
HAL Id: inria-00084628
https://inria.hal.science/inria-00084628v2

Submitted on 18 Jul 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CAESAR_SOLVE: A Generic Library for On-the-Fly
Resolution of Alternation-Free Boolean Equation

Systems
Radu Mateescu

To cite this version:
Radu Mateescu. CAESAR_SOLVE: A Generic Library for On-the-Fly Resolution of Alternation-Free
Boolean Equation Systems. [Research Report] RR-5948, INRIA. 2006, pp.38. �inria-00084628v2�

https://inria.hal.science/inria-00084628v2
https://hal.archives-ouvertes.fr


appor t  


de  r ech er ch e 


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
59

48
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

CAESAR SOLVE: A Generic Library for
On-the-Fly Resolution of Alternation-Free

Boolean Equation Systems

Radu Mateescu

N° 5948

Juillet 2006
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Abstract: Boolean Equation Systems (Bess) provide a useful framework for modeling var-
ious verification problems on finite-state concurrent systems, such as equivalence checking
and model checking. These problems can be solved on-the-fly (i.e., without constructing
explicitly the state space of the system under analysis) by using a demand-driven construc-
tion and resolution of the corresponding Bes. In this report, we present a generic software
library dedicated to on-the-fly resolution of alternation-free Bess (i.e., without mutually re-
cursive minimal and maximal fixed point equations). Four resolution algorithms are currently
provided by the library: algorithms A1 and A2 are general, the latter being optimized to
produce small-depth diagnostics, whereas algorithms A3 and A4 are specialized for handling
acyclic and disjunctive/conjunctive Bess in a memory-efficient way. The library is developed
within the Cadp verification toolbox using the generic Open/Cæsar environment and is
currently used for three purposes: on-the-fly equivalence checking modulo five widely-used
equivalence relations, on-the-fly model checking of regular alternation-free µ-calculus, and
on-the-fly reduction of state spaces based on τ -confluence.
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CAESAR SOLVE: une bibliothèque générique

pour la résolution à la volée des systèmes

d’équations booléennes sans alternance

Résumé : Les systèmes d’équations booléennes (Sebs) constituent un cadre utile pour
modéliser différents problèmes de vérification sur des systèmes concurrents à nombre fini
d’états, tels que la vérification par équivalences (equivalence checking) et par logiques tempo-
relles (model checking). Ces problèmes peuvent être résolus à la volée (c.à.d. sans construire
explicitement l’espace d’états du système à analyser) en effectuant une construction et une
résolution incrémentale du Seb correspondant. Dans ce rapport, nous présentons une bi-
bliothèque générique dédiée à la résolution à la volée des Sebs sans alternance (c.à.d. sans
équations de plus petit et de plus grand point fixe mutuellement récursives). Quatre algo-
rithmes de résolution sont couramment offerts par la bibliothèque : les algorithmes A1 et
A2 sont généraux, A2 étant optimisé pour produire des diagnostics de profondeur réduite,
alors que les algorithmes A3 et A4 sont spécialisés pour traiter les Sebs acycliques, respec-
tivement disjonctifs/conjonctifs avec une consommation mémoire moindre. La bibliothèque
a été développée au sein de la bôıte à outils Cadp au moyen de l’environnement générique
Open/Cæsar et elle est actuellement utilisée pour implémenter trois fonctionnalités de
vérification á la volée : vérification par équivalence selon cinq relations largement utilisées,
vérification par évaluation de formules du µ-calcul régulier sans alternance et réduction des
espaces d’états basée sur la τ -confluence.

Mots-clés : bisimulation, logique temporelle, model checking, mu-calcul, réduction
par ordre partiel, spécification, système d’équations booléennes, système de transitions
étiquetées, vérification
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1 Introduction

During the last decade, computer-assisted formal verification has become an essential step in
the design process of complex safety-critical systems. Generally, formal verification consists
in checking the conformance of a system w.r.t. its desired correctness requirements, both
being described formally using appropriate languages with precise, mathematical semantics.
A verification method increasingly used in industry due to its good cost-performance tradeoff
is the so-called explicit-state verification, which enumerates and analyzes explicitly all reach-
able states (the state space) of the system under design. Compared to symbolic verification,
which manipulates sets of, rather than individual states of the system by using specific en-
codings such as Binary Decision Diagrams (Bdds) [6], explicit-state verification exhibits
better performances for systems with a high degree of asynchrony and nondeterminism [27].
Although limited to systems with finite state spaces, explicit-state verification provides a
simple and efficient way of finding errors in complex systems, being particularly useful in
the first phases of the design process, when errors are likely to occur more frequently.

Two different problems are traditionally distinguished in the framework of explicit-state
verification: equivalence checking compares the system description with its external be-
haviour according to a certain equivalence relation, whereas model checking determines if
the system description satisfies a list of temporal logic properties. In this article, we focus on
a particular solution to these problems, called on-the-fly verification, which combats state
explosion (prohibitive size of the state space for systems with many parallel processes and
complex data structures) by constructing the state space incrementally during verification.
More precisely, we aim at facilitating the construction of robust and efficient tools for on-
the-fly verification, which — as practical experience has shown — is a difficult and costly
task. One way towards this objective is to provide reusable software components (e.g., li-
braries) having a theoretical foundation that is sufficiently general to be applicable in several
contexts.

Boolean Equation Systems (Bess) [33] are an appropriate framework for explicit-state
verification, by allowing to represent equivalence checking and model checking problems in
terms of Bes resolution. Numerous algorithms for solving Bess have been proposed in the
literature (see [33, chap. 6] for a survey). Among these, the on-the-fly (also called local)
resolution algorithms provide a natural way to perform on-the-fly verification, since they
compute the value of a boolean variable by constructing the Bes (and hence, the state
space of the system under analysis) in a demand-driven way. Another useful feature of Bes
resolution algorithms is the ability to generate diagnostics (portions of the Bes explaining
the truth value of a variable), which offer considerable help for debugging applications and
for understanding properties expressed in temporal logic [34].

However, as opposed to the situation in the field of symbolic verification, for which a
significant number of Bdd-based packages are available (see [52] for a survey), very few
attempts were made for constructing generic environments for Bes resolution dedicated
to on-the-fly verification. In this article we present Cæsar Solve, a generic library for
Bes resolution and diagnostic generation, created using the Open/Cæsar environment for
on-the-fly verification [21]. The Cæsar Solve library provides an application-independent
representation of Bess as boolean graphs [1], much in the same way as Open/Cæsar provides
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4 R. Mateescu

a language-independent representation of Labeled Transition Systems (Ltss). This allows
to clearly separate the aspects related to the representation of the verification problems in
terms of Bess and those related to on-the-fly resolution of Bess, which can be addressed
independently.

Four resolution algorithms are currently available in the Cæsar Solve library. Algo-
rithms A1 and A2 are general (i.e., they do not assume anything about the right-hand
sides of the equations), A2 being optimized to produce small-depth diagnostics. Algo-
rithms A3 and A4 are specialized for the memory-efficient resolution of acyclic Bess and
disjunctive/conjunctive Bess, which occur frequently in practice. At the present time,
Cæsar Solve serves as engine for three on-the-fly verification tools developed within the
Cadp toolbox [22]: the equivalence/preorder checker Bisimulator, which implements five
widely-used equivalence relations, the model checker Evaluator for regular alternation-
free µ-calculus [36], and the tool Reductor, which implements various reductions on Ltss,
among which τ -confluence [25, 40].

The remainder of the article is organized as follows. Section 2 defines alternation-free
Bess and states the principles underlying on-the-fly resolution and diagnostic generation.
Section 3 presents in detail the resolution algorithms A1–A4 and compares them according
to three requirements which aim at characterizing both worst-case and average-case time
complexity. Section 4 shows the encodings of several equivalence relations, temporal logics,
and of τ -confluence detection in terms of alternation-free Bess, also identifying the particular
cases suitable for the optimized algorithms A3 and A4. Section 5 describes the architecture
of the Cæsar Solve library and of the three verification tools Bisimulator, Evaluator,
and Reductor that are built upon it, together with experimental data comparing the
performance of algorithms A1–A4. Finally, Section 6 summarizes the results and indicates
directions for future work.

Related work

An extensive amount of literature has been dedicated to the study of Bess. The first algo-
rithms with polynomial complexity for solving alternation-free Bess (i.e., without mutually
recursive minimal and maximal fixed point variables) were proposed by Arnold and Cru-
billé [3], by Cleaveland and Steffen [12], and by Vergauwen and Lewi [49]. These algorithms
were global, i.e., they required the Bes to be completely constructed before starting the
resolution, and computed the solution for all the variables of the Bes; the algorithms given
in [12, 49] have a linear time complexity in the size of the Bes (number of variables and
operators).

Since most of the time one is interested by solving a single variable of the Bes (e.g., for
equivalence checking and model checking), research has been undertaken for devising on-the-
fly (or local) algorithms, which are able to compute the value of a single variable by examining
only the Bes portion influencing that variable. The first on-the-fly algorithms for solving
alternation-free Bess were proposed by Larsen [30], by Andersen [1], and by Vergauwen
and Lewi [50]; the algorithms given in [1, 50] have a linear time complexity in the Bes size.
Another on-the-fly resolution algorithm with linear time complexity for alternation-free Bess
is the on-the-fly algorithm for checking non-emptiness of 1-letter alternating weak automata
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proposed in [29]. This was the first automata-theoretic based algorithm yielding a model
checking procedure with linear time complexity for branching temporal logics such as Ctl
and the alternation-free µ-calculus.

Other algorithms for solving Bess of alternation depth two (i.e., which allow pairs of
minimal and maximal fixed point variables to depend upon each other) were proposed by
Vergauwen and Lewi [50] (local) and by Andersen and Vergauwen [2] (global). The first
local algorithm that handled Bess of arbitrary alternation depth (i.e., which contain an
arbitrary degree of mutual recursion between minimal and maximal fixed point variables)
was proposed by Liu, Ramakrishnan, and Smolka [31]. Another efficient local algorithm,
called Lmc, was proposed by Du, Smolka, and Cleaveland [15]: the algorithm speeds up the
Bes resolution by detecting the strongly connected components of the dependency graph
between variables and was successfully used for analysing industrial-sized communication
protocols.

