
A Semantics of Communicating Reactive Objects
with Timing∗

Jozef Hooman1,2 & Mark B. van der Zwaag1

1Department of Computing Science, University of Nijmegen, The Netherlands
2Embedded Systems Institute, Eindhoven, The Netherlands

January 15, 2004

Abstract

The aim of this work is to provide a formal foundation for the unambiguous
description of real-time, reactive, embedded systems in UML. For this application
domain, we define the meaning of basic class diagrams where the behavior of
objects is described by state machines. These reactive objects may communicate
by means of asynchronous signals and synchronous operation calls. The notion
of a thread of control is captured by a so-called activity group, which is a set of
objects which contains exactly one active object and where at most one object may
be executing. Explicit timing is realized via local clocks and an urgency predicate
on transitions. We define a formal semantics for this kernel language, based on the
run-to-completion paradigm. We show that this combination of communication
primitives and execution mechanism gives rise to a large number of questions and
discuss the decisions taken in the proposed semantics. The resulting semantics has
been defined in the typed logic of the interactive theorem prover PVS.

1 Introduction

We present a formal semantics for a system consisting of concurrent reactive objects,
specified by a UML class diagram with state machines. This work is carried out in
the context of the EU project Omega (Correct Development of Real-Time Embedded
systems). This project aims to improve the quality of software for embedded systems
by the use of formal techniques. In particular, the focus of the project is on real-time
aspects of systems. The Omega project addresses techniques such as model-checking
of timed and untimed models, interactive theorem proving to support compositional
reasoning, refinement rules relating different levels of abstraction, and synthesis from
specifications. The developed formal tools are connected to commercial UML tools
∗This work has been supported by EU-project IST 33522 – OMEGA “Correct Development of Real-Time

Embedded Systems”. For more information, seehttp://www-omega.imag.fr/ .

1

via the XMI representation.1 Moreover, the aim is to propose a methodology for the
software development process. The unifying basis of all this work is a formal semantics
of a suitable subset of UML for embedded systems.

Starting point for the formal semantics used within Omega was an operational se-
mantics [5], which was inspired by the execution mechanism of the CASE tool Rhap-
sody [10]. This semantics was also closely related to the implementation of untimed
model checking by project partner OFFIS [4]. The aim of this paper is to define a more
abstract semantics which is more suitable for interactive theorem proving and which
clarifies a number of semantic questions and decisions.

To allow system verification by theorem proving, we tried to define the initial
Omega semantics [5] in the typed higher-order logic of the interactive theorem-prover
PVS [11, 13]. The rigorous formalization in PVS by itself revealed a number of am-
biguities. Also, questions arose concerned, for example, the passing of control, the
dispatching of signals, synchronization of operation calls, etc. In this paper, we iden-
tify these issues, and present the decisions taken to resolve them. Moreover, we show
how a continuous notion of time can be added in an orthogonal way.

Related Work Strongly related to our work is the formalization of active classes and
associated state machines by Reggio et al [14]. They define a labelled transition system
using the algebraic specification language CASL, also leading to a number of related
questions about the meaning of UML models. Their decision is usually to consider
the most general case; for instance, an active object may correspond to an arbitrary
number of threads and the event “queue” is a multiset of events. Our decisions are
mainly based on feedback from industrial users, current UML-based CASE tools for
real-time systems and the aim to enable formal verification of embedded systems. This
leads to more specific choices, such as a single thread of control per object and a simple
FIFO event queue.

Our kernel language is close to the core UML language described in [7]. The
meaning of event generation, operation invocation, and composition is based on the
Rhapsody tool and basically the same as our informal meaning. The basic outline of
our semantic model is similar to that of [8] which uses an abstract request mechanism
and no distinction between asynchronous events and synchronous communication. The
focus of that paper is more on behavioral conformity for inheritance and various types
of refinement.

Not present in the literature mentioned above is a continuous notion of time. E.g.
in [4] there is only a notion of a discrete step. Our timing extension is based on classical
timed automata [1], but unlike e.g. Uppaal [16] we do not use invariants but an urgency
predicate which is a restricted version of the timed automata with deadlines of [3]. A
more high-level syntax for UML with real-time annotations, as developed in the Omega
project, can be found in [6]. They can be translated into our basic timing framework.

Theorem Proving in Omega The PVS representation of the semantics presented
here plays an important role in a tool that is developed in the Omega project, since it

1Unfortunately, not all tools export XMI and currently there are slight differences in the generated XMI
representation.

2

PVS Property

OCL Property

PVS Representation

XMI Representation

preprocessing

-

UML Model

Semantics in PVS

?
uml2pvs

?

uml2pvs

?

