
Formalizing Interoperability

for Test Case Generation Purpose

Alexandra Desmoulin and César Viho

IRISA/Université de Rennes 1
Campus de Beaulieu
35042 Rennes Cedex

France
{adesmoul,viho}@irisa.fr

Abstract. This study deals with interoperability formal definitions and
test derivation avoiding the state-space explosion problem. First, the no-
tion of interoperability criteria is introduced. An interoperability criterion
formally describes the conditions that two implementations must verify
in order to be considered interoperable. The second point studied in this
paper is interoperability test derivation. Based on the equivalence of two
interoperability criteria, we proposed a method to derive automatically
interoperability test cases.

1 Introduction

Different types of tests exist to ensure that implementations will work correctly
in a real operational environment. Among these tests, conformance testing is
used to verify if an implementation behaves as described in its specification,
generally a standard. Another type of test is the interoperability test. Goals of
interoperability are multiple. First, one has to test if the considered implemen-
tations communicate correctly. Secondly, they must behave during their inter-
action as described in their respective specifications. Third, they must provide
the expected services.

Conformance testing is precisely characterized. Testing architectures and con-
formance relations [5, 7] were defined leading to automatic test generation [4, 8]
and execution. This is not the case for interoperability testing. However, some
attempts to give definitions of interoperability or methods to derive interop-
erability tests exists in [1, 2, 3]. In this paper, we give formal definitions of
interoperability with interoperability criteria (iop criteria for short in the fol-
lowing) that give conditions to be verified by implementations to be considered
interoperable. These iop criteria manage quiescence. Indeed, implementations
are allowed to be quiescent if it is foreseen in their specification. Based on these
criteria, we describe a method to generate automatically interoperability test
cases which avoids the well-known state-space explosion problem.

This paper is structured as follows. First, Section 2 describes possible inter-
operability testing architectures. Section 3 presents the formal definitions used

in this paper. The interoperability criteria are defined in Section 4. In Section 5,
the proposed method and associated algorithms for interoperability test case
generation are described. Results obtained are illustrated with an example in
Section 6. Conclusion and future work are in Section 7.

2 Testing architecture

This study considers a one-to-one interoperability context. The interoperability
system under test (SUT) is composed of two implementations (see figure 1).
These two IUT (Implementation Under Test) are supposed to behave as de-
scribed in their respective specification. They communicate with each other while
providing the expected service.

IUT1 IUT2

LI1 LI2

LT1 LT2

LP1 LP2

UP1

UT1 UT2

UP2

T1 T2

UI1 UI2

SUT (System Under Test)

TS (Test System)

Fig. 1. Test architecture for an asynchronous interaction

In this context, two kind of interfaces can be differentiated. First, the inter-
faces LIi (lower interfaces) are used for the interaction between the two IUT
(see figure 1). These interfaces are only observable but not controllable. Indeed,
a test system connected to such interfaces can only observe the events, but it
cannot send a stimulus to these interfaces. The lower tester LTi is in charge of
the observation of LIi via the lower PO (Point of Observation) LPi.
The other interfaces are the interfaces UIi (upper interfaces). These interfaces
are not used for the interaction of the IUT but they are the interfaces through
which the IUT communicate with its environment. These interfaces are observ-
able and also controllable. The upper tester UTi is in charge of the control and
observation of UIi via the upper PCO (Point of Control and Observation) UPi.
Thus, the tester Ti, composed by UTi and LTi, is the part of the Test System
(TS) in charge of the control and observation of IUTi.

2

Depending on the access of the different interfaces, different interoperability
testing architectures can be distinguished as described in [2, 10]. The architec-
ture is called lower (resp. upper) if only the lower interfaces (resp. the upper
interfaces) are accessible, and total if both kind of interfaces are accessible. The
interoperability testing architecture is called unilateral if only the interfaces
of one of the two IUT are accessible. It is called bilateral if the interfaces of
the two IUT are accessible but separately. The global architecture corresponds
to the more usually considered case where all the interfaces of the two IUT are
accessible with a global view.
Synchronous or asynchronous communication The interaction between
the two IUT is asynchronous (cf. section 3.3). Notice also that the interaction
between UPi and the IUT can be either synchronous or asynchronous. It depends
on the testing environment. We will consider that this latter is synchronous.

3 Formal background

In this study, we will use the well-known IOLTS (Input-Output Labeled Transi-
tion System) to model specifications. As usual in the black-box testing context,
we also need to model implementations, even though their behaviours are nor-
mally unknown. They will also be represented by an IOLTS.

3.1 IOLTS model

Definition 1. An IOLTS is a tuple M = (QM ,ΣM ,∆M , qM
0) where

– QM is the set of states of the system and qM
0 ∈ QM is the initial state.

– ΣM denotes the set of observable (input and/or output) events on the in-
teraction points (with the environment) of the system. ΣM ⊆ P M × {?, !}
× AM where P M is the finite set of interaction points (ports) through which
the system communicates with lower or upper layer, or other systems, “?”
and “!” respectively denote an input and an output of message, AM is the
alphabet of input-output messages exchanged by the system through its ports.

– ∆M ⊆ QM × (ΣM ∪ {τ}) × QM is the transition relation, where τ �∈ AM

denotes an internal event. We note q
α→M q′ for (q, α, q′) ∈ ∆M and q

α

�−→
if there is no state q′ such that (q, α, q′) ∈ ∆M .

