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Abstract. Matching is a central activity in the dis-

covery and assembly of reusable software components.

We investigate how ontology technologies can be utilised

to support software component development. We use

description logics, which underlie Semantic Web ontol-

ogy languages such as OWL, to develop an ontology for

matching requested and provided components. A link

between modal logic and description logics will prove in-

valuable for the provision of reasoning support for com-

ponent behaviour.

1 Introduction

Component-based Software Engineering (CBSE) increases

the reliability and maintainability of software through

reuse [1,2]. Providing reusable software components and

plug-and-play style software deployment is the central

objective. Components are software artefacts that can be

individually developed and tested. Constructing loosely

coupled software systems by composing components is

a form of software development that is ideally suited

for development in distributed environments such as the

World-Wide Web. Distributed component-based software

development is based on component selection and match-

ing from repositories and their integration.

Reasoning about component descriptions and com-

ponent matching is a critical activity [3]. Ontologies,

which are knowledge representation frameworks defin-

ing concepts and properties of a domain and providing

the vocabulary and facilities to reason about these, can

support this activity.

The need to create a shared understanding for an

application domain is long recognised. Client, user, and

developer of a software system need to agree on concepts

for the domain and their properties. Domain modelling is

a widely used requirements engineering technique. How-

ever, with the emergence of distributed software develop-

ment and CBSE, also the need to create a shared under-
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standing of software entities and development processes

arises. We will present here a software development on-

tology that provides matching support for CBSE [4,5].

Component matching techniques are crucial in Web-

based component development. As far as matching is

concerned, Web services exhibit component character.

To provide component technology for the Web requires

adaptation to Web standards. Since semantics are partic-

ularly important, ontology languages and theories of the

Semantic Web [6] can be adopted. Formality in the Se-

mantic Web framework facilitates machine understand-

ing and automated reasoning. The Web ontology lan-

guage OWL is equivalent to a very expressive descrip-

tion logic [7]. Description logics provide a range of class

constructors to describe concepts. Decidability and com-

plexity issues – important for the tractability of the tech-

nique – have been studied intensively [7].

Description logic is particularly interesting for the

software engineering context due to a correspondence be-

tween description logics and modal logics [7,8] – modal

logics have been used extensively to address temporal

and behavioural aspects of state-based software systems.

The correspondence between description logics and dy-

namic logic (a modal logic of programs, [9] is based on

a similarity between quantified constructors (express-

ing quantified relations between concepts) and modal

constructors (expressing safety and liveness properties

of programs). We aim to facilitate the specification of

state-based transition systems in description logic. This

enables us to reason about component behaviour. We

present an approach to component matching by encod-

ing transitional reasoning about safety and liveness prop-

erties – essentially from dynamic logic – into a descrip-

tion logic and ontology framework, which is Web standards-

compliant and has the benefit of tractability.

We introduce our component composition framework

in Section 2. We focus on the description of compo-

nents in an ontological framework in Section 3. Reason-

ing about matching is the content of Section 4. We end

with a discussion of related work and some conclusions.

2 Component-based Development

A compositional approach is important for distributed

software development. Description, matching, and as-

sembly are central activities in the distributed context.

Formal, ontology-based support is ideal for this context

due to its sharing and agreement aims.

2.1 The Component Model

A component is a set of operations provided as a reusable,

highly context-independent software artefact. A compo-

nent model defines core properties of a component. Dif-

ferent component models are suggested in the literature

[1,2]. We capture common key elements in our compo-

nent model for a distributed context:

– Explicit export and import interfaces. In particular

explicit and formal import interfaces make compo-
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Fig. 1. Web-based Component Development Lifecycle based on Discovery/Matching and Assembly.

nents more context independent. Only properties of

required components and operations are specified.

– Semantic description of operation behaviour. In ad-

dition to syntactical information, the abstract speci-

fication of functional behaviour of operations is a ne-

cessity for reusable software components. In a design-

by-contract style [11], abstract behaviour can be ex-

pressed through pre- and postconditions.

– Component interaction protocols. An interaction pro-

tocol describes the ordering of operation activations

that a component user has to follow to use the com-

ponent meaningfully and consistently; for instance an

object creation might be required before any inspec-

tion or modification can be carried out.