Recently, Groote and Keinänen [24] identified the class of disjunctive/conjunctive Bess,
which may be of arbitrary alternation depth, but in which any two mutually dependent
variables are either disjunctive, or conjunctive (the boolean formulas in the right-hand sides
of the corresponding equations contain either disjunctions, or conjunctions). For this class
of Bess, which is shown to be useful in most practical situations, they devised resolution
algorithms with quadratic time complexity (for Bess with alternation depth greater than
two) and linear time complexity (for alternation-free Bess).

The theory underlying Bess and their relationship with modal logics and µ-calculi were
thoroughly studied by Mader [33], who also proposed several efficient local and global res-
olution algorithms based upon Gauss elimination methods. An alternative formulation of
equivalence checking and model checking in terms of game graphs was proposed by Stevens
and Stirling [45]. Game graphs, which generalize the boolean graphs introduced by Ander-
sen [1] for representing dependencies between Bes variables, provide a more intuitive way
of developing verification algorithms. However, the monolithic structure of most local reso-
lution algorithms (such as those based on game graphs) makes them difficult to optimize for
handling Bess with multiple equation blocks.

Despite the substantial amount of theoretical work in the area of Bes resolution, there
are surprisingly few implementations and experimental comparisons available. One such
implementation is the Fixpoint Analysis Machine (Fam) [42], which provides an efficient ab-
stract resolution engine also capable of solving Bess. Within the MetaFrame [43] open tool
coordination environment, Fam was used to perform various tasks, such as model checking
of µ-calculus formulas and data flow analysis.

Our objective in developing the Cæsar Solve library was to provide a generic basis for
developing Bes resolution algorithms, experimenting and comparing them uniformly, and
using them to build verification tools in a modular way.

2 Alternation-free boolean equation systems

A Boolean Equation System (Bes) [1, 33] is a tuple B = (X, M1, ..., Mn), where X ∈ X
is a boolean variable and Mi are equation blocks (i ∈ [1, n]). Each block Mi = {Xj

σi=
opjXj}j∈[1,mi] is a set of minimal (resp. maximal) fixed point equations of sign σi = µ (resp.
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6 R. Mateescu

σi = ν). The right-hand side of each equation j is a pure disjunctive or conjunctive formula
obtained by applying a boolean operator opj ∈ {∨,∧} to a set of variables X j ⊆ X . The
boolean constants F and T abbreviate the empty disjunction ∨∅ and the empty conjunction
∧∅.

The main variable X must be defined in block M1. A variable Xj depends upon a variable
Xl if Xl ∈ Xj. A block Mi depends upon a block Mk if some variable of Mi depends upon
a variable defined in Mk. A block is closed if it does not depend upon any other blocks. A
Bes is alternation-free if there are no cyclic dependencies between its blocks; in this case,
the blocks are assumed to be sorted topologically such that a block Mi only depends upon
blocks Mk with k > i.

This definition of alternation-freedom (which is similar to the definition used in the
equational version of the alternation-free µ-calculus used in [13]) can be shown to be equiv-
alent to the original definition of alternation-free µ-calculus given in [16]. In alternation-free
µ-calculus (see Section 4.2), a minimal fixed point variable X defined by a formula µX.ϕ
cannot occur free in a maximal fixed point subformula νY.ϕ′ of ϕ, since this would cause a
mutual dependency between variables X and Y , which have opposite fixed point signs. After
translating the formula µX.ϕ into a Bes, the boolean variables corresponding to X (defined
in a minimal fixed point block MX) will depend upon those corresponding to Y (defined in a
maximal fixed point block MY ); therefore, forbidding the free occurrences of X inside νY.ϕ′

amounts to forbid the dependencies from block MY to block MX , i.e., the cycles between
blocks.

The semantics of a formula opi{X1, ..., Xk} w.r.t. Bool = {F, T} and a context δ : X →
Bool, which must initialize all variables X1, ..., Xk, is the boolean value defined as follows:

[[opi{X1, ..., Xk}]]δ = δ(X1) opi ... opi δ(Xk)

The semantics of an equation block Mi = {Xj
σi= opjXj}j∈[1,mi] w.r.t. a context δ is the

σi-fixed point of a vectorial functional Φiδ : Boolmi → Boolmi:

[[{Xj
σi= opjXj}j∈[1,mi]]]δ = σiΦiδ

where
Φiδ(b1, ..., bmi

) = ([[opjXj]](δ � [b1/X1, ..., bmi
/Xmi

]))j∈[1,mi]

The notation δ � [b1/X1, ..., bn/Xn] stands for a context identical to δ except for variables
X1, ..., Xn, which are assigned values b1, ..., bn, respectively.

The semantics of an alternation-free Bes is the value of its main variable X given by the
solution of M1, i.e., δ1(X), where the contexts δi are calculated as follows:

δn = [[Mn]][]
δi = ([[Mi]]δi+1) � δi+1 for i ∈ [1, n − 1]

Note that the context for interpreting Mn is empty (since Mn is closed) and a block Mi is
interpreted in the context of all blocks Mk with k > i.

A block Mi is acyclic if there are no cyclic dependencies between the variables defined
in Mi. A variable Xj is called disjunctive (resp. conjunctive) if opj = ∨ (resp. opj = ∧).

INRIA
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A block Mi is disjunctive (resp. conjunctive) if each of its variables either is disjunctive
(resp. conjunctive), or it depends upon at most one variable defined in Mi, all its other
dependencies being constants or variables defined in other blocks.

The on-the-fly resolution of an alternation-free Bes B = (X, M1, ..., Mn) consists in
computing the value of X by exploring the right-hand sides of the equations in a demand-
driven way, without explicitly constructing the blocks. Several on-the-fly Bes resolution
algorithms are available [1, 50, 33, 15]. Here we follow an approach proposed in [1], which
proceeds as follows. To each block Mi is associated a resolution routine Ri responsible for
computing the values of the variables defined in Mi. When a variable Xj defined in Mi

is computed by a call Ri(Xj), the values of other variables Xl defined in other blocks Mk

may be needed; these values are computed by calls Rk(Xl) of the routine associated to Mk.
This process always terminates because there are no cyclic dependencies between blocks (the
call stack of resolution routines has a size bounded by the depth of the dependency graph
between blocks). Since a variable Xj defined in Mi may be required several times during
the resolution process, the computation results must be kept persistent between subsequent
calls of Ri in order to obtain an efficient overall resolution.

Compared to other on-the-fly resolution algorithms like Lmc [15], which consists of a
single monolithic routine handling the whole Bes, we believe the scheme above presents two
advantages:

� The algorithms used by the resolution routines associated to individual blocks are
simpler, since they must handle a single type of fixed point equations (either minimal,
or maximal).

� The overall resolution process is easier to optimize, simply by designing more efficient
algorithms for blocks with particular structure (e.g., acyclic, disjunctive or conjunc-
tive).

3 On-the-fly resolution algorithms

In this section we present four different algorithms implementing the on-the-fly resolution
of individual equation blocks in an alternation-free Bes. The algorithms are defined only
for µ-blocks, those for ν-blocks being completely dual. Algorithms A1 and A2 are general
(they do not depend upon the structure of the right-hand sides of the equations), whereas
algorithms A3 and A4 are optimized for acyclic blocks and for disjunctive or conjunctive
blocks, respectively.

We develop our resolution algorithms in terms of boolean graphs [1], which provide a
graphical, more intuitive representation of Bess. Given an equation block Mi = {Xj

µ
=

opjXj}j∈[1,mi], the corresponding boolean graph is a tuple G = (V, E, L), where: V = {xj |
j ∈ [1, mi]} is the set of vertices (boolean variables), E = {xj → xk | j ∈ [1, mi]∧Xk ∈ Xj}
is the set of edges (dependencies between variables), and L : V → {∨,∧}, L(xj) = opj is the
vertex labeling (disjunctive or conjunctive). The set of successors of a vertex x is noted E(x).
Sink ∨-vertices (resp. ∧-vertices) represent variables equal to F (resp. T). During a call of
the resolution routine Ri associated to block Mi, all variables Xl defined in other blocks Mk
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Figure 1: A Bes and its corresponding boolean graph

and occurring free in Mi can be seen as constants, because their values are computed on-
the-fly by calls to Rk. Figure 1 shows a single µ-block Bes together with its corresponding
boolean graph.

As expected, the boolean graphs associated to acyclic blocks are directed acyclic graphs
(Dags). The graphs associated to disjunctive (resp. conjunctive) blocks may contain ∧-
vertices (resp. ∨-vertices) having at most one successor (these vertices correspond either to
constants, or to variables having at most one non-constant successor in the current block),
the other vertices being disjunctive (resp. conjunctive).

In the sequel, we consider that boolean graphs G = (V, E, L) are represented implicitly

by their successor function E : V → 2V , which allows them to be constructed on-the-fly by
a forward exploration.

The resolution algorithms we present are all based upon the same principle: starting
at the vertex (variable) of interest, they perform an on-the-fly, forward exploration of the
boolean graph and propagate backwards the values of the “stable” vertices (i.e., whose final
value has been determined). When a vertex y becomes stable and its value T (resp. F) is
propagated backwards to a ∨-vertex (resp. ∧-vertex) x, it stabilizes it actively to the same
value; in terms of the original Bes, this amounts to substitute y by its value in the right-hand
side formula of the equation defining x. The algorithms terminate either when the vertex
of interest becomes stable after the backwards propagation of a value, or when the entire
boolean graph is explored; in the latter case, the vertex of interest is stabilized passively.

During backwards propagation, some additional information is recorded for the purpose
of diagnostic generation: for each vertex x which is stabilized actively by one of its successors
y (e.g., when x is a ∨-vertex and y was stabilized to T), that successor is stored in a field
s(x). After the resolution terminates, a diagnostic (boolean subgraph rooted at the vertex
of interest) can be obtained by performing a new exploration of the boolean graph starting
at the vertex of interest and following, for each vertex x encountered, either its successor
s(x) (if x was stabilized actively), or all its successors (if x was stabilized passively) [34]. A
diagnostic is called example (resp. counterexample) iff the vertex of interest was evaluated
to T (resp. F). The depth of a diagnostic for a vertex x is the maximal distance from x to
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CAESAR SOLVE: A Generic Library for On-the-Fly Resolution of BESs 9

all the other vertices occurring in the diagnostic, where the distance between two vertices is
the length of the shortest path connecting them.

