressed
the problem of multi-label classification for research papers
using machine learning techniques such as support vector
machines (SVMs), the k-nearest neighbor (k-NN) approach
and naive Bayes classification [19]. Certainly, these meth-
ods are also applicable to our topic of study. Because they
utilize other existing research papers available in a portal,
these methods depend on the quality of the existing meta-
data. Notably, although studies of annotation methods for
research papers are different from those for sets of obser-
vational data, such as earth science data, in that annotation
methods for research papers can utilize reference informa-
tion, they have much in common with our study in that both
types of approaches require a controlled vocabulary and the
keywords are added by a specific person, such as the author,
in both cases. Our discussion can thus be considered appli-
cable to the annotation of research papers.

2.4 Dataset profiling

Dataset profiles consist of topics for a dataset and their
relevance. The researches on dataset profiling proposed
approaches based on graphical models [6], machine learn-
ing techniques [21] and calculation of cosine similarity [17].
Fetahu et al. [6] proposed an approach for creating dataset
profiles through the combination of the topic extraction from
reference datasets and the ranking based on graphical models.
Schaible et al. addressed the problem of reusing appropriate
vocabulary terms to represent linked data using a machine
learning technique and a data mining approach. Those meth-
ods are based on how other data providers on the LOD cloud
have used RDF classes and properties [20]. Ramnandan et
al. proposed TF-IDF-based cosine similarity approach. They
ranked semantic labels in decreasing order of the cosine of the
angle between a target document vector and the other existing
document vectors [17]. The target of these studies is general
datasets such as the datasets from the LOD cloud, while the
target of our study is scientific datasets and keywords from
a controlled vocabulary with a hierarchical structure, which
are associated with definition sentences. These studies can be
considered as indirect methods and thus depend on metadata
quality.

2.5 Studies on metadata quality

In this section, we introduce several studies on metadata
quality. To evaluate metadata quality, Bruce and Hillmann

8 https://www.acm.org/about-acm/class.
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introduced the seven metrics of ‘“completeness,” “accu-
racy,” “conformance to expectations,” “logical consistency
” “accessibility,” “timeliness” and “prove-

9 <«

and coherence,
nance” [3]. These metrics indicate whether the metadata
include sufficient information to understand the data con-
tents, how accurate the information provided by the metadata
is, whether the metadata satisfy user needs, how closely the
metadata follow a standard definition, how accessible the data
are, whether there are differences between the real data and
the metadata because of the passage of time, and how trust-
worthy the manner in which the metadata were processed
is, respectively. Ochoa and Duval [14] proposed formulas
for quantifying these seven quality metrics for metadata in a
digital library. For example, these authors quantified “confor-
mance to expectations” by calculating the sum of the TF-IDF
score of each word in the abstract text or the entropy of each
keyword. However, there is no general consensus regarding
how metadata quality should be quantified. Tani et al. [23]
published a survey paper on the issue of metadata quality.
This work summarizes various frameworks for evaluating
metadata quality, including that of Bruce and Hillmann [3].
However, the authors state that there is no consensus with
respect to the question “What is metadata quality?”’. Because
metadata quality refers to the complex concept of “fitness for
use,” its definition changes depending on the real usage of
the data in question. Moreover, these authors explain that it is
difficult to define metadata quality in a way that is applicable
in all contexts because the understanding and evaluation of
metadata are different for each community unit. In this paper,
we focus on the number of existing datasets with available
metadata, the number of words in the abstract texts and the
number of annotated keywords per dataset, which we regard
as important aspects of the concept of metadata quality, and
we define these quality measures as factors that can influence
the performance of methods of keyword recommendation.

3 Metadata quality and recommendation
methods

We consider that the effectiveness of the indirect method of
keyword recommendation is likely to depend on the quality
of the existing metadata set that is being used for reference,
whereas the direct method, which uses keyword definitions,
is independent of the quality of the existing metadata. First,
in Sect. 3.1, we discuss the scope of metadata quality as
considered in this paper, and we consider the quantification of
the quality of an existing metadata set. Section 3.2 introduces
the indirect method, and Sect. 3.3 explains the direct method
in detail. In this paper, GCMD Science Keywords is used as
the controlled vocabulary that provides the keywords, and our
keyword recommendations include the entire keyword path,
such as “ATMOSPHERE > ATMOSPHERIC RADIATION

> HEAT FLUX.” In other words, if the relevance of “HEAT
FLUX” to the metadata for a target dataset is judged to be
high, then we recommend “HEAT FLUX” and provide all
keywords above it in its path.

3.1 Quantitative measures of metadata quality

We consider that the quality of metadata reflects the degree to
which the metadata include sufficient information to charac-
terize the associated data. With regard to an abstract text that
is included in the metadata for a dataset, the quality of the
abstract text is considered to represent the degree to which
it describes the information required to understand the con-
tents of the dataset, such as the process by which the data were
obtained and their utility value. In addition, with regard to
annotated keywords, the quality of a set of keywords is con-
sidered to represent the degree of comprehensiveness with
which the keywords express various aspects of the dataset
and how useful each keyword is in finding the data.

To verify whether the performance of the indirect method
depends on the quality of the available metadata, we con-
sider several existing metadata sets that differ in quality and
observe the changes in the values of various evaluation met-
rics when the indirect method is applied to these different
existing metadata sets. To perform such a verification study,
it is necessary to establish a standard on which we can judge
whether the existing metadata quality is sufficient. However,
as mentioned in Sect. 2.5, because the concept of meta-
data quality encompasses several abstract aspects that cannot
be quantified, it is very difficult to calculate some measure
of the quality in which all of these aspects are considered.
Therefore, we approximate the metadata quality in terms of
quantitative measures such as the number of words in the
abstract text for each dataset and the number of annotated
keywords per dataset, and we then consider several existing
metadata sets created to exhibit different levels of quality
based on these measures.

In addition, the number of existing datasets for which
associated metadata are available can itself be regarded as a
measure of the metadata quality. When only a small amount
of existing metadata is available in a portal, a particular
dataset that suits the specific needs of any given user is less
likely to be found in that portal. In this case, the quality of the
existing metadata set is considered to be insufficient. Thus,
in this paper, we identify the following three measures, Oy,
QOx and Qy, as factors related to the quality of an existing
metadata set.

1. Qq: The average number of words in the abstract text for
each dataset.

2. Qx: The average number of keywords with which each
dataset is annotated.
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3. QOn: The number of existing datasets with associated
metadata available in a given portal.

This study addresses the case in which, based on the three
measures listed above, the quality of the existing metadata
set is insufficient; we assume that in such a case, the indirect
method of keyword recommendation is ineffective.