Syntax, operation semantics, and interaction protocols

form an extended contract notion.

2.2 An Ontology-based Development Framework

Ontologies capture knowledge about a domain in terms

of concepts and roles. Concepts are described in terms

of their relationships to other concepts through roles.

Knowledge is divided into two forms: intensional and ex-

tensional. Intensional knowledge is general and abstract,

captured through concepts and roles. Extensional knowl-

edge refers to application-specific individuals relating to

the concepts and roles. Two aspects of ontologies can

be distinguished. Firstly, the terminological aspect de-

fines a description notation. Secondly, the logical aspect

provides a reasoning framework that can, for instance,

support component matching.

Two types of ontologies are important in the context

of component development and deployment:

– Application domain ontologies describe the domain

of the software application under development.

– Software development ontologies describe the soft-

ware development entities and processes.

A developer selects required components from ontolog-

ical descriptions found in repositories, Fig. 1. Descrip-

tions of required and provided components need to be

matched. In an open, wide-area context, an accepted
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ontology-based description format and matching tech-

niques are prerequisites.

2.3 Case Study

The context of our case study is a document storage ser-

vice for XML-based documents – which could be thought

of as an abstraction of a database for XML-documents.

A sample specification in a pseudocode representa-

tion illustrates our component model, see Fig. 2. It con-

sists of a service requestor/user and a service provider

component. The service user requires (imports) opera-

tions from a suitable server component to create, re-

trieve, and update documents. The server provides (ex-

ports) a range of operations in form of a component. An

empty document can be created using crtDoc. The oper-

ation rtrDoc retrieves a document, but does not change

the state of the server component, whereas the update

operation updDoc updates a stored document without

returning a value. Documents can also be deleted. The

update and updDoc operations are semantically speci-

fied through pre- and postconditions. XML-documents

can be well-formed (correct tag nesting) or valid (well-

formed and conform to an XML Schema definition). We

have specified an import interaction protocol for client

DocStorageUser and for provider DocStorageServer

an export protocol. The import pattern means that create

is expected to be executed first, followed by a repeated

invocation of either retrieve or update.

3 An Ontology for Component Description

A central objective of ontologies is the definition of a

terminological framework. In this section, we define the

syntax and semantics of a component description lan-

guage in an ontological setting.

Our component description and matching ontology

is non-standard, with features that go beyond classical

knowledge representation. We will develop this ontology

now step by step, demonstrating how the ontological fea-

tures support component description.

3.1 Describing Basic Component Properties

Ontologies formalise knowledge about a domain (inten-

sional knowledge) and its instances (extensional knowl-

edge). The starting point in defining an ontology is to

decide what the basic ontology elements – concepts and

roles – represent. Our key idea is that the ontology for-

malises a software system and its specification, see Fig.

3. Concepts represent component system properties. Im-

portantly, component systems are dynamic, i.e. the de-

scriptions of properties are inherently based on an under-

lying notion of state and state change. Roles represent

two different kinds of relations:

– Transitional roles address the state-transition aspect

of software systems. They are interpreted as accessi-

bility relations on states, i.e. they model behaviour

as transitions resulting in state changes.
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Component DocStorageUser

import operations

create(id:ID)

retrieve(id:ID):Doc

update(id:ID,upd:Doc)

preCond valid(upd)

postCond retrieve(id)=upd

export operations

... % not relevant here

import interaction protocol

create;!(retrieve+update)

Component DocStorageServer

import operations

... % not relevant here

export operations

crtDoc(id:ID)

rtrDoc(id:ID):Doc

updDoc(id:ID,upd:Doc)

preCond wellFormed(upd)

postCond rtrDoc(id)=upd∧wellFormed(upd)

delDoc(id:ID)

export interaction protocol

crtDoc;!(rtrDoc+updDoc);delDoc

Fig. 2. Document Storage Service Example with Client (DocStorageUser) and Provider (DocStorageServer) Components.

– Descriptional roles capture knowledge about compo-

nents in form of description domains, i.e. they repre-

sent different properties of a software system. They

cover syntax (signatures) and semantics (pre- and

postconditions) of operations; they also capture state-

dependent and invariant properties (informal descrip-

tions, e.g. the component author).

