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Pattern-based Abstraction for Verifying Secrecy in Protocols

L. Bozga, Y. Lakhnech, M. Périn
December 6, 2003

1 Introduction

At the heart of almost every computer security architecture is a set of cryptographic protocols that use
cryptography to encrypt and sign data. They are used to exchange confidential data such as pin numbers
and passwords, to authentify users or to guarantee anonymity of principals. It is well known that even
under the idealized assumption of perfect cryptography, logical flaws in the protocol design may lead
to incorrect behavior with undesired consequences. Maybe the most prominent example showing that
cryptographic protocols are notoriously difficult to design and test is the Needham-Schroeder protocol
for authentication. It has been introduced in 1978 [29]. An attack on this protocol has been found
by G. Lowe using the CSP model-checker FDR in 1995 [23]; and this led to a corrected version of
the protocol [24]. Consequently there has been a growing interest in developing and applying formal
methods for validating cryptographic protocols [25, 13]. Most of this work adopts the so-called Dolev and
Yao model of intruders. This model assumes perfect cryptographic primitives and a nondeterministic
intruder that has total control of the communication network and has capacity to forge new messages.
It is known that reachability is undecidable for cryptographic protocols in the general case [18], even
when a bound is put on the size of messages [17]. Because of these negative results, from the point of
view of verification, the best we can hope for is either to identify decidable sub-classes as in [5, 31, 26]
or to develop correct but incomplete verification algorithms as in [28, 22, 20].

In this paper, we present a correct but, in general, incomplete verification algorithm to prove secrecy
without putting any assumption on messages nor on the number of sessions. Proving secrecy means
proving that secrets, which are pre-defined messages, are not revealed to unauthorized agents. The
main contribution of our paper is a method for proving that a secret is not revealed by a set of rules
that model how the protocol extends the set of messages known by the intruder.

Our method is based on the notion of safe messages that guard a secret ; these are messages that
contain secrets encrypted with safe keys. For example, suppose that our secret is the nonce Np and
that the key K;l — the inverse of Kp — is not known by the intruder. We say that Kp is a safe key.
Then, any message that contains Np and that is encrypted with Kp is a guard for Np, e.g., Np is
protected in the message {{Na, N}k, } i, by the safe message {Na, Ng}k,.

Following this idea, given a set K of safe keys we define the K -guards as the set of message encrypted
with a key in K. However, K-guards can fail at protecting a secret. Indeed, a protocol may reveal
some secrets embedded in safe messages. Here is an example from Needham-Schroeder protocol (see
Example 3.1). Consider the action of the responder — played by a honest principal B — in a session
between an intruder I and B. The action of B may be seen as arule {I,y} x, — {y,n2}k,: On reception
of any message matching with the left-hand-side, B will decrypt and send y to the intruder. So, we
conclude that the safe key K p can guard a secret except in messages of the form {I,y} x, where y is a
secret.

The idea underlying our verification algorithm is then to characterize the set of K-guards that will
effectively keep the secret unrevealed in all sent messages. The K-guards that do not protect their secret
are called safe-breakers. They arise from the protocol. So, the core of our verification algorithm takes
a protocol and compute these “bad guards”. Finally, the set of effective guards is the set of K-guards



that are not safe-breakers. This set is, in general, infinite. Therefore, we represents it using terms: A
terms with variables is meant for the infinite set of its ground instances.

A weakness of this symbolic representation is, however, that variables appear only at the leafs, and
hence, they do not allow to describe, for instance, the set of terms that share a common sub-term. To
mitigate this weakness, we introduce super terms, that is, terms with an interpreted constructor, Sup,
where a term Sup (t) is meant for the set of terms that contain ¢ as sub-term. The use of super terms in
our verification method require to solve a generalized form of the unification problem. In counterpart,
it allows us to define a widening operator that ensures termination of the verification algorithm.

We developed a prototype in Caml that implements this method. We have been able to verify several
protocols taken from [10] including, for instance, Needham-Schroeder-Lowe (0.03 sec), Yahalom (12.67
sec), Otway-Rees (0.01 sec), and Kao-Chow (0.78 sec).

Related work

Decidability Dolev, Even and Karp introduced the class of ping-pong protocols and showed its
decidability. The restriction put on these protocols are, however, too restrictive and none of the protocols
of [10] falls in this class. Recently, Comon, Cortier and Mitchell [12] extended this class allowing pairing
and binary encryption while the use of nonces still cannot be expressed in their model. Reachability is
decidable for the bounded number of sessions [5, 31, 26] or when nonce creation is not allowed and the
size of messages is bounded [17]. These assumptions are in practice not always justified or rather rarely
justified.

Security protocols debugging For the general case, model-checking tools have been applied to
discover flaws in cryptographic protocols [23, 32, 27, 11]. The tool described in [11] is a model-checker
dedicated to cryptographic protocols. Most of these methods bound the number of sessions to be
considered as well as the size of the messages.

Deductive methods Methods based on induction and theorem proving have been developed (e.g. [30,
9, 15]). These methods are general, i.e., can handle unbounded protocols, but are not automatic with
exception of [15]. This work can be seen as providing a general proof strategy for verifying security
protocols. The strategy is implemented on the top of PVS and allows to handle many known protocols.
The termination of this strategy is, however, not guaranteed.

Logic programming based methods These methods are based on modeling protocols in Horn
Logic, e.g. as Prolog programs, as in [34, 7, 3] and developing suitable proof strategies. The main
difficulty in these methods is that termination of the analysis is not guaranteed.

Typing and Abstraction-based methods Type systems and type-checking have also been advo-
cated as a method for verifying security protocols (e.g. [1, 21, 2]). Although, these techniques can handle
unbounded protocols they are as far as we know not yet completely automatic. Closest to our work
are partial algorithms based on abstract interpretation and tree automata that have been presented
in [28, 22, 20]. The main difference is, however, that we do not compute the set of messages that can
be known by the intruder but a set of guards as explained above. Our method can handle unbounded
protocols fully automatically with the price that it may discover false attacks. Interesting enough is
that this does not happen on any of the practical protocols we tried (see Table 8 in Section 7.3). We
are actually working on a method that allows to analyze possible attacks.

2 Preliminary

If n € N then we denote by N,, the set {1,---,n}. Let X be a countable set of variables and let F*
be a countable set of function symbols of arity 4, for every i € N. Let F = ;o Fi. The set of terms
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over X and F, denoted by 7 (X,F), is the smallest set containing X and closed under application of
the function symbols in F, i.e., f(t1,---,tn) is a term in T (X, F), if t; € T(X, F), fori=1,---,n, and
f € F". As usual, function symbols of arity 0 are called constant symbols. Ground terms are terms
with no variables. We denote by 7 (F) the set of ground terms over F.

A tree tr is a function from a finite subset of w* to X U F such that tr(u) € F" iff u-j € dom(tr),
for every j € {0,---,n — 1}. We identify terms with trees by associating to each term t a tree Tr(t) as
follows:

1. if  is a variable, then dom(Tr(z)) = {e} and Tr(z)(e) = x,
2. if f is a constant symbol, then dom(Tr(f)) = {e} and Tr(f)(e) = f and

3. for a term t = f(to, -, tn-1), dom(Tr(t)) = {e} U U?:_()l i- dom(Tr(t;)), where - is word concate-

nation extended to sets, Tr(t)(e) = f and Tr(t)(i - u) = Tr(t;)(u).

Henceforth, we tacitly identify the term ¢ with Tr(t). The elements of dom(t) are called positions in
t. We use < to denote the prefix relation on w*. We write ¢t(p) to denote the symbol at position p in
t and t|, to denote the subterm of ¢ at position p, which corresponds to the tree t|,(z) = t(p - =) with
z € dom(t|,) iff - p € dom(t). We write ¢~'p to denote the position obtained from p after removing
the prefix q. We write t <t (resp. t < t') to denote that ¢ is a sub-term (resp. proper sub-term) of ¢’ .
Moreover, t[t'/p] denotes the term obtained from ¢ by substituting ¢’ for ¢|,. The set of variables in a
term ¢ is defined as usual and is denoted by var (t).

3 Models for cryptographic protocols

In this section, we describe how we model cryptographic protocols and give a precise definition of the
properties we want to verify. We begin by describing the messages involved in a protocol model.

3.1 Messages

The set of messages is denoted by 7 (F) and contains terms constructed from constant symbols and the
function symbols encr : 7(F) x K — 7(F) and pair : 7(F) x T(F) — T(F). Constant symbols are
also called atomic messages and are defined as follows:

1. Principal names are used to refer to principals in a protocol. The set of all principals is P.

2. Nonces can be thought as randomly generated numbers. As no one can predict their values, they
are used to convince for the freshness of a message. We denote by N the set of nonces.

3. Keys are used to encrypt messages. We have three key constructors pbk, pvk and smk of type :
(N X P*)UP* — K, where pbk, pvk and smk stand respectively for public, private and symmetric
keys.

The nonce that can appear as the first parameter of a key term is used to model fresh keys. For example,
if N is a nonce produce by a server, then smk(N, A, B) is a fresh symmetric session key between A
and B, whereas smk(A, B) is a session independent symmetric key between A and B. The creation of
fresh keys is useful to model session key; this feature is used in the Yahalom’s protocol.