3.2 Indirect method

In this paper, as the indirect method of keyword recommen-
dation based on an existing metadata set, we adopt Tuarob
et al.’s method, which was introduced in Sect. 2.2 [24].
This method is chosen because it was developed for key-
word recommendation for earth science data based on textual
metadata information. In this method, using the abstract texts
contained in the metadata, feature vectors are created for the
metadata of a target dataset and for the metadata of existing
datasets in a given portal, and these feature vectors are used
to calculate the similarity between the target metadata and
the existing metadata for each dataset. Then, keywords are
recommended from among those used to annotate the similar
existing datasets. This process is described in detail below.

TagScorey, (k, q, D)

Pk|lg, K,D,M) =
klq ) Y ke TagScorey (k, q, D)

ey

where k(e K) represents a keyword, K is a controlled vocab-
ulary, g is the metadata for a target dataset, D represents the
set of existing metadata in a portal, and M represents the
method used for feature vector creation. Given K, D and M,
Pk | q, K, D, M) represents the probability that ¢ should
be annotated with the keyword k. TagScore,; (k, q, D), as
calculated using Eq. (2), measures the relevance between the
metadata ¢ of the target dataset and the keyword k(€ K).

TagScorey (k,q, D) = Z DocSimy(q,d, D) -isTag(k, d)
deD

@)

In Eq. (2), DocSimp(q, d, D) calculates the cosine sim-
ilarity between the metadata d € D of an existing dataset
and the metadata g of the target dataset. isTag(k,d) is a
binary function that returns a value of 1 if the keyword
k is present in the existing metadata d € D and a value
of 0 otherwise. Thus, TagScorey (k, q, D) represents the
sum of the similarities of the target dataset with all exist-
ing datasets that are annotated with a set of keywords that
includes k. P(k | g, K, D, M) represents the normalization
of TagScorey(k, q, D) such that the output will lie on the
interval [0, 1], and keywords are recommended in descend-
ing order of P(k | q, K, D, M).

@ Springer

In Sect. 2.2, we noted two methods that can be used to
create the feature vectors, namely the calculation of TF-IDF
vectors and the determination of the topic distribution for the
metadata of each dataset. Tuarob et al. reported that the latter
method yields more suitable keyword recommendations than
the former. Therefore, in the indirect method considered here,
we adopt the latter approach, in which the topic distribution
of the metadata of each dataset is used as the feature vector
for that dataset. In the method of Tuarob et al., the metadata
for each dataset are considered to consist of a mixture of
topics, and LDA 1is used to calculate the metadata topic dis-
tribution for each dataset. LDA is a technique that is widely
used for topic modeling and assumes that a data provider has
a particular set of topics in mind when annotating his data,
leading the data provider to define the metadata for a dataset
by selecting words related to those topics. LDA is used to
infer the topic distributions intended by the data provider by
analyzing the text information present in a metadata set. In
this paper, for consistency with the experimental conditions
considered by Tuarob et al., we use the LDA algorithm with
300 topics and 1000 iterations. In addition, when using LDA,
we must determine the parameters « and S that describe the
per-document topic distributions and the per-topic word dis-
tributions, respectively. No description of the detailed values
is provided in Tuarob et al.’s paper, but («, 8) = (50/L, 0.1)
is often adopted, where L is the number of labels [8]. There-
fore, we adopt («, B) = (50/300 =~ 0.167, 0.1). We use the
Stanford Topic Modeling Toolbox? to apply LDA.
TopicDistribution(q, T) = [t1, t2, ..., 300] 3)
T represents the set of topics; thus, |T'| = 300. ¢; € T is the
probability of assigning topic j to the metadata g of the target
dataset. In this way, the indirect method treats the topic dis-
tribution of the metadata associated with each dataset as the
feature vector for that dataset and recommends keywords by
calculating the similarity between the target dataset and each
existing dataset as indicated by their associated metadata.

3.3 Direct method

In this paper, we use the abstract texts contained in the meta-
data associated with datasets of interest as a basis for the
direct method of keyword recommendation. By viewing the
abstract text, a user can gain a rough understanding of the
content of a dataset. Initially, using a simple string matching
method, we extracted keywords from the abstract text associ-
ated with a dataset in DIAS by matching the words present in
the text with each keyword in the GCMD Science Keywords
vocabulary. Note that we preprocessed the abstract texts and
the keywords by removing stopwords and stemming each

9 https:/nlp.stanford.edu/software/tmt/tmt-0.3/.
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word. However, although the average number of annotated
keywords per dataset in the GCMD is approximately 10, the
string matching method was only able to recommend an aver-
age of approximately 2.7 keywords per dataset. Therefore,
we decided to utilize the implicit information provided by
the keyword definitions in addition to the explicit informa-
tion of the keyword names. The GCMD Science Keywords
vocabulary includes a definition for each keyword. We calcu-
late the similarities between the abstract text provided in the
metadata of a target dataset and the definition of each key-
word, and we then recommend keywords with a high degree
of similarity.

To calculate the similarities, we create feature vectors for
the metadata of the target dataset and each keyword defi-
nition. Note that we preprocess the abstract texts and the
keyword definitions by removing stopwords and stemming
each word. We represent the abstract text associated with a
target dataset by A;, and we represent the set of words con-
tainedin A; by T'(A;). In addition, we represent the definition
of a keyword by D and represent the set of words contained
in D; by T(Dj). Then, we represent a feature vector of A;
by DA(A;), and a feature vector of D; by KD(D;). Each
element of DA(A;) and KD(D)) is the weight for the word
1 € T(A;) UT(Dj), and thus, the sizes of both DA(A;) and
KD(D;) are |T(A;) UT(D;)|. For DA(A;), the weight of #;
represented by D A(#;) is whether #; appears in A; or not.

DA(A;) =[DA(t1), DA(t2), ..., DA(t;), ..., DA(ty)]

“
I (1 e T(A))

A(n) = 5
DAt 0 (otherwise) ©)

1 e T(AHDUT(Dj) (1 <I=<|T(A)UT(Dj)|=n) (6)

For KD(D)), the weight of # represented by K D(#) is the
TF-IDF value of #;. For the term frequency (TF), we use the
Length Regularized TF (LRTF) introduced in [15]. These
quantities are described in detail below.