We develop a description logic to define the component

description and matching ontology. A description logic

consists of three types of entities. Individuals can be

thought of as constants, concepts as unary predicates,

and roles as binary predicates. Concepts are the central

entities. Roles relate concepts with another.

– Concepts are classes of objects with the same prop-

erties. Concepts are interpreted by sets of objects.

– Roles are relations between concepts. Roles allow us

to define a concept in terms of other concepts.

– Individuals are named objects.

Properties are specified as concept descriptions:

– Basic concept descriptions are formed according

to the following rules: A is an atomic concept, and

if C and D are concepts, then so are ¬C (negation),

C�D (conjunction), C�D (disjunction), and C → D

(implication).

– Value restriction and existential quantification, based

on roles, extend the set of basic concept descriptions:

– A value restriction ∀R.C restricts the value of

role R to elements that satisfy concept C.

– An existential quantification ∃R.C requires

the existence of a role value.
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Fig. 3. Software Development Ontology based on Transitional Roles (Operation) and Descriptional Roles (preCond, inSign, etc.).

Quantified roles can be composed, e.g. ∀R1.∀R2.C is a

concept description since ∀R2.C is one.

Example 1. An example of a value restriction is the ex-

pression ∀preCond.wellFormed: preconditions associated

to a given concept (such as an operation) using role

preCond are restricted to well-formed ones. The exis-

tential quantification ∃preCond.wellFormed requires at

least one condition preCond that is well-formed. �

The constructor ∀R.C is interpreted as either an ac-

cessibility relation R to a new state C for transitional

roles such as update, or as a property R satisfying a

constraint C for descriptional roles such as postCond.

Example 2. Given the transitional role update that rep-

resents a component operation and the descriptional role

postCond, the expression

∀update.∀postCond . equal(retrieve(id),doc)

means that by executing operation update a poststate

described by equal(retrieve(id),doc) as the postcon-

dition can be reached1. �

1 We ignore here the necessary parameterisation of update –

which we will address in Section 3.4 and Example 7.

We define our language through Tarski-style model

semantics. We interpret concepts and roles in Kripke

transition systems [9]. The concepts pre, post, and inv

are interpreted as states, denoting prestates, poststates,

and invariant state properties, respectively. Transitional

roles are interpreted as accessibility relations between

pre- and poststates, while descriptional roles are inter-

preted as associations between states and description do-

mains.

A Kripke transition system M = (S,L, T , I) con-

sists of a set of states S, a set of role names L, a tran-

sition relation T ⊆ S × L × S, and an interpretation

I. We write RT ⊆ S × S for a transition relation for

role R. The set S interprets the state domains pre, post,

and inv – see Fig. 3. We extend S by description do-

mains Cond (conditions/formulas), Sign (signatures),

and Literal for non-functional component properties.

For a given Kripke transition system M with inter-

pretation I, we define the model-based semantics of
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concept descriptions as follows2:

(¬A)I = S\AI

(C � D)I = CI ∩ DI

(∀R.C)I = {a ∈ S|∀b.(a, b) ∈ RI → b ∈ CI}

(∃R.C)I = {a ∈ S|∃b.(a, b) ∈ RI ∧ b ∈ CI}

An individual x defined by C(x) is interpreted by xI ∈

S with xI ∈ CI . A notion of undefinedness or divergence

can be defined as bottom ⊥ = ∅. Some predefined roles,

e.g. the identity role id interpreted as {(x, x)|x ∈ S},

shall be assumed.

The descriptional roles are defined as relations be-

tween states and description domains:

preCondI ⊆ preI × CondI

inSignI ⊆ preI × SignI

postCondI ⊆ postI × CondI

outSignI ⊆ postI × SignI

opNameI ⊆ invI × LiteralI

opDescrI ⊆ invI × LiteralI

Note, that, while descriptional roles are predefined, tran-

sitional roles depend on the application.

3.2 Data Types and Concrete Domains

We have introduced a number of predefined description

domains capturing various forms of knowledge about a

component. Formally, these are concepts representing

formulas, signatures, etc. These capture only the syntac-

2 Combinators � and → can be defined based on � and ¬ as

usual.

tical correctness of the description, i.e. whether a string

is actually a formula or signature.