To have a basis of comparison for the different resolution algorithms, we propose below
three requirements desirable to obtain a good time complexity.

R1: The resolution of a vertex of the boolean graph must be carried out in a time linear
w.r.t. the size of the graph, i.e., O(|V |+ |E|). This is necessary for obtaining an overall
linear time complexity for the resolution of an alternation-free Bes containing multiple
blocks.

R2: During the resolution of a vertex, every new vertex explored must be related to the
vertex of interest by (at least) a path of unstable vertices in the boolean graph. This
aims at reducing the average time complexity by limiting the graph exploration only
to vertices “useful” for the current resolution.

R3: When a call of the resolution algorithm terminates, the portion of the boolean graph
explored must be stable. This avoids that subsequent calls for solving the same vertex
lead to multiple explorations of the graph (which may destroy the overall linear time
complexity).

3.1 Algorithm A1 (DFS, general)

Algorithm A1 (see Figure 2) is based upon a depth-first search (Dfs) of the boolean graph,
performed iteratively starting at the vertex of interest x. Visited vertices are stored in a
set A ⊆ V and visited but unexplored vertices are stored in a stack. To each vertex y are
associated three informations: a counter c(y), which keeps the number of y’s successors that
must become true in order to make y true (c(y) is initialized to |E(y)| if y is a ∧-vertex and to
1 otherwise); a counter p(y) indicating the current successor of y that must be explored (the
successors in E(y) are assumed to be indexed from 0 to |E(y)|−1); and a set d(y) containing
the vertices that currently depend upon y. At each iteration of the main while-loop (lines
12–57), the vertex y placed on top of the Dfs stack is explored. If y is already stable
(i.e., c(y) = 0), its value is back-propagated by the inner while-loop (lines 17–32) along the
dependencies d; during the back-propagation, each time a ∨-vertex w is stabilized actively
by one of its successors u, that successor is stored in s(w) for the purpose of diagnostic
generation (lines 23–26). If y is unstable, its next unexplored successor (E(y))p(y) is visited
and, if it is stable or new, is pushed on top of the Dfs stack (lines 37–53). Finally, if y is
unstable and all its successors have been explored, it is popped from the Dfs stack (lines
54–56). After termination of the Dfs while-loop, the value computed for x is returned,
which is T iff the associated counter c(x) is 0 (line 58).

Figure 3 illustrates the result of executing algorithm A1 in order to evaluate the variable
X1 of the Bes previously shown in Figure 1. Variables whose final value is T (resp. F)
are denoted by grey (resp. white) vertices. The white box delimits the portion of the
boolean graph explored during the Dfs traversal performed by A1 (during the traversal, the
successors of a vertex are visited in the order given by scanning the right-hand side of the
corresponding equation from left to right). The thick arrows indicate the successors s(y)
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10 R. Mateescu

1. function A1 (x, (V, E, L)) : Bool is
2. var A, B : 2V ; d : V → 2V ; stack : V ∗;
3. c, p : V → Nat; u, w, y, z : V ;
4. if L(x) = ∧ then
5. c(x) := |E(x)|
6. else
7. c(x) := 1
8. endif;
9. p(x) := 0; d(x) := ∅;

10. A := {x};
11. stack := push(x, nil);
12. while stack 6= nil do
13. y := top(stack);
14. if c(y) = 0 then
15. if d(y) 6= ∅ then
16. B := {y};
17. while B 6= ∅ do
18. let u ∈ B;
19. B := B \ {u};
20. forall w ∈ d(u) do
21. if c(w) > 0 then
22. c(w) := c(w) − 1;
23. if c(w) = 0 then
24. if L(w) = ∨ then
25. s(w) := u
26. endif;
27. B := B ∪ {w}
28. endif
29. endif
30. end;

31. d(u) := ∅
32. end
33. else
34. stack := pop(stack)
35. endif
36. elsif p(y) < |E(y)| then
37. z := (E(y))p(y);
38. p(y) := p(y) + 1;
39. if z ∈ A then
40. d(z) := d(z) ∪ {y};
41. if c(z) = 0 then
42. stack := push(z, stack)
43. endif
44. else
45. if L(z) = ∧ then
46. c(z) := |E(z)|
47. else
48. c(z) := 1
49. endif;
50. p(z) := 0; d(z) := {y};
51. A := A ∪ {z};
52. stack := push(z, stack)
53. endif
54. else
55. stack := pop(stack)
56. endif
57. end;
58. return c(x) = 0
59. end

Figure 2: Algorithm A1: Dfs-based local resolution of a µ-block
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Figure 3: Result of executing A1

computed for those vertices y that were stabilized actively during back-propagation of T

values. The grey box delimits the diagnostic (example for X1) computed after termination
of A1; all ∨-vertices (resp. ∧-vertices) y contained in the example have only their successor
s(y) (resp. all their successors) contained in the example. The diagnostic produced is a Dag
of depth 3.

We discuss below the behaviour of algorithm A1 w.r.t. the three efficiency requirements
R1–R3. The algorithm satisfies requirement R1, because every edge in the boolean subgraph
explored is traversed at most twice: forwards, when its target vertex is pushed on the Dfs
stack, and backwards, when the value of its target vertex (if it became stable) is back-
propagated. Therefore, each call to A1 has a worst-case time complexity O(|V |+ |E|). The
same bound applies for memory consumption, since in the worst-case every state and edge
of the boolean graph will be stored (edges are stored as backward dependencies). A1 also
satisfies requirement R2, because each new vertex visited from the top of the Dfs stack is
related to the vertex of interest (which is at the bottom of the Dfs stack) via the unstable
vertices present on the stack. Finally, it satisfies requirement R3, since the boolean subgraph
explored by each call to the algorithm contains only stable vertices (i.e., which depend only
upon vertices in A).

Algorithm A1 can be seen as an improved version of the local resolution algorithm pro-
posed in [1]: it is simpler to understand, being implemented iteratively by using a while-loop
and an explicit Dfs stack instead of two mutually recursive functions; it has a better average
complexity, since the values of vertices are back-propagated as soon as they become stable;
and it exhibits a lower memory consumption, because dependencies between variables are
discarded during back-propagation (line 31). The counter-based technique which allows to
efficiently detect the stabilization of a vertex y when c(y) = 0 was initially proposed in [3, 13].
A1 was initially developed for model checking regular alternation-free µ-calculus [36].
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3.2 Algorithm A2 (BFS, general)

Algorithm A2 (see Figure 4) is based upon a breadth-first search (Bfs) of the boolean graph,
performed iteratively starting at the vertex of interest x. Visited vertices are stored in a set
A ⊆ V and visited but unexplored vertices are stored in a queue. To each vertex y are
associated two informations: a counter c(y), which keeps the number of y’s successors that
must become true in order to make y true (c(y) is initialized to |E(y)| if y is a ∧-vertex and
to 1 otherwise); and a set d(y) containing the vertices that currently depend upon y. At
each iteration of the main while-loop (lines 12–52), the vertex y placed in front of the Bfs
queue is explored. If y is already stable (i.e., c(y) = 0), its value is back-propagated by the
inner while-loop (lines 17–32) along the dependencies d; during the back-propagation, each
time a ∨-vertex w is stabilized actively by one of its successors u, that successor is stored in
s(w) for the purpose of diagnostic generation (lines 23–26). If y is unstable, all successors
E(y) are visited and, if they are stable or new, are inserted at the end of the Bfs queue
(lines 34–50). After termination of the Bfs while-loop, the value computed for x is returned,
which is T iff the associated counter c(x) is 0 (line 53).

Figure 5(b) illustrates the result of executing algorithm A2 in order to evaluate the
variable X1 of the Bes previously shown in Figure 1. The diagnostic produced is a Dag of
depth 2, smaller than the diagnostic produced by A1, shown in Figure 3.

We discuss below the behaviour of algorithm A2 w.r.t. the three efficiency requirements
R1–R3. Like A1, algorithm A2 satisfies requirement R1, because at each execution it per-
forms a single Bfs traversal (possibly interleaved with an overall backward traversal of the
boolean subgraph explored) having a worst-case time complexity O(|V | + |E|). The same
bound applies for memory consumption, since in the worst-case every state and edge of the
boolean graph will be stored. Edges are kept as backward dependencies, which are discarded
during back-propagation (line 31), but some of them (whose source vertices are stabilized
passively) may remain present after termination of a call to A2.

However, unlike A1, algorithm A2 does not satisfy requirement R2, because the back-
propagation may stabilize vertices that “cut” all the paths relating the vertex of interest x to
(some) vertices currently present on the Bfs queue, and thus at some points the algorithm
may explore vertices which are useless for deciding the truth value of x. This is illustrated in
Figure 5(a): after vertex X6 was back-propagated and has actively stabilized its predecessor
X5, the remaining dependencies X5 → X9 and X5 → X10 become useless, since they cannot
influence anymore the value of X5. At this point, vertex X10, which is present on the Bfs
queue, is unreachable from the vertex of interest X1, and therefore its further exploration
could safely be avoided (for the boolean graph shown in the figure, the exploration of X10

will not cost much since it is a ∨-sink vertex, but this may not be the case in general).
Nevertheless, the extra effort spent to explore useless vertices when a call to A2 is executed
may pay off if the values of these vertices are required during later calls of the algorithm.
This observation is confirmed experimentally: in case of multiple calls, A2 is only about 15%
slower than A1.