H
HHH

�������

?
PVS Proof Engine
�
 �	

Figure 1: Verification of UML models in PVS.

enables formal reasoning and mechanized proof checking on concrete UML models.
The idea is depicted in Figure 1. By means of a commercial CASE tool, a user con-
structs a concrete UML model, in the current version consisting of a class diagram and
corresponding state machines. A textual representation of the model in XMI2 should
be provided by the UML-based CASE tool. Some automated preprocessing may be
applied at this level, e.g., the flattening of state machines, and subsequently the rep-
resentation of the model is translated to a representation of the model in PVS by the
uml2pvs tool. The PVS representation of the model is combined with the general
definition of the model-independent semantics, which assigns meaning to the model as
a labelled transition system. This semantics defines the meaning of an UML model as a
set of runs, denoting the snapshots of the system state during execution and the actions
that cause the state change.

Properties of the UML-model may be expressed by the user in OCL, which has been
extended with a notion of time. Theuml2pvs tool translates these OCL constraints
to PVS. As an alternative, the user may express properties directly in the higher-order
logic of PVS. Basically, any property on runs that can be expressed in PVS, including
safety and liveness properties. The interactive proof checker of PVS can be used to
prove that the UML model, i.e., the set of its runs, satisfies certain properties. Proving
properties is a complex task and requires quite some expertise, but the verifier may use
certainstrategiesthat can handle reoccurring patterns in the proofs. Within Omega,
the TLPVS package is used to experiment with powerful strategies for the proof of
temporal properties [12].

Overview In our semantics, time is modelled as an orthogonal aspect, and it turned
out that especially for the untimed part, a large number of questions arose about the
precise meaning of particular concepts. Hence, we first discuss the time-independent
aspects of the semantics and later show how time can be added.

2See http://www.omg.org/technology/documents/modeling_spec_catalog.htm
for the latest UML-related specifications.

3

�active�
TempSensor

converted: Boolean
value: Byte
x: Integer

convert(v: Byte): Integer
getVal(): Integer
refresh()

�

+myTherm

+myTSens

�active�
TempControl

tempDiff: Integer

setTemp(t: Integer)

�

+myHeater

Heating

higher()
lower()Thermometer

readTemp(): Byte

Figure 2: Example class diagram.

In Section 2 we start with the definition of an untimed kernel language, that is, the
part of UML for which we give a semantics. The main semantic choices are discussed
in Section 3. In Section 4 we explain in detail how we model the system behavior
as a labelled transition system; this explanation follows the formal definition of the
semantics in PVS which can be found at [9]. A notion of threads of control, which
is realized using the concept of so-called activity groups, is added in Section 5. The
introduction of real-time can be found in Section 6; we explain how a timed labelled
transition system can be defined on top of the untimed semantics. We end with some
concluding remarks in section 7.

2 Kernel Language

In the Omega kernel language, classes are declared by conventional class diagrams
with attributes and operations. Consider, for example, the class diagram in Figure 2.
This diagram models a temperature control system; a temperature controller (of class
TempControl) contains a heater and has access to a sensor. The sensor can read the
temperature from its thermometer.

The controller responds to the external signalsetTemp(t) which is a request to keep
the temperature at levelt. The heater responds to the signalshigher and lower. The
sensor responds to the signalrefreshby reading the temperature value from its ther-
mometer. The sensor has an operationgetValwhich returns the latest temperature value
that has been read. This operation involves the conversion of this value to an integer
in case this conversion was not performed before. The boolean attributeconvertedin-
dicates whether the latest value has been converted (in which case it is assigned to the
attributex).

The controller and sensor classes areactive, all others arepassive. Similarly, the
corresponding objects — the executing instances of classes — are either active or pas-
sive. Typically, active objects correspond to a thread of control, calledactivity groupin

4

Section 5. Finally, the black diamonds on two of the associations represent a compo-
sition relation (strong aggregation). In our example, a thermometer is seen as a part of
a sensor, and a heater is part of a controller. Often the passive parts of an active object
belong to the same activity group. Associations between classes will be represented by
reference attributes. For instance, classTempControlhas an (implicit) attributemyT-
Sensof typeTempSensor.

For each class the behavior of its objects can be defined by means of a state machine
and methods (program text) for its so-calledprimitive operations. Other operations are
defined by means of the state machine and calledtriggered operationsbecause they
may trigger a transition. Moreover, the state machine specifies the response to signals.

In our formalization, state machines are assumed to be flat, that is, to consist of
transitions between locations; there are no hierarchical states or pseudo-states. The
flattening of state machines is part of the preprocessing of the model; tool support is
developed in the Omega project. For uniformity, we assume that every class has a state
machine, but this state machine may be empty, that is, consist of a single initial location
and no transitions.

A state machine transition is written as

l
e[g]/act−−−−−−→ l′,

wherel is the source andl′ is the target location,e is the trigger event,g is the boolean
guard, and/act is the action part of the transition. The idea is that an object in location
l may reach locationl′ by the execution of the action part of the transition, provided
the guard is satisfied and it is triggered by the trigger event.

A trigger event is either an operation call, or a signal. A transition may be untrig-
gered. The guard is a boolean expression which can be evaluated locally by the object
without side-effects (atrue guard is often omitted). The action part of a transition is a
list of basic actions. The list may be empty, denoting skip. In this paper, we consider
the following five basic actions: assign a value or reference to an attribute, create an
object and assign a reference to it to an attribute, send a signal to a particular object,
call an operation of a particular object and assign a result value to an attribute, return
from a call.

