
Lower and Upper Bounds in Zone Based

Abstractions of Timed Automata

Gerd Behrmann1, Patricia Bouyer2?, Kim G. Larsen1, and Radek Pelánek3??

1 BRICS, Aalborg University, Denmark
{behrmann,kgl}@cs.auc.dk

2 LSV, CNRS & ENS de Cachan, UMR 8643, France
bouyer@lsv.ens-cachan.fr

3 Masaryk University Brno, Czech Republic
xpelanek@informatics.muni.cz

Abstract. Timed automata have an infinite semantics. For verification
purposes, one usually uses zone based abstractions w.r.t. the maximal
constants to which clocks of the timed automaton are compared. We
show that by distinguishing maximal lower and upper bounds, signif-
icantly coarser abstractions can be obtained. We show soundness and
completeness of the new abstractions w.r.t. reachability. We demonstrate
how information about lower and upper bounds can be used to optimise
the algorithm for bringing a difference bound matrix into normal form.
Finally, we experimentally demonstrate that the new techniques dramat-
ically increases the scalability of the real-time model checker Uppaal.

1 Introduction

Since their introduction by Alur and Dill [AD90,AD94], timed automata (TA)
have become one of the most well-established models for real-time systems with
well-studied underlying theory and development of mature model-checking tools,
e.g. Uppaal [LPY97] and Kronos [BDM+98]. By their very definition TA de-
scribe (uncountable) infinite state-spaces. Thus, algorithmic verification relies
on the existence of exact finite abstractions. In the original work by Alur and
Dill, the so-called region-graph construction provided a “universal” such abstrac-
tion. However, whereas well-suited for establishing decidability of problems re-
lated to TA, the region-graph construction is highly impractical from a tool-
implementation point of view. Instead, most real-time verification tools apply
abstractions based on so-called zones, which in practise provide much coarser
(and hence smaller) abstractions.

To ensure finiteness, it is essential that the given abstraction (region as well
as zone based) takes into account the actual constants with which clocks are
compared. In particular, the abstraction could identify states which are iden-
tical except for the clock values which exceed the maximum such constants.

? Partially supported by ACI Cortos. Work partly done while visiting CISS, Aalborg
University.

?? Partially supported by GA ČR grant no. 201/03/0509.

y = 1
y

`1 `2

x ≥ 10 x ≤ 106

`

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

1 2 10 11 106

1

x

y

Fig. 1. A small timed automaton. The state space of the automaton when in location
` is shown. The area to the right is the abstraction of the last zone.

Obviously, the smaller we may choose these maximum constants, the coarser the
resulting abstraction will be. Allowing clocks to be assigned different (maximum)
constants is an obvious first step in this direction, and in [BBFL03] this idea has
been (successfully) taken further by allowing the maximum constants not only
to depend of the particular clock but also of the particular location of the TA.
In all cases the exactness is established by proving that the abstraction respects
bisimilarity, i.e. states identified by the abstraction are bisimilar.

Consider now the timed automaton of Fig. 1. Clearly 106 is the maximum
constant for x and 1 is the maximum constant for y. Thus, abstractions based
on maximum constants will distinguish all states where x ≤ 106 and y ≤ 1. In
particular, a forward computation of the full state space will – regardless of the
search-order – create an excessive number of abstract (symbolic) states includ-
ing all abstract states of the form (`, x − y = k) where 0 ≤ k ≤ 106 as well as
(`, x − y > 106). However, assuming that we are only interested in reachability
properties (as is often the case in Uppaal), the application of downwards closure
with respect to simulation will lead to an exact abstraction which could poten-
tially be substantially coarser than closure under bisimilarity. Observing that
106 is an upper bound on the edge from ` to `2 in Fig. 1, it is clear that for any
state where x ≥ 10, increasing x will only lead to “smaller” states with respect
to simulation preorder. In particular, applying this downward closure results in
the radically smaller collection of abstract states, namely (`, x − y = k) where
0 ≤ k ≤ 10 and (`, x − y > 10).

The fact that 106 is an upper bound in the example of Fig. 1 is crucial for
the reduction we obtained above. In this paper we present new, substantially
coarser yet still exact abstractions which are based on two maximum constants
obtained by distinguishing lower and upper bounds. In all cases the exactness
(w.r.t. reachability) is established by proving that the abstraction respects down-
wards closure w.r.t. simulation, i.e. for each state in the abstraction there is an
original state simulating it. The variety of abstractions comes from the additional
requirements to effective representation and efficient computation and manip-
ulation. In particular we insist that zones can form the basis of our abstrac-
tions; in fact the suggested abstractions are defined in terms of low-complexity
transformations of the difference bound matrix (DBM) representation of zones.

2

Furthermore, we demonstrate how information about lower and upper bounds
can be used to optimise the algorithm for bringing a DBM into normal form. Fi-
nally, we experimentally demonstrate the significant speedups obtained by our
new abstractions, to be comparable with the convex hull over-approximation
supported by Uppaal. Here, the distinction between lower and upper bounds is
combined with the orthogonal idea of location-dependency of [BBFL03].