ΣM can be decomposed as follow: ΣM = ΣM
U ∪ΣM

L (with ΣM
U ∩ΣM

L = ∅),
where ΣM

U (resp. ΣM
L) is the set of messages exchanged on the upper (resp.

lower) interface. ΣM can also be decomposed in order to distinguish input from
output messages. ΣM = ΣM

I ∪ΣM
O , where ΣM

I (resp. ΣM
O) is the finite set of input

(resp. output) messages.
In the following, IOLT S will denote the set of IOLTS. Let us consider M

∈ IOLT S, and let α ∈ ΣM with α = p.{?, !}.m, µi ∈ ΣM ∪ τ , σ ∈ (ΣM)∗,
q, q′, qi ∈ QM, we have1:
– q

µ1...µn−→ M q′ =∆ ∃ q0 = q, q1..., qn = q′, ∀i ∈ [1, n], qi−1
µi→M qi.

1 =∆ stands for “by definition”

3

– q
ε⇒M q′ =∆ q = q′ or q

τ...τ−→M q′.
– q

α⇒M q′ =∆ ∃ q1, q2, q
ε⇒M q1

α→M q2
ε⇒M q′.

– q
σ⇒M q′ =∆ q

µ1···µn=⇒ M q′ =∆ ∃ q0 = q, q1 . . . , qn = q′, ∀i ∈ [1, n], qi−1
µi⇒M

qi, σ = µ1 · · ·µn.
– Γ (q) =∆ {α ∈ ΣM | ∃ q′ and q

α−→M q′}, and out(q) =∆ {α ∈ ΣM
O | ∃ q′ and

q
α−→M q′} is the set of outputs from q.

– q after σ =∆ {q′ ∈ QM | q
σ⇒M q′} is the set of states which can be reached

from q by the sequence of actions σ. By extension, all the states reached
from the initial state of the IOLTS M is (qM

0 after σ) and will be noted by
(M after σ). In the same manner, Out(M, σ) =∆ out(M after σ).

– Traces(q) =∆ {σ ∈ (ΣM)∗ | q after σ �= ∅} is the set of possible observable
traces from q. And, Traces(M) =∆ Traces(qM

0).
– µ̄= p!a if µ = p?a and µ̄ = p?a if µ = p!a. For internal events, τ̄ = τ .

3.2 Quiescence, suspensive IOLTS and conformance relation ioco

Three main situations lead to quiescence of a system : deadlocks, outputlocks
and livelocks. A deadlock corresponds to a state after which no event is pos-
sible : q ∈ deadlock(M) =∆ Γ (q) = ∅. An outputlock corresponds to a state
after which only transitions labeled with input exist and none of these inputs
is observed : q ∈ outputlock(M) =∆ Γ (q) ⊆ ΣM

I . A livelock corresponds to a
loop of internal events : q ∈ livelock(M) =∆ ∃τ1, · · · , τn, q

τ1,··· ,τn→ q. Thus,
q ∈ quiescent(M) =∆ q ∈ deadlock(M)∨ q ∈ outputlock(M)∨ q ∈ livelock(M).
A quiescence state q ∈ quiescent(M) is modeled by q

δ→M q where δ is treated as
an observable output event. The obtained IOLTS is called suspensive IOLTS [7],
is noted ∆(M), and we have STraces(S) = Traces(∆(S)). Figure 2 gives an
example of two specifications using the IOLTS model. Quiescence is modeled in
the states 0 and 2 of S1, and in the state 0 of S2.

0

3 4

1

2

0

1
U!B l!a

U?A

l?cl?b

l!b l?a l!c

U!C

δ

δ

δS 1 S 2

Fig. 2. Specifications S1 and S2

Interoperability criteria defined in Section 4.2 are based on the ioco con-
formance relation [7]. This relation says that an implementation I is ioco-
conformant with respect to its specification S if I can never produce an output
which could not be produced by S after the same suspension trace. Moreover, I

4

may be quiescent only if S can do so. Formally :
I ioco S =∆ ∀σ ∈ STraces(S), Out(∆(I), σ) ⊆ Out(∆(S), σ).

I2

0

1

l?al!b

I3 I4

l!c l?a

0

1

0

1

2

3

I1

U?A

l!a

l?b

U!B

2

0

1

3 4

U?A

l!a

l?b l?c

U!CU!C

Fig. 3. Implementation I1 and I2 of S1, and I3 and I4 of S2

Let us consider the implementation I1 and I2 of S1 of figure 3 : ¬I2 ioco S1

(because of the output U !B after the reception of l?b) and ¬I1 ioco S1 (because
if the tester sends the message c on the lower interface of I1, the implementa-
tion remains quiet, but no quiescence is foreseen in the state 4 of S1). For the
implementations I3 and I4 of S2 of figure 3, we have I3 ioco S2 and I4 ioco S2.

3.3 Interaction

Interoperability testing generally deals with interactions of two or more imple-
mentations. To provide a formal definition of interoperability in a one-to-one
context, we need to model the interaction of two IOLTS.