In order to allow data to be modelled, we use concrete

domains and predefined predicates [7] for these domains

to add a notion of data types that can be linked to de-

scription domains such as formulas and signatures.

Example 3. We can introduce a numerical domain with

predicates such as ≤, ≥, or equality. These predicates

can be used in the same way as concepts – which can be

thought of as unary predicates.

A case study example is Doc � ∃length. ≥100 where

the last element is a predicate {n|n ≥ 100} and length

is a descriptional role, i.e. an attribute which maps to a

concrete domain. �

A special form of role constructors helps us in ex-

pressing n-ary predicates:

– The role expression ∃(u1, . . . , un).P is an existential

predicate restriction, if P is an n-ary predicate of

a concrete domain – concepts can only be unary –

and u1, . . . , un are roles.

– Analogously, we define the universal predicate re-

striction ∀(u1, . . . , un).P .

Example 4. ∃(x, y).equal is a binary predicate restric-

tion requiring role instances for the two roles x and y

to be equal; for instance in- and outsignatures could be

compared through ∃(inSign, outSign).equal.

Concrete domains are interpreted by algebraic struc-

tures with a base set; predicates are interpreted as n-ary
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relations on that base set. Concrete domains are impor-

tant here since they allow us to represent application

domain-specific knowledge in a component specification.

These domains will be referred to by type names.

Example 5. The update operation deals with two types

of entities:

– The document domain Doc ≡ ∃ hasStatus . valid �

wellFormed with valid � wellFormed defines doc-

uments, using hasStatus as a document attribute

that associates a status. Two predicates valid and

wellFormed exist, which are in a so-called subsump-

tion, i.e. subclass relation.

– For the identifier domain ID only the binary predi-

cate equal shall be assumed. �

We do not integrate and axiomatise a full first-order

predicate logic here to support the data type domains.

Instead, we assume that required properties are made

available for the description logic through assertions [7].

Ontologies capture general intensional knowledge on a

terminological level and extensional knowledge about

concrete individuals. The assertions are part of the ex-

tensional, application-specific knowledge.

3.3 Functional Behaviour and Interaction Protocols

Expressive role constructs are essential for our context.

Transitional roles RT represent component operations.

They are interpreted as accessibility relations on states

(RT )I ⊆ S × S. Descriptional roles RD are used to de-

scribe properties of operations. These are interpreted as

relations between states and description domains (RD)I ⊆

S ×D for some domain D.

An ontology for component description requires an

extension of basic description logics by composite roles

in order to represent interaction protocols [7]. The fol-

lowing role constructors for transitional roles shall be

introduced to model interaction protocols:

– R ; S is sequential composition with (R ; S)I =

{(a, c) ∈ SI×SI |∃b.(a, b) ∈ RI∧(b, c) ∈ SI}; often we

use ◦ instead of ; to emphasise functional composition

– !R is iteration with !RI =
⋃

i≥1(R
I)i, i.e. the tran-

sitive closure of RI

– R+S is non-deterministic choice with (R+S)I =

RI ∪ SI

Expressions constructed from role names and role

constructors are composite roles. P (R1, . . . , Rn) is an

abstraction referring to a composite role P based on

basic roles R1, . . . , Rn. A role chain R1 ◦ . . . ◦ Rn is a

sequential composition of functional roles3.

Example 6. The value restriction

∀ create;!(retrieve+update) . postState

is based on the composite role

create;!(retrieve+update)

which is a required interaction protocol, see Fig. 2. �

3 Functional roles are transitional roles that are interpreted by

functions.
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3.4 Names and Parameterisation

A notion of parameterisation for component operations

is lacking so far in our ontological description language.

Named individuals might serve as parameter names.

Individuals are introduced in form of assertions, e.g.

Doc(D) says that individual D is a document Doc and

length(D,100) that the length of D is 100. We can also

introduce individuals on the level of concepts and roles:

– The set constructor, written {a1, . . . , an} introduces

the individual names a1, . . . , an.

– The role filler R : a is defined by (R : a)I = {b ∈

S|(b, aI) ∈ RI}, i.e. the set of objects that have a as

a filler for R.