As an example, Figure 3 shows the state machine for classTempSensorof Figure 2.
The incoming arrow with the black circle at the top indicates the initial location; the
initial value for the attributeconvertedis false. The sensor first reads its thermometer
by invocation of the operationreadTemp; the result is assigned to the attributevalue.
In the locationreadythe sensor can either be triggered by the signalrefresh, in which
case it reads a new temperature value, or it can be triggered by a call of the operation
getVal. The return value for this call must be an integer, which means that the sensor
may have to convert the latest value that it has read. It can do so by calling its own
methodconvert. The boolean attributeconvertedindicates whether the latest value has
been converted; after conversion values are stored at attributex.

Intuitively, all objects concurrently execute their state machine. When an object
calls an operation it becomes blocked until the callee executes a corresponding return.
Signals are sent asynchronously, i.e. the sender may continue immediately and the sig-
nal is put in a signal queue at the receiver side. Objects are selected from the signal

5

t
?

/ converted:= false

read value
�
 �	

ready
�
 �	?

/ value:= myTherm.readTemp()
6

refresh / converted:= false

return
�
 �	 converting

�
 �	� / x:= self.convert(value)

�
�
�
�
��	

getVal [converted]
@
@
@
@
@@R

getVal [NOT converted]

/ converted:= true

�
�
�
�
���

/ return x

Figure 3: State machine for theTempSensorclass.

queue and then either trigger a transition or are discarded if they do not trigger a transi-
tion in the current location. An exception are signals that are declared to bedeferrable
in the current location; they are not discarded and remain in the signal queue.

Although not shown in Figure 2, the kernel language also allows the generalization
(inheritance) relation between classes. Concerning inheritance we face the usual ques-
tions (see, for instance [8]). The main point is to which extent behavior of a superclass
is inherited by a subclass. Conforming to the typical use of inheritance in industrial
applications, we allow that a subclass redefines the behavior of an inherited operation.
We take the following decision: if a child class has a state machine, then it overrides
the state machine of the parent completely; otherwise it inherits the state machine of
the parent. In our formal semantics, we assume that all information about inherited at-
tributes, operations, and state machines has been included in each class itself by some
simple (automated) preprocessing. We also record for each object the corresponding
class, thus obtaining conventional polymorphism.

3 Semantic Choices

Our first attempts to formalize the informal meaning of UML diagrams, as sketched in
the previous section, revealed a number of questions to be answered and a number of
decisions had to be taken.

The first decision concerns the concurrency model; the concurrent execution of the
objects is modelled by interleaving the steps of each object. An execution of a system
consisting of a set of concurrent objects is represented by a sequence of snapshots,
modelling the state of affairs at a point during execution, where each pair of successive
states represents some step of the system. This leads to the question:

What constitutes a step?

There are several choices for the granularity of steps. In related versions of the Omega
semantics [5, 4] there are small “bookkeeping” steps, e.g. to discard signals from the

6

queue. We also experimented with several possibilities, e.g., a version in which each
action of the action list on a transition forms a step.

This detailed level of granularity, however, turned out to be quite cumbersome for
interactive verification. Since the verifier intuitively would like to reason in terms of
transitions, we decided to formulate the semantics in such a way that each step corre-
sponds to the execution of a transition in a state machine of an object. In the case of
triggered operations this means that the execution of the transition with the call action
and the execution of the transition that is triggered by the call are combined into one
step of the system.

Note that if the action part of the callee would again contain an operation call, this
would lead to a cascading sequence of synchronizations. Since this greatly compli-
cates the semantics, we disallow an operation call in the action part of a transition with
a call trigger. To get additional simplifications, which is essential for successful ver-
ification, we make the restriction slightly stronger. Let theprimitive actions be those
actions which, by themselves, are always enabled, namely, local assignments and sig-
nal emission. Hence the three non-primitive actions are: operation calls, return, and
object creation. We require that the action part of a transition is either a list of primi-
tive actions or a single non-primitive action. Moreover, all transitions with a call trigger
should have a primitive action part.

Observe that the enabledness of a transition with a primitive action part depends
only on the trigger event and the guard, while non-primitive actions may contribute to
the enabledness condition. See Section 4.2 for a description of the actions and their
semantics.

Another important question concerns the set of possible interleavings.

When may an object accept a new operation call or a new signal?

An important decision is to adopt therun-to-completionsemantics, as defined by the
ROOM methodology [15], that is, when an object has been triggered by an operation
call or a signal, it must becomestablebefore it can accept a new event. An object is
stable if, in its current location, it has no outgoing untriggered transitions for which the
guard is satisfied. Thus a stable object can only proceed by accepting a call or a signal.
For instance, in Figure 3 only statereadyis stable.

The run-to-completion assumption is a reasonable and intuitive assumption which
reduces the number of interleavings and the amount of interference between objects.
This is also the motivation for the decision is to disallow re-entrance of triggered opera-
tions. In general, for the execution of an operation call the callee must be able to accept
it. As mentioned above the callee must be stable. To disallow re-entrance, it may not
already be processing a call; during the processing of the call (which is completed by
the execution of a return action) no other calls to triggered operations are accepted by
the callee. With the call, the caller becomes suspended (blocked). It remains suspended
until the reception of the result value.