2 Preliminaries

Although we perform our experiments in Uppaal, we describe the theory on
the basic TA model. Variables, committed locations, networks, and other things
supported by Uppaal are not important with respect to presented ideas and the
technique can easily be extended for these "richer" models. Let X be a set of non-
negative real-valued variables called clocks. The set of guards G(X) is defined
by the grammar g := x ./ c | g ∧ g, where x ∈ X, c ∈ N and ./∈ {<,≤,≥, >}.

Definition 1 (TA Syntax). A timed automaton is a tuple A = (L,X, `0, E, I),
where L is a finite set of locations, X is a finite set of clocks, `0 ∈ L is an initial
location, E ⊆ L × G(X) × 2X × L is a set of edges labelled by guards and a set
of clocks to be reset, and I : L → G(X) assigns invariants to clocks.

A clock valuation is a function ν : X → R≥0. If δ ∈ R≥0 then ν + δ denotes
the valuation such that for each clock x ∈ X, (ν + δ)(x) = ν(x) + δ. If Y ⊆ X

then ν[Y := 0] denotes the valuation such that for each clock x ∈ X r Y ,
ν[Y := 0](x) = ν(x) and for each clock x ∈ Y , ν[Y := 0](x) = 0. The satisfaction
relation ν |= g for g ∈ G(X) is defined in the natural way.

Definition 2 (TA Semantics). The semantics of a timed automaton A =
(L,X, `0, E, I) is defined by a transition system SA = (S, s0,−→), where S =
L × R

X
≥0 is the set of states, s0 = (`0, ν0) is the initial state, ν0(x) = 0 for all

x ∈ X, and −→⊆ S × S is the set of transitions defined by:

– (`, ν)
ε(δ)

−−−−−→ (`, ν + δ) if ∀0 ≤ δ′ ≤ δ : (ν + δ′) |= I(l)
– (`, ν) −−−−→ (`′, ν[Y := 0]) if there exists (`, g, Y, `′) ∈ E such that ν |= g

and ν[Y := 0] |= I(`′)

The reachability problem for an automaton A and a location ` is to decide
whether there is a state (`, ν) reachable from (`0, ν0) in the transition system
SA. As usual, for verification purposes, we define a symbolic semantics for TA.
For universality, the definition uses arbitrary sets of clock valuations.

Definition 3 (Symbolic Semantics). Let A = (L,X, `0, E, I) be a timed au-
tomaton. The symbolic semantics of A is based on the abstract transition system

(S, s0,=⇒), where S = L×2R
X

≥0 , and ’=⇒’ is defined by the following two rules:

Delay: (`,W) =⇒ (`,W ′),

where W ′ =
{

ν + d | ν ∈ W ∧ d ≥ 0 ∧ ∀0 ≤ d′ ≤ d : (ν + d′) |= I(`)
}

Action: (`,W) =⇒ (`′,W ′) if there exists a transition `
g,Y

−−−→ `′ in A,

such that W ′ =
{

ν′ | ∃ν ∈ W : ν |= g ∧ ν′ = ν[Y := 0] ∧ ν′ |= I(`′)
}

.

3

The symbolic semantics of a timed automaton may induce an infinite transition
system. To obtain a finite graph one may, as suggested in [BBFL03], apply
some abstraction a : P(RX

≥0) ↪→ P(RX
≥0), such that W ⊆ a(W). The abstract

transition system ’=⇒a’ is then given by the following inference rule:

(`,W) =⇒ (`′,W ′)

(`,W) =⇒a

(

`′, a(W ′)
)

if W = a(W)

A simple way to ensure that the reachability graph induced by ’=⇒a’ is finite is
to establish that there is only a finite number of abstractions of sets of valuations;
that is, the set {a(W) | a defined on W} is finite. In this case a is said to be
a finite abstraction. Moreover, ’=⇒a’ is said to be sound and complete (w.r.t.
reachability) whenever:

Sound: (`0, {ν0}) =⇒∗
a

(`,W) implies ∃ν ∈ W s.t. (`0, ν0) −→
∗ (l, ν)

Complete: (`0, ν0) −→
∗ (`, ν) implies ∃W : ν ∈ W and (`0, {ν0}) =⇒∗

a
(`,W)

By language misuse, we say that an abstraction a is sound (resp. complete)
whenever ’=⇒a’ is sound (resp. complete). Completeness follows trivially from
the definition of abstraction. Of course, if a and b are two abstractions such that
for any set of valuations W , a(W) ⊆ b(W), we prefer to use abstraction b because
the graph induced by it is a priori smaller than the one induced by a. Our aim
is thus to propose an abstraction which is finite, as coarse as possible, and which
induces a sound abstract transition system. We also require that abstractions
are effectively representable and may be efficiently computed and manipulated.