The difference between classical description logic and

our variant is that we need names to occur explicitly in

component descriptions. An intensional description logic

expression ∀create.valid means that valid is a con-

cept, or predicate, that can be applied to some individ-

ual object; it can be thought of as ∀create(x).valid(x)

for an individual x. In the context of parameterisation,

x should rather be an intensional name or variable, e.g.

the document create-operation has a parameter called

id. The role filler construct provides the central idea for

our definition of names.

– We denote a name n of a domain D by a role nN –

i.e. not as an element of a concrete domain – where

nN is defined by (nN )I = {(nI , nI)} with nI ∈ DI .

– An operation R is a parameterised role RI ⊆ D×

S × S for domain D of a name and states S.

– A parameterised role R applied to a name nN , repre-

sented here as an identity relation, i.e. R ◦nN , forms

a transitional role, i.e. R ◦ nN ⊆ S × S.

The name definition nN is derived from the role filler

and the identity role definition: (nN )I(nI) = (id : n)I .

In first-order dynamic logic [9], names are identifiers

interpreted in a non-abstract state. These names have

associated values, i.e. a state is a mapping (binding of

current values). However, since we define names as roles,

an explicit state mapping is not necessary.

Example 7. The parameterised role chain

∀ update ◦(idN , docN ) ; postCond .

equal(retrieve(id),doc)

specifies the component operation update. �

3.5 Contractual Operation and Protocol Specification

The original case study specification in pseudo-code (Fig.

2) needs to be reformulated in terms of the ontology lan-

guage we have developed. Axioms are introduced into

description logics to capture concept and role descrip-

tions and to reason about these [7]:

– subconcept C1 � C2, concept equality C1 ≡ C2,

– subrole R1 � R2, role equality R1 ≡ R2, and

– individual equality {x} ≡ {y}.

The semantics of these axioms is defined based on set

inclusion of interpretations for � and equality for ≡.
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We use axioms to formulate two different kinds of

component contract specifications – operation behaviour

and interaction protocols:

– Functional behaviour and signatures form the

basis of a matching notion for component operations,

which are represented by atomic roles.

Example 8. The update specification based on de-

scription logic illustrates an operation definition in

terms of our ontology, see Fig. 4 illustrates this. �

– Interaction protocols for components can be spec-

ified using composite, parameterised roles. They de-

scribe the interaction patterns that a component can

engage in. There is one import and one export inter-

action protocol for each component.

Example 9. The provided DocStorageServer com-

ponent is based on4

∀create◦id; !(retrieve◦id+update◦(id, doc)).post

as the export interaction protocol. �

Our ontological language allows us to specify both

safety and liveness properties of components using value

restriction and existential quantification, respectively.

Example 10. We can express that eventually (liveness)

after executing create (safety), a document is deleted:

(∀preCond.true) � (∀create.∃delete.∀postCond.true)
4 Note, that we often drop the N -annotation if it is clear from

the context that a name is under consideration.

pre ≡ ∀preCond.valid(doc)

� ∀inSign.(id : ID, doc : Doc)

� ∀update ◦ (id, doc).post

post ≡ ∀postCond.equal(retrieve(id), doc)

� ∀outSign.()

inv ≡ ∀opName.{"update"}

� ∀opDescr.{"updates document"}

� ∀update ◦ (id, doc).inv

Fig. 4. Ontological Specification of Operation update.

which combines safety and liveness properties5. �

Axioms in our description logic allow us to reason

about service behaviour. Questions concerning the con-

sistency and role composition with respect to pre- and

postconditions can be addressed. Selected properties of

quantified descriptions are:

1. ∀R.∀S.C ⇔ ∀R ; S.C

2. ∀R.C � D ⇔ ∀R.C � ∀R.D

3. ∀R � S.C ⇔ ∀R.C � ∀S.C

Example 11. ∀create; update.postCond is equivalent to

∀create.∀update.postCond, which allows us to convert

role expressions into logical representations. �

We can apply a modal reasoning style here, e.g.

∀update ◦ (id,doc).∀postCond.

equal(retrieve(id),doc)

corresponds to a (modal) dynamic logic formula

[update(id,doc)] retrieve(id)=doc .