A related question concerns the acceptance of primitive operations. Primitive op-
erations (also called methods) are implemented by a piece of code and cannot be used
as a trigger. For simplicity, we require here that the method body does not contain
operation calls. Moreover, we assume that the result can be computed atomically and

7

the complete execution, including the method call, the computation, and the return of
the result, is modelled as one step in the semantics.

Therefore, suspending the caller of a primitive operation is not needed. In order to
allow an object to call its own methods, we allow the acceptance of primitive operations
in anystate, so in particular also when the object is unstable or processing a triggered
operation.

The last main question we discuss here concerns the treatment of signals, which
partly corresponds to an explicit variation point in the description of UML.

How are signals stored, selected, and discarded?

Questions are, for instance, whether we have signal queues for sets of objects or for
single objects, how to select signals from the queue, how to put deferrable signals that
do not trigger a transition back into the queue, etc.

To obtain relatively simple, predictable behavior, we made the following decisions.
An emitted signal is placed in a first-in-first-out queue at the receiver. A signal can
be accepted from this queue by the receiver if it triggers a transition. Moreover, to
be accepted, it must be the first triggering signal in the queue. This acceptance is
combined with the execution of the triggered transition into one step of the semantics.
During this step all preceding signals in the queue (which do not trigger a transition
in the current state) are discarded, except if they have been madedeferrablefor the
current location. The deferrable preceding signals maintain their order in the queue.

3.1 Examples

We present a few small examples to illustrate some consequences of the decisions
described above.

As a first example, consider an object executing the following state machine:r
@@R�� ��? sig / return

6
op

The object is always stable: both transitions are triggered. Initially, only the operation
can be accepted; the return action is only enabled if the object is processing a call (the
return action is non-primitive). After the acceptance of an operation, the acceptance
of a new operation is not enabled: the object must finish the operation first. It fin-
ishes the operation by the return action, for which a signal is required. So, the object
will alternate between the two transitions (provided that the environment provides the
events).

As a second example, consider an object of classA with

r-�� ��
�� ��
�� ��
�� ����

��*op / a:= 1

H
HHHjsig / a:= 2

HHHHj
sig / return a

�
��
�*

op / return a

And an object of classB with

8

r-�� �� �� �� �� ��-/ myA!sig -/ a:= myA.op

wheremyArefers to the object of classA. The concurrent behavior of these two objects
has two traces ending in the final state, i.e., the state where both objects are in the
rightmost location. One of these traces describes the case where the operation call has
been accepted before the signal — in this case the final value ofa is 1; in the other case
the signal is accepted first and the final value is 2.

Alternatively, if we rewrite the state machine of classB to

r-�� �� �� �� �� ��-/ a:= myA.op -/ myA!sig

then we see that a deadlock situation is reached after the operation call: the signal
cannot be emitted by the object of classB because it is suspended (waiting for the call
to return).

4 Semantics in PVS

In this section we give the general outline of the formal semantics, as it is defined in the
language of the theorem prover PVS. The complete listing of the PVS theories can be
found at [9]. Given a concrete UML model, we define an untimed labelled transition
system (LTS). In PVS this is done by means of general theories, where the essential
characteristics of the concrete model are represented by a number of parameters. Tim-
ing can be added on top of this LTS as is explained in Section 6.2.

The general idea is that an execution of the UML model is represented by arun
(execution trace) of the LTS; a run is a sequence

s0
l0−−→ s1

l1−−→ s2
l2−−→ s3

l3−−→ · · ·

of steps of the LTS, where thesi are states, representing a snapshot of the system
during execution and theli are labels representing the execution of a state machine
transition for some object.

The states of the untimed LTS are defined in Section 4.1, including the definition
of stability. Next we define in Section 4.2 the semantics of the action part of a state
machine transition, i.e., its precondition and its effect. This is used in Section 4.3 to
define thesteps, that is, the global transition relation which forms the basis of runs.

4.1 States

Assume given a countably infinite set of object identifiers and a mapping from object
identifiers to the set of class names.

A local statecontains all relevant local information concerning an object; it consists
of the following:

1. A valuationthat assigns values to attributes and references.

9

2. Thestatusof the object: an object can be

• dormantif it is not yet created;

• free if it is not processing a triggered operation call;

• busy(id,a) if it has accepted a call for which it has not returned the result
yet; id is the identity of the caller, anda is the attribute the result must be
assigned to.

3. The current state machine location of the object.

4. A boolean indicating whether the object is currently suspended.

5. The signal queue of the object.

A (global) stateis a collection of local information: it is a mapping from object
identifiers to local states.

A few auxiliary definitions concerning stability:

• An object isreadyin some state, if it is non-dormant and not suspended.

• A transition islocally enabledfor an object in some state, if it belongs to the
object’s state machine, its source is the object’s current location, and the boolean
guard is satisfied.