Definition 2 (Synchronous interaction ‖). The synchronous interaction of
two IOLTS M1 and M2 is noted M1‖M2 = (QM1‖M2 , ΣM1‖M2 , ∆M1‖M2 , (qM1

0 ,qM2
0))

with QM1‖M2 ⊆ QM1 × QM2 , ΣM1‖M2 ⊆ ΣM1∪ ΣM2 . The transition relation
∆M1‖M2 is obtained as follows. ∀(q1, q2) ∈ QM1 × QM2 ,

(q1, a, q′1) ∈ ∆M1 , a ∈ ΣM1
U ∪ {τ}

((q1, q2), a, (q′1, q2)) ∈ ∆M1‖M2
,
(q2, a, q′2) ∈ ∆M2 , a ∈ ΣM2

U ∪ {τ}
((q1, q2), a, (q1, q′2)) ∈ ∆M1‖M2

(1)

(q1, a, q′1) ∈ ∆M1 , (q2, ā, q′2) ∈ ∆M2 , a ∈ ΣM1
L , ā ∈ ΣM2

L

((q1, q2), a, (q′1, q
′
2)) ∈ ∆M1‖M2

(2)

There are different ways to obtain the model of the interaction of two IOLTS
with quiescence management. The method chosen here is calculating first the
suspensive IOLTS ∆(M1) and ∆(M2), as explained in section 3.2. This step is
then followed by constructing the interaction of ∆(M1) and ∆(M2), using rules
(1) and (2) of the definition 2. The main difficulty here is to preserve information
that indicates the IUT in which quiescence is observed and to make appear-
ing new quiescence introduced by the interaction. A quiescent state is noted :

(q1, q2)
δ(1)→ M (q′1, q

′
2) if (q1

δ→M q′1) ∈ ∆(M1), (q1, q2)
δ(2)→ M (q′1, q

′
2) if (q2

δ→M q′2) ∈

5

∆(M2), and (q1, q2)
δ→M (q′1, q

′
2) if ((q1, q2)

δ(1)→ M (q′1, q
′
2))∧((q1, q2)

δ(2)→ M (q′1, q
′
2)).

It is obtained by propagating δ of ∆(M1) and ∆(M2).

As, in the considered interoperability testing architecture, the interaction
between the two implementations is asynchronous, we also need to model this
asynchronous interaction. As in [9], we can model the asynchronous environment
with FIFO queues. In [6], the asynchronous transformation A is defined. This
transformation applied to a specification S gives as result the IOLTS A(S) rep-
resenting the behaviour of S in an asynchronous environment. As consequence,
the asynchronous interaction of M1 and M2 corresponds to the synchronous
interaction of A(M1) and A(M2), noted M1‖AM2.

3.4 Projection

In interoperability testing, we usually need to observe some specific events of an
IUT. The IUT, reduced to the expected messages, can be obtained by a pro-
jection of the IOLTS representing the whole behaviour of the implementation
on a set (called X in the following). This latter is used to select the expected
events. Quiescence δ has to be seen in the projection as an observable event.
For an IOLTS built from an interaction M1‖AM2, quiescence δ(1) is an observ-
able event of M1 and δ(2) of M2. The projection of an IOLTS M on the set
of events X is noted by M/X and is obtained by hiding events (replacing by
internal events) that do not belong to X, followed by determinization.

3.5 Modeling an implementation for interoperability testing : the
iop-input completion

As described in figure 1, the two IUT interact asynchronously and testers are
connected to their interfaces. When an IUT sends a message m that cannot
be treated by the other IUT, the problem is how to consider this message in
the point of view of the receiver. Indeed, this message m is put in the input
FIFO queue of the receiver that cannot effectively treat it. Thus, this receiving
implementation may be quiescent. It can neither treat the message m in its input
FIFO queue (l?m), nor it can do any other action because its input FIFO queue
is not empty and no output is possible. To model this behaviour, we choose to
complete any implementation with inputs corresponding to the output alphabet
of the other IUT specification. These new transitions lead the IOLTS into an
error state. It is a deadlock state. On the upper interfaces, the IUT interacts
directly with the tester (like in a conformance testing context). Thus, for events
on the upper interfaces, the input-completion of the IUT corresponds to the
input completion made for conformance testing (see [6]).

Definition 3 (The iop-input completion).
Let us consider an IUT I1 = (Q, Σ, ∆, q0) based on the specification S1 =

(QS1 , ΣS1 , ∆S1 , q
S1
0) interacting with an IUT based on the specification S2 =

(QS2 , ΣS2 , ∆S2 , q
S2
0). The iop-input completion of I1 is C(I1) = (QC , ΣC , ∆C , q0).

6

QC = Q ∪ {qE , qC}, qE represents the error trap state and qC is the other input-
completion state. ΣC = Σ ∪ {ā|a ∈ ΣS2

O ∩ΣS2
L }. ∆C = ∆ ∪ {(q, a, qE)|q ∈ Q, ā ∈

ΣS2
O ∩ΣS2

L , q
a

�−→}∪{(q, a, qC)|q ∈ Q, a ∈ ΣS1
I ∩ΣS1

U , q
a

�−→}∪{(qC , x, qC)|x ∈ Σ}.

Remark : The iop-input completion adds only transitions labeled with in-
puts to the original IOLTS representing the implementation. Thus, quiescence
modeled in C(I1) or in I1 is the same. To model the deadlock in the error state qE ,
quiescence must be modeled in the iop-input completed implementation C(I1).
Thus, ∆(C(I1)) is the model of the behaviour of I1 in an asynchronous environ-
ment. In the following, the implementations are considered iop-input completed.
Quiescence is also modeled on the considered implementations.