5 This corresponds to a dynamic logic formula

[create(id)]〈delete(id)〉 true with precondition true com-

bining safety ([. . .]φ) and liveness (〈. . .〉ψ) properties [9].
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4 An Ontology for Component Matching

The two problems that we are concerned with are com-

ponent description and component matching. In addi-

tion to terminological aspects to support component de-

scription, ontologies based on description logics also in-

troduce an inference and reasoning framework. Key con-

structs of description logics to support matching and

composition are equivalence and subsumption. In this

section, we look at component matching based on con-

tracts including operation behaviour and interaction pro-

tocols and how it relates to subsumption reasoning.

4.1 Subsumption – Satisfaction and Matching

Subsumption is a relationship defined by subset inclu-

sions for concepts and roles.

– A subsumption C1 � C2 between two concepts C1

and C2 is defined through set inclusion for the inter-

pretations CI
1 ⊆ CI

2 .

– A subsumption R1 � R2 between two roles R1 and

R2 holds, if RI
1 ⊆ RI

2.

Subsumption is not implication. Structural subsumption

(subclass) is weaker than logical subsumption (implica-

tion), see [7]. Subsumption can be further characterised

by axioms such as the following for concepts C1 and C2:

C1 � C2 � C1 or C2 → C1 implies C2 � C1.

We use subsumption to reason about matching of

two component descriptions based on transitional roles.

A variant of subsumption is our tool to express a notion

of satisfaction to define matching, essentially capturing

refinement and simulation ideas.

The tractability of reasoning is a central issue for

description logics. The richness of our description logic

with complex roles that represent interaction protocols

and operation parameters has some potentially negative

implications for the complexity of reasoning. However,

some aspects help to reduce the complexity. We can, for

instance, restrict roles to functional roles. Another ben-

eficial factor is that for composite roles negation is not

required. We do not investigate these aspects in depth –

most of them have been investigated in detail [7] – only

one issue shall be addressed.

A crucial problem is the decidability of the specifica-

tion if concrete domains are added. Admissible domains

guarantee decidability. A domain D is called admissi-

ble if the set of predicate names is closed under nega-

tion, i.e. for any n-ary predicate P there is a predicate

Q such that QD = (SD)n\PD, there is a name �D for

SD, and the satisfiability problem is decidable; i.e. there

exists an assignment of elements of SD to variables such

that the conjunction ∧k
i=1Pi(x

(i)
1 , . . . , x

(i)
ni ) of predicates

Pi becomes true in D. We can show that our chosen con-

crete domains – documents and identifiers, see Example

5 – are admissible [5].
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4.2 Matching of Component Operation Descriptions

Subsumption is the central reasoning concept of descrip-

tion logics. We now integrate matching of provided and

required operation descriptions with this concept.

An operation is functionally specified through pre-

and postconditions. Matching of operations is defined

in terms of implications on pre- and postconditions and

signature matching based on the widely accepted design-

by-contract approach [11]. The ’consequence’ inference

rule, found in dynamic logic [9], describes the refinement

of operations by weakening preconditions and strength-

ening postconditions. A matching definition for opera-

tions shall be derived from this rule.

A provided operation P refines a requested opera-

tion R, or P matches R, if, firstly,

∀inSign.inR � ∀R.∀outSign.outR
∀inSign.inP � ∀P.∀outSign.outP

〈 inP ≡ inR ∧
outP ≡ outR

(signatures are compatible if the types of corresponding

parameters are the same) and, secondly,

∀preCond.preR � ∀R.∀postCond.postR
∀preCond.preP � ∀P.∀postCond.postP

〈 preR � preP ∧
postP � postR

(a requested operation precondition is weakened and the

postcondition is strengthened)6.

Matching of operation descriptions is a form of refine-

ment. This contravariant inference rule captures match-

ing based on abstract functional behaviour specifications.

Example 12. The provided operation updDoc of the doc-

ument server, see Figs. 2 and 4, matches the update re-

quirements. Signatures are compatible. Operation updDoc

6 The matching rule defined here is sound, see [5].

has a weaker, less restricted precondition (we assume

valid(doc) implies wellFormed(doc)) and a stronger,

more determining postcondition (retrieve(id)=doc ∧

wellFormed(doc) implies retrieve(id)=doc), i.e. the

provided operation satisfies the requirements. �

Matching implies subsumption, but is not the same.