A first step in finding an effective abstraction is realising that W will always
be a zone whenever (`0, {ν0}) =⇒∗ (`,W). A zone is a conjunction of con-
straints of the form x ./ c or x − y ./ c, where x and y are clocks, c ∈ Z,
and ./ is one of {≤,≤,=,≥, >}. Zones can be represented using Difference
Bound Matrices (DBM). We will briefly recall the definition of DBMs, and re-
fer to [Dil89,CGP99,Ben02,Bou02] for more details. A DBM is a square matrix
D = 〈ci,j ,≺i,j〉0≤i,j≤n such that ci,j ∈ Z and ≺i,j∈ {<,≤} or ci,j = ∞ and
≺i,j =<. The DBM D represents the zone JDK which is defined by JDK = {ν |
∀0 ≤ i, j ≤ n, ν(xi)−ν(xj) ≺i,j ci,j}, where {xi | 1 ≤ i ≤ n} is the set of clocks,
and x0 is a clock which is always 0, (i.e. for each valuation ν, ν(x0) = 0). DBMs
are not a canonical representation of zones, but a normal form can be computed
by considering the DBM as an adjacency matrix of a weighted directed graph
and computing all shortest paths. In particular, if D = 〈ci,j ,≺i,j〉0≤i,j≤n is a
DBM in normal form, then it satisfies the triangular inequality, that is, for every
0 ≤ i, j, k ≤ n, we have that (ci,j ,≺i,j) ≤ (ci,k,≺i,k) + (ck,j ,≺k,j), where com-
parisons and additions are defined in a natural way (see [Bou02]). All operations
needed to compute ’=⇒’ can be implemented by manipulating the DBMs.

3 Maximum Bound Abstractions

The abstraction used in real-time model-checkers such as Uppaal [LPY97] and
Kronos [BDM+98], is based on the idea that the behaviour of an automaton

4

is only sensitive to changes of a clock if its value is below a certain constant.
That is, for each clock there is a maximum constant such that once the value
of a clock has passed this constant, its exact value is no longer relevant — only
the fact that it is larger than the maximum constant matters. Transforming a
DBM to reflect this idea is often referred to as extrapolation [Bou03,BBFL03] or
normalisation [DT98]. In the following we will choose the term extrapolation.

Simulation & Bisimulation. The notion of bisimulation has so far been the
semantic tool for establishing soundness of suggested abstractions. In this paper
we shall exploit the more liberal notion of simulation to allow for even coarser
abstractions. Let us fix a timed automaton A = (L,X, `0, E, I). We consider a
relation on L × R

X
≥0 satisfying the following transfer properties:

1. if (`1, ν1) 4 (`2, ν2) then `1 = `2
2. if (`1, ν1) 4 (`2, ν2) and (`1, ν1) −−−→ (`′1, ν

′
1), then there exists (`′2, ν

′
2) such

that (`2, ν2) −−−→ (`′2, ν
′
2) and (`′1, ν

′
1) 4 (`′2, ν

′
2)

3. if (`1, ν1) 4 (`2, ν2) and (`1, ν1)
ε(δ)

−−−→ (`1, ν1 + δ), then there exists δ′ such

that (`2, ν2)
ε(δ′)

−−−−→ (`2, ν2 + δ′) and (`1, ν1 + δ) 4 (`2, ν2 + δ′)

We call such a relation a (location-based) simulation relation or simply a simula-
tion relation. A simulation relation 4 such that 4−1 is also a simulation relation,
is called a (location-based) bisimulation relation.

Proposition 1. Let 4 be a simulation relation, as defined above. If (`, ν1) 4

(`, ν2) and if a discrete state `′ is reachable from (`, ν1), then it is also reachable
from (`, ν2).

Reachability is thus preserved by simulation as well as by bisimulation. However,
in general the weaker notion of simulation preserves fewer properties than that
of bisimulation. For example, deadlock properties as expressed in Uppaal 1 are
not preserved by simulation whereas it is preserved by bisimulation. In Fig. 1,
(`, x = 15, y = .5) is bisimilar to (`, x = 115, y = .5), but not to (`, x = 106 +
1, y = .5). However, (`, x = 15, y = .5) simulates (`, x = 115, y = .5) as well as
(`, x = 106 + 1, y = .5).

Classical Maximal Bounds. The classical abstraction for timed automata
is based on maximal bounds, one for each clock of the automaton. Let A =
(L,X, `0, E, I) be a timed automaton. The maximal bound of a clock x ∈ X,
denoted M(x), is the maximal constant k such that there exists a guard or
invariant containing x ./ k in A. Let ν and ν ′ be two valuations. We define the
following relation:

ν ≡M ν′ def
⇐⇒ ∀x ∈ X : either ν(x) = ν ′(x) or (ν(x) > M(x) and ν ′(x) > M(x))

Lemma 1. The relation R = {((`, ν), (`, ν ′)) | ν ≡M ν′} is a bisimulation
relation.
1 There is a deadlock whenever there exists a state (`, ν) such that no further discrete

transition can be taken.