KD(Dj) = [KD(t1), KD(13), ..., KD(t;), ..., KD(t,)] (7)

KD(1)) = {LRTF(II, Dj) -IDF(1,C) (1 € T(.Dj)) "
0 (otherwise)
LRTF(1;, D;) = TF(y;, D;) -1 (1 w> o
R len(D;)
_ |C|
IDF(1;, C) = log, <W> o o

Let C be the set of keyword definitions, where D; € C, and
let |C| be the number of keywords. In addition, len(D;) is
the length of keyword definition D, ADL(C) is the average
of alllen(D;), and TF(#;, D) is the appearance frequency of

word #; in D;. The LRTF is calculated using a formula that
normalizes the TF value by considering the ratio of len(D)
to ADL(C). We consider the LRTF to be appropriate in this
situation, in which an abstract text is treated as the object of
a query, because it is stated in [15] that the LRTF is useful
for long queries consisting of more than 5 words. The inverse
document frequency (IDF) is calculated using the standard
formula, in which |C] is divided by D F (¢;, C). In this paper,
we utilize the cosine similarity, which is generally used when
comparing documents in vector-space models. The cosine
similarity takes values in the interval [0, 1], and it represents
the angle formed by two vectors: a value close to 1 indicates
that the vectors are similar to each other, whereas a value
close to 0 indicates that they are independent of each other.
We recommend keywords in descending order of cosine sim-
ilarity. The calculation is presented in detail below.

DA(A;) - KD(D))
IDA(A;)| - [KD(D;)|
(1)

CosineSim(DA(A;), KD(D;)) =

4 Evaluation metrics considering a
hierarchical vocabulary structure

This section describes our proposed evaluation metrics that
consider a hierarchical vocabulary structure, which is a
distinct characteristic of most controlled vocabularies. The
purpose of our study is to reduce the cost incurred by data
providers for keyword annotation. We consider that for each
keyword, this cost depends on the position of that keyword
in the controlled vocabulary. Recommendations of keywords
in lower layers, which are more difficult to select, lead to
greater reductions in cost than recommendations of keywords
in upper layers, which tend to represent category names, such
as “OCEANS” or “ATMOSPHERE” in the case of GCMD
Science Keywords. Thus, considering a hierarchical vocab-
ulary structure, we propose evaluation metrics that place
greater emphasis on keywords that are more difficult for data
providers to select. First, Sect. 4.1 explains the need for our
evaluation metrics by comparing our metrics with precision
and recall, which are generally used to evaluate recommenda-
tions. Next, as an example of a recommendation evaluation
metric that considers a hierarchical structure of the items
to be recommended, Sect. 4.2 introduces the normalized
eXtended Cumulated Gain (nxCG) [12], which is an eval-
uation metric for the retrieval of XML documents. Finally,
Sect. 4.3 explains our proposed evaluation metrics for a con-
trolled vocabulary such as GCMD Science Keywords. As
mentioned in Sect. 3, we note that each recommended key-
word is given as its entire path, such as “ATMOSPHERE >
ATMOSPHERIC RADIATION > HEAT FLUX.”
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EARTH SCIENCE

Ground Truth

Fig.8 An example of a ground truth

4.1 The need for our metrics

In this section, we explain the need for our evaluation metrics
by considering an example in which we use GCMD Science
Keywords as the controlled vocabulary. As mentioned above,
the keywords in a controlled vocabulary are often managed
hierarchically. Figures 8 and 9 show the hierarchical structure
of a controlled vocabulary, in which each node represents one
keyword. In Fig. 8, we represent the correct keywords in the
controlled vocabulary for a certain dataset as red bordered
nodes. In Fig. 9, we present two patterns of recommended
results for this dataset, in which each recommended keyword
isindicated by a yellow node. In Result (1), three correct key-
words are recommended, all in the top layer, whereas Result
(2) also contains a total of three correct keywords, but they
include keywords in the lower layers. In terms of precision
or recall, both of these results earn the same evaluation score
of 50%. However, we cannot consider both sets of recom-
mendations to be of equivalent value. Although Result (1)
provides correct keywords, which represent the earth science
categories “ATMOSPHERE,” “BIOSPHERE” and “AGRI-
CULTURE,” these keywords are easy for a data provider to
select and also have many descendants. Therefore, the recom-
mendation provided by Result (1) cannot significantly reduce
the cost of keyword annotation. By contrast, Result (2) rec-
ommends correct keywords in lower layers, such as “HEAT
FLUX.” The selection of such keywords requires extensive
knowledge of both the domain and the controlled vocabu-
lary. Therefore, because it recommends keywords that are
more difficult to select, Result (2) is considered to reduce
the cost incurred by the data provider to a greater extent.
Considering that the cost differs depending on the positions
of the keywords in the controlled vocabulary, these two sets

of recommendations should not be regarded as equivalently
valuable, even though their evaluation scores in terms of com-
monly used metrics such as precision and recall are identical.
To differentiate between such recommendations, we must
use evaluation metrics that consider a hierarchical vocabu-
lary structure and place greater emphasis on keywords that
are more difficult to select.

4.2 Normalized eXtended Cumulated Gain

As an example of a recommendation evaluation metric that
considers a hierarchical structure of the items to be recom-
mended, we can consider nxCG [12]. nxCG (Normalized
eXtended Cumulated Gain) is an evaluation metric for the
retrieval of XML documents. In this context, the items recom-
mended in search results can include the Section, Paragraph
or Sentence of interest or even divisions with greater granu-
larity. The nxCG value represents the relative cumulated gain
achieved by an actual system compared with that achieved
by an ideal system. The features of nxCG include the ability
to consider partially correct items and the overlaps between
recommended items in a search result.

4.2.1 Partially correct items

When a system presents Section(A), which contains
Sentence(B), which is a perfectly correct item, Section(A)
can be regarded as a partially correct item. Therefore, we
should discount the gain achieved through the identifica-
tion of Section(A). Similarly, when the system presents
Paragraph(D), which contains Sentence(E), which is a per-
fectly correct item, we must discount the gain achieved
through the identification of Paragraph(D). In this case, con-
sidering that the user will be obliged to read some part of
Section(A) or Paragraph(D) that is irrelevant to the origi-
nal query, we can regard this discounting of the gain as the
generation of a penalty.

4.2.2 Overlaps between recommended items

We consider the case in which a system presents Paragraph
(D) as the highest ranked item and Sentence(E) as the sec-
ond highest ranked item. Because Paragraph(D) contains
Sentence(E), the gain achieved by presenting Sentence(E)

Fig.9 Two examples of sets of

| Biosphere | | Atmosphere | EARTH SCIENCE
\/ Agriculture | Atmospheri‘c

jou

radiation

| Atmosphere | | EARTH SCIENCE
recommended results ) N
Eas), o \ N\
e Q9

-5

Recommended Result (1)
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as the second item is offset by the overlap. In other words,
because there is an overlap between Paragraph(D) and
Sentence(E), the gain achieved through the identification
of Sentence(E) is reduced by the gain represented by
Paragraph(D), which is the highest ranked item. Therefore,
nxCG calculates the cumulated gain, reducing the total gain
in the case of an overlap between recommended items.

4.2.3 How to calculate nxCG

Considering partially correct items and the overlaps between
recommended items, nxCG calculates a relative value with
respect to the cumulated gain that would be achieved by an
ideal system. nxCG@n can be expressed as follows, where
n represents the number of recommended items presented in
a search result.