The key pbk(p1,---,p.) is an inverse of the key pvk(p1,---,p,) and vice versa; and a key
smk(n,p1,---,py) is its self-inverse. If k is a key then we use k! to denote its inverse. Moreover, we
model as usual, we write K 4 instead of pbk(A), K ;' instead of pvk(A), K a5 instead of smk(A, S), and
K ap with fresh(K ap) instead of smk(N, A, B) with fresh(N).

We denote by K the set of ground keys, i.e., K =7 (N U P U {pbk, pvk, smk}).

For the sake of simplicity we left out the signatures and hash functions but we can easily handle
them in our model. Let A =P UN UK and F = AU {encr, pair}. As usual, we write (m,ms) for
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tran(py) : tran(p2) :
b1 - {(planl)}pbk(pz) ) {(Phy)}pbk(m) - {(y7n2)}pbk(p1)
{(n1,2) b por(pr) = {2} pok(pe)

Figure 1: Needham-Schreoder protocol

pair(mi, ma) and {m}, instead of encr(m, k). Message terms are the elements of 7 (X,F), that is,
terms over the atoms A, a set of variables X and the binary function symbols encr and pair. Thus,
messages are ground terms in 7 (X, F).

Role terms To describe the transitions that can be performed by a principal in a session of a cryp-
tographic protocol, we introduce role terms. Let X be a set of variables that range over nonces with
n,ni, ... as typical variables and Xp be a set of variables that range over principals with p,p1,... as
typical variables. We assume that X, X and Xp are pairwisely disjoint.

Role terms are terms constructed from variables in X U X'y L Xp using the binary function symbols
encr and pair and where constants are not allowed. More, precisely role terms are defined by the
following tree grammar:

Key = pbk(xy,---,xz.) | pok(z1, -, z)
smk(xy, -, x.) | smk(n,zq,-- -, x,)
RT == n|p| Key| z | pair(RTy, RT2) |

encr(RT, Key)

where z1,---, 2, € Xp,n € Xy, p€ Xp and x € X.

3.2 Cryptographic Protocols - Syntax

To describe cryptographic protocols, we need to describe the transitions the principals can perform. In
our setting, transitions have the form ¢t — t', where t and t' are role terms with var(t') C var(t), t is
called the guard of the transition and ¢’ its action.

Now, a cryptographic protocol is described by a parameterized session description where the param-
eters are the involved principals, the fresh nonces and used keys. A session description is then given
by a tuple (P, tran, fresh), where

e P is a vector (p1,---,pr), 7 > 1, of distinct principal variables in X’p,
e tran is a function that associates to each principal variable in P a finite list of transitions,

e fresh associates to each principal variable p in P a disjoint finite set of nonce variables in Xy .

Example 3.1 The Needham-Schroeder protocol for authentication can be described as follows using
the usual informal notation for cryptographic protocols:

A— B : {A N1}k,
B — A . {Nl,NQ}kA
A— B : {Na}i,

Intuitively, A plays the role of the initiator of the session; while B is a responder. In our setting
it is described by the session description given in Figure 1, where P = (p1,p2), fresh(p1) = {n1} and
fresh(p2) = {n2}. As one can see, our description is much more detailed and elevates many of the
ambiguities of the informal description. ]
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3.3 The intruder model

In this section, we describe how an intruder can create new messages from already known messages.
We use the most commonly used model, introduced by Dolev and Yao [16], which is given by a formal
system F. The intruder capabilities for intercepting messages and sending (fake) messages are fixed by
the operational semantics. Thus, the derivability of a message m from a set E of messages, denoted by
E = m, is described by the following axiom and rules:

e If m € E then E+ m.

e If EFmy and E + mso then E + pair(mi, mz). This rule is called pairing.

e If EFmand EF k € K then E I encr(m, k). This is called encryption.

e If £+ pair(m,mgz) then E'F my and E F mo. This is called projection.

o If B+ encr(m,k), EF k' and k and k' are inverses then E F m. This is called decryption.

Pairing and encryption rules are called introduction rules while projection and decryption are called
elimination rules. As usual, derivations in the system F can be seen as proof trees.

It is worth noticing that the intruder cannot forge any key term from the knowledge of its subterms,
e.g, A, Bt/ smk(A, B). No rules are provided to the intruder to do so. Consequently, from the intruder
point of view, the key terms are atomic keys.

Critical and non-critical positions We now define critical and non-critical positions in a message.
The idea is that there is no way to deduce the key used for encryption from an encrypted message. So,
the key position in messages of the form encr(m, k) is not critical and it is a safe place for a secret.
The critical position corresponds to the subterm relation in the strand space model [33, 19].

Formally, given a term ¢, a position p in ¢ is called non-critical, if there is a position ¢ such that
t(q) = encr and p = ¢ - 1; otherwise it is called critical. We will also use the notation s €. m to
denote that s appears in m at a critical position, i.e., there exists p € dom(m) such that p is critical
and m|, = s.

For a term t, we use the notation E I/ t to denote that no instantiation of ¢ is derivable from F,
that is, for no substitution o : X — T (F), we have E - o(t).

We also use the notation E < ¢ to denote that no message derivable from E contains an instanti-
ation of ¢ at a critical position, that is, for every message m if E - m then o(t) €. m, for any o. The
relation /€< is naturally extended to set of terms.

3.3.1 Operational semantics

In the rest of this section, let S = (P, tran, fresh) be a given session description. We want to describe
the behavior of the protocol described by S without any restriction on the numbers of sessions and
principals. To do so, we need to define instantiated transitions and instantiated sessions. We use
natural numbers as session identifiers. A session instance is fixed by a pair (i, 7), where i is its identifier
and 7 is a vector of principals that instantiate the principal variables p1, - - -, p,.. Therefore, we introduce
the set Inst = IN x P". As, we impose that the variables in P are distinct, we can use m(p;) to refer the
4" principals name in the vector m, i.e., we can identify 7 with a function.

Session instances We assume that we have for each nonce variable n € Xy and each principal
p € P the bijective function n, : w x P" — N(p) such that n,(i,7) # my(i,7), if n and m are
syntactically different. For short, we write N*™ instead of n,(i, ). Intuitively, we use N*™ as the
nonce corresponding to the nonce variable n in the session (i,7). In order to produce an instance of
the session description we have to chose a session number and a substitution that associates a constant
name to each principal variable in P.
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tran? (A) : tran® (B) :
A = {(AN) ey 5 {(A Y ook) = LW N2) tppr(a)
{(N1, 2) pbrcay — {2} por()

Figure 2: The transitions of the (0, 7)-instance.

Given (i,m) € Inst, we generate a session instance, denoted by (S)%, by applying the following
transformations to all role terms that appear in S:

e we replace each principal variable p by m(p),

e cach nonce variable n € fresh(p) by N*™.

We denote by t% the message term obtained from ¢ by applying the transformations above. Then,
the (i, 7)-instance of a transition t — ¢’ is t© — (¢').. Given p € P, we denote by tran’ (p) the list of
(i, 7)-instantiated transitions obtained from tran(p).

Example 3.2 Let m = (A, B). Moreover, assume that nj 4(0,7) = Ny and nag(0,7) = Na. Then, the
(0, )-instance of the Needham-Schroeder protocol contains the transitions given in Figure 2. a

Configurations and transitions In order to define global configurations that may arise during the
protocol execution, we need to define the state of each session instance.

The state of a session instance is given by a pair (7, F), where the function 7 associates for each
p € P alist of (i, 7)-instantiated transitions and F is a set of messages. We denote by ¥ the set of
session states.

A configuration of the protocol defined by S is given by a pair (¢, E), where dom(&) is the set of
identifiers of the sessions created in the configuration, £(¢) is the state of session ¢ and E is the set of
messages intercepted by the intruder. The operational semantics of a protocol is defined by transitions
on configurations. There are two sets of transitions: 1.) transitions that create new sessions:

i & dom(¢)
(€ E) = (€li v (x, trant )] E)

, where m € P".

and 2.) transition that are induced by a transition inside sessions:

(r,E)= (7', F)
(& E) — (Eli (m, 7)), E')

where £(i) = (m, 7) and = is defined below.

The relation = describes session state changes caused by firing principal transitions. We have
(r,E) = (7',F'), if there is t — t' which is the first transition in 7(p) for p € P and there is a
substitution p : X — 7 (F) such that E F p(t) and E' = EU {p(t')}.

Example 3.3 Consider again our running example, the Needham-Schroeder protocol, and a session
between A and B, identified by 0, with principal A in the last step of the protocol. The state £(0) of
the session is described by Let the values of the parameters: m(p1) = A and 7(p2) = B; and by the
program counter: 7(p1) = {(N1,2)}k, — {Z}k, and 7(p2) = €.