5

We can now define the abstraction a≡M
w.r.t. ≡M . Let W be a set of valuations,

then a≡M
(W) = {ν | ∃ν′ ∈ W, ν′ ≡M ν}.

Lemma 2. The abstraction a≡M
is sound and complete.

These two lemmas come from [BBFL03]. They will moreover be consequences of
our main result.

Lower & Upper Maximal Bounds. The new abstractions introduced in the
following will be substantially coarser than a≡M

. It is no longer based on a single
maximal bound per clock but rather on two maximal bounds per clock allowing
lower and upper bounds to be distinguished.

Definition 4. Let A = (L,X, `0, E, I) be a timed automaton. The maximal
lower bound denoted L(x), (resp. maximal upper bound U(x)) of clock x ∈ X

is the maximal constant k such that there exists a constraint x > k or x ≥ k

(resp. x < k or x ≤ k) in a guard of some transition or in an invariant of some
location of A. If such a constant does not exist, we set L(x) (resp. U(x)) to −∞.

Let us fix for the rest of this section a timed automaton A and bounds L(x),
U(x) for each clock x ∈ X as above. The idea of distinguishing lower and upper
bounds is the following: if we know that the clock x is between 2 and 4, and if
we want to check that the constraint x ≤ 5 can be satisfied, the only relevant
information is that the value of x is greater than 2, and not that x ≤ 4. In other
terms, checking the emptiness of the intersection between a non-empty interval
[c, d] and]−∞, 5] is equivalent to checking whether c > 5; the value of d is not
useful. Formally, we define the LU-preorder as follows.

Definition 5 (LU-preorder ≺LU). Let ν and ν′ be two valuations. Then, we
say that

ν′ ≺LU ν
def
⇐⇒ for each clock x,







either ν′(x) = ν(x)
or L(x) < ν′(x) < ν(x)
or U(x) < ν(x) < ν ′(x)

Lemma 3. The relation R = {((`, ν), (`, ν ′)) | ν′ ≺LU ν} is a simulation rela-
tion.

Proof. The only non-trivial part in proving that R indeed satisfies the three
transfer properties of a simulation relation is to establish that if g is a clock
constraint, then “ν |= g implies ν ′ |= g”. Consider the constraint x ≤ c. If
ν(x) = ν′(x), then we are done. If L(x) < ν ′(x) < ν(x), then ν(x) ≤ c implies
ν′(x) ≤ c. If U(x) < ν(x) < ν ′(x), then it is not possible that ν |= x ≤ c (because
c ≤ U(x)). Consider now the constraint x ≥ c. If ν(x) = ν ′(x), then we are done.
If U(x) < ν(x) < ν ′(x), then ν(x) ≥ c implies ν ′(x) ≥ c. If L(x) < ν ′(x) < ν(x),
then it is not possible that ν satisfies the constraint x ≥ c because c ≤ L(x).

�

Using the above LU-preorder, we can now define a first abstraction based on the
lower and upper bounds.

6

L(x) U(x)

ν

ν′

Coarser!

L(x) U(x)

ν

ν′

As good as...

U(x) L(x)

ν

ν′

Coarser!

U(x) L(x)

ν

ν′

Coarser!

Fig. 2. Quality of a≺LU
compared with a≡M

for M = max(L, U).

Definition 6 (a≺LU
, abstraction w.r.t. ≺LU). Let W be a set of valuations.

We define the abstraction w.r.t. ≺LU as a≺LU
(W) = {ν | ∃ν′ ∈ W, ν′ ≺LU ν}.

Before going further, we illustrate this abstraction in Fig. 2. There are several
cases, depending on the relative positions of the two values L(x) and U(x) and
of the valuation ν we are looking at. We represent with a plain line the value of
a≺LU

({ν}) and with a dashed line the value of a≡M
({ν′}), where the maximal

bound M(x) corresponds to the maximum of L(x) and U(x). In each case, we
indicate the “quality” of the new abstraction compared with the “old” one. We
notice that the new abstraction is coarser in three cases and matches the old
abstraction in the fourth case.

Lemma 4. Let A be a timed automaton. Define the constants M(x), L(x) and
U(x) for each clock x as described before. The abstraction a≺LU is sound, com-
plete, and coarser or equal to a≡M

.

Proof. Completeness is obvious, and soundness comes from lemma 3. Defini-
tions of a≺LU and a≡M

give the last result because for each clock x, M(x) =
max (L(x), U(x)). �

This result could suggest to use a≺LU
in real time model-checkers. However,

we do not yet have an efficient method for computing the transition relation
’=⇒a≺LU

’. Indeed, even if W is a zone, it might be the case that a≺LU
(W) is not

even convex (we urge the reader to construct such an example for herself). For
effectiveness and efficiency reasons we prefer abstractions which transform zones
into zones because we can then use the DBM data structure. In the next section
we present DBM-based extrapolation operators that will give abstractions which
are sound, complete, finite and also effective.