> =1 xG())

mwCG@n = ————
> xI()

12)

xG(j)and x I (j) represent the gains for the jth-ranked items
presented by the actual system and the ideal system, respec-
tively.

4.3 Proposed evaluation metrics

4.3.1 Differences from evaluation metrics for XML
documents

The two features of nxCG discussed above are also applicable
to a controlled vocabulary such as GCMD Science Keywords.
However, the evaluation concept differs from that for XML
documents in the following two respects.

The first is the hierarchical depth at which an item may be
partially correct. One of the features of nxCG is that a penalty
is generated if a recommended item includes information
that is not relevant to the user’s original request. However,
controlled vocabularies and XML documents differ in the
opportunities they provide for penalty generation. The top
layer and third layer in a controlled vocabulary are analo-
gous to the Section and Sentence levels, respectively, in XML
documents. In the case of XML documents, a Section may
be only partially correct when it is a recommended item in a
search result, whereas when a Sentence is recommended, it
is either perfectly correct or perfectly incorrect. By contrast,
in the case of a controlled vocabulary, there is the possibility
that a recommended keyword in the top layer may be per-
fectly correct or incorrect, and when a keyword in the third
layer is recommended, it may be only partially correct. For
example, suppose that “ATMOSPHERE > ATMOSPHERIC
RADIATION > HEAT FLUX” is a correct keyword. If we
were to recommend another keyword in the third layer, such
as “ATMOSPHERE > ATMOSPHERIC RADIATION >

Recommended Correct
keywords keywords
1. a>b>c 1. a>b>c
2.la>b>d 2. a>b>d
3. la>b>c>e 3. a>b>f
4la>b>1>g
{} Red text : A keyword which can
' get the basic gain.
__ i 1. a>b>c
Simply obtain 2 as>b>d : Reducing basic gains
’ by overlap.
3.la>b>c>e y P
4.la>b>f >g : Incorrect keywords

Fig. 10 Procedure for determining the gain in the case of overlap

EMISSIVITY,” then we could judge the “ATMOSPHERE
> ATMOSPHERIC RADIATION” portion of the recom-
mended keyword to be partially correct. Thus, we would
consider the mistaken recommendation of “EMISSIVITY”
to generate a penalty.

The second difference is the way in which overlaps
between recommended items are addressed. For example,
suppose that “ATMOSPHERE > ATMOSPHERIC RADIA-
TION > HEAT FLUX” is a correct keyword, the highest
ranked keyword is “ATMOSPHERE > ATMOSPHERIC
RADIATION > EMISSIVITY,” and the second highest
ranked keyword is “ATMOSPHERE > ATMOSPHERIC
RADIATION > HEAT FLUX.” If the obtained gain were to
be reduced by the overlap in the same manner as in the case
of nxCG, then the gain from the second recommended key-
word would be reduced by the overlap of “ATMOSPHERE
> ATMOSPHERIC RADIATION,” which is the common
portion of the first and second recommended keywords. If
this approach were to be used, larger gains would tend to
be achieved by recommending keywords that avoid overlaps
with higher ranked keywords. This would lead to an empha-
sis on the recommendation of a wide variety of keywords
that belong to different categories. However, from the per-
spective of data providers, it is not necessarily more useful
to recommend a wide variety of keywords. Moreover, some
data providers may find it valuable to receive correct recom-
mendations for multiple keywords that belong to the same
category. Therefore, we consider both the case in which we
reduce the obtained gain by the overlaps between recom-
mended items and the case in which we simply calculate all
gains provided by correctly recommended keywords without
reducing them by their overlaps. However, even in the latter
case, if a keyword in a lower layer in a recommended key-
word path is incorrect, then we reduce the gain by the overlap
in the same manner as in the former case. The details of the
gain calculation procedure are illustrated in Fig. 10.
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4.3.2 Overview of the proposed evaluation metrics

Considering these two differences with respect to the eval-
uation of retrieved XML documents, this section presents
the overview of the proposed evaluation metrics. We first
explain the assignment of gains and penalties in the case
of a controlled vocabulary with a hierarchical structure and
then introduce our evaluation metrics considering the two
approaches of handling the gains in the case of overlap.

We consider that the cost of annotation for each keyword
depends on either the hierarchical depth to which that key-
word belongs or how many descendants and siblings that
keyword has, and we approximate the cost reduction associ-
ated with the recommendation of each keyword by a gain that
is assigned to each keyword in advance. In this study, this gain
is referred to as the “basic gain.” As methods for calculating
the basic gain for each keyword, we propose the following
two approaches, which consider the cost-affecting factors
mentioned above. One approach is to use the hierarchical
depth, and the other is to use the numbers of descendants
and siblings. In addition, we define appropriate penalties to
be applied to the final gain in each of these two approaches.
The overview of the procedure for calculating the final gain
is presented in Fig. 11, and the details of the calculations are
discussed later.

We call our evaluation metrics normalized hierarchical
Cumulated Gain (nhCG) metrics. Based on the two methods
of calculating the basic gains and the two methods of handling
the gains in the case of overlap, we propose the follow-
ing four evaluation metrics: nhCGypnoreduces "WCGHDreduce»

Correct Keyword

ATMOSPHERE > ATMPSPHERE RADIATION > HEAT FLUX

‘One Recommended Keyword ‘

1st : ATMOSPHERE > ATMOSPHERE RADIATION > EMMISIVTY
L J o\ J
T

T
correctKeyPart

sumBasicGain = The sum of the basic gains of penalty
(ATMOSPHERE and ATMOSPHERE RADIATION)

finalGain = sumBasicGain X penalty|

incorrectKeyPart

Fig. 11 Procedure for calculating the final gain for each recommended
keyword

Table 1 The four proposed metrics

Proposed metric Basic gain Case of overlap
nhC G gpnoreduce @n Hierarchical depth Simply obtain
nhC G gpreduce @n Hierarchical depth Reduce

nhC G psnoreduce @n Descendants and siblings Simply obtain
nhC G psreduce @n Descendants and siblings Reduce

nhCGpsnoreduce AN ThCGpsrequce. Table 1 summarizes these
four metrics.

As in the case of nxCG, these metrics represent relative
values compared with the cumulated gain achieved by an
ideal system. The formula for calculating nhCGgpporeduce 18
given in detail below. Although the methods of calculating the
final gain differ among the different metrics, the calculation
of the relative value compared with the ideal gain is the same
for all of them. finalGain represents the final gain obtained
for each recommended keyword.