Moreover, let {N1, N2}k, € E then A can fire its last transition which modifies the session state:
(1, E) = (7', E’), where 7/(p1) = 7'(p2) = e and E' = EU{{Na2}x,}.
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Clarifying remarks In our model the intruder has the ability to intercept any message sent by
a principal and principals have no guarantee about the origin of a message. Thus, the intruder can
intercept messages, use them to create fake messages and deliver these to the principals. Following
Bolignano [8], in our model this is realized by modeling sending of messages as adding messages to the
set E¥ and by modeling receiving of messages as reading messages deducible from E. Principals use,
however, the guards of the transitions to check the genuineness of received messages. For instance, in
the Needham-Schroeder example, the guard {(p1, y)}pbk(p2) of the transition of principal p; means that
principal py accepts any and only messages that are sent by p; and encrypted by pbk(pz) of a pair of
messages. Consider now the guard of the second transition of pi, namely {(n1,2)}pr(p,)- Here, p1
refuses (and the execution blocks) if the message to be read is not an encryption by pbk(p1) of a pair
whose first message is the nonce n sent in the first transition.

3.4 Secrecy modeling

A secrecy goal states that a designated message should not be made public. A secret is public when it
is deducible from the set of messages intercepted by the intruder. In our setting, a secret is defined by a
role term. For instance, in the Needham-Schroeder example a secret we want to prove is ns, the nonce
sent by ps. More precisely, each session instance is associated with a secret we want to prove. Here
arises the important question concerning the initial knowledge of the intruder and his ability to profit
from the actions of honest participants in parallel and previous sessions. In other words, when proving
that the secret associated to session ¢ running between the participants A and B remains unrevealed,
we have to take into account that an intruder can profit from a session between A and C' to break the
protocol. Actually, we cannot even rely on the honesty of C; she can be seen as an intruder’s accomplice.

As in the previous section, let S = (P, tran, fresh) be a given session description.

A secret template is given by a role term t. Given (i,7) € Inst and a secret template ¢, let C(E, m,1)
denote the following constraint on E:

For every nonce variable n € |J fresh(p),
pepP

E (/€ NoT.

Intuitively, this means that the intruder cannot know messages that contain fresh nonces.
Moreover, let C(E) denote the condition:

V(i,m) € Inst - C(E, 7, 1).

We are now ready to define our secrecy property formally. The protocol P described by S satisfies the
secrecy property defined by the secret template ¢ in the initial set Ey of intruder’s messages, denoted
by Secret(S,t, Ey) or t/p t, if for every (i,m) € Inst if C(Eyp), (0, Ey) —* (£, F) and £(i) = (w,7) then
E /L. The definition of secrecy can be easily extended to a set T of secret templates by: Secret(S, T, Ep)
iff Secret(S,t, Ep), for allt € T.

4 Finite abstraction of atomic messages and sessions

In this section we fix an arbitrary cryptographic protocol given by a session description & = (P,
tran, fresh) and fix a secret s given by a role term. To prove that s is a secret, we are faced with the
following problems:

1. The definition of our verification problem is a reachability problem quantified universally over all
(¢,m) € Inst.

2. There is no bound on the number of sessions that can be created.
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3. There is no bound on the size of the messages that occur during execution of the protocol.

In this section, we present an abstraction that copes with the first two problems. The other problem
is handled in the next section. We proceed in two steps. First, we present an abstraction that is
parameterized by (ig, 7o) € Inst, then we argue that the abstract system we obtain does not depend
on the choice of (ig,7p). The main idea of the abstraction is as follows. Clearly, the behavior of a
participant does not depend on its identity. This is simply a consequence of defining protocol sessions
in a parameterized manner as we did. It also does not depend on the identifier associated to the session.

Therefore, we fix an arbitrary session where the participants, say we have two, are A and B. Then,
we identify with the intruder I all participants other than A and B. Moreover, we identify all sessions
in which neither A nor B are involved. Concerning the other sessions, that is, those where A or B are
involved, we identify:

e all sessions where A plays the role of p1, B plays the role of ps and the session is different from
the fixed session,

e all sessions where B plays the role of p; and A plays the role of po,

e all sessions where A plays the role of p; and the role of ps is played by a participant different from
Aor B,

e all sessions where B plays the role of p; and the role of ps is played by a participant different
from A or B, etc

e all sessions where A plays the role of ps and the role of p; is played by a participant different from
Aor B,

e all sessions where B plays the role of ps and the role of p; is played by a participant different
from A or B.

Identifying sessions means also identifying the nonces and keys used in these sessions. This leaves us
with a system where we have a finite number of participants, of nonces and of keys but an unbounded
number of sessions. Therefore, we apply an abstraction that removes the control. To summarize, we
model a protocol as a set of transitions that can be taken in any order and any number of times. The
number of messages as their size are left not bounded.

Further we consider only two principals, one honest principal A and one dishonest principal I. The
proof that this abstraction is safe and actually also exact is given in [14].

We now present this idea formally. Let (ip, 7o) € Inst be fixed. For a concrete semantic object x,
we use the notation (%) to denote its abstraction, and in case (ig, 7o) is known from the context we
use zf.

We start by defining the abstract domains N* = {T, 1} and P* = {4, I} and the abstractions:

o i = T, if (i,7) = (ig, mp) and i* = L; otherwise, and
o pf = A if p=mo(p;), and p# = I; otherwise.

We extend the abstraction of participants to vectors of participants by taking the abstractions of the
components.

For keys, we take the abstract set K! that consists of a distinguished key K; and the keys in
’P(pg, e ,p?) with p%, e ,p? € Pt and pg # I, for all j € N;. The abstraction of a key k(p1,---,pn) is
defined by:

f By i ool :
# ) k@Y, uph)ifpl #£Ii=1, .. ,n
K (pr - opn) = { K ; otherwise

Example 4.1 If the number of roles r = 2 and my = (A, B) then K* consist of K7 and pbk(A), pvk(A),
pbk(A, A), pvk(A, A), smk(A, A). ]
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It remains to define the abstraction of nonces. The abstraction of the nonce N»™, denoted by
(N*™)# is given by:
o Ny, ifrt =(I,---,1),
e N,if i =T and 7 = 79, and
° N’Tﬁ, otherwise.
Example 4.2 For Needham-Schroeder, we have the following set of abstract nonces:
Nt = {N;, Ny, Ny, N N34 | € {A, T}).

The abstraction of a message term ¢, denoted by t¥, is obtained as the homomorphic extension of
the abstractions on participants, nonces and keys. For a set T of terms, let T% = {t* | t € T'}.

The set 7 (F)* of abstract messages is the set of ground terms over .A* and the constructors encr
and pair as for 7 (F). Similarly, we can define the set of abstract terms by allowing variables in X'.

We are now ready to define the abstraction of a cryptographic protocol that will be given as a pair
(C, R) of constraints of the form E /¢ m, where m € 7(F)* and a set of abstract transitions. We
call (C, R) an abstract protocol. The pair (C, R) defines a transition system whose initial states are sets
E C T(F)* that satisfy C and where we have E —x E’, if thereis t — ' in R and p : X — T (F)* such
that E + p(m) and E' = EU {p(m’)}.

The abstraction S of the cryptographic protocol defined by S is defined by:

e CHE)={E W m*| EW/< min C(E,m,ip)} and

e the set R of abstract transitions tti —R tg such that t; — %, is a transition in some session instance
St

We also call R abstract transitions rules. Let ST = (C, R) be an abstract protocol and Ey C 7 (F)F.
We say that ST preserves the secret s in Ey, denoted by Eg st s, if for all E C 7 (F)¥, if C(Fp) and
Ey —% E then E/s.

To relate a cryptographic protocol and its abstraction, we need to relate derivation by the intruder
on the concrete and abstract messages. We can prove by structural induction on m the following:

Lemma 4.1 Let E be a set of messages and E* = {m? | m € E}. Then, E - m implies E* - m?, for
any message m € T (F). O

We can also prove the following lemma to relate concrete and abstract term instantiations:

Lemma 4.2 Let t1 and ty be terms and let p : X — T(F). Then, p(t1) = p(ts) implies pt () = pi(t5),
where p*(X) is defined as p(X)*. O

Using Lemma 4.1 and Lemma 4.2, we can prove that (C¥, R) is indeed an abstraction of S where the
abstraction of a configuration (¢, E) is E*:

Proposition 4.1 Let (1, E1) and (&2, E2) be concrete configurations. Then,
(&1, E1) — (2, Bs) implies B} —p 3.
Moreover, if C(E) is true then also C*(E?). O

Exploiting Proposition 4.1 and the fact that (C*, R) does not depend on (ig, 7o), that is, we have the
same constraints and transitions for all (i,7) € Inst, we can prove:

Theorem 4.1 The protocol defined by S satisfies the secrecy property defined by S in Eg, if its abstrac-
tion (C*, R) preserves S* in Eg, i-e.,

E} ¥ (ct.r) S¥ implies Secret(S, S, Ep).
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session (A,I) session (I,A) any session (A, A) the fixed session (A, A)

{ANATY oy ? {I N1} pokay’ {AN{ Y pok(a)y’ {A,N1}ppr(a)’
{A 9} pora) . {Ly}por(a) . {Ay}porca) . {Ay}pora) .
{y:Nr}porca)’ {v, NI oey . {y:N3 Y por(a)’ {y,N2}por(a)’
{NP 2} porcay . ANLZ}obk(r) | {NP 2} o) | {N1,2} por(a) .