It is possible to devise a version of algorithm A2 compliant with requirement R2, but
this would need an efficient solution for the Dynamic Graph Connectivity Problem (Dgcp),
which consists in determining if there exists a path connecting two vertices of a graph in pres-

INRIA



CAESAR SOLVE: A Generic Library for On-the-Fly Resolution of BESs 13

1. function A2 (x, (V, E, L)) : Bool is
2. var A, B : 2V ; d : V → 2V ; queue : V ∗;
3. c : V → Nat; u, w, y, z : V ;
4. if L(x) = ∧ then
5. c(x) := |E(x)|
6. else
7. c(x) := 1
8. endif;
9. d(x) := ∅;

10. A := {x};
11. queue := put(x, nil);

12. while queue 6= nil ∧ c(x) 6= 0 do

13. y := head(queue);
14. queue := tail(queue);
15. if c(y) = 0 then
16. B := {y};
17. while B 6= ∅ do
18. let u ∈ B;
19. B := B \ {u};
20. forall w ∈ d(u) do
21. if c(w) > 0 then
22. c(w) := c(w) − 1;
23. if c(w) = 0 then
24. if L(w) = ∨ then
25. s(w) := u
26. endif;
27. B := B ∪ {w}

28. endif
29. endif
30. end;
31. d(u) := ∅
32. end
33. else
34. forall z ∈ E(y) do
35. if z ∈ A then
36. d(z) := d(z) ∪ {y};
37. if c(z) = 0 then
38. queue := put(z, queue)
39. endif
40. else
41. if L(z) = ∧ then
42. c(z) := |E(z)|
43. else
44. c(z) := 1
45. endif;
46. d(z) := {y};
47. A := A ∪ {z};
48. queue := put(z, queue)
49. endif
50. end
51. endif
52. end;
53. return c(x) = 0
54. end

Figure 4: Algorithm A2: Bfs-based local resolution of a µ-block
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Figure 5: Result of executing A2

ence of edge additions (new edges explored during the Bfs traversal) and deletions (edges
that become useless when their source vertex is stabilized). The most efficient algorithm for
solving Dgcp that we are aware of has a time complexity O(log n/ log log log n) for handling
connectivity queries in a dynamic graph with n vertices, and a complexity O(log n(log log n)3)
for handling edge additions/deletions [47]; enhancing A2 with this Dgcp algorithm would
probably make the overall time complexity uncompatible with requirement R1. An alter-
native way to avoid the exploration of useless vertices would be to periodically perform
additional “cleaning” traversals of the boolean subgraph already explored by A2 in order to
identify the vertices in the Bfs queue which are reachable from the vertex of interest [51].
The difficulty with this solution relies on choosing the appropriate cleaning period, which
has to be sufficiently small to limit the amount of useless vertices explored between two calls
of the cleaning algorithm, and sufficiently large to prevent the overall complexity of becom-
ing quadratic (the latter condition is impossible to achieve in general, since the number of
vertices in the boolean graph is unknown in advance). Further experimentation is needed to
assess which of these solutions (if any) would improve the speed of A2 effectively.

Finally, algorithm A2 satisfies requirement R3, since at the end of the main while-loop all
visited vertices are stable (they depend only upon the vertices in A). In practice, there are
certain situations in which the compliance with requirement R3 is not mandatory, namely
when the algorithm A2 is invoked only once: this occurs in particular for the single-block
Bess obtained by encoding equivalence checking problems (see Section 4.1). In such cases,
the algorithm A2 may terminate as soon as the vertex of interest is stabilized, because the
values of the currently unstable vertices (e.g., those present on the Bfs queue) will not be
required anymore; this is implemented by adding a test in conjunction to the condition of
the main while-loop (line 12). The result of executing A2 shown in Figure 5(b) illustrates
in fact such an early termination: the Bfs queue still contains vertices {X8, X9, X10} when
vertex X1 is stabilized. Notice that this kind of early termination is automatically achieved
by algorithm A1, which is based upon a Dfs traversal of the boolean graph: when the vertex
of interest becomes stable, the Dfs stack is necessarily empty and the main while-loop of
A1 terminates.
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The essential advantage of algorithm A2 when compared to A1 relies on its ability to
generate small-depth diagnostics, which is a direct consequence of using a Bfs traversal
instead of a Dfs one. In practice, the diagnostics produced by A2 have a depth significantly
smaller than those produced by A1 (up to two orders of magnitude), which makes them much
more useful for the end-user. The diagnostic produced by A2 shown in Figure 5(b) has the
minimal depth among the different diagnostics possible for variable X1; however, A2 does not
guarantee this in general. This is due to the fact that, to increase resolution speed, stable
vertices are back-propagated as soon as they are encountered in front of the Bfs queue,
whereas some other vertices present on the queue would yield smaller-depth diagnostics if
they were back-propagated first. If the diagnostics are trees (e.g., the example for X1 shown
in Figure 5(b)), the problem of finding a minimal-depth diagnostic can be solved in linear
time. Although it seems possible to devise a version of A2 that produces minimal-depth tree
diagnostics, we preferred to develop a separate algorithm which can be used in conjunction
with any resolution algorithm (such as A1–A4) to compute minimal-depth tree diagnostics,
once a diagnostic of depth k has been produced (see Section 3.5).

3.3 Algorithm A3 (DFS, acyclic)

Algorithm A3 (see Figure 6) is specialized for solving acyclic boolean graphs. Like A1, it is
based upon a Dfs traversal of the boolean graph, starting at the vertex of interest x; for
the sake of conciseness, we describe A3 by using a recursive function instead of an iterative
one1. Visited vertices are stored in a global set A ⊆ V , initially empty. To each vertex y
are associated two informations: a counter p(y) indicating the current successor of y that
must be explored (the successors in E(y) are assumed to be indexed from 0 to |E(y)| − 1);
and a boolean v(y) denoting the current value of y. The value of vertex x is initialized to
F (resp. T) if x is a ∨-vertex (resp. ∧-vertex) (lines 6–10). Then, for each successor y of
x that has not been visited yet, its value val is computed by a recursive call to A3 (lines
15–17). If val is different from the current value v(x) (e.g., if x is a ∨-vertex and val = T),
vertex x is stabilized to val because its value cannot be influenced anymore by its remaining
unexplored successors; in this case, the successor s(x) is set to y for the purpose of diagnostic
generation, and the while-loop is exited (lines 18–21). After termination of the while-loop,
the value v(x) is returned as result (line 26), since at this moment the vertex x is stable.
This property is due to the absence of cycles in the boolean graph, which ensures that once
a vertex x has been explored by the Dfs traversal, all vertices reachable from x have also
been explored.

Figure 7 illustrates the result of executing algorithm A3 in order to evaluate the variable
X1 of an acyclic block. The white box delimits the portion of the boolean graph explored
during the Dfs traversal performed by A3, and the grey box delimits the diagnostic produced
(example for X1), which is a Dag of depth 3. The edges X4 → X8 and X4 → X5 were not
traversed during the Dfs, because X4 was stabilized to F after its successor X7 was evaluated,
causing an early termination of the while-loop of A3.

1In practice, to avoid possible overflows of the system call stack, A3 is implemented iteratively by using
a while-loop and an explicit Dfs stack allocated on the heap.
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1. var A : 2V ;
2. A := ∅;
3. function A3 (x, (V, E, L)) : Bool is
4. var v : V → Bool; p : V → Nat;
5. y : V ; val : Bool;
6. if L(x) = ∨ then
7. v(x) := F

8. else
9. v(x) := T

10. endif;
11. p(x) := 0;
12. A := A ∪ {x};
13. while p(x) < |E(x)| do
14. y := (E(x))p(x);
15. if y 6∈ A then
16. val := A3 (y, (V, E, L))
17. endif;
18. if val 6= v(x) then
19. v(x) := val;
20. s(x) := y;
21. p(x) := |E(x)|
22. else
23. p(x) := p(x) + 1
24. endif
25. end;
26. return v(x)
27. end

Figure 6: Algorithm A3: Dfs-based local resolution of an acyclic µ-block
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We discuss below the behaviour of algorithm A3 w.r.t. the three efficiency requirements
R1–R3. The algorithm clearly satisfies requirement R1, because at each execution it performs
a single Dfs traversal having a worst-case time complexity O(|V | + |E|). It also satisfies
requirement R2, since every new vertex y explored by a recursive call to A3 is directly related
to its predecessor x, which is unstable at that moment, and thus y is inductively related,
via unstable vertices, to the vertex of interest, currently solved by the topmost call to A3.
Finally, the algorithm satisfies requirement R3, because upon termination of a call to A3,
all explored vertices have their final value computed (they have been stabilized actively).

The main advantage of A3 w.r.t. the general algorithms A1 and A2 (which can han-
dle acyclic boolean graphs as well) relies on its reduced memory consumption, achieved by
exploiting the absence of cycles in the boolean graph. Indeed, since back-propagation of
values is performed directly between a vertex x and one of its successors y (in an iterative
version of A3, back-propagation would take place only between vertices present on the Dfs
stack), there is no need to keep track of backward dependencies. Therefore, A3 avoids storing
the edges of the boolean graph, having a worst-case memory complexity O(|V |) instead of
O(|V | + |E|) as the general algorithms A1 and A2 would exhibit when executed on acyclic
boolean graphs. Notice that the Dfs traversal is crucial for ensuring this property: an algo-
rithm based upon a Bfs traversal, even when executed on an acyclic boolean graph, would
not be able to perform back-propagation of values without storing backward dependencies.

Unlike A1 and A2, algorithm A3 has a symmetric structure: in its current form it can
handle both µ-blocks and ν-blocks uniformly, and it performs simultaneous back-propagation
of T and F values (this explains why the counters c(y) used by A1 and A2 to keep track of the
stable successors of y are not needed for A3). A3 was initially developed for model checking
µ-calculus formulas on large event traces obtained by intensive simulation of a system [35].

3.4 Algorithm A4 (DFS, disjunctive/conjunctive)

Algorithm A4 (see Figure 8) is based upon a Dfs traversal of the boolean graph, performed
recursively starting at the vertex of interest x. A4 is specialized for solving boolean graphs
corresponding to disjunctive or conjunctive blocks; we show here only its version for disjunc-
tive blocks, the other version being symmetric. For simplicity, we assume that all ∧-vertices
of the graph have no successors, i.e., they denote T constants. Indeed, according to the def-
inition of graphs corresponding to disjunctive blocks (see the beginning of Section 3), each
∧-vertex having a non-constant successor in the graph can be assimilated to a ∨-vertex if its
other successors are evaluated first (possibly by calling the resolution routines associated to
other blocks).