4 Interoperability (iop) criteria

In this section, we define two iop criteria. These criteria formally describe con-
ditions that have to be verified by two implementations to be considered inter-
operable. We prove their equivalence in terms of non-interoperability detection.
These definitions only apply for compatible specifications. Indeed, two imple-
mentations cannot be interoperable if their specifications are not compatible.

4.1 Compatibility of the considered specifications

Two specifications are compatible if after any trace of the interaction, for each
possible output on the interfaces used for the interaction, the corresponding input
is foreseen in the other specification. In a formal way : ∀σ ∈ Traces(S1‖AS2),
σ/ΣS1 = σ1, σ/ΣS2 = σ2 ⇒ {OutΣL(S1, σ1) ⊆ InΣL(S2, σ2) and OutΣL(S2, σ2)
⊆ InΣL(S1, σ1)}. In the following, specifications are supposed to be compatible.

4.2 Definition of the iop criteria

In this section, we consider the global interoperability testing architecture (see
Section 2). It is the most commonly used in practice for one-to-one interoper-
ability testing. We define two iop criteria considering the events executed on the
different interfaces of the implementations in two different ways.
The first iop criterion is the global iop criterion iopG. It says that two imple-
mentations are considered interoperable if, after a suspensive trace of the asyn-
chronous interaction of the specifications, all outputs and quiescence observed
during the (asynchronous) interaction of the implementations are foreseen in the
specifications.

Definition 4 (The global iop criterion iopG). Let I1, I2 ∈ IOLT S two IUT
implementing respectively S1, S2 ∈ IOLT S.

I1 iopG I2 =∆ ∀σ ∈ Traces(S1‖AS2), Out(I1 ‖AI2, σ) ⊆ Out(S1‖AS2, σ)

The other iop criterion defined in this section is the bilateral iop criterion
iopB. It says that after a suspensive trace of S1 observed during the (asyn-
chronous) interaction of the implementations, all outputs and quiescence ob-
served in I1 are foreseen in S1, and the same in the point of view of I2 imple-
menting the specification S2.

7

Definition 5 (The bilateral iop criterion iopB). Let I1, I2 ∈ IOLT S two
IUT implementing respectively S1, S2 ∈ IOLT S. I1 iopB I2 =∆

∀σ1 ∈ Traces(∆(S1)), ∀σ ∈ Traces(S1‖AS2), σ/ΣS1 = σ1 ⇒
Out((I1‖AI2)/ΣS1 ,σ1) ⊆ Out(∆(S1),σ1)

and ∀σ2 ∈ Traces(∆(S2)), ∀σ′ ∈ Traces(S2‖AS1), σ/ΣS2 = σ2 ⇒
Out((I2‖AI1)/ΣS2,σ2) ⊆ Out(∆(S2), σ2).

As an example, with the implementations I1, I2, I3 and I4 of figure 3 (im-
plementing S1 and S2 of figure 2), we have the results :
• I1 iopB I3 and I1 iopG I3 although ¬(I1 ioco S1).
• ¬ (I2 iopB I3) and ¬ (I2 iopG I3), but I2 iopB I4 and I2 iopG I4. Indeed, the
output U !C is not allowed in S1 after l?b, but only I3 can send b, not I4.
• ¬ (I1 iopB I4) and ¬ (I1 iopG I4). Such a non-interoperability case would not
have been detected without quiescence management. Indeed, the non-interoperability
is due to the sending of message l2!c by I4 which is not expected by I1. Thus, this
message is put in the input queue of I1 but not treated. The whole SUT is in a
deadlock situation. This deadlock is not foreseen in the specification interaction.
Thus the iop criteria are not verified due to non allowed quiescence.

4.3 Equivalence of the two interoperability criteria

The most important result here is the following theorem 1. It says that the global
iop criterion iopG is equivalent to the the so-called bilateral iop criterion iopB,
in terms of non-interoperability detection. Its proof needs the lemmas defined in
the following.

Theorem 1. I1 iopG I2 ⇔ I1 iopB I2

Lemma 1. Let us consider M1, M2 ∈ IOLT S, and let σ ∈ Traces(M1‖AM2),
Out(M1‖AM2, σ) = Out(∆(M1), σ/ΣM1) ∪ Out(∆(M2), σ/ΣM2).

Proof. 1. Let (q1, q2) ∈ [(M1‖AM2)afterσ] and a ∈ Out(M1‖AM2, σ). Accord-
ing to the interaction definition :
Either a ∈ ΣM1 ∪{δ, δ(1)}, or a ∈ ΣM2 ∪{δ, δ(2)} ie. either a ∈ Out(∆(M1),
σ/ΣM1), or a ∈ Out(∆(M2), σ/ΣM2).
⇒ Out(M1‖AM2, σ) ⊆ Out(∆(M1), σ/ΣM1) ∪ Out(∆(M2), σ/ΣM2).