7

4 Extrapolation Using Zones

The (sound and complete) symbolic transition relations induced by abstrac-
tions considered so far unfortunately do not preserve convexity of sets of valu-
ations. In order to allow for sets of valuations to be represented efficiently as
zones, we consider slightly finer abstractions aExtra such that for every zone Z,
Z ⊆ aExtra(Z) ⊆ a≺LU

(Z) (resp. Z ⊆ aExtra(Z) ⊆ a≡M
(Z)) (this ensures cor-

rectness) and aExtra(Z) is a zone (this gives an effective representation). These
abstractions are defined in terms of extrapolation operators on DBMs. If Extra
is an extrapolation operator, it defines an abstraction, aExtra, on zones such that
for every zone Z, aExtra(Z) = JExtra(DZ)K, where DZ is the DBM in normal
form which represents the zone Z.

In the remainder, we consider a timed automaton A over a set of clocks X =
{x1, .., xn} and we suppose we are given another clock x0 which is always zero.
For all these clocks, we define the constants M(xi), L(xi), U(xi) for i = 1, ..., n.
For x0, we set M(x0) = U(x0) = L(x0) = 0 (x0 is always equal to zero, so we
assume we are able to check whether x0 is really zero). In our framework, a zone
will be represented by DBMs of the form 〈ci,j ,≺i,j〉i,j=0,...,n.

We now present several extrapolations starting from the classical one and im-
proving it step by step. Each extrapolation will be illustrated by a small picture
representing a zone (in black) and its corresponding extrapolation (dashed).

Classical extrapolation based on maximal bounds M(x). Let D be a
DBM 〈ci,j ,≺i,j〉i,j=0...n. Then ExtraM (D) is given by the DBM 〈c′i,j ,≺

′
i,j〉i,j=0...n

defined and illustrated below:

(c′i,j ,≺
′
i,j) =











∞ if ci,j > M(xi)

(−M(xj), <) if −ci,j > M(xj)

(ci,j ,≺i,j) otherwise �������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

M(x)

M(y)

x

y

This is the extrapolation operator used in the real-time model-checkers Uppaal

and Kronos. This extrapolation removes bounds that are larger than the max-
imal constants. The correctness is based on the fact that aExtraM

(Z) ⊆ a≡M
(Z)

and is proved in [Bou03] and for the location-based version in [BBFL03].

In the remainder, we will propose several other extrapolations that will im-
prove the classical one, in the sense that the zones obtained with the new extrap-
olations will be larger than the zones obtained with the classical extrapolation.

Diagonal extrapolation based on maximal constants M(x). The first
improvement consists in noticing that if the whole zone is above the maximal
bound of some clock, then we can remove some of the diagonal constraints of the
zones, even if they are not themselves above the maximal bound. More formally,

8

if D = 〈ci,j ,≺i,j〉i,j=0,...,n is a DBM, Extra+
M (D) is given by 〈c′i,j ,≺

′
i,j〉i,j=0,...,n

defined as:

(c′i,j ,≺
′
i,j) =































∞ if ci,j > M(xi)

∞ if −c0,i > M(xi)

∞ if −c0,j > M(xj), i 6= 0

(−M(xj), <) if −ci,j > M(xj), i = 0

(ci,j ,≺i,j) otherwise

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

M(x)

M(y)

x

y

For every zone Z it then holds that Z ⊆ aExtraM
(Z) ⊆ aExtra

+

M

(Z).

Extrapolation based on LU-bounds L(x) and U(x). The second improve-
ment uses the two bounds L(x) and U(x). If D = 〈ci,j ,≺i,j〉i,j=0,...,n is a DBM,
ExtraLU (D) is given by 〈c′i,j ,≺

′
i,j〉i,j=0,...,n defined as:

(c′i,j ,≺
′
i,j) =











∞ if ci,j > L(xi)

(−U(xj), <) if −ci,j > U(xj)

(ci,j ,≺i,j) otherwise �������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

L(y)

L(x) = U(x)

U(y)

x

y

This extrapolation benefits from the properties of the two different maximal
bounds. It does generalise the operator aExtraM

. For every zone Z, it holds that
Z ⊆ aExtraM

(Z) ⊆ aExtraLU
(Z).

Diagonal extrapolation based on LU-bounds L(x) and U(x). This last
extrapolation is a combination of both the extrapolation based on LU-bounds
and the improved extrapolation based on maximal constants. It is the most
general one. If D = 〈ci,j ,≺i,j〉i,j=0,...,n is a DBM, Extra+

LU (D) is given by the
DBM 〈c′i,j ,≺

′
i,j〉i,j=0,...,n defined as:

(c′i,j ,≺
′
i,j) =























∞ if ci,j > L(xi)
∞ if − c0,i > L(xi)
∞ if − c0,j > U(xj), i 6= 0
(−U(xj), <) if − c0,j > U(xj), i = 0
(ci,j ,≺i,j) otherwise

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

L(y)

U(y)

x

y

L(x) = U(x)

Correctness of these Abstractions. We know that all the above extrapola-
tions are complete abstractions as they transform a zone into a clearly larger one.
Finiteness also comes immediately, because we can do all the computations with

9

aExtraM
(Z)

Z

a
Extra

+

M

(Z)

a
Extra

+

LU
(Z)

aExtraLU
(Z)

a≡M
(Z)

a≺LU
(Z)

Fig. 3. For any zone Z, we have the inclusions indicated by the arrows. The sets
a
Extra

+

M

(Z) and aExtraLU
(Z) are incomparable. The aExtra operators are DBM based

abstractions whereas the other two are semantic abstractions. The dashed arrow was
proved in [BBFL03] whereas the dotted arrow is the main result of this paper.