• An object isstablein some state, if it isreadyand all locally enabled transitions
have a trigger.

Observe that enabledness of a transition does not only depend on its guard and trigger,
also the action part may impose conditions on enabledness. For example, a transition
with a triggered operation call as action is enabled for an object only if it is locally
enabled and the callee object is ready to accept the call. These additional conditions
are defined in the next section as preconditions on non-primitive actions.

4.2 Action Semantics

We define the precondition and the effect of the action part of a transition. If the action
part is a list of primitive actions, thepreconditionis trivial (i.e. true) and theeffectof
their execution is defined recursively: the elements of the list are executed one by one,
from left to right, as follows.

Assignment: a:= exp

Effect: Assign the current value of the expressionexpto attributea.

Signal Emission: r!sig(exp)

Effect: Insert a signal with signal namesig and the value of the expressionexp
in the signal queue of the object referred to byr.

The non-primitive actions have the following semantics:

10

Triggered Operation Call: a := r.op(exp), whereop is triggered operation of an ob-
ject referred to by the referencer. The return value is assigned to the attributea.

Precondition: (1) The callee must be stable; (2) the call must match the trigger
of a transitiont at the callee, and (3)t must be locally enabled for the callee
(after the assignment of the value ofexp to the attribute specified in the
trigger expression oft).

Note that the action part of the triggered transition is primitive (by assumption)
and therefore trivially enabled.

Effect: The callee is triggered (i.e., changes location to the target oft and assigns
the value ofexpto the designated attribute) and the (primitive) action part
of t is executed. The caller becomes suspended, and the status of the callee
becomesbusy(id,a), where id is the identity of the caller, anda is the
attribute the result must be assigned to.

Primitive Operation Call: a := r.m, wherem is a method (primitive operation) and
r refers to the callee.

Precondition: The callee must be non-dormant.

Effect: The result value, which is defined as the value of the operation’s method
in the local state of the callee, is assigned to the attributea at the caller.

Return: return exp, whereexpis the result expression.

Precondition: The executing object must be processing a call, that is, its status
value must bebusy(id,a), whereid is the identity of the caller, anda is the
attribute the result must be assigned to. Furthermore, it is required that the
caller is non-dormant.

Effect: The result is that the caller becomes un-suspended, and that the value
of exp is assigned to the attributea of the caller. The status of the callee
becomesfree.

Object Creation: r := new c, wherec is a class.

Precondition: The identity of a dormant object of classc is available to the
executing object (the creator).

Effect: The new object is initialized as follows: it is free and not suspended;
its signal queue is empty; and it has the initial valuation and state machine
location associated with its class. The referencer will refer to the new
object for the creator.

Note that in this simple version, the initialization of the new object is completely
determined by its class—not by its creator. We have also defined more com-
plex variants with entry scripts, and recursive creation of objects for hierarchical
composition of objects (aggregation).

11

4.3 Semantics of State Machine Transitions

Finally, we define the meaning of state machine transitions, defining its precondition
and effect, leading to the steps of our semantics. We make a case distinction on the
kind of triggering of the transition. Since transitions triggered by an operation call
are executed as part of the execution of the call by the caller object (see the action
semantics of a triggered operation call in the previous section), it remains to consider
an untriggered or a signal-triggered transitiont of objectp.

Untriggered: Transitiont has no trigger event.

Precondition: (1) The guard oft is satisfied, and (2) the action part oft is en-
abled (as described in Section 4.2).

Effect: The next state is defined as the effect of the action part on the current
state (as defined in Section 4.2), where the location ofp is changed to the
target location oft.

Signal-triggered: Transitiont is triggered by a signal.

Precondition: (1) p is stable; (2) then-th signalsig from the signal queue ofp
triggerst, i.e., after the assignment of the parameter ofsig to the designated
attribute, the guard oft is satisfied and the action part oft is enabled; and
(3) sig is the first triggering signal in the queue ofp: all preceding signals
may not trigger a transition ofp.

Effect: p changes location to the target oft, and executes the action part oft after
assigning the parameter value to the designated attribute, andcleaning up
the signal queue ofp: sig is removed and also all the preceding signals
that are notdeferrablein the current location are removed. The deferrable
preceding signals maintain their order in the queue.

Hence, asteps
l−−→ s′ corresponds to either an untriggered or a signal-triggered tran-

sition t wheres satisfies the precondition oft. Note that that the action part oft may
contain an operation call which has to synchronize with the trigger of another transition
t′. Thens also satisfies the precondition oft′, andt′ is executed in the same step, i.e.,
s′ is obtained froms by combining the effect predicates oft andt′.

The transitive closure of the step relation leads to the set ofrunsof the form

s0
l0−−→ s1

l1−−→ s2
l2−−→ s3

l3−−→ · · ·

representing all possible executions of the UML model.