2. In the other sense, it is easy to see that : Out(M1‖AM2, σ) ⊆ Out(∆(M1), σ/ΣM1)
∪ Out(∆(M2), σ/ΣM2).

Lemma 2. Let M1, M2 ∈ IOLT S.
((M1‖AM2)/ΣM1)‖A((M2‖AM1)/ΣM2) = M1‖AM2

Proof. 1. Let σ1 ∈ Traces((M1‖AM2)/ΣM1), σ2 ∈ Traces((M2‖AM1)/ΣM2),
and σ = σ1‖Aσ2 ∈ Traces(((M1‖AM2)/ΣM1)‖A((M2‖AM1)/ΣM2)).
We have : σ1 ∈ Traces(∆(M1)) and σ2 ∈ Traces(∆(M2)).
Thus, σ = σ1‖Aσ2 ∈ Traces(M1‖AM2).

8

2. Let σ ∈ Traces(M1‖AM2) such that σ = σ1‖Aσ2 with σ1 ∈ Traces(∆(M1))
and σ2 ∈ Traces(∆(M2)). We have σ1 = σ/ΣM1 and σ2 = σ/ΣM2 .
Thus σ1 ∈ Traces((M1‖AM2/ΣM1)), σ2 ∈ Traces((M2‖AM1/ΣM2))
and σ = σ1‖Aσ2 ∈ Traces(((M1‖AM2)/ΣM1)‖A((M2‖AM1)/ΣM2)).

Lemma 3. Let M1, M2 ∈ IOLT S, σ1 ∈ Traces(∆(M1)), σ ∈ Traces(M1‖AM2)
and σ1 = σ/ΣM1 . Out((M1‖AM2)/ΣM1 , σ1) ⊆ Out(∆(M1), σ1).

Proof. (M1‖AM2)/ΣM1 is an IOLTS composed of events from Σ(M1‖AM2)/ΣM1 ∪
{δ} ⊆ ΣM1 ∪ {δ}

Proof. of theorem 1. 1) Let us prove first that I1 iopB I2 ⇒ I1 iopG I2.
Let σ ∈ Traces(S1‖AS2), σ1 ∈ Traces(∆(S1)) such that σ1 = σ/ΣS1 , σ2 ∈
Traces(∆(S2)) such that σ2 = σ/ΣS2 . Thus, Out((I1‖AI2)/ΣS1 , σ/ΣS1) ⊆
Out(∆(S1), σ/ΣS1) and Out((I2‖AI1)/ΣS2, σ/ΣS2) ⊆ Out(∆(S2), σ/ΣS2).
Using the lemma 1, Out[((I1‖AI2)/ΣS1‖A(I2‖AI1)/ΣS2), σ] ⊆ Out(S1‖AS2, σ).
With the lemma 2, Out(I1‖AI2, σ) ⊆ Out(S1‖AS2, σ). That means I1 iopG I2.
2) Let us prove now that I1 iopG I2 ⇒ I1 iopB I2.
Let I1, I2, S1, S2 ∈ IOLT S such that I1 iopG I2. Let σ1 ∈ Traces(∆(S1)) such
that σ1 = σ/ΣS1 with σ ∈ Traces(S1‖AS2). Using the definition of I1 iopG I2,
we have : Out(I1‖AI2, σ) ⊆ Out(S1‖AS2, σ). Projecting this inclusion on ΣS1

gives Out((I1‖AI2)/ΣS1, σ1) ⊆ Out((S1‖AS2)/ΣS1, σ1)
Using the lemma 3, Out((I1‖AI2)/ΣS1 , σ1) ⊆ Out(∆(S1), σ1). And using the
fact that iopG is symmetrical, we have also I1 iopG I2 ⇒ Out((I2‖AI1)/ΣS2 , σ2) ⊆
Out(∆(S2), σ2). That means I1 iopG I2 ⇒ I1 iopB I2.

Based on the theorem 1, one may wonder how it can help interoperability
test generation. This is the purpose of the study developed in the next section.

5 Interoperability test generation

In this section, we investigate the way to generate interoperability test using the
equivalence between the bilateral and global criteria (cf. theorem 1).

5.1 General principles for interoperability test generation

The goal is to generate interoperability test cases (TC) that can be executable
on the SUT. We consider a System Under Test (SUT) composed of two IUT
interacting asynchronously (cf. figure 1 in Section2). These IUT are represented
by a suspensive iop-input completed IOLTS. In practice, the inputs of a general
interoperability test generation algorithm are the two specifications on which
the implementations are based, and a test purpose (TP). A TP is a particular
property (or a behaviour in the interaction between the implementations) to be
tested. In general, test purposes are incomplete sequences of actions. Let S be the
set of specifications, P the set of test purposes and T C the set of interoperability
test cases. The goal of a one-to-one interoperability test generation algorithm g
is : S × S × P → T C. Figure 4 (a) shows an example.

9

During conformance tests, a tester can send a stimulus to the implementation
or receive an input. In the interoperability testing case, three kind of events
are possible : sending of stimuli to the upper interfaces of the implementations,
reception of inputs from these interfaces, but also observation of events (input
and output) on the lower interfaces.

Interoperability test cases modeling A test case TC is represented by an
extended version of IOLTS called T-IOLTS for Testing IOLTS. A T-IOLTS TC
can be defined by TC = (QTC , ΣTC , ∆TC , qTC

0). {PASS, FAIL, INC} ⊆ QTC

are trap states representing interoperability verdicts. qTC
0 is the initial state.