DBMs and the coefficients after extrapolation can only take a finite number of
values. Effectiveness of the abstraction is obvious as extrapolation operators are
directly defined on the DBM data structure. The only difficult point is to prove
that the extrapolations we have presented are correct. To prove the correctness
of all these abstractions, due to the inclusions shown in Fig. 3, it is sufficient to
prove the correctness of the largest abstraction, viz aExtra

+

LU

.

Proposition 2. Let Z be a zone. Then aExtra
+

LU

(Z) ⊆ a≺LU
(Z).

The proof of this proposition is quite technical, and is omitted here due to the
page limit. Notice however that it is a key-result. Using all what precedes we are
able to claim the following theorem which states that aExtra

+

LU

is an abstraction

which can be used in the implementation of TA.

Theorem 1. aExtra
+

LU

is sound, complete, finite and effectively computable.

5 Acceleration of Successor Computation

In the preceding section it was shown that the abstraction based on the new
extrapolation operator is coarser than the one currently used in TA model-
checkers. This can result in a smaller symbolic representation of the state space
of a timed automaton, but this is not the only consequence: Sometimes clocks
might only have lower bounds or only have upper bounds. We say that a clock x

is lower-bounded (resp. upper-bounded) if L(x) > −∞ (resp. U(x) > −∞). Let
D be a DBM and D′ = Extra+

LU (D). It follows directly from the definition of
the extrapolation operator that for all xi, U(xi) = −∞ implies c′j,i = +∞ and
L(xi) = −∞ implies c′i,j = +∞. If we let Low = {i | xi is lower bounded} and
Up = {i | xi is upper bounded}, then it follows that D′ can be represented with

10

O(|Low| · |Up|) constraints (compared to O(n2)), since all remaining entries in
the DBM will be +∞. As we will see in this section, besides reducing the size
of the zone representation, identifying lower and upper bounded clocks can be
used to speed up the successor computation.

We will first summarise how the DBM based successor computation is performed.
Let D be a DBM in normal form. We want to compute the successor of D w.r.t.

an edge `
g,Y

−−−→ `′. In Uppaal, this is broken down into a number of elementary
DBM operations, quite similar to the symbolic semantics of TA. After applying
the guard and the target invariant, the result must be checked for consistency and
after applying the extrapolation operator, the DBM must be brought back into
normal form. Checking the consistency of a DBM is done by computing the nor-
mal form and checking the diagonal for negative entries. In general, the normal
form can be computed using the O(n3)-time Floyd-Warshall all-pairs-shortest-
path algorithm, but when applying a guard or invariant, resetting clocks, or
computing the delay successors, the normal form can be recomputed much more
efficiently, see [Rok93]. The following shows the operations involved and their
complexity (all DBMs except D5 are in normal form). The last step is clearly
the most expensive.

1. D1 = Intersection(g,D) + detection of emptiness O(n2 · |g|)
2. D2 = ResetY (D1) O(n · |Y |)
3. D3 = Elapse(D2) O(n)
4. D4 = Intersection(I(`), D3) + detection of emptiness O(n2 · |I(l)|)
5. D5 = Extrapolation(D4) O(n2)
6. D6 = Canonize(D5) O(n3)

We say that a DBM D is in LU-form whenever all coefficients ci,j = ∞, except
when xi is lower bounded and xj is upper bounded. As a first step we will use
the fact that D5 is in LU-form to improve the computation of D6. Canonize is
the Floyd-Warshall algorithm for computing the all-pairs-shortest-path closure,
consisting of three nested loops over the indexes of the DBM, hence the cubic
runtime. We propose to replace it with the following LU-Canonize operator.

proc LU-Canonize(D)
for k ∈ Low ∩ Up do

for i ∈ Low do
for j ∈ Up do

if (cij ,≺ij) > (cik,≺ik) + (ckj ,≺kj)
then (cij ,≺ij) = (cik,≺ik) + (ckj ,≺kj) fi

od od od
end

This procedure runs in O(|Low | · |Up| · |Low ∩Up|) time which in practise can be
much smaller than O(n3). Correctness of this change is ensured by the following
lemma.

Lemma 5. Let D be a DBM in LU-form. Then we have the following syntactic
equality: Canonize(D) = LU-Canonize(D).