5 Activity Groups; Sharing Control

In the semantics defined in Section 4, all objects are running asynchronously, which is
modelled by interleaving the transitions of all objects. In this section we add a dynamic

12

assignment ofcontrol to objects which restricts the concurrency of the system; only an
object that has control is allowed to execute a state machine transition. To achieve this,
the set of objects is partitioned intoactivity groupswhich are centered around active
objects: a class can be active or passive, and this leads to active or passive objects at
run-time. For example, in the system of Figure 2, aTempSensorobject is active because
it belongs to an active class, while aThermometerobject is passive, because its class is
not active. In this case, aTempSensorand aThermometerobject together constitute an
activity group. Similarly, aTempControland aHeatingobject form an activity group.

The partitioning is represented by assigning an active parent object to every object;
an active object is its own active parent. At any point in time, in every activity group,
exactly one object has the control; we refer to this object as the group’scontrol object.

During execution the control within a group may shift from one object to another.
The main question here is: when is it allowed to change control? We decided that
control changes when performing a call inside the same group, otherwise an object
may only lose control if it is stable.

This notion of activity groups is comparable to that ofthreads of control; an active
object corresponds to a thread of control and at most one thread is active in each object.
To avoid confusion with, e.g., Java-like threads, we decided to avoid the term “thread”
and use “activity group” instead.

5.1 Operation Calls

Concerning triggered operations we now face questions about the flow of control and
about when to pass the result back and when to change control; when the callee be-
comes stable or immediately when the result is available? We decided the following: a
successful, synchronous call of a triggered operation requires that the caller has control
and

• if the callee belongs to the same activity group, then the control changes from
caller to callee;

• if the callee is in another group, then the caller maintains the control in its group.
The callee must either already have or take the control in its group.

Execution of a return action need not lead to a control change; if callee and caller
are in the same activity group, the callee must first become stable, before the control
becomes available again for the caller. An object does not need the control to answer
primitiveoperations; it may answer these in any state.

We revisit the second example from Section 3.1. For convenience, we repeat the
state machines. For classA:

r-�� ��
�� ��
�� ��
�� ���

��
�*op / a:= 1

H
HHHjsig / a:= 2

HHHHj
sig / return a

��
��*

op / return a

For classB:

13

r-�� �� �� �� �� ��-/ myA!sig -/ a:= myA.op

Consider an objectp of classA and an objectq of classB. Suppose the two objects
share control, i.e., they are part of the same activity group. Letq start with the control.
This time, there is only one trace leading to the final state, and it leads to the final value
1: directly after emitting the signal,q is unstable, and hence it cannot lose the control.
The next step is the synchronous operation call during which the control is passed top.

5.2 Semantics in PVS

In the local state of objects, see Section 4.1, we record the following additional in-
formation: (1) for passive objects, the identity of the active object that is leading the
object’s activity group; and (2) for active objects, the identity of the object that is cur-
rently in control within its group.

Moreover, the status valuebusy, indicating that the object is currently processing
an operation call, is now refined into the following two values

• As before, an object isbusyif it has not returned a result value yet.

• An object may still becompletingthe call after it has returned a value, if the caller
belongs to the same group: then the object remains in control until it becomes
stable.

In case the caller is from another group, the caller remains in control while it is sus-
pended and the call is being processed by the callee. Then, after the return the callee
becomesfreeand both objects can continue.

All preconditionsare extended with the condition that the control must be available
for the executing object. The control is available for an object if it either already has
the control, or the control object is stable; but in case the control object iscompleting
a call, the caller of the call gets priority in the assignment of the control. In this last
case, an object can take the control if (1) it is the caller, or (2) it is not the caller, but the
caller is stable. Part of the control change in this case is that the status of the control
object becomesfree. In theeffectpredicates we incorporate the result of the change of
control.

Observe that there is no separate step for a change in control (we experimented
with this in earlier versions). As a result, the set of runs of a UML model with sharing
of control is a subset of the same model without activity groups (which can be obtained
by making all classes active, so that all activity groups have exactly one member).

6 Adding Time

In this section, the semantics is extended with a continuous notion of time. As in timed
automata [1], timing constraints are expressed in state machines using local clocks; an
object may reset its clocks (like a local assignment), and express conditions on clock
values in the guard of a state machine transition. We also introduce a global notion of
time because it is convenient for specifications.

14

Our model of timing is an orthogonal feature to the untimed semantics; the passing
of time is modelled by a global delay step that increases the global time and adjusts
all local clocks accordingly. In this model, all other steps do not increase the clocks.
We can therefore define the system behavior as a labelled transition system in which
every step either corresponds to a step of the untimed semantics (execution of a state
machine transition), or a time passing step.

The main question is how to ensure progress. For instance, in Uppaal [16] clock
invariants on locations are used to block delay steps and to ensure that certain tran-
sitions will be taken. In our current semantics we decided not to use invariants, but
an urgency predicate on transitions; this is a special case of thetimed automata with
deadlinesof [3]. Our motivation for this choice is that the condition for the progress of
time is less complicated if we work with urgency of transitions. When using invariants,
time may progress if no invariants are violated; in our case time may not progress if
urgent transitions are enabled. With urgency, the condition for the progress of time is
defined in terms of the steps of the untimed transition system, whereas with invariants
the condition also depends on the local states of objects.