ΣTC ⊆ {µ|µ̄ ∈ ΣS1
U ∪ ΣS2

U } ∪ {?(µ)|µ ∈ ΣS1
L ∪ ΣS2

L }. ?(µ) denotes the observa-
tion of the message µ on a lower interface. ∆TC is the transition function.
In the following, any TC is supposed to be deterministic, and controllable (if a
tester can do an output in a state, no other action is possible for the test case in
this state). A TC must also be input and observation complete in the input and
observation states : if an input or an observation is possible in a state, all other
inputs and observations are possible in this state (generally denoted in test cases
with ?otherwise label leading to FAIL). Moreover at least one of the verdict
states (PASS, FAIL, or INC) is accessible from every state.

The execution of the test case TC of the SUT (composed of the two con-
sidered IUT) gives a verdict : verdict(TC, SUT) ∈ {PASS, FAIL, INC}. The
meanings of the possible interoperability verdicts are PASS : no error was de-
tected during the tests, FAIL : the interoperability criterion is not verified and
INC (for Inconclusive) : the behaviour of the SUT seems valid but it is not the
purpose of the test case.

Test generation based on the global iop criteria The construction of Test
Cases based on the Global iop Criteria iopG begins with the construction of
the asynchronous interaction S1 ‖A S2. Then S1 ‖A S2 is composed with the
test purpose TP . During this operation, two main results are calculated. First
TP is validated. If the events composing TP are not found in the specifications
(or not in the order described in TP), TP is not a valid Test Purpose. The
composition is also used to keep (in the interaction of the two specifications)
only the events concerned by the Test Purpose. It calculates the different ways
to observe/execute TP on the SUT.
Problem : the construction of S1‖AS2 can cause state-space explosion. Building
S1‖AS2 is exponential in the number of states of S1 and S2 and the FIFO queues
size. Interoperability test derivation with this method may be impossible even
for small specifications combined with “on-the-fly” techniques [4].

5.2 Using the equivalence between bilateral and global criteria

The theorem 1 of Section 4.3 proves that global and bilateral iop criteria are
equivalent. We propose here a method to generate interoperability test cases
that takes benefit from this result. This method uses conformance test tools.
Based on the bilateral iop criterion, the idea is to use a conformance test tool F
such that F : (S1, TPS1) → TC1 and F : (S2, TPS2) → TC2. TPS1 and TPS2

10

(S , S)1 2

Test execution

SUT(I || I)A 21

(S , S)1 2

TPS1
S 1

Conformance test
generation algorithm

Conformance test
generation algorithm

TPS 2
S 2

TC1 TC2

Test execution Test execution

verdict V 1 verdict V 2

1verdict V’=V ^V 2

SUT(I || I)A 21

Algorithm D

(b)
Approach based on a bilateral interoperability criteria

(a)
Approach based on a global interoperability criteria

TP

Iop Test Generation algorithm

TC

verdict V

TP

Fig. 4. Interoperability Test Cases Generation

are kind of “unilateral” test purposes derived from the test purpose TP . TPSi

is obtained from TP and contains only events of Si.
In this context, the meaning of the theorem 1 is : verdict(TC, I1‖AI2) =
verdict(TC1, I1‖AI2) ∧ verdict(TC2, I1‖AI2). The iopG verdict verdict(TC,
I1‖AI2) is an interoperability verdict with a global architecture. The two other
verdicts are kinds of conformance verdicts. verdict(TC1, I1‖AI2) (resp. verdict(TC2,
I1‖AI2)) is the verdict obtained by executing TC1 (resp. TC2) unilaterally on
interfaces of I1 (resp. I2) during its interaction with I2 (resp. I1). The rules for
the combination of these two verdicts to obtain the final iopB verdict are given
by : PASS ∧PASS = PASS, PASS ∧ INC = INC, PASS ∧FAIL = FAIL,
INC ∧ FAIL = FAIL, INC ∧ INC = INC and FAIL ∧ FAIL = FAIL.

Test generation based on the bilateral criterion iopB As described in
figure 4 (b), the generation of TC1 and TC2 based on the bilateral criterion can
be decomposed in two principal steps. First, step 1 (algorithm D) correspond
to the derivation of TPS1 and TPS2 from TP . Then, step 2 is the calculation of
TC1 and TC2. This step corresponds to the function F applied on (TPS1 , S1)
and (TPS2 , S2) and uses a conformance test tool.
For the execution of the test cases, TC1 is applied on I1 (during its interaction
with I2), and TC2 on I2 (during its interaction with I1) leading to two verdict
V 1 and V 2. The final interoperability verdict V ′ = V 1 ∧ V 2 is obtained with
the rules given above.

Step 1 : We will explain here how to obtain TPS1 from TP .
TP says that after the execution of some events µ1...µn−1, the tester must ob-
serve another event µn, but does not explicit necessarily what may happen be-

11

tween µi and µi+1. In a formal context, TP is represented by an extended IOLTS.
The most difficult problem to obtain TPS1 from TP is that µ1...µn may contain
any events of both ΣS1 and ΣS2 . Thus, the algorithm to derive TPS1 from TP ,
S1 and S2 consists in separating events from S1 (in TPS1) and S2 (in TPS2)
while keeping all information needed for the test generation.