Algorithm A4 combines the search for T (∧-sink) vertices with a detection of strongly
connected components (Sccs) following Tarjan’s classical algorithm [46]. Visited vertices are
stored in a global set A ⊆ V and vertices belonging to the currently explored Sccs are stored
on a global stack, both initially empty. To each vertex y are associated five informations:
a counter p(y) indicating the current successor of y that must be explored (the successors
in E(y) are assumed to be indexed from 0 to |E(y)| − 1); a counter n(y) containing the
Dfs number of y, which records that y was the n(y)-th vertex encountered during the Dfs
(this is computed by incrementing a global counter k, initially 0, each time a new vertex
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is encountered); a counter low(y) denoting the “lowlink” number of y [46], which records
the smallest Dfs number associated to the vertices reachable from y and belonging to the
same Scc as y; a boolean v(y) containing the value currently computed for y; and a boolean
stable(y) indicating whether y is stable, i.e., v(y) has reached its final value.

The algorithm begins by initializing the various informations associated to vertex x (lines
9–25); in particular, x is stabilized if it has no successors, otherwise it is marked as unstable
and its value is set to F. Then, each successor y of x is examined: if y has already been
visited, its current value val is stored and if y belongs to the same Scc as x, the lowlink
number of x is updated accordingly2 (lines 29–32); if y is a new vertex, its value val is
computed by a recursive call to A4 and the lowlink number of x is updated (lines 33–35). If
val is T, vertex x is stabilized to T (since the block is disjunctive), its successor s(x) is set to
y for the purpose of diagnostic generation, and the while-loop is exited (lines 37–41). After
termination of the while-loop, if x was stabilized to T or is the root of a Scc, all vertices
belonging to that Scc (which are placed above x on the stack) are stabilized to the value of
x (lines 46–53), since each of them can reach x via a path of ∨-vertices. Finally, the current
value v(x) is returned as result (line 54).

Figure 9 illustrates the result of executing algorithm A4 in order to evaluate the variable
X1 of a disjunctive block. The white box delimits the portion of the boolean graph explored
during the Dfs traversal performed by A4, and the grey box delimits the diagnostic produced
(example for X1), which is a path of length 3. The shaded box delimits a Scc containing
vertices {X2, X4, X7}, which were all stabilized to F when the root vertex X2 was completely
explored.

We discuss below the behaviour of algorithm A4 w.r.t. the three efficiency requirements
R1–R3. The algorithm clearly satisfies requirement R1, because at each execution it performs
a single Dfs traversal (superposed with a linear time processing of vertices belonging to
Sccs) having a worst-case time complexity O(|V | + |E|). It also satisfies requirement R2,
since every new vertex y explored by a recursive call to A4 is directly related to its (currently
unstable) predecessor x, and thus y is inductively related, via unstable vertices, to the vertex
of interest, given as argument to the topmost call of A4. Finally, the algorithm satisfies
requirement R3, because upon termination of a call to A4, all explored vertices have their
final value computed.

Like A3, algorithm A4 presents an advantage w.r.t. the general algorithms A1 and A2
(which can handle disjunctive or conjunctive blocks as well), namely its reduced memory
consumption, achieved by exploiting the particular structure of the boolean graphs. Indeed,
in a boolean graph corresponding to a disjunctive block, vertices are stabilized either by
back-propagation of a T value from one of their successors, or by stabilization of the Scc to
which they belong; in both cases, there is no need to keep track of backward dependencies.
Therefore, A4 avoids storing the edges of the boolean graph, having a worst-case memory
complexity O(|V |) instead of O(|V |+|E|) as the general algorithms A1 and A2 would exhibit
when executed on boolean graphs corresponding to disjunctive or conjunctive blocks. Notice
that, as for algorithm A3, the choice of a Dfs traversal is crucial for obtaining this result: an

2The membership test of a vertex y to the currently explored Scc (line 30) is slightly different from the
test used in [46]: instead of checking whether y is present on the stack, we use the boolean stable(y), which
is set to T (resp. F) for all vertices belonging to a completely explored (resp. to the currently explored) Scc.
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1. var A : 2V ; k : Nat; stack : V ∗;
2. A := ∅;
3. k := 0;
4. stack := nil;
5. function A4 (x, (V, E, L)) : Bool is
6. var n, p, low : V → Nat;
7. v, stable : V → Bool;
8. y, z : V ; val : Bool;
9. if |E(x)| = 0 then

10. if L(x) = ∧ then
11. v(x) := T

12. else
13. v(x) := F

14. endif;
15. stable(x) := T

16. else
17. v(x) := F;
18. stable(x) := F

19. endif;
20. p(x) := 0;
21. n(x) := k;
22. k := k + 1;
23. low(x) := n(x);
24. A := A ∪ {x};
25. stack := push(x, stack);
26. while p(x) < |E(x)| do
27. y := (E(x))p(x);
28. if y ∈ A then

29. val := v(y);
30. if ¬stable(y) ∧ n(y) < n(x) then
31. low(x) := min(low(x), n(y))
32. endif
33. else
34. val := A4 (y, (V, E, L));
35. low(x) := min(low(x), low(y))
36. endif;
37. if val then
38. v(x) := T;
39. stable(x) := T;
40. s(x) := y;
41. p(x) := |E(x)|
42. else
43. p(x) := p(x) + 1
44. endif
45. end;
46. if v(x) ∨ low(x) = n(x) then
47. repeat
48. z := top(stack);
49. v(z) := v(x);
50. stable(z) := T;
51. stack := pop(stack)
52. until z = x
53. endif;
54. return v(x)
55. end

Figure 8: Algorithm A4: Dfs-based local resolution of a disjunctive µ-block

RR n
�

5948



20 R. Mateescu



































































X1 = X2 ∨ X3

X2 = X4

X3 = X5 ∨ X6

X4 = X7 ∨ X4

X5 = X4 ∨ X7 ∨ X8

X6 = X9

X7 = X2

X8 = T

X9 = X8 ���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

6

9

5

32

1

∧

∨ ∨ ∨

∨

∨

∨ ∨

∨

7

4

8

Figure 9: Result of executing A4

algorithm based upon a Bfs traversal, even specialized for disjunctive or conjunctive blocks,
would be unable to satisfy all requirements R1–R3 without storing backward dependencies.

3.5 Generation of minimal-depth tree diagnostics

If the diagnostics generated for a boolean vertex contain cycles (e.g., counterexamples for
µ-blocks or examples for ν-blocks [34]), the problem of finding a minimal-depth diagnostic
is Np-complete [9]. If the diagnostics are sequences (e.g., examples in disjunctive µ-blocks
or counterexamples in conjunctive ν-blocks) or trees, the problem can be solved efficiently.
In this section, we present a linear time algorithm for computing a minimal-depth tree
diagnostic for a boolean vertex x, at the condition that a diagnostic for x has already been
computed. The interest of such an algorithm is twofold: it eliminates the disadvantage of
Dfs-based algorithms (such as A1, A3, and A4), which may generate in practice diagnostics
with prohibitive depth, and is even useful for Bfs-based algorithms (such as A2), which may
not be guaranteed to generate minimal-depth diagnostics; and, since it is separated from the
resolution process, it can be used in conjunction with any local Bes resolution algorithm
equipped with diagnostic generation features.

The Diag algorithm that we propose (see Figure 10) requires as input, in addition to
the variable x and the boolean graph (V, E, L) represented implicitly, also the depth k of
a diagnostic3 previously computed for x by using, e.g., one of the algorithms A1–A4. We
describe only the version of Diag for computing examples in µ-blocks, the other version
being dual. The Diag algorithm proceeds in two phases:

� Firstly, a forward Bfs traversal of the boolean graph is performed starting at x, up to
a distance k from x (lines 5–37). Visited vertices are stored in a set A ⊆ V , and visited
but unexplored vertices are stored in two queues q1 and q2, which keep the vertices
placed at a distance i and i + 1 from x, respectively. At each iteration i of the while-
loop (lines 10–37), the Bfs queue q1 is scanned and each of its vertices y is explored by

3The diagnostic depth can be easily computed by performing a Bfs traversal of the diagnostic starting
at x.
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the inner while-loop (lines 12–34). If y is a ∧-sink vertex (constant T), it is inserted in
a queue sq1 and its counter c(y), denoting the number of successors that must become
T in order to stabilize y to T, is initialized to 0 (lines 15–18). Otherwise, the counter
c(y) is initialized to |E(y)| or to 1, depending whether y is a ∧- or a ∨-vertex (lines
19–24). Then, each successor z of y is visited; if z is new, it is inserted into the Bfs
queue q2, since it is placed at a distance i + 1 from x (lines 27–30) and the backward
dependency from z to y is stored in a set d(z) (line 32). After termination of the inner
while-loop, q1 is replaced by q2 in order to set up the next iteration (lines 35–36). The
forward Bfs while-loop terminates when all vertices placed at distance k from x have
been explored. At the end of this loop, every T vertex placed at a distance at most k
from x has been captured in the queue sq1.

� Secondly, a backward Bfs traversal of the boolean graph is performed starting at
the vertices accumulated during the first phase in the queue sq 1 (lines 38–56). At
each iteration of the while-loop, the queue sq1 is scanned and each of its vertices
y is back-propagated to its predecessors by the inner while-loop (lines 40–54). For
each predecessor z contained in the backward dependency set d(y), its counter c(z) is
decremented; if it becomes 0, then z is stabilized to T, its successor s(z) is initialized
to y for the purpose of diagnostic generation, and z is inserted into a queue sq 2 (lines
45–50). After termination of the inner while-loop, sq 1 is replaced by sq2 in order to
set up the next iteration (line 55). The backward Bfs while-loop terminates when
vertex x is stabilized to T (i.e., its counter has become 0). This loop preserves the
following invariant: at the beginning of the j-th iteration of the loop, the queue sq 1

contains all vertices having a minimal-depth tree diagnostic of depth j whose terminal
T vertices are placed at a distance at most k from x (these are the vertices contained
in sq1 computed at the end of the first phase). This invariant ensures the termination
of the while-loop (since by hypothesis x must have a diagnostic of depth k) and the
fact that it computes a minimal-depth diagnostic for x.