Refinement, i.e. matching of component operations, is a

sufficient criterion for subsumption (see [5] for details):

If operation P refines (matches) R, then P � R.

If the conditions are specific to an application, e.g. a

predicate valid(doc), then an underlying domain-specific

theory provided by an application domain ontology can

be integrated via concrete domains.

This refinement-based definition provides matching

foundations within a description logic framework. To

support a search engine or a directory service, these

foundations would need to be extended. The signature

notion can be expanded to include subsignatures or poly-

morphic signature matching [10]. Pre- and postcondition-

based matching can be realised as part of the design-by-

contract approach [11].

4.3 Matching of Component Interaction Protocols

Together with operation matching based on functional

descriptions, interaction protocol matching is the basis of

component matching. Both client and provider compo-

nents participate in interaction processes based on the

operations described in their import and export inter-
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faces. The client will show a certain import interaction

pattern, i.e. a certain ordering of requests to execute

provider operations. The provider on the other hand

will impose a constraint on the ordering of the execution

of operations that are provided through the interaction

protocol specification.

A notion of consistency of composite roles for inter-

action protocols relates to the underlying functional op-

eration specifications based on pre- and postconditions.

– A concept description ∀P (R1, . . . , Rn).C with transi-

tional role P is reachable if {(a, b) ∈ P I |∃b.b ∈ CI}

is not empty.

– A composite role P (R1, . . . , Rn) is consistent, if the

last state of the P execution is reachable.

A composite role P is consistent if the following suffi-

cient conditions are satisfied:

1. for each sequence R; S in P :

∀postCond.postR � ∀preCond.preS

2. for each iteration !R in P :

∀postCond.postR � ∀preCond.preR

3. for each choice R + S in P :

∀preCond.preR � ∀preCond.preS and

∀postCond.postR � ∀postCond.postS

A component interaction protocol is a consistent

composite role P (R1, . . . , Rn) constructed from transi-

tional roles and connectors ’;’ , ’!’ , and ’+’. Interaction

protocols are interpreted by transition graphs for com-

posite transitional roles, i.e. graphs on states and tran-

sitions that represent all possible protocol executions.

An interaction protocol describes the ordering of ob-

servable activities of a component. Process calculi sug-

gest simulations and bisimulations as constructs to ad-

dress the equivalence of interaction protocols. We use a

notion of simulation between protocols to define interac-

tion protocol matching between requestor and provider.

A provider interaction protocol P (S1, . . . , Sk) simu-

lates a requested interaction protocol R(T1, . . . , Tl), or

protocol P matches R, if there exists a homomorphism

μ from the transition graph of R to the transition graph

of P , i.e. if for each Rg
Ti−→Rh there is a Pk

Sj−→Pl such

that Rg = μ(Pk), Rh = μ(Pl), and Sj refines Ti.

Note, that this simulation subsumes operation match-

ing through the refinement condition at the end. The

provider component needs to be able to simulate the

request, i.e. needs to meet the expected interaction pro-

tocol of the requestor.

Example 13. The provided document server component

requires an interaction pattern7

crtDoc;!(rtrDoc+updDoc);delDoc

and the requestor component expects

create;!(retrieve+update)

as the ordering of output interactions. Assuming that

the pairs of operations crtDoc and create, rtrDoc and

7 We drop parameters in protocol expressions for illustration, if,

as in this case, only the ordering is relevant.
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retrieve, and updDoc and update, respectively, match

based on their individual operation behaviour according

to the matching definition from Section 4.2, the provider

matches (simulates) the required server interaction pro-

tocol. Service delDoc is not requested. �

The simulation definition implies that the associa-

tion between basic roles (operations) Si and Tj in two

interaction protocols is not fixed, i.e. any Si such that

Si refines Tj for a requested operation Tj is suitable.

For a given Tj , in principle several different provider op-

erations Si can provide the actual operation execution

during the execution process.