=1 finalGain(j)

13
ST () (1)

nhC G gpnoreduce @n =

4.3.3 Basic gain considering hierarchical depth

In this approach, we assign a basic gain to each keyword
based on its hierarchical depth. As mentioned above, we wish
to assign larger basic gains to keywords in lower layers, which
are more difficult to select. We consider that in general, as the
hierarchical depth increases, the number of keywords belong-
ing to that depth also increases. Therefore, we calculate the
basic gain for each keyword as a value related to the number
of keywords that belong to the same depth compared with
the total number of keywords in the controlled vocabulary.
However, if the number of keywords that belong to a deeper
depth is much greater than the number that belong to a shal-
lower depth, a direct proportionality may lead to an excessive
difference between the basic gains assigned to keywords at
these two depths. Therefore, we use the following nonlinear
formula to calculate the basic gains:

keynum(h) .
KT 10

14
log, h (14

basicGaingp (k) =

h represents the hierarchical depth to which keyword k
belongs, and keynum is a function that returns the number of
keywords that belong to depth 4. In addition, | K | represents
the total number of keywords in the controlled vocabulary

Table 2 Basic gain considering hierarchical depth for each keyword in
GCMD Science Keywords

Depth #ofkeywords Basic gain
First layer 14 0.089
Second layer 121 0.429
Third layer 921 2.596
Fourth layer 652 1.474
Fifth layer 183 0.253
Sixth layer 17 0.018
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K. Table 2 shows the results of applying this formula to
GCMD Science Keywords used in our experiments. In the
case of GCMD Science Keywords, because the numbers of
keywords in the fourth and deeper layers are monotonically
decreasing, relatively small scores are assigned to their basic
gains. This indicates, for example, that there is little differ-
ence between the costs for selecting keywords in the fifth and
sixth layers because the numbers of keywords in those layers
are small.

4.3.4 Basic gain considering descendants and siblings

In this approach, we calculate the basic gain for each key-
word based on the numbers of descendants and siblings it
possesses. As in Sect. 4.3.3, we wish to estimate larger basic
gains for keywords that are more difficult to select from
the controlled vocabulary. Therefore, we assign larger basic
gains to keywords with more siblings because it is more
difficult to select a suitable keyword from among a larger
number of keywords that belong to the same upper keyword.
As shown in Fig. 12, a larger basic gain can be achieved
by recommending a keyword that has 15 siblings than by
recommending a keyword that has only 2 siblings.

In addition, we wish to assign larger gains to more specific
keywords that allow better discrimination among datasets.
Because more abstract keywords tend to be located at shal-
lower depths, such keywords are easier to select from a
controlled vocabulary. By contrast, because more specific
keywords tend to be located at deeper depths, such keywords
are more difficult to select. Let us consider an example based
on GCMD Science Keywords. We propose that we should
estimate smaller basic gains for more abstract keywords,
which represent general categories of earth science, such as
“ATMOSPHERE,” whereas we should estimate larger basic
gains for more specific keywords, which represent specific
types of observations or phenomena, such as “ACID RAIN.”
Based on these considerations, we calculate the basic gain
for each keyword by considering the number of descendants
of that keyword. That is, we regard a keyword with more
descendants as a more abstract keyword, which encompasses
various meanings, and a keyword with fewer descendants as
a more specific keyword, which embodies only a particular
meaning. As illustrated in Fig. 13, a larger basic gain can be

siblings: 2 Smaller
basic gain

siblings: 15 Larger
basic gain

Fig. 12 Considering the number of siblings

Smaller
() basic gain

descendants: 2

descendants: 20

Fig. 13 Considering the number of descendants

achieved by recommending a keyword with only 2 descen-
dants than by recommending a keyword with 20 descendants.

When the numbers of descendants and siblings are con-
sidered as described above, the formula for calculating the
basic gain for each keyword is as given below.

sibling (k) )} (15)
descendant (k) + 1

basicGainps (k) = log, {1 + (

sibling (k) is a function that returns the number of siblings of
akeyword k, and descendant (k) is a function that returns the
number of descendants of the keyword k. The reason why
we add 1 to descendant (k) is to account for the case of a
keyword that has no descendants. Similarly, we add 1 to the
argument of the logarithm to prevent its value from being
less than 1. As before, to avoid excessive differences among
the basic gains for different keywords, we define the formula
to vary in a nonlinear form.

4.3.5 Assigning penalties considering hierarchical depth

This section explains the method used to assign a penalty
for a mistakenly recommended keyword when the gain is
calculated based on hierarchical depth. As stated above,
we assign a penalty to each recommended keyword path
that contains an incorrect keyword. For example, suppose
that “ATMOSPHERE > ATMOSPHERIC RADIATION >
HEAT FLUX” is a correct keyword and that “ATMO-
SPHERE > ATMOSPHERIC RADIATION > EMISSIV-
ITY” is recommended as the highest ranked keyword. We
consider the mistaken recommendation of “EMISSIVITY”
to generate a penalty. This penalty reduces the final gain with
respect to the sum of the basic gains obtained for “ATMO-
SPHERE > ATMOSPHERIC RADIATION.” In this case,
because two of the three keywords in the recommended key-
word path are correct, we consider that the final gain is
two-thirds the sum of the basic gains. Algorithms 1 and 2
present pseudocodes demonstrating the procedures for cal-
culating the final gain for a recommended keyword subject
to a penalty. recomKeyword represents the full path of a
recommended keyword, such as “ATMOSPHERE > ATMO-
SPHERIC RADIATION > EMISSIVITY.” correctKeyPart
is an array that stores each correct keyword in the recom-
mended keyword path, and sumBasicGain is the sum of the
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Algorithm 1 Final gain for a recommended keyword using

nhC G Hpnoreduce @n

Input: recomKeyword, correctKeyPart

Output: finalGain for recomKeyword

1: sumBasicGain < 0

2: if correctKeyPart.length # recomKeyword.length then

3:  for keyword in correctKeyPart do

if loverlap(keyword) then

: sumBasicGain < sumBasicGain +
basicGaingp(keyword)

end if

end for

: else

for keyword in correctKeyPart do

0: sumBasicGain < sumBasicGain +
basicGaingp(keyword)

11:  end for

12: end if

13: finalGain < sumBasicGain -

(correctKeyPart.length [recomKeyword.length)

ook

YRR

—

Algorithm 2 Final gain for a recommended keyword using
nhC G gpreduce @n

Input: recomKeyword, correctKeyPart

Output: finalGain for recomKeyword

1: sumBasicGain < 0

2: for keyword in correctKeyPart do

3:  if loverlap(keyword) then

4: sumBasicGain < sumBasicGain +
basicGaingp(keyword)

5:  endif

6: end for

7: finalGain < sumBasicGain -
(correctKeyPart.length /recomKeyword.length)

basic gains obtained for the keywords in the recommended
keyword path. overlap(keyword) is a function that identifies
whether a keyword has previously appeared at a higher rank-
ing.