{z}por(ry 7 {z}por(ay {z}pbr(ay 7 {z}pbrcay

Figure 3: The abstract rules of Needham-Schroeder Protocol

Example 4.3 In our model which yields an over-approximation of the possible runs of the protocol, we
can describe the Needham-Schroeder protocol by the rules of Figure 8. We write ’;—; instead of t1 — to.

In this form, the relation between the message expected to fire a transition and the corresponding
answer is made explicit through variables. Fach rule of a session corresponds to a transition of the
Needham-Schroeder protocol as shown in figure 3 in which the roles and nonces are instantiated w.r.t.
the principals of the session. Additionally, a verification tool requires a constraint C(E) on the initial
knowledge of the intruder defined by E /S { Ny, Na, pvk(A) } and a secrecy property defined by the

set of messages { No, pvk(A)}.

5 The verification method

Throughout this section we assume that we are given a protocol P = (C,R) and a set of secrets defined
by a set S of messages. We present an algorithm that allows to verify that a protocol preserves a set
of secrets. If a principal A wants to protect a secret s, he has to encrypt every occurrence of s in every
message sent with a key whose inverse is not known by the intruder. The secret s itself need not to be
directly encrypted. Indeed, it is enough that the secret only appears as part of encrypted messages.

The basic idea of our method is to compute the set of encrypted messages that protect the secrets.
As we will see, encryption with a safe key is not always sufficient to protect a secret in every message.
The honest principals following the protocol can unwillingly help the intruder in decrypting messages.

In order to develop this idea formally we need to introduce a few definitions. In the sequel, we let
K C K denote a fixed but arbitrary set of safe keys, we mean keys which are not known by the intruder;
and we assume () # K # K. We call K-guard any encrypted message {m}, € 7(F) where k is a safe
key. We call safe-breaker a pair ({m},p), where {m} is a K-guard and p is a critical position® in
{m}k. Intuitively, p denotes the position of a secret and a safe-breaker ({m},p) means that, in the
specific case of message {m}j, the intruder can pass through the protection of key & and obtain the
sub-term at position p.

Definition 5.1 Let m and s be two messages and let B be a set of safe-breakers. Then, we define the
predicate “a secret s is insensitive to B in a message m”, denoted by m(B), s, as the strongest predicate
such that s # m and which hold the following conditions, depending on the form of message m:

e Case m is an atom: s is safe.

e Case m = pair(my, ma): the intruder can split the pair. So, we require s to be insensitive to B
in both messages m1 and mg, that is in symbols, m1(B). s and ma(B),s.

e Case m =encr(m', k') with k' ¢ K: the key k" is not safe and the intruder can obtain m'. So,
we require s to be protected in m/', that is m'(B),s.

1Critical and non-critical positions as well as the notation €. has been introduced in Section 3.3.
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e Casem = encr(m’, k) with k € K : the intruder can exploit safe-breakers to pass through the key
protection. So, we require the secret s to be protected in any subpart of m reachable by application
of a safe-breaker, that is, Vp € dom(m) we have (m,p) € B or m|,(B),s.

This definition is easily generalized to sets of messages: Let M and S be sets of messages, and B
a set of safe-breakers. We say that the secrets S are insensitive to B in M, denoted by M(B),S, if
Vme M,s € S. m(B)ys

Example 5.1 Let m = pair(A, {A,{N}, }k,), and let ki and ko be two safe keys, that is, K =
{k1,ko}. Then, m{(D),, N holds, meaning that N is not deducible from m without safe-breaker. Indeed,
the intruder would not gain anything in splitting the pair, since N is protected in both parts: A(D), N
and {A, {N}g, b, (0),. N hold.

Let B={ ({A,{N}k,}ks,01) 5 ({N}#,,0) }. Then, m(B), N does not hold anymore, meaning that
the safe-breakers can be applied to get the secret N. By Definition 5.1, m(B), N holds if and only if
A(B), N and {A,{N}i, }iy (B) N are both satisfied. The former one holds, but this is not the case of
the latter one: an application of the first safe-breaker provides {N}g, = {A,{N}i, tkolor. Then, an
application of the second safe-breaker provides N = {N}y, |o. Since N(B),, N does not hold (this is the
case where m = s), Definition 5.1 entails =(m(B), N).

The notion of a message insensitive to safe-breakers does not take into account the capabilities of
the intruder to decompose and compose new messages.

Example 5.2 Consider the set of messages E = {51, 52}. Whatever B we choose, the property
E(B), (s1, s2) trivially holds since (s1, s2) does not belong to E. However, the pair (s1, $2) can be derived
from E using the pairing rule.

This example shows that we have to give particular care to the treatment of composed secrets as
they can be obtained either by composition or decomposition. To do so, we define the closure under
decomposition of a term. Taking the closure of a set S of secrets ensures that the intruder cannot derive
a message in S solely by composition rules.

Let M be a set of sets of messages and let m be a message. We use the notation: m © M =
{Miu{m} | M; € M}

Definition 5.2 (closure) We define c¢(m) the weak closure set associated to a message m:

c(ml)Uc(m2) if m = (ml, m2)
c(m)=m® ¢ (c(m)Uc(k)) if m={m'}
{(/)} if m s atomic

A set M of messages is closed against composition, if for any m € M there exists a set of messages
M’ € ¢(m) such that M' C M.

Example 5.3 Consider the message ({(A, N)}i, B). The closure set associated to this message, con-
sists of the following sets:
{ ,N)}x, B), B};

({(A,N)}r, B),
({(A,N)}&, B), {(A, N) }i, k

({(A, N)}&, B), {(A, N)}i, (A, N), A}
({(A7 N)}ka B)a {(A7 N)}k’ (Aa N)’ N}

The closure computation helps in preventing the intruder from making m by composition: it tells us
that it is sufficient to ensure that one of these sets of messages remains unknown to the intruder.

We can prove the following:

Lemma 5.1 Let S and E be two sets of messages such that SNE =0, and assume S is closed against
composition. Then, no message in S can be derived using only composition rules. In symbols we write
Et/. S where b denotes a derivation that use only composition rules.
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Our purpose now is to define conditions such that for any set F of messages, if the secrets of S
are insensitive to safe-breakers in the set of messages E, then the secrets are protected in all messages
derivable from F. In other words, we look for a condition that ensures the stability of protection under
the derivation rules that defines Dolev and Yao’s intruder.

Example 5.4 Consider the set of messages E = {ka, {s}r, }. The safe-breaker ({{s}x, }r,,00) does
not help getting the secret s since it can not be applied to any message of E (E does not contain the
message {{s}ti, }rs)- S0, E{({{$}k1 }ks,00)).s holds. However, {{s}, }r, is derivable from E using
the encryption rule. Then, the safe-breaker can be used to get the secret s.

In order to catch this ability of the intruder we define a closure on safe-breakers that enriches the
set of safe-breakers with their sub-encrypted-terms.

Let (b,p) be a safe-breaker and let ssb(b, p) denote the sub-safe-breakers of (b,p), that is the set of
all proper sub-terms of b that are safe-breakers for position p. A formal definition of the function ssb
is given in Appendix A but let us give an intuitive example.

Example 5.5 Consider two keys k1,ka € K, the message b = { {N},, A) }r,, and assume N at
position 000 in b is the secret. Then, by definitions, b is a K-guard and the pair (b,000) denotes a safe-
breaker for N in b. Moreover, each encryption with a key in K that is above blogg defines a K-guard of
N. The function ssb computes the position of N in each of these K-guard and returns the set of safe-
breakers associated to theses K-guards. For instance, ssb(b,000) returns { ({N}g,,0) }. Moreover, ssb
(b,01) and ssb(b,00) both return @, since there is no K-guard that is a proper sub-term of b and above

blor = A (resp. bloo = {N}x,)-

We are now able to express the conditions that guarantee stability of the predicate E(B),S under
the deduction rules of the intruder. In the rest of the paper, B denotes a set safe-breakers and S denotes
a set of secrets.

Definition 5.3 A pair (B,S) is well-formed, if the following conditions are satisfied:
1. S is closed against composition,
2. K-V ={k=' | k€ K} C S, that is, the inverse of the safe keys are secrets,

3. For any safe-breakers (b,p) € B and (b',p’) € ssb(b,p) either b is a secret or b’ already appears as
a safe-breaker of B. Formally, ¥(b,p) € B. V(b',p’) € ssb(b,p). be S or (¥',p') € B.

Intuitively, Condition (1) ensures that the intruder will always miss at least one part of a composed
secret preventing him from deducing it by composition. Condition (2) ensures that the intruder will not
be able to decrypt a secret protected by a key of K. The last condition of well-formedness takes into
account the ability of the intruder to use encryption in order to obtain a message that can be broken
using a safe-breaker.

The main property of the predicate E(B), S is that it is stable under the intruder’s deduction rules.

Proposition 5.1 Let E be a set of messages and (B, S) be a pair of safe-breakers and secrets. If (B,S)
is well-formed and E(B),.S holds, then the secrets of S are insensitive to B in any message m derivable
from E, that is, E+ m = m(B),S.