A transition then is either urgent or non-urgent. Urgency can for example be used
to model time-outs: if the transition

l
[x=3]−−−−→ l′

is urgent, oreager, then the locationl must be left when the value of the local clockx
is 3. As another example, take

l
[2≤x≤4]−−−−−−→ l′.

If this transition is non-urgent (also calledlazy), then the transition may be taken at any
time between 2 and 4 on the local clockx. It may happen that time passes past time 4,
in which case the transition is not taken at all (it may be taken later, after the clockx
has been reset).

6.1 Example

As an example we take a simplified part of a case study of the Omega project provided
by the Dutch Aerospace Laboratory (NLR). We concentrate here on the transmission
of signals between a sender and a receiver. The sender may fail to send a signal and the
receiver should detect such failures.

The sender should periodically emit a signal to the receiver with some jitter. Letu
be the cycle time, and letj be the jitter time:

-u�

�-
j
-�
j

Every cycle there is a time interval of lengthv = 2j during which the signal can be
emitted. For a convenient modelling of the sender we shift our perspective on the cycle
time; a cycle starts at the end of the emission period.

15

r
?

/ x:= u0

�
 �	l

�
 �	l′
-

[u−v≤ x≤ u] / receiver!sig

�
[x = u] / reset x�

�� A
AAK

[x = u] / reset x

Figure 4: Sender state machine. All transitions except the signal emission transition
from l to l′ are urgent. Letu0, with u0 ≤ u be the local initial time.r

?

/ reset x

�
 �	l

�
 �	l′
-

[x = 3u + v] / reset x; n:= 0

�
[n = 2] / reset x�

�� A
AAK

sig / reset x

�
�� A
AAK

[x = u + v] / reset x; n:= 0

A
AA �
���

sig / reset x; n:= n+1

Figure 5: Receiver state machine. All transitions are urgent.

-u�

-
v

�

The sender state machine is depicted in Figure 4. Initially the value of the local
clock x is u0, with u0 ≤ u. The signal may be sent to the receiver during the time
interval fromu−v tou on the clockx. This transition is non-urgent, which means that
time may progress while it is enabled. If the signal has not been sent at timeu, time
may not progress further because of the urgent time-out transition (the self-transition
on locationl with guardx = u). At this point there is still the choice between the time-
out and the emission. After the self-transition has been taken, andx has been reset, a
new cycle starts. If the emission does take place, the sender must wait in the location
l′ for the end of the cycle, from which it urgently re-enters the sending locationl.

The receiver state machine is shown in Figure 5. The receiver can accept the sig-
nals; assume for simplicity that it does not perform anything in response to the recep-
tion. We concentrate on the detection of a failure in the transmission. The receiver
decides that there is some error if it has not received a signal from the sender for three
consecutive cycles. We model this with an urgent time-out transition which is taken if
no signal is received for3u+ v time. The receiver stays in the error locationl′ until it
has received a signal in two consecutive cycles; it then decides that it it safe to return
to the operating locationl. A countern is used to count these signals.

16

6.2 Semantics in PVS

In PVS, we define a timed labelled transition system on top of the untimed LTS defined
in Section 4. The global states of this timed model are the global states of the untimed
model, where we we assume that valuations interpret local clocks, extended with the
value of the global clock. This leads to pairs of the form〈s, u〉 wheres is a global state
of the untimed semantics andu is a non-negative real number representing the global
time. As labels of steps, we may use the labels of the untimed semantics or a positive
real number (to label a time step).

Then there are two types of steps: “untimed” steps and time passing steps. An
“untimed” step

〈s, u〉 l−−→ 〈s′, u′〉

exists if and only ifu = u′ ands l−−→ s′ is a step of the untimed LTS. We interpret
clock reset actions as local assignments on clocks. Observe that time does not increase
during such steps.

A time passing step
〈s, u〉 v−−→ 〈s′, u′〉

for somev > 0, exists if and only if the following conditions are satisfied, where
shiftu(s) is the same ass except that all local clock values have been increased byu:

1. s′ = shiftv(s)

2. u′ = u+ v

3. for all v′ < v, there is no urgent state machine transition enabled in the state
shiftv′(s).

As before, given this timed LTS, we define the behavior of a system as a set of its
infinite executionruns. Correctness properties of systems can be expressed in terms of
these runs.

A run is a sequence of steps of the timed transition system (such that for every posi-
tion in the sequence the next state is equal to the current state at the following position)
which starts in the initial state at time zero. The initial state is the state in which there
is a single non-dormant root object; but it can be redefined for a particular application.
For example, in the example of Section 6.1, object creation is not modelled, and we
would define the initial state as the state with two non-dormant objects, a sender and a
receiver, with appropriate values for their attributes, references, and clocks. In particu-
lar, the initial value of clockx for the sender object would beu0, and the initial value
of x for the receiver would be0.

Finally, we further restrict the set of runs to the so-callednon-Zenoruns in which
the progress of time is not limited to a certain bound. We formulate it as follows: a run
is non-Zeno if for every position in the run, and for every delay timeu, it is possible to
proceed to a position where time has increased more thanu.