4.3.6 Assigning penalties considering descendants and
siblings

This section explains the method used to assign a penalty for
a mistakenly recommended keyword when the gain is cal-
culated based on the numbers of descendants and siblings.
We determine the magnitude of the penalty to be assigned
depending on the numbers of siblings of the incorrect key-
words that are included in the path of the recommended
keyword. For the example presented in Sect. 4.3.5, we assign
a penalty to the sum of the basic gains obtained for “ATMO-
SPHERE > ATMOSPHERIC RADIATION” by considering
the number of siblings of the keyword “EMISSIVITY.” As
shown in Fig. 14, if an incorrect keyword has dozens of sib-
lings, then the data provider must investigate whether those
dozens of siblings are correct, whereas if an incorrect key-
word has only two siblings, then all the data provider must
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Fig. 14 Penalty assignment considering descendants and siblings

Algorithm 3 Final gain for a recommended keyword using
nhC G psnoreduce @n

Input: recomKeyword, correctKeyPart, incorrectKeyPart

Output: finalGain for recomKeyword

1: sumBasicGain < 0

2: sumSiblingNum < 0

3: if correctKeyPart.length # recomKeyword.length then

4:  for keyword in correctKeyPart do

5: if loverlap(keyword) then

6: sumBasicGain <— sumBasicGain +
basicGainpg(keyword)

7 end if

8:  end for

9:  for keyword in incorrectKeyPart do

10: sumSibling Num < sumSibling Num +
sibling(keyword)

11:  end for

12: else

13:  for keyword in correctKeyPart do

14: sumBasicGain < sumBasicGain +
basicGainpg(keyword)

15:  end for

16: end if

17: finalGain < sumBasicGain - (1/logy(sumSibling Num + 2))

do is to investigate whether those two siblings are correct.
Therefore, when an incorrect keyword has more siblings, the
cost of keyword annotation is considered to be higher, and
we assign a larger penalty. Algorithms 3 and 4 present pseu-
docodes demonstrating the procedures for calculating the
final gain for a recommended keyword subject to a penalty.
incorrectKeyPart is an array that stores the incorrect key-
words in the recommended keyword path. sumSiblingNum
is the total sum of the numbers of siblings of the incorrect
keywords. When calculating the final gain, we suppress any
excessive penalty effect by introducing a logarithm into the
formula. Moreover, to ensure that a penalty is also assigned
to a keyword with one sibling, we add 2 to sumSiblingNum.

5 Experimental evaluation

In this paper, we consider the indirect method and the direct
method of keyword recommendation. The direct method
is independent of the quality of the existing metadata set
because it exploits the information available in keyword def-
initions. By contrast, if the quality of the existing metadata set
is insufficient, the indirect method, which relies on existing
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Algorithm 4 Final gain for a recommended keyword using
nhC G psreduce @n

Input: recomKeyword, correctKeyPart, incorrectKeyPart
Output: finalGain for recomKeyword
1: sumBasicGain < 0
2: sumSiblingNum < 0
: for keyword in correctKeyPart do
if loverlap(keyword) then
sumBasicGain < sumBasicGain +
basicGainps(keyword)
end if
: end for
: if incorrectKeyPart # [] then
for keyword in incorrectKeyPart do
0: sumSiblingNum < sumSiblingNum +
sibling(keyword)
11:  end for
12: end if
13: finalGain < sumBasicGain - (1/logy(sumSibling Num + 2))

nohw

YRR

—

metadata, is less likely to provide useful recommendations.
In this section, to verify our hypothesis, we consider several
existing metadata sets that differ in quality and observe the
changes in the values of the evaluation metrics that occur
when the indirect method is applied to these sets of existing
metadata. We use the evaluation metrics proposed in Sect. 4.3
to compare the direct and indirect methods.

In our experiments, we use real metadata on datasets
managed by the GCMD. Because the metadata in the
GCMD include GCMD Science Keywords, we can regard
the annotated GCMD Science Keywords as the set of correct
keywords for that dataset. We create the ideal result for each
of our evaluation metrics by ranking these correct keywords
such that the sum of the gains obtained with the considered
evaluation metric is as large as possible.

5.1 Creation of existing metadata sets that differ in
quality

In the case of GCMD metadata used in our experiments,
the average number of words in the abstract text is approxi-
mately 112 words; there are approximately 10,000 datasets
whose abstract texts contain fewer than 50 words, includ-
ing 6000 datasets whose abstract texts contain fewer than
25 words. Figure 15 shows the distribution of the number of
words in the abstract text in the GCMD metadata set.!© Thus,
if an abstract text contains fewer than 50 words or 25 words,
or approximately one half or one quarter of the average num-
ber of words in the abstract text in the GCMD metadata set,
respectively, then we consider the metadata quality for the
corresponding dataset to be insufficient from the perspective
of the abstract text. By contrast, if an abstract text contains
more than 200 words, or approximately twice the average

10 We removed stopwords.

The number of datasets
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The number of words of an abstarct text

Fig.15 Distribution of the number of words in the abstract text provided
for each dataset in the GCMD

number of words in the abstract text in the GCMD metadata
set, then we consider the corresponding metadata to include
sufficient information to understand the contents of the asso-
ciated dataset. We also consider the number of annotated
keywords per dataset. For example, if fewer than 5 keywords
are used to annotate a dataset (for which at least 10 key-
words should be required), then the metadata quality for that
dataset is considered to be insufficient from the keyword per-
spective. By contrast, considering the fact that most datasets
in the GCMD are annotated with fewer than 10 keywords as
we can see in Fig. 1, if a dataset is annotated with approxi-
mately 10 keywords, then those keywords can be considered
to cover, to some extent, multiple aspects of the dataset.
Here, we explain the process used to create existing meta-
data sets that differ in quality for our experimental evaluation.
To consider all cases in which the quality is either sufficient
or not in terms of each of the three quality measures intro-
duced in Sect. 3.1, namely Q; (average number of words
in the abstract text), Qx (average number of annotated key-
words) and Q; (number of existing datasets), we constructed
one existing metadata set with each of the 23 corresponding
patterns. Table 3 lists the created sets MS; to MSg and their
characteristics as well as the number of datasets (metadata)
assigned to each set. First, because we can observe most
datasets in the GCMD are annotated with fewer than 10 key-
words, we consider datasets that are annotated with more than
10 keywords to have sufficient quality in terms of keywords.
Thus, to create a metadata set with an insufficient number of
keywords, we randomly removed keywords from the meta-
data of these datasets until each had fewer than 5 keywords,
which is less than half of the average number. Second, to
obtain metadata sets with sufficient and insufficient quality
in terms of the abstract text, we divided the datasets into
those whose metadata contained abstract texts of fewer than
50 words and more than 200 words, respectively. Finally, by
randomly selecting the metadata associated with 100 datasets
from each metadata set created as described above, we cre-
ated metadata sets with insufficient quality in terms of the
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I?Z!(ei:tin/;rrtrilztcziggt}; created sets Existing metadata set Abstract text Annotated keywords Datasets
MS; (small Qy, large Qy, small Q) < 50 words > 10 keywords 100 cases
MS; (small Qy, large Qy, large Q) < 50 words > 10 keywords 2487 cases
MS3 (large Qy, large Qy, small Q) > 200 words > 10 keywords 100 cases
MSy (large Qy, large Qy, large Qp) > 200 words > 10 keywords 1981 cases
MSs (small Q¢, small Qk, small Q) < 50 words < 5 keywords 100 cases
MS¢ (small Q¢, small Qy, large Qp) < 50 words < 5 keywords 2487 cases
MS7 (large Qy, small Qy, small Qp) > 200 words < 5 keywords 100 cases
MSg (large Qy, small Qy, large Qp) > 200 words < 5 keywords 1981 cases
number of existing datasets for which metadata are avail- 05
able. Thus, we created 8 metadata sets to serve as references 0.4 .\
for recommending keywords for a target dataset. 03 \ P
0.2 ———
5.2 Influence of metadata quality on the o1 3
performance of the indirect method = '
° 1-50 words 51-100 101-150 151-200 >=200
In this section, we discuss the variations in the evaluation words ~ words  words  words