Proof: See Appendix B.1. The proof of this proposition does not rely on the fact that keys are atomic.
Actually, our method can be extended to cover the case of non atomic keys. [
The following corollary is an immediate consequence of Proposition 5.1.

Corollary 5.1 If E(B),.S and (B,S) is well-formed then EV S.

Under well-formedness of (B,S), the predicate E(B), S is stable w.r.t. to the intruder inference
system. We now come to the computation of a well-formed pair (B,S) that ensures in addition the
stability of E(B),S w.r.t. any interleaving of sessions of a given protocol P = (C,R).
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Definition 5.4 (stability of (B,S) w.r.t. to rules) Letr =t — t3 be a rule in R. The pair (B,S)
is stable w.r.t. the rule r, if for every substitution o, the property o(t1)(B),S implies o(t2)(B),S. A
pair (B,S) is stable w.r.t. a set of rules R if it is stable w.r.t. to each rule in R.

The stability of the pair (B,S) w.r.t. to a rule t; — t2 expresses the fact that the message produced
by firing the transition ¢t; — t2 has no effect on the protection of S. Then, using Proposition 5.1, we
can prove by induction the following theorem:

Theorem 5.1 Let S be a set of secrets and B be a set of safe-breakers. If (B,S) is well-formed and
stable w.r.t. all rules in R ; if additionally, Eo(B),S holds for every set of messages Fy that satisfies
C, thent/p S, i.e., the secrets in S are preserved in any execution of the protocol P = (C,R).

Proof: See Appendix B.2. ]

Theorem 5.1 gives a sufficient condition to conclude that the secrets in S are preserved in spite of
the protocol P = (C,R). Given a protocol P = (C,R) and a set S of secrets, we compute a set B of
safe-breakers and a set S’ of secrets such that:

e the set of messages initially known by the intruder — defined by the constraint C on Ey — satisfies
Ey <B>K S/,

e SC &', and
o (B,8’) is well-formed,
e (B,S’) is stable w.r.t. R.

6 Computing stable secrets and safe-breakers

In this section, we develop an algorithm that computes a stable pair (B,S’). This is done in two steps.
First, we develop a semantic version of the algorithm in which we do not consider questions related to
representing sets of safe-breakers. Then, we define a symbolic representation for safe-breakers and we
develop a symbolic algorithm.

6.1 A semantic version of the verification algorithm

In Figure 4, we present an algorithm that computes a pair (B, S) which is well-formed, and stable w.r.t.
the rules of the protocol. The algorithm uses a function Closure that associates to a set of messages its
closure against composition, following Definition 5.1. The algorithm takes as input: a set of rules R,
a set of secrets S, a set of safe keys K and a set of safe-breakers B. It is a fixpoint computation of a
well-formed stable pair, starting with (B,S). If it terminates, it returns an augmented set of secrets S’
and an augmented set of safe-breakers B’.

We now explain intuitively the clue point of the algorithm. Let us take a rule ¢, — ¢, in R,
a substitution o : X — 7T(F) such that a secret s is insensitive to B in o(¢,), the premise of the
instantiated rule. If the secret s is not protected in o(t.), the conclusion of the instantiated rule, then
each K-guard of o(t,) that protect an occurrence of the secret s is not efficient in this case and it must
be added to the set of safe-breakers. Indeed, the intruder does not need the inverse of the keys in K to
get the secret: it will be unwillingly revealed by a principal who plays the rule o(t,) — o(t.). Think
for instance of a protocol with {(y, %) }per(a) — {T}pbk(y) as a rule of principal A. The principal A will
respond {Secret} ,pi (1) on reception of the message {(I, Secret)}ppi(a). Thus unwillingly decrypting the
secret for the intruder. So, the K-guard {(I, Secret)} i (a) is a particular case where pbk(A) does not
protect the secret and ({(I, Secret) } pbr(a)s 01) must be added to the set the safe-breakers B. Case 2 in
the algorithm considers the case where a secret is vulnerable to safe-breakers in the conclusion, and the
premise does not contain a secret. In this case, the apparently harmless premise is as compromising as
the secret, and so, it must be added to the set of secrets. The following proposition summarizes the
properties of the algorithm.
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Proposition 6.1 If the algorithm of Figure 4 applied to (R, S, K,B) terminates, it returns S’ and B’
that satisfy the following conditions:

1. (B',8) is well-formed,

2. (B,S') is stable w.r.t. R, and

3.8§CS

Using Proposition 6.1 and Theorem 5.1, we can prove the following corollary.

Corollary 6.1 If the algorithm of Figure 4 terminates with (B’,S’) as result, and each set of messages
Ey that satisfies C(Ey) also satisfies Eo(B'),.S’, we can conclude t/p S', and hence, t/p S.

6.2 A symbolic representation of safe-breakers

To develop an effective version of our semantic algorithm, we need to represent (potentially infinite)
sets of safe-breakers. To do so, we introduce a symbolic representation safe-breakers: a breaking-pattern
is a pair ({t},p) where {t} is a term over variables in X and p is a critical position in {t}5. A secret
s embedded in a message m is insensitive to a breaking-pattern (b, p) if it is insensitive to any instance
of the pattern b, meaning that the following property holds:

m{ {(a(b),p) |0 : X = T(F)} )cs

For instance, the messages {(B, (Secret, A))} k and {(A, (B, Secret))} k are insensitive to the breaking-
pattern ({(4, (z,y))}x,010), while the secret of message {(A, (Secret, B))}k is revealed by applying
the breaking-pattern with the substitution [x <« Secret, y < B.

Let us now define formally the symbolic representation of breaking-patterns that we used in our
tool. We introduce super terms defined by the following BNF":

st = N |P|K|uz]| pair(sty, sta) |
encr(st, K) | Sup(st)

where N € N, P € P, K € K, and # € X. The set of super terms is denoted by S7 (X, F). Notice
that every term in 7 (X, F) is also a super term in S7 (X, F). The difference between the two is that
super terms make use of the special Sup function symbol.

Intuitively, as can be seen from the following definition, Sup (t) represents all terms containing the
term ¢ as a sub-term. For instance, the terms A, pair(z, A), encr(A4, K), --- all belong to [Sup (A)].

Definition 6.1 Given a super term st, the set of all corresponding terms is denoted by [st]. It is
defined as follows:

[st] = {st} if st is a constant or a variable
[[pair(stl,stz)]] = {pair(tl,tg) | t1 € [[Stl]]ﬂfg € [[8152]]}
[encr(st1, k)] = {encr(t1,k) | t1 € [st1]}

[Sup (st)] = {t| 3 a position p int s.t. t|, € [st]}

Definition 6.2 Given a super term st, and a critical position p, we denote by [(st,p)] the set of
breaking-term associated to the breaking-super term (st,p). We overload the function [] for the meaning
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input: R, S, K and B
output: B’; &’ such that (B,8’) is well-formed and stable w.r.t. R.
B :=B;8:=§;
— add to the secrets the inverse of the keys from K
Kl'={k1'keK}); 8 =SUK1;
repeat
— compute the closure that adds to S’ one subpart of each compound secret of S’
S" = Closure(S’) ; B.:=8";S8.:=8";
for each t, —t. € R
for each p € dom(t;) s. t. t|, € XY US
— compute all Dangerous Substitutions of rule t, — t. where a secret is

— not kept in the conclusion

DS:={0:X - T(F)|3s € Ss.t.m(o(te)(B)s) A-(c(telp)(B)es)}

b
— compute the corresponding Dangerous Premises

DP :={o(t,) | c € DS} ;

— update the secret and safe-breakers according to the dangerous premises:
— case 1 add safe-breakers to B’ if tc|p €c tp

for each m € DP do

— new safe-breakers are pairs constructed from submessage of m of the form encr(m’,k), k € K

— and positions of tc|p in them

newB := {(m|q,q71p) | 3k € K, m|, = {m|go}tx A D' critical position s. t. ty|y =tc|p Aqg<p'}

— update the set of safe-breakers B
B =B UnewB ;

od

— case 2 adds to the secrets all dangerous premises if tel|p &c tp

newS :={m|m € DP} ; 8§ :=8" UnewS

od

od
until (B',S")

(B Se)

Figure 4: The semantic version of the verification algorithm
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is clear from its argument. For breaking-super terms, the function [ is defined as follows:

[(st,p)] ={(st,p)} if st is a constant or a variable
[(pair(st1, st2),p)] =
{(pair(tl,tg),e) | t1 € [[Stl]],tg S Hstg]]}
U {(pair(¢1,t2),0.q) |
p=0.p", (t1,q9) € [(st1,p)], t2 € [st2]}
U {(pair(¢1,t2),1.q) |
p=1p, t1 € [st1], (t2,q) € [(st2,p)]}
[(encr(st1,k),p)] =
{(encr(t1,k),€) | t1 € [st1]}
U {(encr(t1,k),0.9) | p = 0.p', (t1,q) € [(st1,p)]}
[(Sup (st),p)] =
{(t,e) | t € [Sup (st)]}
U{(t.qr) |
p=0.p", (tlg,r) € [(st,p)]}

Using the function [] we can shift from super terms to their equivalent representation of sets of
terms. Based on that remark, we present the algorithm on terms and we explain how it extends to
super terms. In the sequel, when there is no need to distinguish between terms and super terms, we
use the generic word “pattern”.