If all the events described in TP are events on the lower interfaces, the al-
gorithm to obtain TPS1 and TPS2 represented figure 5 is very simple. But if
TP contains events on the upper interfaces, this algorithm needs to go through
the IOLTS representing the specification S2. It finds a path between µi−1 (or
µ̄i−1) and µi. This operation is however simple and it costs less than calculating
S1‖AS2 with the method based on a global iop criterion (cf. figure 4 (a)).
This algorithm only verify the existence of µi in the alphabet of the specifica-
tions. The verification of TP (thus the verification of TPS1 and TPS2 derived
from TP) is done in step 2.
The algorithm of figure 5 uses some functions described hereafter. Let us con-
sider a trace σ and an event a. The function remove last event is defined by :
remove last event(σ.a)=σ. And the function last event by : last event(σ)= ε if
σ= ε and last event(σ)= a if σ= σ1.a. The error function returns the cause of
the error and exits the algorithm.

Input: TP : test purpose; Output: {TPSl}l=1,2;
Invariant: Sk = S3−l (* Sk is the other specification *); TP = µ1...µn

Initialization: µ0 = ε; TPSl = ε;
for (i = 0; i ≤ n; i++) do

if (µi ∈ ΣSl) then TPSl = TPSl .µi (* just add if it is an event of Sl *)

if (µi ∈ ΣSk
L) then TPSl = TPSl .µ̄i (* just add the mirror if µi is

on the lower interface of Sk *)
if (µi ∈ Σ

Sk
U ∪ {τ})

σ1 := TPSl ; aj =last event(σ1)

while aj ∈ Σ
Sk
U ∪ {τ} do

σ1=remove last event(σ1)
aj−1 =last event(σ1) (* aj−1 is the last event added to TPSl and

a mirror event āj−1 may exist in Sk *)
end

MSk = {q ∈ QSk such that q
āj−1→ and σ = āj−1.ω.µi ∈ Traces(q)}

if (∀q ∈ MSk , q
σ

�−→) then error(TP not valid : no path in Sk between the
mirror event of last event(TPSl) and µi)

while (e=last event(ω) /∈ ΣSk
L ∪ {ε}) do ω=remove last event(ω) end

if (e ∈ Σ
Sk
L) then TPSl = TPSl .ē

else error(TP not valid : µi /∈ ΣS1 ∪ ΣS2)
end

Fig. 5. Algorithm to derive TPSl from TP

Step 2 : This step corresponds to the function F applied on (TPS1 , S1) and
(TPS2 , S2) : (S1, TPS1) → TC1 and (S2, TPS2) → TC2. For the calculation
of each test case (TC1 and TC2), the inputs are a specification (S1) and a

12

test purpose (TPS1) based on this specification. We can use tools developed for
conformance test generation like TGV [4] or TorX [8] for this step.
The most important difference consists in the access on the lower interfaces :
these interfaces are observable and controllable in conformance testing but only
observable in interoperability testing. Thus, the events on the lower interfaces
described on the interoperability test cases obtained by F are only observed. The
testers do not apply input on the lower interfaces. These inputs must come from
the other implementation in interaction with the considered IUT. For example,
if an event l!m exists in the test case obtained from conformance test generation
tools (which means that the tester must send the message m to the lower interface
of the IUT), this will correspond to ?(l?m) in the interoperability test case. This
means that the interoperability tester observes that a message m is received on
the lower interface l. The events on the upper interfaces are controllable in both
conformance and interoperability testing. Thus, no changes are made on the test
cases for such events.

6 Applying the test generation algorithm to an example

Let us consider the two specifications S1 and S2 of figure 2 in Section 3.2. In the
following, we show how the proposed algorithm can be used to derive interoper-
ability tests. Two test purposes allow to consider two significant situations that
one may deal with.
First example : let us choose a test purpose TP = l1!a.l2!b
This example corresponds to the most simple case where all the events described
in TP are events executed on the lower interfaces. When deriving TPS1 and
TPS2 from TP (µ1.µ2 = l1!a.l2!b in the algorithm), we obtain TPS1 = µ1.µ̄2 =
l1!a.l1?b and TPS2 = µ̄1.µ2 = l2?a.l2!b. The obtained test cases TC1 and TC2

using TGV [4] are given in upper side of figure 6. (PASS) is a temporary verdict
and PASS is the definitive verdict obtained after a postamble which returns to
initial state, and the transitions labeled with ?otherwise are not represented.

U1!A ?(l1!a) ?(l1?b)

?(l1?c)

0 1 2 (PASS)

INC

U1?B PASS 0
?(l2?a)

1 PASS
?(l2!b)

?(l2!c)
INC2TCTC1

210

TC

U1!A ?(l1!a) ?(l2?a)
3

?(l2!b)

?(l2!c)
INC

U1?B
4(PASS)

?(l1?b)

PASS

Fig. 6. The obtained test cases from TP = l1!a.l2!b

For interoperability test case generation based on the global relation, the ob-
tained TC (cf. figure 6) comes from the composition of S1‖AS2 with TP . Thus,
final interoperability verdicts obtained with TC1 and TC2, executed simultane-
ously or not on the SUT, must be the same as the verdict obtained with TC.
The proof is not given here but a look at TC1 and TC2 shows that there are the

13

same paths leading to the same verdicts as in TC.