Figure 11 shows a boolean graph and three different diagnostics produced for vertex X1 by
applying algorithms A1, A2, and Diag. A1 and A2 produce tree diagnostics of depth 4 and
3, respectively; therefore, we can apply Diag for a depth k = 3. After the first phase (forward
Bfs traversal on a distance k from X1), the queue sq1 contains vertices {X6, X7, X8}. The
second phase (backward Bfs traversal) converges in two iterations, indicated on Figure 11(c),
producing a tree diagnostic of depth 2 for X1.

The Diag algorithm has a time complexity O(|V | + |E|), since it consists of two Bfs
traversals of the boolean subgraph containing the vertices at distance k from the vertex of
interest x. In practice, Diag works faster when used in conjunction with the Bfs-based
algorithm A2, since the diagnostics produced by A2 have a depth k usually much smaller
than those produced by the Dfs-based algorithms A1, A3, and A4.

RR n
�

5948



22 R. Mateescu

1. procedure Diag (x, (V, E, L), k) is
2. var A : 2V ; c : V → Nat;
3. d : V → 2V ; i : Nat;
4. q1, q2, sq1, sq2 : V ∗; y, z : V ;
5. A := {x};
6. d(x) := ∅;
7. q1 := put(x, nil);
8. sq1 := nil;
9. i := 0;

10. while i ≤ k do
11. q2 := nil;
12. while q1 6= nil do
13. y := head(q1);
14. q1 := tail(q1);
15. if |E(y)| = 0 then
16. if L(y) = ∧ then
17. sq1 := put(y, sq1)
18. endif
19. else
20. if L(y) = ∧ then
21. c(y) := |E(y)|
22. else
23. c(y) := 1
24. endif
25. endif;
26. forall z ∈ E(y) do
27. if z 6∈ A then
28. A := A ∪ {z};

29. d(z) := ∅;
30. q2 := put(z, q2)
31. endif;
32. d(z) := d(z) ∪ {y}
33. end
34. end;
35. q1 := q2;
36. i := i + 1
37. end;
38. while c(x) 6= 0 do
39. sq2 := nil;
40. while sq1 6= nil do
41. y := head(sq1);
42. sq1 := tail(sq1);
43. forall z ∈ d(y) do
44. if c(z) > 0 then
45. c(z) := c(z) − 1;
46. if c(z) = 0 then
47. if L(z) = ∨ then
48. s(z) := y
49. endif;
50. sq2 := put(z, sq2)
51. endif
52. endif
53. end
54. end;
55. sq1 := sq2

56. end
57. end

Figure 10: Algorithm Diag: computation of a minimal-depth tree example in a µ-block
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4 Applications

In this section we study three applications of Bes resolution in the field of finite-state
verification: equivalence/preorder checking, model checking, and τ -confluence reduction, all
performed on-the-fly. Various encodings of these problems in terms of Bess have been
proposed in the literature [11, 1, 2, 33, 40]. Here we aim at giving a uniform presentation of
these results and also at identifying particular cases where the memory-efficient algorithms
A3 and A4 given in Sections 3.3 and 3.4 can be applied.

4.1 Equivalence checking

Labeled Transition Systems (Ltss) are natural semantic models for action-based languages
describing concurrency, such as process algebras. An Lts is a quadruple M = (Q, A, T, q0),
where: Q is the set of states, A is the set of actions (Aτ = A ∪ {τ} is the set of actions
extended with the invisible action τ), T ⊆ Q×Aτ ×Q is the transition relation, and q0 ∈ Q
is the initial state. A transition (q1, a, q2) ∈ T (also noted q1

a
→ q2) means that the system

can evolve from state q1 to state q2 by performing action a. A similar notation is used for

transition sequences: if l ⊆ Aτ
∗ is a language defined over Aτ , q1

l
→ q2 means that from q1 to

q2 there is a sequence of transitions whose concatenated actions form a word of l. All states
are assumed to be reachable from the initial state q0 by sequences of transitions in T .

The approach of computing equivalence relations by performing a transformation to
µ-calculus formulas or systems of modal fixed point equations was proposed in [28], and was
the basis of the verification algorithms implemented in the Concurrency Workbench [10].
Here we present the encodings of equivalence relations directly in terms of Bess, which are
derived from the characterizations given in [19, 2].

Let Mi = (Qi, A, Ti, q0i) be two Ltss (i ∈ {1, 2}). Table 1 shows the Bes encodings of the
equivalence between M1 and M2 modulo five widely-used equivalence relations: strong equiv-
alence [41], branching equivalence [48], observational equivalence [37], τ ∗. a equivalence [19],
and safety equivalence [5]. Each relation is represented as a Bes with a single ν-block defin-
ing, for each couple of states (p, q) ∈ Q1 × Q2, a variable Xp,q which expresses that p and q
are equivalent. For each equivalence relation, the corresponding preorder relation is obtained
simply by keeping the first half of the right-hand sides in the equations defining Xp,q, i.e.,
the following sets of variables: Yb,p′,q (strong), Yb,p,p′,q (branching), Yp′,q and Za,p′,q (observa-
tional), Ya,p′,q (τ ∗.a), Yp,q (safety). Other equivalences, such as delay bisimulation [39] and
η-bisimulation [4], can be encoded using a similar scheme. Note that for all weak equiv-
alences, the evaluation of the right-hand sides of equations requires to compute transitive
closures of τ -transitions in one or both Ltss.

The Bess shown in Table 1 can be solved by using the general algorithms A1 and A2
(notice that the encodings given in the table are based upon computing successors of states,
therefore allowing to construct both Ltss on-the-fly during Bes resolution). However, when
one or both Ltss M1 and M2 have a particular structure, the Bess can be simplified in order
to make applicable the specialized algorithms A3 or A4.
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Table 1: Bes encodings of five widely-used equivalence relations

Strong equivalence














Xp,q
ν
=

∧

({Yb,p′,q | p
b
→ p′} ∪ {Zb,p,q′ | q

b
→ q′})

Yb,p′,q
ν
=

∨

{Xp′,q′ | q
b
→ q′}

Zb,p,q′
ν
=

∨

{Xp′,q′ | p
b
→ p′}













 p, p′ ∈ Q1, q, q
′ ∈ Q2,

b ∈ A1 ∪ A2 ∪ {τ}

Branching equivalence


































Xp,q
ν
=

∧

({Yb,p,p′,q | p
b
→ p′} ∪ {Zb,p,q,q′ | q

b
→ q′})

Yb,p,p′,q
ν
=

∨

({Xp′,q | b = τ} ∪ {Up,p′,q′,q′′ | q
τ∗

→ q′
b
→ q′′})

Zb,p,q,q′
ν
=

∨

({Xp,q′ | b = τ} ∪ {Wp′,p′′,q,q′ | p
τ∗

→ p′
b
→ p′′})

Up,p′,q′,q′′
ν
=

∧

{Xp,q′, Xp′,q′′}
Wp′,p′′,q,q′

ν
=

∧

{Xp′,q, Xp′′,q′}



































p, p′, p′′ ∈ Q1,
q, q′, q′′ ∈ Q2,
b ∈ A1 ∪ A2 ∪ {τ}

Observational equivalence














































Xp,q
ν
=

∧

({Yp′,q | p
τ
→ p′} ∪ {Za,p′,q | p

a
→ p′}∪

{Up,q′ | q
τ
→ q′} ∪ {Wa,p,q′ | q

a
→ q′})

Yp′,q
ν
=

∨

{Xp′,q′ | q
τ∗

→ q′}

Za,p′,q
ν
=

∨

{Xp′,q′ | q
τ∗.a.τ∗

→ q′}

Up,q′
ν
=

∨

{Xp′,q′ | p
τ∗

→ p′}

Wa,p,q′
ν
=

∨

{Xp′,q′ | p
τ∗.a.τ∗

→ p′}













































 p, p′ ∈ Q1, q, q
′ ∈ Q2,

a ∈ A1 ∪ A2

τ ∗.a equivalence














Xp,q
ν
=

∧

({Ya,p′,q | p
τ∗.a
→ p′} ∪ {Za,p,q′ | q

τ∗.a
→ q′})

Ya,p′,q
ν
=

∨

{Xp′,q′ | q
τ∗.a
→ q′}

Za,p,q′
ν
=

∨

{Xp′,q′ | p
τ∗.a
→ p′}













 p, p′ ∈ Q1, q, q
′ ∈ Q2,

a ∈ A1 ∪ A′

2

Safety equivalence














Xp,q
ν
=

∧

{Yp,q, Yq,p}

Yp,q
ν
=

∧

{Za,p′,q | p
τ∗.a
→ p′}

Za,p′,q
ν
=

∨

{Yp′,q′ | q
τ∗.a
→ q′}













 p, p′ ∈ Q1, q, q
′ ∈ Q2,

a ∈ A1 ∪ A2
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4.1.1 Acyclic case

When M1 or M2 is acyclic, the Bess associated to some of the five equivalence relations
considered and to their corresponding preorders become acyclic as well. This is easy to see
for strong equivalence (and its preorder): since the two-step sequences Xp,q → Yb,p′,q → Xp′,q′

and Xp,q → Zb,p,q′ → Xp′,q′ of the boolean graph correspond to transitions p
b
→ p′ and q

b
→ q′,

a cycle Xp,q → · · ·Xp,q in the boolean graph would correspond to cycles p
b
→ · · · p and

q
b
→ · · · q in both M1 and M2. For τ ∗. a and safety equivalence (and their preorders), acyclic

Bess are obtained when M1 or M2 contain no cycles going through visible transitions (but
may contain τ -cycles): since two-step sequences in the boolean graph correspond to sequences
of τ -transitions ended by a-transitions performed synchronously by the two Ltss, a cycle in
the boolean graph would correspond to cycles containing an a-transition in both M1 and M2.
For observational equivalence (and its preorder), both Ltss M1 and M2 must be acyclic in
order to get acyclic Bess, because τ -loops like p

τ
→ p present in M1 induce loops Xp,q → Xp,q

in the boolean graph even if M2 is acyclic.
If the above conditions are met, then the memory-efficient algorithm A3 can be used to

perform equivalence/preorder checking. One practical application consists in establishing
the correctness of large event traces produced by intensive simulation of a system w.r.t. the
formal specification of the system [23]. Assuming that the system specification is given as an
Lts M1 and the set of traces is given as an Lts M2 (obtained by merging the initial states
of all traces), the verification amounts to checking the inclusion M1 � M2 modulo the strong
or safety preorder.