Based on the symbolic representation, the infinite set B of safe-breakers is represented by a finite
set of breaking-patterns BP. More formally, we have the following:

Definition 6.3 A symbolic representation SR is a pair (BP,S), where
o BP is a finite set of breaking-patterns that represents the safe-breakers B

e S is a finite set of terms that represents the secrets.

7 A symbolic verification algorithm

The symbolic algorithm is obtained from the algorithm of Figure 4 by replacing each operation by a
corresponding symbolic one that operates on (BP,S). For the sake of presentation, first we explain the
symbolic algorithm in the particular case where the breaking-patterns consists of pairs of terms and
positions rather than super terms and positions, i.e., Sup does not occur in any breaking-patterns of
BP. We will explain later how it extends to super terms and what are the difficulties to solve.

7.1 The algorithm on terms

Before presenting the algorithm we need to introduce the following definitions. As usual a substitution
is a mapping o : X — T (X, F). A ground substitution is a mapping o : X — 7T (F). Let bp = (¢,p) and
bp’ = (t',p’) be two breaking-patterns. We say that they unify if the positions p and p’ are comparable
and there is a substitution o : X — 7 (X, F) such that o(t) = o(t'). We write, also, o(t,p) = o(t',p’).

The symbolic algorithm takes as input a set of rules R, a set of secrets S, a set of key K and an
empty set of breaking-patterns BP = ). It computes new pairs of breaking-patterns and secrets (BP, S)
until it becomes stable w.r.t. all rules in R. Moreover, all that pairs are well-formed. Let us now sketch
its main steps:

1. The set S of secrets becomes S U K !, where K~ is the set of keys of the form k! such that k
is an element of K.

2. For each rule ¢, — t. in R, we have to consider all possible occurrences of a secret in the conclusion
t.. So, for each position p of ¢, that corresponds to a variable or a secret the algorithm computes:
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a. the finite set of dangerous substitution DS as follow. A substitution o : X — T(X,F) is
dangerous if for every position ¢ < p, for which 3k € K such that t.|, = {tc]q.0}r we have
(telg» ¢ 'p) unified by o with a breaking-pattern of BP. Then, DS := {o: X — T(X,F) |
o is dangerous}. We illustrate below the computation of dangerous substitutions.

The set of dangerous premises is: DP = {o(t,) | 0 € DS}.

b. If there exists g such that t.|, = t,|q then for every term ¢ of DP we construct a set of new
breaking-patterns that consist in pairs of sub-terms of ¢ that are encrypted term by keys
from K and positions restricted to this sub-terms of q.

Formally,
newBP = {(t|,,7"1q) |t € DP,3k € K, t|, =
{thote A telp =tplg AT < g}

Update the breaking-patterns
BP = BP UnewBP.

c. Otherwise, if such a g does not exists then the set of dangerous premises must be added to the
set of secrets. Formally, newS := {m | m € DP}. Update and at the same time closure the
set of secrets
S = Closure(S U newS).

3. repeat 2 until newS C S and newBP C BP.

Computation of dangerous substitutions

We present the algorithm that computes the dangerous substitutions induced by a rule ¢, — t., and a
position p. Let K be the fixed set of keys and BP the set of breaking-patterns.

Let PP be the set of positions p; above p such that for each p; € PP there is k € K such that
telp, = {telp;-0}e- We define below the function ® that computes all the unifiers between breaking-
patterns of BP and (¢.,p) that cancel each protecting position. Formally, the dangerous substitutions
are the unifiers o that satisfy:

/\ U(tC|Pi’pi—1p) = g(bia qi)7 where
pi€PP
(bi, pi) € BP.

Initially, ® is called with the set PP of protecting positions and a set of substitutions DS containing
only the empty substitution: DS = {[]}. Then, it takes in turn each protecting position and if it is
possible, it completes the substitutions of DS in order to cancel the current position by a breaking-
pattern of BP.

o( BP, PP, DS) =

{oc | o€ DS} if PP=10
(PP \{pi}, B

U {UjUU;,JW'WUjUU;L’iJ,j})? plepp
o;€DS

piapiilp)

where the o, in the fourth argument are the unifiers resulting of the unification of (o (t.)
with some breaking-patterns of BP.

The same algorithm is used in the case where breaking-patterns consist of pairs of terms and posi-
tions and when breaking-patterns are pairs of super terms and positions. We only need to adapt the
unification algorithm. In the case of terms, we use the standard most general unifier; and for super
terms, we define a unification algorithm presented in Section 7.2.

Example 7.1 We illustrates the computation of dangerous substitutions on the set of breaking-patterns

BP ={{{,2)}kg,01), {((4,v),2)}kg,01) }, the set of key K = {K 4, Kp} and a rule ¢, — t. given
in Figure 5.
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Figure 5: Illustration of computing dangerous substitutions.

We consider the conclusion of the rule. The first step consists in looking for all the critical positions
in the conclusion where a secret or a variable appears. We find 2’ at position 01101, 3" at position
011000 and 2’ at positions 00, 011001 in the term t.. Let take the position p = 01101 of z’, we look
for the positions above it that may protect it. We found exactly two protecting positions: p; = € and
p2 = 011. Then, the function ® looks for all substitutions that unify some breaking-patterns of BP with
the terms at the protecting positions p; and p; and the restricted respective positions of p. Starting
with position p; = ¢, it unifies (¢.|¢, p) with the breaking-pattern
({(I,z)}kp,01) we have 01 < p and the unifier 0/ = [z’ = I,x = t.]p1]. This cancels the top most
protection. Then, the function ® attempts to complete the substitution ¢’ so that it also cancels the
protection at position py = 011. To do so, it tries to unify (o”(te)|p, = {((V',1),2') Yk, Py 'p = 01)
with some breaking-patterns of BP and succeeds with the breaking-pattern ({((4,y), 2)}k5,01). We
have 01 = 01 and the unifier 0" = [y’ = A,y = I,2’ = z]. The two unifiers are then composed and
restricted to the domain var(t.) resulting the substitution o = (0/ U 0”)/pare.) = [y = A, 2" = 1.
Pursuing the computation does not provide other substitutions and finally ® returns for the position p
of t. the set of dangerous substitutions {o}. We now look at the premise of the rule to compute the
new breaking-patterns induced by o. The variable ' appears in ¢, at the position ¢ = 001 and it is
protected by the key Kp at the position r; = € and by the key K4 at the position 7o = 0. However,
the dangerous substitution o tells that these protections will not work in case where y is A and z is
I. Consequently, we increase the set of breaking-patterns BP by adding these particular cases. In
our symbolic representation, this comes out to add (o(t,) = {{((4,1),2")} k. }xs), 71 ‘¢ = 001) and
(o(tp)o = {((A, 1), 2")} k4,75 "q = 01) to the set of breaking-patterns BP. O

7.2 Dealing with super terms

First of all, it is worth to mention that super terms are more expressive than terms, that is, there are
sets of messages that can be described as super terms but not as terms. This is for instance the case
for the set of messages that contain the constant A as sub-message. In fact, introducing the interpreted
function symbol Sup corresponds to adding the sub-term relation to a logic on terms. Moreover, it is
not difficult to exhibit examples of protocols where one needs the expressive power of super terms to
represent the safe-breakers.

Unification and matching are the key operations in Step (2a) of the symbolic algorithm. The problem
we need to solve for obtaining our symbolic algorithm is, however, not unification of super terms. The
problem we need to solve is the following: Given two super terms u and ¢, we have to determine the
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set U(u,t) of substitutions o such that there exist terms v’ € Ju] and ¢’ € [t] such that o(u’) = o(t').
More precisely, we want to characterize the set of most general unifiers that unify some terms in [u]
and [t]. Actually, the problem we need to solve for our symbolic algorithm is a simpler one where at
least one of the super terms u and t is simply a term, that is, without occurence of Sup in it2. We
prefer, however, to present a solution for the general case. We will do this in a general setting.

Let us consider a finite set F of function symbols such that Sup ¢ F and let X be a countable set
of variables (see Section 2 for the notations). The set of super terms induced by F and X, denoted by
PT(F,X) is defined by the following BNF:

tu=a | f(tr, -, tn) | Sup(t)

where z is a variable in X and f is a function symbol of arity n > 0. Let () denote the function symbols
in F of arity i. As usual, function symbols of arity 0, i.e. elements of F(©)  are called constants. The
meaning [t] of a super term ¢ is a set of terms in 7 (X, F) defined in the same way as in Definition 6.1.

Definition 7.1 Given two super terms u and t, a substitution o : X — PT (X, F) is called a maximal
general unifier for u and t, if the following conditions are satisfied:

1. it is a most general unifier for some terms v’ € [u] and t' € [t] and

2. for every substitution o’ that unifies terms in [u] and [t], o’ is not more general than o, that is,
for no substitution p, we have o = po’.