values observed among the results for the different existing
metadata sets and describes the influence of each of the three
considered quality measures on the performance of the indi-
rect method.

To consider the possibility that the values of the evalua-
tion metrics may vary depending on the metadata quality of
the target dataset, we prepared five target metadata sets, each
consisting of metadata for 100 target datasets and one each
with abstract texts consisting of fewer than 50 words, 51-100
words, 101-150 words, 151-200 words and more than 200
words. To ensure reliability, each target dataset was anno-
tated with more than 10 keywords, and there was no overlap
between the target metadata sets and the existing metadata
sets.

We regarded the keywords that have been added to each
target dataset in the GCMD as the set of correct keywords for
that dataset. We evaluated the top 10 keywords recommended
by the indirect method and by the direct method using the
proposed evaluation metrics. Figures 16, 17, 18, 19, 20, 21,
22 and 23 show the results of applying both methods to the
target metadata sets. Figures 16, 18, 20 and 22 present the
results obtained using MS; to MSy, in which Qy is large.
Figures 17, 19, 21 and 23 present the results obtained using
MS5 to MSg, in which Qy is small. The horizontal axis repre-
sents the target metadata set, and the vertical axis represents
the average evaluation value.

The number of words in the abstract text For each of Fig-
ures 16,17, 18,19, 20, 21, 22 and 23, we discuss the influence
of Q. on the performance of the indirect method. Because
we should compare existing metadata sets for which the
number of datasets with available metadata is comparable,
we consider the changes in the evaluation values between
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the following pairs of existing metadata sets: (MS, MS3),
MS;, MS4), (MSs, MS7) and (MSg, MSg). Except in the
case of the target datasets with abstract texts of fewer than
50 words, the evaluation values obtained using MS3, MSy4,
MS7 and MSg tend to be higher than those obtained using
MSi, MS;, MSs5 and MSg. This finding demonstrates that
Q. influences the performance of the indirect method. More-
over, the results indicate that as the number of words in the
abstract text of the target dataset increases, the differences in
the evaluation values due to Q; become larger. This behav-
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ior can be explained as follows: if the metadata of the target
dataset include sufficient information for the recommenda-
tion of suitable keywords, then the recommendation accuracy
improves in proportion to an increasing amount of informa-
tion available in the existing metadata set. From this result, it
can be recommended that a data provider should provide an
abstract text with a sufficient description of the correspond-
ing dataset.

In the case that the abstract texts in both the existing
and target metadata sets consist of fewer than 50 words,
however, the evaluation values are significantly higher. To
determine the cause of this phenomenon, we investigated
the corresponding datasets. We found that for many of the
target datasets, their abstract texts contained descriptions
that were nearly identical to those in the existing meta-
data. For example, some data providers produce multiple
abstract texts from the same template by simply replacing
the names of the observation satellite, the research vessel
and the observation location. The metadata of these datasets
are likely to have been mass produced through copying and
pasting, and the annotated keywords for these datasets are
also nearly the same. Thus, the evaluation values of the indi-
rect method become high as it can utilize the information of
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nearly identical metadata in the existing metadata sets. Such
mass production of metadata provides an additional indica-
tion that the cost incurred by data providers for metadata
annotation is very high.

The number of annotated keywords To investigate the influ-
ence of Qy, we consider the changes in the evaluation values
between the following pairs of existing metadata sets: (MSy,
MSs), (MS,, MSg), (MS3, MS7), and (MS4, MSg). We can
observe the changes by comparing lines of the same color
between Figs. 16 and 17, 18 and 19, 20 and 21, and 22
and 23. The results show that when Qy is small, the evalua-
tion values tend to be lower; however, Q has less influence
on the results of the indirect method in the cases of existing
metadata sets with small O (MS|, MS,, MSs, and MSg).
This finding indicates that when Q; is small, the recommen-
dation accuracy cannot be improved by increasing Q. From
these results, we conclude that Qy affects the results, but QO
should receive greater emphasis.

The number of existing datasets with available metadata In
each of Figures 16, 17, 18, 19, 20, 21, 22 and 23, we con-
sider the influence of Q; on the performance of the indirect
method. Because we should compare existing metadata sets
of comparable Q, we consider the changes in the evaluation
values between the following pairs of existing metadata sets:
(MS1,MS5), (MS3,MSy4), (MSs,MSg) and (MS7, MSg). The
results show that the evaluation values obtained using MS»,
MS4, MS¢ and MSg tend to be higher than those obtained
using MSy, MS3, MSs5 and MS;. This indicates that Qy
affects the results of the indirect method. If Q,, is small, then
the number of comparisons considered when calculating the
similarities is insufficient, resulting in a low recommenda-
tion accuracy. In addition, one of the reasons for this result
is that O, directly affects the accuracy of the topic distribu-
tion obtained via LDA, which is a kind of machine learning
technique.

Discussion The results presented in this section show that all
three quality measures considered in this study influence the
results of the indirect method. Therefore, the performance
of the indirect method tends to depend on the quality of the
existing metadata set, and there is a high likelihood that the
indirect method cannot offer reliable accuracy and compre-
hensiveness, especially when the existing metadata quality is
insufficient. When MS4, whose quality is sufficient in terms
of all three measures, is used as the reference for the indirect
method, the evaluation values tend to be highest. By contrast,
when MSs, whose quality is insufficient in terms of all three
measures, is used as the reference, the evaluation values tend
to be lowest. These observations provide an additional indi-
cation that the metadata quality influences the performance
of the indirect method. As mentioned in Sect. 1, the quality of
the metadata registered in DIAS can generally be regarded as
insufficient. Therefore, it can be expected that if we were to
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use this metadata set as the existing metadata set for keyword
recommendation, the indirect method would be ineffective.