4.1.2 Conjunctive case

When M1 or M2 is deterministic, the Bess associated to the five equivalence relations consid-
ered and to their corresponding preorders can be reduced to conjunctive form. We illustrate
this for strong equivalence, the Bess of the other equivalences being simplified similarly. If
M1 is deterministic, for every state p ∈ Q1 and action b ∈ Aτ , there is at most one tran-

sition p
b
→ p′b. Let q

b
→ q′ be a transition in M2. If there is no corresponding transition

p
b
→ p′b in M1, the right-hand side of the equation defining Xp,q trivially reduces to F (states

p and q are not strongly equivalent). Otherwise, the right-hand side of the equation becomes
∧

({Yb,p′
b
,q} ∪ {Xp′

b
,q′ | q

b
→ q′}), which reduces to

∧

{Xp′
b
,q′ | q

b
→ q′} since the first conjunct

Yb,p′
b
,q, equal to

∨

{Xp′,q′ | q
b
→ q′}, is absorbed by the second one {Xp′

b
,q′ | q

b
→ q′}. The

same simplification applies when M2 is deterministic, leading in both cases to a conjunctive
Bes. For weak equivalences, further simplifications of the Bess can be obtained when one
Lts is deterministic and τ -free (i.e., does not contain τ -transitions). For example, if M1 is
deterministic and τ -free, the equation defining Xp,q for observational equivalence becomes
Xp,q

ν
=

∧

({Xp,q′ | q
τ
→ q′} ∪ {Xp′a,q′ | q

a
→ q′}). Similar simplifications were identified in [19];

we believe they can be obtained more elegantly and systematically by using Bes encodings.
When one of the above conditions is met, then the memory-efficient algorithm A4 can

be used to perform equivalence/preorder checking. As pointed out in [19], when comparing
the Lts M1 of a protocol with the Lts M2 of its service (external behaviour), it is often the
case that M2 is deterministic and/or τ -free.
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Table 2: Translation from state to boolean formulas

ϕ (ϕ)p op(ϕ)

F ∨
T

∅ ∧
ϕ1 ∨ ϕ2 ∨
ϕ1 ∧ ϕ2

(ϕ1)p ∪ (ϕ2)p ∧
〈a〉ϕ1 ∨
[a] ϕ1

⋃

p
a
→q

(ϕ1)q ∧
X ∨

σX.ϕ1
{Xp} op(ϕ1)

4.2 Model checking

Alternation-free Bess allow to encode the alternation-free µ-calculus [12, 1, 33]. The formulas
of this logic, defined over an alphabet of propositional variables X ∈ X , have the following
syntax (given directly in positive form):

ϕ ::= F | T | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈a〉ϕ | [a] ϕ | X | µX.ϕ | νX.ϕ

The semantics of a formula ϕ on an Lts M = (Q, A, T, q0) denotes the set of states satisfying
ϕ: boolean operators have the standard interpretation; possibility (〈a〉ϕ) and necessity
([a] ϕ) operators denote the states from which some (resp. all) transitions labeled by a lead
to states satisfying ϕ; minimal (µX.ϕ) and maximal (νX.ϕ) fixed point operators denote
the least (resp. greatest) solution of the equation X = ϕ interpreted over 2Q. Fixed point
operators act as binders for variables X in the same way as quantifiers in first-order logic.
The alternation-free condition means that mutual recursion between minimal and maximal
fixed point variables is forbidden.

Given an Lts M , the standard translation of an alternation-free formula ϕ into a
Bes [12, 1, 33] proceeds as follows. First, extra propositional variables are introduced at
appropriate places of ϕ to ensure that in every subformula σX.ϕ′ (where σ ∈ {µ, ν}) of
ϕ, ϕ′ contains a single boolean or modal operator (this is needed in order to obtain only
disjunctive or conjunctive formulas in the right-hand sides of the resulting Bes). Then, the
Bes is constructed in a bottom-up manner, by creating an equation block for each closed
fixed point subformula σX.ϕ′ of ϕ. The alternation-free condition ensures that once the
fixed point subformulas of σX.ϕ′ have been translated into equation blocks, all remaining
variables in σX.ϕ′ are of sign σ. Each closed fixed point subformula σX.ϕ′ is translated into
an equation block {Xp

σ
= op(ϕ′)(ϕ′)p}p∈Q, where variables Xp express that state p satisfies

X, and the operator op(ϕ′) and the right-hand side boolean formulas (ϕ′)p are produced by
the translation given in Table 2.

This kind of Bes can be solved by the general algorithms A1 and A2 given in Section 3
(notice that the translation given in Table 2 allows to construct the Lts on-the-fly during
Bes resolution). However, when the Lts M and/or the formula ϕ have a particular structure,
the Bes can be simplified in order to make applicable the specialized algorithms A3 or A4.
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4.2.1 Acyclic case

When M is acyclic and ϕ is guarded (i.e., every recursive call of a propositional variable in
ϕ falls in the scope of a modal operator), the formula can be simplified in order to have only
minimal fixed point operators, leading to an acyclic, single-block Bes [35]. This procedure
can be also applied when ϕ has higher alternation depth and/or is unguarded, in the latter
case ϕ being first translated to guarded form using the succinct translation given in [29].

If the above conditions are met, then the memory-efficient algorithm A3 can be used to
perform µ-calculus model checking. One practical application consists in verifying µ-calculus
formulas on sets of large event traces (represented as acyclic Ltss M by merging their initial
states) produced by intensive simulation of a system [35].

4.2.2 Disjunctive/conjunctive case

When ϕ is a formula of Ctl [8], Actl (Action-based Ctl) [38] or Pdl [20], the Bes resulting
after translation is in disjunctive or conjunctive form. Table 3 shows the translations of Ctl
and Pdl operators into alternation-free µ-calculus [16] (the ‘−’ symbol stands for ‘any action’
of the Lts). For conciseness, we omitted the translations of Pdl box modalities [β]ϕ, which
can be obtained by duality. Actl can be translated in a way similar to Ctl, provided
action predicates (built from action names and boolean operators) are used inside diamond
and box modalities instead of simple action names [17].

The translation of Ctl formulas into Bess can be performed bottom-up, by creating a ∨-
block (resp. a ∧-block) for each subformula dominated by an operator E[ U ] (resp. A[ U ]).
For instance, the formula E[ϕ1Uϕ2] is translated, via the µ-calculus formula µX.ϕ2 ∨ (ϕ1 ∧
〈−〉X), first into the formula µX.ϕ2 ∨ µY.(ϕ1 ∧ µZ. 〈−〉X) by adding extra variables Y and
Z, and then into the following equation block:















Xp
µ
=

∨

{(ϕ2)p, Yp}

Yp
µ
=

∧

{(ϕ1)p, Zp}

Zp
µ
=

∨

{Xq | p → q}















p∈Q

Table 3: Translation of Ctl and Pdl into alternation-free µ-calculus

Operator Translation

EXϕ 〈−〉ϕ
Ctl AXϕ 〈−〉T ∧ [−] ϕ

E[ϕ1Uϕ2] µX.ϕ2 ∨ (ϕ1 ∧ 〈−〉X)
A[ϕ1Uϕ2] µX.ϕ2 ∨ (ϕ1 ∧ 〈−〉T ∧ [−] X)
〈α〉ϕ 〈α〉ϕ
〈ϕ1?〉ϕ2 ϕ1 ∧ ϕ2

Pdl 〈β1; β2〉ϕ 〈β1〉 〈β2〉ϕ
〈β1 ∪ β2〉ϕ 〈β1〉ϕ ∨ 〈β2〉ϕ
〈β∗〉ϕ µX.ϕ ∨ 〈β〉X
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This block is disjunctive, because its only ∧-variables are Yp and their left successors (ϕ1)p

correspond to Ctl subformulas encoded by some other block of the Bes. The formula
A[ϕ1Uϕ2] is translated, in a similar manner, into the equation block below:















Xp
µ
= (ϕ2)p ∨ Yp

Yp
µ
= (ϕ1)p ∧ Zp ∧

∧

p→q Xq

Zp
µ
=

∨

p→q T















p∈Q

This block is conjunctive, because its ∨-variables Xp have their left successors (ϕ2)p defined
in some other block of the Bes, and its ∨-variables Zp have all their successors constant.

Actl formulas can also be translated into disjunctive or conjunctive equation blocks,
modulo their translations in µ-calculus [17]. In the same way, the translation of Pdl formulas
into Bess creates a ∨-block (resp. a ∧-block) for each subformula 〈β〉ϕ (resp. [β] ϕ): boolean
operators can be factorized such that at most one of their successors belongs to the current
block, and the conjunctions (resp. disjunctions) produced by translating the test-modalities
〈ϕ1?〉ϕ2 (resp. [ϕ1?]ϕ2) have their left operands defined in other blocks of the Bes, resulting
from the translation of the ϕ1 subformulas.

Thus, the memory-efficient algorithm A4 can be used for model checking Ctl, Actl,
and Pdl formulas. This covers most of the practical needs, since many interesting properties
can be expressed using the operators of these logics.