11

As an added benefit, it follows directly from the definition of LU-Canonize

that D6 is also in LU-form and so is D when computing the next successor.
Hence we can replace the other DBM operations (intersection, elapse, reset,
etc.) by versions which work on DBMs in LU-form. The main interest would
be to introduce an asymmetric DBM which only stores O(|Low| · |Up|) entries,
thus speeding up the successor computation further and reducing the memory
requirements. At the moment we have implemented the LU-Canonize opera-
tion, but rely on the minimal constraint form representation of a zone described
in [LLPY97], which does not store +∞ entries.

6 Implementation & Experiments

We have implemented a prototype of a location based variant of the Extra+
LU

operator in Uppaal 3.4.2. Maximum lower and upper bounds for clocks are found
for each automaton using a simple fixed point iteration. Given a location vector,
the maximum lower and upper bounds are simply found by taking the maximum
of the bounds in each location, similar to the approach taken in [BBFL03]. In
addition, we have implemented the LU-Canonize operator.

As expected, experiments with the model in Fig. 1 show that the using the
LU extrapolation the computation time for building the complete reachable state
space does not depend on the value of the constants, whereas the computation
time grows with the constant when using the classical extrapolation approach.
We have also performed experiments with models of various instances of Fischer’s
protocol for mutual exclusion and the CSMA/CD protocol. Finally, experiments
using a number of industrial case studies were made. For each model, Uppaal

was run with four different options: (-n1) classic non-location based extrapola-
tion (without active clock reduction), (-n2) classic location based extrapolation
(which gives active clock reduction as a side-effect), (-n3) LU location based
extrapolation, and (-A) classic location based extrapolation with convex-hull
approximation. In all experiments the minimal constraint form for zone repre-
sentation was used [LLPY97] and the complete state space was generated. All
experiments were performed on a 1.8GHz Pentium 4 running Linux 2.4.22, and
experiments were limited to 15 minutes of CPU time and 470MB of memory.
The results can be seen in Table 1.

Looking at the table, we see that for both Fischer’s protocol for mutual exclu-
sion and the CSMA/CD protocol, Uppaal scales considerably better with the
LU extrapolation operator. Comparing it with the convex hull approximation
(which is an over-approximation), we see that for these models, the LU extrap-
olation operator comes close to the same speed, although it still generates more
states. Also notice that the runs with the LU extrapolation operator use less
memory than convex hull approximation, due to the fact that in the latter case
DBMs are used to represent the convex hull of the zones involved (in contrast to
using the minimal constraint form of [LLPY97]). For the three industrial exam-
ples, the speedup is less dramatic: These models have a more complex control
structure and thus little can be gained from changing the extrapolation oper-

12

-n1 -n2 -n3 -A
Model Time States Mem Time States Mem Time States Mem Time States Mem
f5 4.02 82,685 5 0.24 16,980 3 0.03 2,870 3 0.03 3,650 3
f6 597.04 1,489,230 49 6.67 158,220 7 0.11 11,484 3 0.10 14,658 3
f7 352.67 1,620,542 46 0.47 44,142 3 0.45 56,252 5
f8 2.11 164,528 6 2.08 208,744 12
f9 8.76 598,662 19 9.11 754,974 39
f10 37.26 2,136,980 68 39.13 2,676,150 143
f11 152.44 7,510,382 268
c5 0.55 27,174 3 0.14 10,569 3 0.02 2,027 3 0.03 1,651 3
c6 19.39 287,109 11 3.63 87,977 5 0.10 6,296 3 0.06 4,986 3
c7 195.35 813,924 29 0.28 18,205 3 0.22 14,101 4
c8 0.98 50,058 5 0.66 38,060 7
c9 2.90 132,623 12 1.89 99,215 17
c10 8.42 341,452 29 5.48 251,758 49
c11 24.13 859,265 76 15.66 625,225 138
c12 68.20 2,122,286 202 43.10 1,525,536 394
bus 102.28 6,727,443 303 66.54 4,620,666 254 62.01 4,317,920 246 45.08 3,826,742 324
philips 0.16 12,823 3 0.09 6,763 3 0.09 6,599 3 0.07 5,992 3
sched 17.01 929,726 76 15.09 700,917 58 12.85 619,351 52 55.41 3,636,576 427

Table 1. Results for Fischer protocol (f), CSMA/CD (c), a model of a buscoupler, the Philips Audio protocol, and a model of a 5 task
fixed-priority preemptive scheduler. -n0 is with classical maximum bounds extrapolation, -n1 is with location based maximum bounds
extrapolation, -n2 is with location based LU extrapolation, and -A is with convex hull over-approximation. Times are in seconds, states
are the number of generated states and memory usage is in MB.

13

ator. This is supported by the fact that also the convex hull technique fails to
give any significant speedup (in the last example it even degrades performance).
During our experiments we also encountered examples where the LU extrapola-
tion operator does not make any difference: the token ring FDDI protocol and
the B&O protocols found on the Uppaal website2 are among these. Finally, we
made a few experiments on Fischer’s protocol with the LU extrapolation, but
without the LU-Canonize operator. This showed that LU-Canonize gives a
speedup in the order of 20% compared to Canonize.