5.3 Comparison between the direct and indirect
methods

In this section, we compare the direct and indirect methods.
First, in the case that the abstract texts in both the existing
and target metadata sets consist of fewer than 50 words, the
evaluation values obtained using the direct method are lower
than those obtained using the indirect method. The cause of
this phenomenon is described in Sect. 5.2. With the exception
stated above, the results in Figs. 16, 17, 18, 19, 20, 21, 22 and
23 show that the evaluation values achieved using the direct
method are higher in most evaluation metrics than those
achieved using the indirect method. To determine the rea-
sons for this behavior, we investigated the results obtained by
applying these two methods to several datasets. We found that
regardless of the characteristics of the existing metadata set
used, the indirect method tends to recommend keywords from
the top layer of GCMD Science Keywords. This is because
Eq. (2), which describes the keyword relevance calculation
used in the indirect method, depends on the frequencies of
the keywords with which the existing datasets are annotated,
and keywords in the top layer appear more frequently. By
contrast, our evaluation metrics assign a larger basic gain
to keywords that are more difficult for data providers to
select. Therefore, when the proportion of the correctly recom-
mended keywords that are located in the top layer is higher,
the evaluation values will inevitably be lower. For the recom-
mendation of top-layer keywords in a controlled vocabulary
with a hierarchical structure, the indirect method is likely
to be more appropriate than the direct method, but it cannot
support the selection of keywords in lower layers, which are
more difficult to select. In other words, the indirect method
cannot effectively reduce the cost incurred by data providers
for keyword annotation. By contrast, the direct method is
independent of the frequencies of the annotated keywords in
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Fig. 24 The proportions of keywords in each layer recommended by
the indirect method
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the existing metadata because those metadata are not used.
Therefore, the direct method tends to recommend more key-
words in lower layers, which are more difficult to select, and
can reduce the cost of keyword annotation to a greater extent.
To illustrate this behavior, as shown in Figs. 24 and 25, we
calculated the proportions of the correctly recommended key-
words belonging to each hierarchical depth for each method.
Because of space limitations, only the ratios among the top
three hierarchical depths are shown in Fig. 24, which presents
the ratios found when using MS7.

Notably, the evaluation values achieved using the direct
method are often higher than even those achieved using the
indirect method with MSy4, whose quality is sufficient in all
three considered measures. This finding indicates that the
indirect method, which depends on the keyword frequencies,
has a tendency to recommend keywords in the top layer even
when the existing metadata quality is sufficient.

Finally, the results of the direct method in Figs. 16, 17,
18, 19, 20, 21, 22 and 23 show that when the abstract texts
in the target metadata contain fewer than 50 words, the eval-
uation values are the lowest among all target metadata sets.
This observation demonstrates that the keyword recommen-
dation accuracy thatis achieved by the direct method depends
on the number of words in the target abstract text. There-
fore, we recommend that data providers should be sure to
provide abstract texts that contain sufficient information to
adequately describe their datasets.

6 Conclusion and future works
6.1 Summary

To support keyword annotation for data in various research
domains, we have discussed methods of recommending key-
words drawn from a controlled vocabulary. We believe that
the indirect method of keyword recommendation is likely
to be ineffective when the quality of the existing metadata
set is insufficient. By contrast, the direct method utilizes

the definition of each keyword in addition to the abstract
text provided in the metadata associated with the recom-
mendation target, and therefore, it does not depend on the
quality of an existing metadata set. To verify the effective-
ness of the direct and indirect methods, we created several
metadata sets of differing quality in terms of the number
of existing datasets with available metadata, the length of
the abstract texts and the number of annotated keywords per
dataset. We observed the changes in various evaluation val-
ues that occurred when these different datasets were used
as the existing metadata set for keyword recommendation,
and we showed that the performance of the indirect method
depends on the quality of the existing metadata set. This
observation shows that it is important to consider metadata
quality when we adopt keyword recommendation methods.
Additionally, we proposed evaluation metrics that consider a
hierarchical vocabulary structure, which is a distinctive fea-
ture of most controlled vocabularies. Using our evaluation
metrics, we evaluated the extent to which the cost incurred
by data providers for keyword annotation is reduced through
keyword recommendation. In our experimental evaluations,
we compared the indirect method with the direct method
using the proposed metrics. The results show that the indi-
rect method tends to recommend keywords in the highest
layer, which are easy to select, whereas the direct method
tends to recommend keywords in lower layers, which are
more difficult to select.

6.2 Future works

In this study, we considered keyword recommendation using
only the keywords that are included in GCMD Science
Keywords. In the future, we wish to investigate other con-
trolled vocabularies in the earth science domain. We are
also interested in applying our analysis to various other
research domains, such as agriculture, chemistry, biology
and computer science, in addition to earth science. Sev-
eral such controlled vocabularies are available, including the
CAB Thesaurus, the ACM Computing Classification Sys-
tem, and MeSH, which are relevant to agriculture, computer
science and the life sciences, respectively. Each controlled
vocabulary has a hierarchical structure, in which each
domain is further subdivided into more specific domains.
Notably, the direct method requires keyword definitions,
but not all controlled vocabularies include keyword defini-
tions. Therefore, by creating a definition for each keyword
from words related to that keyword, we wish to improve
the direct method to make it suitable for application to a
controlled vocabulary that does not include keyword defini-
tions.

Moreover, we would like to improve the direct and indirect
methods with more consideration on a hierarchical vocabu-
lary structure. In this paper, we used simple implementations

@ Springer



326

Y. Ishida et al.

for the direct and indirect methods in order to focus on the
discussion of metadata quality. It is possible to handle each
keyword considering the position of the keyword in the con-
trolled vocabulary. Also, we are interested in integrating the
direct and indirect methods. Because both of these methods
are based on similarity calculations, the assignment proba-
bility of each keyword for a recommendation target can be
acquired as a linear combination of the similarities calculated
using the two methods. For this purpose, we need to define a
parameter « to indicate how much emphasis should be placed
on each method. The value of this parameter « should depend
on the quality of the existing metadata set that is available
for reference. In addition, we can consider utilizing the con-
cept of keyword co-occurrence. In the earth science domain,
sets of two or more keywords can be identified that tend
to co-occur. For example, when researchers observe wind
intensity, they also simultaneously observe wind velocity.
However, an approach that relies on keyword co-occurrence
will necessarily depend on the quality of the existing meta-
data set.

Finally, in our future work, we would like to incorpo-
rate our approach into a real metadata management system
and obtain feedback on its performance from researchers and
experts in earth science. Because we are assuming the frame-
work that the final keyword selection from the recommended
keywords is done by data providers, we would like to con-
sider the significance of keyword recommendation with the
keyword selection process.
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