17

7 Concluding Remarks

We have presented a formal operational semantics of a subset of UML for modelling
real-time reactive systems, with a focus on the communication between reactive objects
whose behavior is described by state machines. Objects may communicate by means of
asynchronous signals or synchronous operations. Threads of control are modelled via
active classes, and real-time is added via local clock variables and an urgency predicate
on transitions.

By representing the semantics in the specification language of the tool PVS, we
detected a number of errors in earlier versions of the semantics. E.g., already the type-
checking capabilities of PVS revealed a number of inconsistencies. Although the main
ideas about the intended semantics were rather clear, it turned out to be far from trivial
to make this precise, and a large number of issues about inheritance, control, primitive
and triggered operations, and signals had to be resolved.

We have tried to identify the design choices that had to be made. An important
factor in the motivation for our decisions is our objective to use the semantics for
theorem proving. This leads to some pragmatic decisions since for theorem proving
it is essential that the semantics is as concise as possible.

Moreover, an important result is that we have been able to isolate timing and control
sharing as orthogonal features to the semantics. This makes it easy to add or remove
these features, depending on the application. Also other features such as deferrable
signals, primitive operations, object creation, constructors, object destruction, etc., are
relatively easy to add or remove. In this way, we can easily construct a minimal se-
mantics for each application.

We have applied our techniques successfully on a first example (the so-calledSieve
example, see, e.g., [2]), with an unbounded number of objects that are dynamically cre-
ated. This example was modelled in UML using the Rhapsody tool [10]. The XMI rep-
resentation of the model was translated to PVS by ouruml2pvs tool. Consequently,
the example was verified by proving its essential liveness and safety properties in PVS
using the strategies of TLPVS [12]. To prove liveness properties, we extended the
semantics with a general notion of weak fairness.

Currently, our verification framework is applied to real-time embedded systems
provided by the industrial partners within the Omega project. Another topic is the
translation of the high-level timing annotations proposed within Omega [6] into our ba-
sic timing framework in PVS. We have to investigate which possibility is most suitable
for interactive theorem proving. Future work includes the definition of an equivalent
denotational, and hence compositional, semantics to enable compositional verification.

Acknowledgement We would like to thank the members of the Omega project for
extensive discussions on the semantics issues presented here.

References

[1] R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer
Science, 126:183–235, 1994.

18

[2] F. S. de Boer. A proof rule for process creation. InProceedings of the third IFIP
WG 2.2 Working Conference (Formal Description of Programming Concepts 3),
1987.

[3] S. Bornot and J. Sifakis. Relating time progress and deadlines in hybrid systems.
In International Workshop, HART’97, Grenoble, LNCS 1201, pages 286–300.
Spinger Verlag, March 1997.

[4] W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A for-
mal semantics of concurrency and communication in real-time UML. InProceed-
ings Symposium on Formal Methods for Objects and Components (FMCO 2002),
pages 71–98. LNCS 2852, Springer-Verlag, 2003.

[5] W. Damm, B. Josko, A. Votintseva, and A. Pnueli. A formal semantics for
a UML kernel language. Available via http://www-omega.imag.fr/ Part I of
IST/33522/WP1.1/D1.1.2, Omega Deliverable, 2003.

[6] S. Graf and I. Ober. A real-time profile for UML and how to adapt it to SDL. In
SDL Forum 2003, July 1-4, Stuttgart, LNCS, 2003.

[7] D. Harel and E. Gery. Executable object modeling with statecharts.IEEE Com-
puter, pages 31–42, 1997.

[8] D. Harel and O. Kupfermann. On the behavioral inheritance of state-based ob-
jects. InProceedings, 34th Int. Conf. on Component and Object Technology.
IEEE Computer Society, 2000.

[9] J. Hooman and M.B. van der Zwaag. Definition of the semantics in PVS.http:
//www.cs.kun.nl/˜mbz/sempvs.html .

[10] Ilogix. Rhapsody development environment.http://www.ilogix.com .

[11] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
11th Conference on Automated Deduction, volume 607 ofLecture Notes in Arti-
ficial Intelligence, pages 748–752. Springer-Verlag, 1992.

[12] A. Pnueli and T.Arons. TLPVS: A PVS-based LTL verification system. InPro-
ceedings of the Intl. Symposium on Verification (Theory and Practice), to appear,
June 2003.

[13] PVS. Information, documentation, download. Available from SRI Computer
Science Laboratory,http://pvs.csl.sri.com/ .

[14] G. Reggio, E. Astesiano, C. Choppy, and H. Husmann. Analysing UML active
classes and associated statecharts - a lightweight formal approach. InProceedings
FASE 2000 - Fundamental Approaches to Software Engineering, LNCS 1783,
pages 127–146, 2000.

[15] B. Selic, G. Gullekson, and P.T. Ward.Real-Time Object-Oriented Modeling.
John Wiley & Sons, 1994.

[16] UPPAAL. http://www.uppaal.com .

19