7 Remarks and Conclusions

In this paper we extend the status quo of timed automata abstractions by con-
tributing several new abstractions. In particular, we proposed a new extrapola-
tion operator distinguishing between guards giving an upper bound to a clock
and guards giving a lower bound to a clock. The improvement of the usual ex-
trapolation is orthogonal to the location-based one proposed in [BBFL03] in the
sense that they can be easily combined. We prove that the new abstraction is
sound and complete w.r.t. reachability, and is finite and effectively computable.
We implemented the new extrapolation in Uppaal and a new operator for com-
puting the normal form of a DBM. The prototype showed significant improve-
ments in verification speed, memory consumption and scalability for a number
of models.

For further work, we suggest implementing an asymmetric DBM based on
the fact that an n × m matrix, where n is the number of lower bounded clocks
and m is the number of upper bounded clocks, suffices to represent the zones
of the timed automaton when using the LU extrapolation. We expect this to
significantly improve the successor computation for some models. We notice that
when using the encoding of job shop scheduling problems given in [AM01], all
clocks of the automaton are without upper bounds, with the exception of one
clock (the clock measuring global time), which lacks lower bounds. Therefore
an asymmetric DBM representation for this system will have a size linear in
the number of clocks. This observation was already made in [AM01], but we
get it as a side effect of using LU extrapolation. We also notice that when
using LU extrapolation, the inclusion checking done on zones in Uppaal turns
out to be more general than the dominating point check in [AM01]. We need
to investigate to what extent a generic timed automaton reachability checker
using LU extrapolation can compete with the problem specific implementation
in [AM01].

References

[AD90] Rajeev Alur and David Dill. Automata for modeling real-time systems.
In Proc. 17th International Colloquium on Automata, Languages and Pro-

2 http://www.uppaal.com

14

gramming (ICALP’90), volume 443 of Lecture Notes in Computer Science,
pages 322–335. Springer, 1990.

[AD94] Rajeev Alur and David Dill. A theory of timed automata. Theoretical
Computer Science (TCS), 126(2):183–235, 1994.

[AM01] Yasmina Abdeddaim and Oded Maler. Job-shop scheduling using timed
automata. In Proc. 13th International Conference on Computer Aided Ver-
ification (CAV’01), volume 2102 of Lecture Notes in Computer Science,
pages 478–492. Springer, 2001.

[BBFL03] Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim G. Larsen.
Static guard analysis in timed automata verification. In Proc. 9th Interna-
tional Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’2003), volume 2619 of Lecture Notes in Computer
Science, pages 254–277. Springer, 2003.

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tri-
pakis, and Sergio Yovine. Kronos: a model-checking tool for real-time
systems. In Proc. 10th International Conference on Computer Aided Verifi-
cation (CAV’98), volume 1427 of Lecture Notes in Computer Science, pages
546–550. Springer, 1998.

[Ben02] Johan Bengtsson. Clocks, DBMs ans States in Timed Systems. PhD the-
sis, Department of Information Technology, Uppsala University, Uppsala,
Sweden, 2002.

[Bou02] Patricia Bouyer. Timed automata may cause some troubles. Research Re-
port LSV–02–9, Laboratoire Spécification et Vérification, ENS de Cachan,
France, 2002. Also Available as BRICS Research Report RS-02-35, Aalborg
University, Denmark, 2002.

[Bou03] Patricia Bouyer. Untameable timed automata! In Proc. 20th Annual Sym-
posium on Theoretical Aspects of Computer Science (STACS’03), volume
2607 of Lecture Notes in Computer Science, pages 620–631. Springer, 2003.

[CGP99] Edmund Clarke, Orna Grumberg, and Doron Peled. Model-Checking. The
MIT Press, Cambridge, Massachusetts, 1999.

[Dil89] David Dill. Timing assumptions and verification of finite-state concurrent
systems. In Proc. of the Workshop on Automatic Verification Methods for
Finite State Systems, volume 407 of Lecture Notes in Computer Science,
pages 197–212. Springer, 1989.

[DT98] Conrado Daws and Stavros Tripakis. Model-checking of real-time reach-
ability properties using abstractions. In Proc. 4th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’98), volume 1384 of Lecture Notes in Computer Science, pages
313–329. Springer, 1998.

[LLPY97] Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Efficient
verification of real-time systems: Compact data structure and state-space
reduction. In Proc. 18th IEEE Real-Time Systems Symposium (RTSS’97),
pages 14–24. IEEE Computer Society Press, 1997.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
Journal of Software Tools for Technology Transfer (STTT), 1(1–2):134–152,
1997.

[Rok93] Tomas G. Rokicki. Representing and Modeling Digital Circuits. PhD thesis,
Stanford University, Stanford, USA, 1993.

15