As for operation matching, interaction protocol match-

ing is not the same as subsumption. Subsumption on

roles is input/output-oriented, whereas simulation needs

to consider internal states of composite role executions.

For each request in a protocol, there needs to be a cor-

responding provided operation. However, matching is

again a sufficient condition for subsumption:

If the interaction protocol P (S1, . . . , Sk)

simulates interaction protocol R(T1, . . . , Tl),

then R � P .

Note, that the provider might support more transitions,

i.e. subsumes the requestor, whereas for operation match-

ing, the requestor subsumes the provider (the provider

needs to be more specific).

Within the service context of the Web, the focus has

recently shifted towards service coordination, i.e. compo-

sition and process assembly. Consequently, we have ex-

tended design-by-contract based matching from Section

4.2 to include interaction protocol matching, providing

foundations for a more expressive directory retrieval and

composition support. Most directory services are cur-

rently based on syntactical matching, with the exception

of some service ontologies [4,13].

5 Related Work

While various component matching techniques exist –

e.g. [10] for matching of polymorphic signatures, [3] for

semantics-enhanced matching, and [11] for the design-

by-contract method – our aim has been to lay the foun-

dations for these aspects in an ontological framework.

Some effort has already been made to exploit on-

tology technology for the software domain [4,13]. These

approaches have so far focused on individual Web ser-

vices. Service ontologies add non-functional properties

into description and matching – an approach that has

also been looked at for CBSE, see [14]. OWL-S [4] (previ-

ously called DAML-S) is an OWL ontology for describing

properties of Web services. OWL-S represents services as

concepts. We, in contrast, represent component opera-

tions as roles and not as concepts, giving a more process-

oriented focus. Component behaviour and processes have

been recognised as central aspects. In [12], a framework

similar to ours, based on a process calculus interpreted

in transition systems, is introduced. While our focus is
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on proces-oriented matching, theirs is a complementary

approach on deadlock and other analyses.

OWL-S [4] relies on OWL subsumption reasoning

to match requested and provided Web services. OWL-

S provides to some extent for Web services what we aim

at for components. However, the form of reasoning and

ontology support that we provide here is not possible

in OWL-S, since services are modelled as concepts and

not rules. Only considering services as roles would make

modal reasoning about component behaviour possible.

Schild [8] points out that some description logics are

notational variants of multi-modal logics. This corre-

spondence allows us to integrate modal axioms and in-

ference rules about programs or processes [9] into de-

scription logics. We have expanded Schild’s results by

representing names in the notation and by defining a

modal logic-influenced matching inference framework in

a knowledge representation setting. A few knowledge

representation issues, however, can be addressed in the

future in order to enhance the description logic devel-

oped here [7]. Assertions about data types can also be

represented as intentional knowledge. Epistemic opera-

tors have been introduced for this purpose.

6 Conclusions

Component development lends itself to development by

distributed teams in a distributed environment. Reusable

components from repositories can be bound into new

software developments. The Web is an ideal infrastruc-

ture to support this form of development. We have ex-

plored Semantic Web technologies, in particular descrip-

tion logics that underlie Web ontology languages, for the

context of component development. Ontologies can sup-

port application domain modelling, but we emphasise

here the importance of formalising central development

activities such as component matching in form of ontolo-

gies. In the Web context, service and component tech-

nologies are moving towards each other. Web services

exhibit component character in the assembly of service-

oriented architectures from reusable service components.

Our overall objective has been to provide reasoning

support for semantically described components. We have

presented a description logic focussing on semantical in-

formation of components. The behaviour of components

is essentially characterised by the component’s interac-

tion processes with its environment and by the proper-

ties of the individual operations requested or provided

in these interactions. The reasoning capabilities that we

have obtained and represented in form of a matching on-

tology go beyond current ontologies for service or compo-

nent matching. Even though description logics have been

developed to address knowledge representation problems

in general, a connection to modal logics has allowed us

to obtain a rich framework for representing and rea-

soning about components. Description logic is central

for various reasons. Firstly, it is a framework focusing

strongly on the tractability of reasoning; secondly, it is
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suitable for the integration of component technology into

the Web environment and its standards; and, thirdly, it

allows other knowledge engineering techniques, such as

domain modelling, to be integrated.
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