We denote by U(u,t) the set of mazimal general unifiers for u and t. ]

In general there will be more than one maximal general unifier for v and ¢ even modulo renaming. The
definition of U can be extended in the usual way —as for unification— to sets {(u;,t;) | i € [1,n]} of pairs
of super terms. In the sequel, we prefer to write u; = ¢; instead of (u;,t;) as our algorithm essentially
consists in manipulating some kind of equations.

In this section, we want to develop an algorithm that given E = {u; = t; | ¢ € [1,n]} determines
U(E). From now on, we will call such a set FE a generalized equational problem, written gep for short.
It turns out that an extension of the set of transformations that solve the usual unification problem
(cf. [6]) will give the solution.

An equation u = t is called simple, if the argument of any occurrence of Sup in u and ¢ is either
a constant or a variable. A gep F is called simple, if all its equations are simple. It is not difficult to
see that every gep E can be transformed into an equivalent simple gep E’. Equivalent here means that
U(E’) restricted to the variables in E is the same as U(E).

Example 7.2 Consider the following gep
E = {Sup (f(b, Sup(g(x)))) = f(b,g(Sup(a)))}. Then, E is equivalent to E' that consists of the follow-
mng equations:

Sup (3?0) = f(bvg(Sup(CL)))? To = f(ba Sup (3?1)),

z1 = g().

We first recall in Figure 6 the usual rules for solving unification.

Now to deal with Sup, we add new rules. We attract the reader’s attention to the fact that the first
rule (Splitting) transforms a simple gep E into a set of simple geps. Indeed, it yields a new gep for
each sub-term of f(t1,---,¢,). This is not the case for the usual unification rules. The rules for Sup
are presented in Figure 7.

Example 7.3 Reconsidering Example 7.2, our algorithm yields {x = Sup(a)}. It can be easily verified
that indeed U(E) = {z = Sup(a)}.

2Indeed, we need to unify the conclusion of a rule, which is a term, with a breaking-patterns which can be a super
term.
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Delete {t=t}UE = F

Decompe {flur, - un) = flt1, -, tn)JUE = {u;=¢]i€[0,n]}UE

Orient {t=2}UE = {z=t}UFE

Eliminate {z=t}UE = {x=t}UE[t/x]

Clash {flur, - un) =glt1, - tm)} UE = U=10

Occurs-Check {z=t} UF = U=0, ifzisnott
and x € var(t)

Figure 6: Rules of solving unification

Splitting-var {Sup(x) = f(t1, -, tn)}UE = {x=t'}UE, fort < f(t1,---,tn)
Splitting-const ~ {Sup(a) = f(t1, -, tn)fUE = {a=t}UE, fort' < f(t1, --,tn)
Simplification {t' = Sup(t),t’' =t} UE = {{=t}UE

Sup-var-const-2  {Sup (x) = Sup(a)} UE = B, if Ujsg FO £ 0

Sup-var-const-1  {Sup (x) = Sup(a)} UE = {z=Sup(a)}UE,if Jse FD =10
Sup-const-2 {Sup(a) = Sup(b)} UE = Bif Upmg FO #£0 -

Sup-const-1 {Sup(a) = Sup(b)} UE = {a=blUE,if s, F? =10
Sup-var-2 {Sup (x) = Sup(y)} UE = B, if Uy FO £0

Sup-var-1 {Sup (z) = Sup(y)} UE = {z=S8up(y)}UE, {Sup(z) =y} UE,

if Jjmg FO =10

Figure 7: Rules for Sup
Termination of the algorithm can be proved using lexicographic ordering and the ranking function that
maps a gep E to (m1,me, m3), where:
e m; is the number of variables for which there is no equation of the form = = ¢,
e my is the size of E, i.e. ¥y—tep(|ul + |t]) and
e mg is the number of equations t =z in F.
To prove soundness of the algorithm, we prove for each rule F = FEy,---, E, that we have U(F) =

U1§z‘§nu(Ei)-

7.3 On the termination of the symbolic algorithm

In this section, we present a technique that makes a depth-first implementation of the symbolic verifica-
tion algorithm always terminate, at a price of a safe approximation of the results. In fact, our prototype
implementation of our verification algorithm, named HERMES, terminates with precise results on all
practical examples of protocols we tried. That is, the results did not show any false attack (see Table 8).

A sequence (t;,p;)i>0 of breaking-patterns is called increasing at a sequence (g;);>o of positions, if
the following conditions are satisfied for every ¢ > 0:

1. ¢; € dom(t;) and g¢; = git1,
2. t;[z/qo] = to[z/qo], where z is fresh variable.
3. (tilg @i 'pi) = (tojg» %0 'Po)-

Let us consider an example to clarify these definitions.
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Protocol Name || Result | Time (sec) |

Yahalom OK 12.67
Needham-Schroeder Public Key Attack 0.04
Needham-Schroeder Public Key (with a key server) Attack 0.90
Needham-Schroeder-Lowe OK 0.03
Otway-Rees ok! 0.01
Denny Sacco Key Distribution with Public Key Attack 0.02
Wide Mouthed Frog (modified) OK 0.04
Kao-Chow OK 0.78
Neumann-Stubblebine ok! 0.04
Needham-Schroeder Symmetric Key Attack 0.08
ISO Symmetric Key One-Pass Unilateral Authentication || Attack 0.01
ISO Symmetric Key Two-Pass Unilateral Authentication OK 0.01
Andrew Secure RPC Attack 0.03
Figure 8: The results provided by HERMES, our prototype for verifying secrecy

properties, running on a Pentium ITII 600Mhz PC under Linux 2.2.19.

Example 7.4 Consider the following rule from the session (A, A) of Needham-Schroeder-Lowe protocol
presented in Section 7.4:

{(A, (N 9)) Y ka
{y}KA .

Consider the sequence ({0°(I,7)}x ,,pi)i>0, where 0(z) = (A, (N{*4,2)) and p; = 01 - (11). The first
three terms of the sequence are:

({6°(, @) ea = {(1,2)} k4, 01)

({011, 2) b, = {(A, (VA4 (1,2)) }icy, 0111) and

{01, 2) b, = {(A, (NI, (A, (NS4, (1)) b

,011111).  The whole sequence can be obtained by iteratively computing the breaking-patterns induced by
the rule r starting from the breaking-pattern ({(I,xz)}k,,01). Thus, a naive application of our symbolic
algorithm will not terminate. On the other hand, this sequence is increasing at (q; = 0-(11)%);>0. Indeed,
{0°(1,2)} k4 [2/q0) = {2}k, and (({0°(1,2)} K, )|qivqi_1pi =1) = ((I,z),1), for every i > 0. We will

see now how this fact can be exploited to make the algorithm to converge. O

T =

The clue of our technique for enforcing termination of the symbolic algorithm is expressed by the
following proposition:

Proposition 7.1 Let (t;,p;)i>0 be increasing at
(¢i)i>0- Then,
Uizo[[(tupi)]] < Ui<j[[(ti7pi)]]
It [Sup (t,,,)/45], 45 - 0 - a5 'pj]
for every j > 0.

Example 7.5 Consider again our Example 7.4.
Then, if we choose j = 1, we obtain a set consisting of the two super terms ({(I,2)}k,,01) and
({(A, (N{*4, Sup (I,x)))}k,,01101) which approzimates the whole sequence ({Gi(l,m)}KA,pi)DO.

IThere is a known attack of the untyped version of the protocol. This attack relies on the misuse of a message as
an encryption key. Discovering this type attack automatically requires to deal with non-atomic keys. This is not yet
implemented in HERMES.
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{I7 :I:S}KA7
{A’ (NflAa Sup (Ia $S))}KA7
{A’ (Nlﬂ Sup (Ia xs))}KA‘

Figure 9: The breaking-patterns for the Needham-Schroeder-Lowe protocol

7.4 Needham-Schroeder-Lowe Protocol

The corrected version of the Needham-Schroeder protocol is also called Needham-Schroeder-Lowe as it
is G. Lowe who found the attack and corrected the protocol. The difference with the initial version is
in the second transition of principal B:

A—B : {A N}k,
BHA N {B7N1,N2}KA
A— B : {Nalk,

In practice, we notice that if (pt, p) is a breaking-pattern then the pattern at the position p in pt is
a variable. Therefore, for the sake of readability, further we will write only the pattern pt instead of
the breaking-pattern (pt,p). The position is indicated by the subscript s to the variable that is at the
position p in the pattern pt.