4.3 Tau-confluence reduction

Given an Lts M = (Q, A, T, q0), the notion of τ -confluent transition formalizes the intuition
that certain τ -transitions going out of a state do not change the future behaviour of the
system starting at that state. Therefore, computing a set of τ -transitions with this property
allows to reduce M to another Lts which is generally smaller, but branching equivalent to
M . This reduction based upon τ -confluence, proposed in [25], is a form of partial-order
reduction defined in the context of Ltss. A transition q1

τ
→ q2 is τ -confluent (see Figure 12)

if for every other transition q1
b
→ q3, one of the following conditions holds:

(a) there exists a transition q2
b
→ q3;

(b) there exists a state q4 and two transitions q2
b
→ q4 and q3

τ
→ q4 such that the latter

is also τ -confluent;
(c) b = τ and there exists a transition q3

τ
→ q2 which is also τ -confluent.

q1

q2 q3

τ b

b

τ b

b

τ τ

τ

τ

(a) (b) (c)

q4

q1

q2 q3

q1

q2 q3

Figure 12: τ -confluent transitions in an Lts
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Table 4: Bes encoding of τ -confluence



























Xq1,q2

ν
=

∧

{Yb,q2,q3
| q1

τ
→ q2 ∧ q1

b
→ q3∧

q2 6
b
→ q3}

Yb,q2,q3

ν
=

∨

({Xq3,q4
| q2

b
→ q4 ∧ q3

τ
→ q4}∪

{Xq3,q2
| b = τ ∧ q3

τ
→ q2})



























q1, q2 ∈ Q,
q3, q4 ∈ Q,
b ∈ A ∪ {τ}

Intuitively, a transition q1
τ
→ q2 is τ -confluent if every other transition going out of q1 can

be simulated after executing the τ -confluent transition. For every τ -confluent transition, its
source and target states are branching equivalent [25].

Checking the τ -confluence of a transition can be straightforwardly encoded by using a Bes
with a single ν-block [40], as shown in Table 4. For each transition q1

τ
→ q2, the Bes defines

a variable Xq1,q2
indicating whether the transition is τ -confluent or not (the maximal fixed

point is used in order to characterize the maximal τ -confluent set of transitions contained in
the Lts).

This kind of Bes can be solved by using the general algorithms A1 and A2 (notice that
the encoding given in Table 4 allows to construct the Lts on-the-fly during Bes resolution).
Once a confluent τ -transition q1

τ
→ q2 has been detected, all the other transitions going out

of q1 can be safely removed without losing branching equivalence; this on-the-fly reduction
procedure is called τ -prioritization [25]. Our preliminary experimental results show that τ -
prioritization reduces the number of Lts states and transitions up to one order of magnitude.

5 Implementation and experiments

We implemented the Bes resolution algorithms A1–A4 described in Section 3 in a generic
software library, called Cæsar Solve [7], which is built upon the primitives of the
Open/Cæsar environment for on-the-fly exploration of Ltss [21]. Cæsar Solve is used
by the Bisimulator equivalence/preorder checker, the Evaluator model checker, and the
Reductor tool. We briefly describe the architecture of these tools and give some experi-
mental results concerning the A1–A4 resolution algorithms.

5.1 The CAESAR SOLVE library

The Cæsar Solve library (see Figure 13(a)) provides an Application Programming Inter-
face (Api) allowing to solve on-the-fly a variable of a Bes. It takes as input the boolean
graph associated to the Bes together with the variable of interest, and produces as out-
put the value of the variable, possibly accompanied by a diagnostic (portion of the boolean
graph). Depending on its particular form, each block of the Bes can be solved using one
of the algorithms A1–A4, which were developed using the Open/Cæsar primitives (hash
tables, stacks, etc.).
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Both the input boolean graph and the diagnostic are represented implicitly by their suc-
cessor functions, which allow to iterate over the outgoing edges (dependencies) of a given
vertex (variable) and hence to perform on-the-fly traversals of the boolean graphs. This
scheme is similar to the implicit representation of Ltss defined by the Open/Cæsar en-
vironment [21]. To use the library, a user must provide the successor function of the Bes
(obtained by encoding some specific problem) and, if necessary, must interpret the resulting
diagnostic by traversing the corresponding boolean subgraph using its successor function.

Three on-the-fly verification tools developed within Cadp are currently using the
Cæsar Solve library (see Figure 13(b) and 13(c)): Bisimulator, an equivalence/preorder
checker comparing two Ltss modulo the five relations mentioned in Section 4.1; Evaluator,
a model checker for regular alternation-free µ-calculus [36] over Ltss; and Reductor, a tool
performing various reductions on Ltss, among which τ -confluence. Each tool translates its
corresponding verification problem into a Bes resolution following the encodings given in
Section 4; in addition, Bisimulator and Evaluator identify the particular cases suitable
for algorithms A3–A4, and translate back the diagnostics produced by the library in terms
of the input Lts(s).

5.2 Performance Measures

We performed several experiments to compare the performances of the resolution algorithms
A1–A4. The applications selected were (several versions of) three communication proto-
cols4: an alternating bit protocol (Abp), a bounded retransmission protocol (Brp), and a
distributed leader election protocol (Dle).

The results are shown in Table 5. The 1st series of experiments compares A1 with A2
as regards diagnostic depth (measured in number of transitions). The 2nd and 3rd series
compare A1 with A3, respectively A1 with A4 as regards memory consumption (measured
in Kbytes). For each experiment, the table gives the measures obtained using A1 and A2–
A4, and the corresponding difference ratios. Comparisons and inclusions between Ltss are
performed using Bisimulator, and evaluations of temporal logic properties on Ltss are
performed using Evaluator. All temporal properties are expressed using combinations of
Actl and Pdl operators, which lead to disjunctive/conjunctive Bess, therefore enabling
the use of algorithm A4.

The 1st series of experiments compare each protocol Lts modulo strong equivalence
with an erroneous Lts, and verify an invalid property on the protocol Lts (both problems
yield counterexamples). The 2nd series of experiments check that an execution sequence
of 100000 transitions is included in each protocol Lts, and check a valid property on the
sequence (both problems yield acyclic boolean graphs, hence enabling the use of algorithm
A3). The 3rd series of experiments compare each protocol Lts modulo τ ∗. a equivalence with
its service Lts, which is deterministic (hence enabling the use of algorithm A4), and verify
a valid property on the protocol Lts. We observe important reductions of diagnostic depth
(up to 99%) whenever algorithm A2 can be used instead of A1, and reductions of memory
consumption (up to 63%) whenever algorithms A3–A4 can be used instead of A1.

4All these examples can be found in the Cadp distribution, available at the Url
http://www.inrialpes.fr/vasy/cadp.
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Table 5: Performance of resolution algorithms for equivalence checking and model checking

A2 versus A1 Diagnostic depth
App. Size Bisimulator Evaluator

States Trans. A1 A2 % A1 A2 %

Abp 935000 3001594 235 19 91.9 50 12 76.0
Brp 355091 471119 1455 31 97.8 744 18 97.5
Dle 143309 220176 2565 25 99.0 147 14 90.4

A3 versus A1 Memory consumption
App. Size Bisimulator Evaluator

States Trans. A1 A3 % A1 A3 %

Abp 935000 3001594 37472 32152 14.1 10592 8224 22.3
Brp 355091 471119 17656 13664 22.6 10240 7432 27.4
Dle 28710 73501 15480 11504 25.6 8480 6248 26.3

A4 versus A1 Memory consumption
App. Size Bisimulator Evaluator

States Trans. A1 A4 % A1 A4 %

Abp 935000 3001594 178744 152672 14.5 163800 60248 63.2
Brp 355091 471119 35592 23608 33.6 26752 17432 34.8
Dle 18281 44368 107592 94584 12.0 3904 3224 17.4

We also performed a series of experiments for investigating the effectiveness of the τ -
confluence reduction. Besides the three communication protocols used previously, we also
considered six other examples of distributed systems available in the demo examples of Cadp:
an atomic multicast protocol (Rel), a clustered file system (Cfs), a distributed summing
protocol (Sum), the Erathostene’s sieve (Esv), an open distributed processing trader (Odp),
and an asynchronous circuit (Des). Table 6 shows the size of the corresponding Ltss before
and after reduction by τ -confluence. For the first four communication protocols and the Cfs,
we observe reductions of up to one order of magnitude. For the last four examples, which
are more prone to partial order reduction since they involve many loosely-coupled processes,
the reduced Ltss were up to three orders of magnitude smaller.

6 Conclusion and future work

We presented a generic library, called Cæsar Solve, for on-the-fly resolution with diagnos-
tic of alternation-free Bess. The library was developed using the Open/Cæsar environ-
ment [21] of the Cadp toolbox [22]. It implements an application-independent representation
of Bess, precisely defined by an Api [7]. The library currently offers four resolution algo-
rithms A1–A4, A2 being optimized to produce small-depth diagnostics and A3, A4 being
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Table 6: Reduction by τ -confluence

App. Original size Reduced size
States Trans. States % Trans. %

Abp 935000 3001594 20802 2.2 60901 2.0
Brp 2227357 3262644 400721 17.9 1436008 44.0
Dle 94231 252988 41795 44.3 137591 54.3
Rel 113590 385798 38285 33.7 109971 28.5
Cfs 140136 679452 4058 2.8 31128 4.5
Sum 156957 767211 178 0.11 481 0.06
Esv 23627 84707 11 0.04 10 0.01
Odp 85640 595864 433 0.50 2276 0.38
Des 1418 3539 6 0.42 7 0.19

memory-efficient for acyclic and disjunctive/conjunctive Bess. Cæsar Solve is used at the
heart of the equivalence/preorder checker Bisimulator and the model checker Evaluator.
The experiments carried out using these tools assess the performance of the resolution algo-
rithms and the usefulness of the diagnostic features.

We plan to continue our work along three directions. Firstly, in order to increase its
flexibility, the Cæsar Solve library can be enriched with other Bes resolution algorithms,
such as Lmc [15], the Gauss elimination-based algorithm proposed in [33], and the algo-
rithms for disjunctive/conjunctive Bess with arbitrary alternation depth recently devised
in [24]. Due to the well-defined Api of the library and the availability of the Open/Cæsar
primitives, the prototyping of new algorithms is quite straightforward; from this point of
view, Cæsar Solve can be seen as an open platform for developing and experimenting
Bes resolution algorithms. Another interesting way of research is the development of paral-
lel versions of the algorithms A1–A4, in order to exploit the computing resources of massively
parallel machines such as Pc clusters. Finally, other applications of the library can be envis-
aged, such as: on-the-fly equivalence checking by encoding other relations between standard
Ltss, such as delay bisimulation [39] and η-bisimulation [4], or equivalence relations between
probabilistic and stochastic Ltss [26]; on-the-fly Horn clause resolution by using the trans-
lations from Horn clauses to Bess proposed in [14, 32]; and on-the-fly generation of test
cases (obtained as diagnostics) from the Lts of a specification and the Lts of a test purpose,
following the approach put forward in [18].
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