We run our verification algorithm with & = {Na, Kzl}, the empty set of breaking-patterns and the
set of keys K = {K 4}. The algorithm terminates with the set of secrets unchanged and the set PB of
breaking-patterns given in Figure 9. As the initial constraints are FEq /<< { Ny, No, Kgl}, that is, none
of the messages in { N7, Na, Kgl} is contained at a critical position in a message derivable from Ey, it
is easy to prove that we have Ey(PB),S. Hence, we can conclude that the
Needham-Schroeder-Lowe protocol preserves the secret Ny. Concerning, the uncorrected version of
Example 3.1, during computation of new secrets and breaking-patterns, we arrive at a situation where
we have to add {A, N{*'1k, as a secret. As this message contains neither a fresh nonce nor a secret, we
stop the computation and follow it back to try constructing an attack. This way, we obtain the attack
known as “man in the middle”. m|

8 Conclusion

In this paper, we presented a method based on abstract interpretation for verifying secrecy properties
of cryptographic protocols in a general model. Our method deals with unbounded number of sessions,
unbounded number of principals, unbounded message depth and unbounded creation of fresh nonces.
However, in contrast to the work in [5, 31, 26], where the session number is bounded, our method is
not complete. Indeed, the problem is in its most general form undecidable even when pairing is not
allowed as shown in [4]. The main contribution of the paper is a verification algorithm that consists
of computing an inductive invariant using super as symbolic representation. Our method can already
deal with models in which we distinguish between long term and short term keys and which contain
variables ranging over keys. The idea here is that short term keys can be revealed to the intruder when
a session has terminated. This is not the case for long term keys. This allows a more faithful modeling
of some protocols.
An version of our tool together with the examples of Table 8 is available at the url:

http://wwu-verimag.imag.fr/~1bozga/hermes/hermes. php.
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Definitions

Definition A.1 (K-guards) Let K be a set of keys. The K-guards are messages of the form {m}y
for some m € T(F) and k € K.

K-guards = {{m}, | m € T(F), k€ K}

Definition A.2 (least protecting position) Let t be any term and p be a position. The least p-
protecting position of p in ¢, denoted by lpp(m,t), is the position of the highest K-quard protecting
position p of t. Formally,

Ipp(t,p) =
min( {q]q=p, tgis a K-guard} )
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Figure 10: Position ¢ is the least p-protecting position in term ¢

This definition is illustrated in Fig. 10.

Definition A.3 (sub-safe-breakers) Let (b,p) be a safe-breaker. Then, ssb(b,p) denotes the sub-
safe-breakers of (b,p), that is the set of all proper sub-terms of b that are safe-breakers for position p.
The sub-safe-breakers of (b,p) are built from the K-guards of b which are above the position p.
ssb(b,p) =
{(bg:P) | g1 =p, by is a K-guard}

—{(6,p)}

B Proofs

B.1 Proof of proposition 5.1

Proposition 5.1 Let E be a set of messages and (B, S) be a pair of safe-breakers and secrets. If (B,S) is
well-formed and E(B), S holds, then the secrets of S are insensitive to B in any message m derivable
from E, that is, E +m = m(B),S.

Proof: Before tackling the proof, we introduce the following definition:

We say that m is a derivation-minimal counter-example, if the following conditions are satisfied:

1. EFm,
2. -m(B), S and

3. there is a derivation for £ F m which does not contain any strict sub-derivation E F m’ of a
message m’ with -m/(B),.S.

Assume that the assertion does not hold. Then, there exists a derivation-minimal counter-example m.
The existence of m can be proved as follows. Take a derivation of £ + m and let Ny be its size. If
m is not a derivation-minimal counter-example then there must exist a sub-derivation F + m’ with
-m/(B),S. Clearly, the size Ny of the derivation tree of m’ is strictly smaller than Ny. Repeated
application of the same argument must lead to a derivation-minimal counter-example as there are no
strictly decreasing chains in IN.

Thus, let us come back to our derivation-minimal counter-example m. We derive a contradiction by
case analysis on the last derivation step in £ F m.

1. m € E. This, contradicts the assumption
E(B),S.
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2. Case of encryption with a key from K. Thus, m = {m1}x,, EF mj and E + k; with k; € K. Since
m is a derivation-minimal counter-example, we have m,(B),S and ki(B),S. Since -m(B), S,
there exists (b, p) € B such that m = b and —b|,(B),.S ().

If ssb(b,r) = 0 then we have —mq(B),.S, which contradicts the derivation-minimality of m.
So, let (b1,p1) € ssb(b, p). From definition, we have that b|, = b1, (%)

Since (B, S) is well-formed, we have either
(bi,p1)€Borbes.

If we suppose that b € S, since S is closed, we obtain that either mq, € S or k1 € S and hence
either —my(B),S or —k1(B),S , contradiction.

Hence, we have (b1, p1) € B. From mq(B), S, we obtain b1, (B),S (% % ).

From (%), (xx) and (* * %) we obtain a contradiction.

3. Case of encryption with a key which is not in K. Thus, m = {mi}x,, EF m; and E - k; with
k1 ¢ K. Since m is a derivation-minimal counter-example, we have m1(B),. S, and then we obtain
that m(B), S, contradiction.

4. Case of pairing. Similar to the previous case.
5. Case of projection. This also contradicts the derivation-minimality assumption.

6. Case of decryption. Thus, m; = {m}y,, EF m; and E F k;''. Since m is a derivation-minimal
counter-example, we have m; (B), S and k' (B), S. If we suppose that k; ¢ K, then we obtain
that either —mq(B), S or
m(B),.S, contradiction.

If k; € K, since S is closed, we obtain that k' € S, contradiction with k7 *(B),.S.

B.2 Proof of theorem 5.1

Theorem 5.1 Let S be a set of secrets and B be a set of safe-breakers. If (B,S) is well-formed and stable
w.r.t. all rules in R ; if additionally E(B),.S holds for every set of messages Ey that satisfies C, then
/p S, i.e., the secrets in S are preserved in any execution of the protocol P = (C,R).

Proof: We proof by induction that for any run Eg =5 Ey --- E,_1 -3 E,,, where for eachi =1,---n,
there is a substitution p; : X — T(F) such that F;,_y F p(t1) and E; = E;_1 U {p(t2)}, where
t; — to =71, we have E, I/ S.

First, we have Fo(B),S then Ey I/ S.

Second, we proof that if for any run we have E;_1(B),S then, we have E;(B),S, for all rules
r =t; — t2 in R and for all p such that F;_; F p(t1) and E; = FE;_1 U {p(t2)}.

We have E;_1(B),S and F;,_1 F p(t1) so we are in the hypothesis of the proposition 5.1 then
p(t1)(B),S. (B,S) is stable w.r.t. all rules in R then p(t2)(B),S. So we have E;(B), S |

C Example: The Yahalom Protocol

The aim of the Yahalom protocol (cf. [10] and see Figure 11) is to establish a secret symmetric shared
key kap between two participants A and B using a trusted server S. The protocol assumes that A and
B already share secure keys k45 respectively ks with the server S.

The Yahalom protocol can be represented in our setting as follows:

P ={p1,p2,ps} with fresh(p1) = {n1},
fresh(p2) = {n2} and fresh(ps) = {n3}. The transitions are described in Figure 12:

25,26



A—B : AN

BHS : B7{A7N17N2}k35‘

SHA . {B7kAB;N17N2}kAS){A7kAB}kBS
A—B : {Aa kAB}kst {NQ}ICAB

Figure 11: The Yahalom protocol

tran(py) :

D1 — D1,

{p275mk(m7X17Y1)5n15Zl}smk(pl,pg);wl - Wl;{Zl}smk(m,Xl,Yl)

tran(p2) :

XQ,}/Q - p27{X27Y25n2}s’mk(X2,p3)

tran(ps) :

X3,{Y3, Z3, W3} smi(Xs,ps) —  { X3, smk(ns, Ys, X3), Z3, Watsmn(vs,ps)
{Ys, smk(ns, Y3, X3) }smb(xs.ps)

Figure 12: The Yahalom protocol transitions

The abstraction of Section 4 yields the following abstract sets:

Pt ={A T},

I('i = {K[, smk:(A, A)7 KAB; Kﬁg’q ,

Nji — {NhNiAAA,NiAIA7N2,Né4AA,N2IAA7NI}}
For the sake of simplicity we write Kap instead of smk(N3z, A, A) respectively K4a4 instead of
smk(N4{*4, A, A). We only present some typical abstract rules of R in Figure 13: We run our veri-
fication algorithm on the set of abstract rules R, the set of secrets S = {smk(A4, A), No, Kap}, the
empty set of breaking-patterns, and the set of keys K = {smk(A, A), Kap}.

The algorithm terminates with the set of secrets unchanged and a set of breaking-patterns BP

which, for lack of space, is not presented here. As the initial constraints are
Eg /€< {No, smk(A, A), K s}, that is, none of the messages in { No, smk(A, A), Kap} is contained at a
critical position in a message derivable from Ejy, so, it is easy to prove that we have Ey(BP), S. Hence,
we can conclude that the Yahalom protocol preserves the set of secrets S.

m=(A,1,A) I ;= (A,A4,A) S

AA{LY2,NIAAY ka,a)’ A{AY2,NAAAY L ka,a)’

X3,{Y3,23, W3} amr(xs,4)

Y3X3A 5
-,Ziivwii}sm,k(ys,A)w{YCSva;X; }omk(X3,A) ’

B #
™= (X37YE’>7A))X37YE)’ epr {X3K::j§jA

_ {A K, N3 21} orga, 4y, Wi o {I,K, N3 Z1} io(a, 4y, W1 #
= (4,AA) WilZi e, ;o m=(A1,A) W7 T yKeK

Figure 13: The Yahalom protocol abstract rules
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