Second example : let us now consider TP = U1?A.U1!B
This example is more complex than the previous one because TP contains only
events on the upper interfaces of S1. TPS1 is easy to derive from TP and
TPS1 = TP . Deriving TPS2 from TP is more complex. Following the algorithm :
• µ1 = U1?A. Two possibilities, either ω = U1?A.l1!a.l1?b.U1!B or ω = U1?A.l1!a.
l1?c.U1!C. Let us choose ω = U1?A.l1!a.l1?b.U1!B. So, last event(ω)=U1!B /∈
ΣS1

L and ω = remove last event(ω)=U1?A.l1!a.l1?b. Next step, last event(ω)=l1?b
∈ ΣS1

L , TPS2 = l2!b (if ω = U1?A.l1!a.l1?c.U1!C, TPS2 = l2!c).
• µ2 = U1!B : ω = l1!a.l1?b. Thus, last event(ω)=l1?b ∈ ΣS1

L ⇒ TPS2=l2!b.l2!b.
Thus, we obtain TPS1 = µ1.µ2 = U1?A.U1!B and TPS2 = l2!b.l2!b.

U1!A ?(l1!a) ?(l1?b)

?(l1?c)

0 1 2

INC
TC1

210

TC

U1!A ?(l1!a) ?(l2?a)
3

?(l2!b)

?(l2!c)
INC

3
U1?B

PASS

4
?(l1?b)

5
U1?B

PASS

0
?(l2?a)

1
?(l2!b)

?(l2!c)
INC2TC

32
?(l2?a) ?(l2!b)

INC

?(l2!c)

PASS

Fig. 7. Test cases obtained for TP = U1?A.U1!B

The obtained test cases TC1 and TC2 are given in upper side of figure 7.
The execution of TC1 with TC2 until state 2 of TC2 corresponds to the same
events as the execution of TC. The most difference is that TC2 contains sup-
plementary events to be executed : there is a loop that returns to initial state
that comes from the search of the previous event of U1?A made to obtain TPS2 .
Thus, verdicts obtained with TC1 and TC2 will be the same as the verdict that
would be obtained with TC. But the calculation of TC needs the interaction of
S1 and S2 whereas TC1 and TC2 are obtained using existing conformance test
generation tools.

Some words on parallel test case execution In the first example, TC1

and TC2 can be executed simultaneously because the derivation of TPS1 and
TPS2 was simple. Indeed, the obtained test purposes contain only observations
(no controllable events), TC1 and TC2 should be executed simultaneously with
the tester T1 observing and controlling IUT1 and the lower tester LT2 of T2

observing IUT2 (see figure 1).
In the second example, TC1 and TC2 can not be executed simultaneously. The
most difference comes from the loop that returns to initial state in TC2 (state
0 to state 2). There is no corresponding loop in TC1. Thus, TC2 is longer to
execute than TC1. TC2 does not contain controllable events. Thus, the execution
of this test case needs the application of a stimulus on I1. I1 can send a message
on its lower interface to I2. The observations are made on I2 to verify TC2.

14

7 Conclusion

In this paper, we propose formal interoperability definitions called iop criteria
that give the conditions to be verified by two implementations in order to be
considered interoperable. These two criteria (global iop criterion iopG and bilat-
eral iop criterion iopB) are proved equivalent. This equivalence leads to method
to generate interoperability test cases which avoids the calculation of the speci-
fication interaction, and thus the state-space explosion problem.
Future work will study the generalization of these iop criteria to a context with
more than two IUT. As it is suggested by the obtained test cases, we will also
consider how a distributed approach can be applied for interoperability testing.

References

[1] Sébastien Barbin, Lénäıck Tanguy, and César Viho. Towards a formal framework
for interoperability testing. In M. Kim, B. Chin, S. Kang, and D. Lee, editors,
21st IFIP WG 6.1 International Conference on Formal Techniques for Networked
and Distributed Systems, pages 53–68, Cheju Island, Korea, Août 2001.

[2] R. Castanet and O. Koné. Deriving coordinated testers for interoperability. In
O. Rafiq, editor, Protocol Test Systems, volume VI C-19, pages 331–345, Pau-
France, 94. IFIP, Elsevier Science B.V.

[3] Khaled El-Fakih, Vadim Trenkaev, Natalia Spitsyna, and Nina Yevtushenko. Fsm
based interoperability testing methods for multi stimuli model. In Roland Groz
and Robert M. Hierons, editors, TestCom, volume 2978 of Lecture Notes in Com-
puter Science, pages 60–75. Springer, 2004.

[4] J.C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experiment in automatic
generation of test suites for protocols with verification technology. Science of
Computer Programming - Special Issue on Industrial Relevant Applications of
Formal Analysis Techniques, 29:123–146, 1997.

[5] ISO. Information Technology - Open Systems Interconnection Conformance Test-
ing Methodology and Framework - Parts 1-7. International Standard ISO/IEC
9646/1-7, 92.

[6] C. Jard, T. Jéron, L. Tanguy, and C. Viho. Remote testing can be as powerful
as local testing. In J. Wu, S. Chanson, and Q. Gao, editors, Formal methods
for protocol engineering and distributed systems, FORTE XII/ PSTV XIX’ 99,
Beijing, China, pages 25–40. Kluwer Academic Publishers, October 1999.

[7] J. Tretmans. Testing concurrent systems: A formal approach. In J.C.M Baeten
and S. Mauw, editors, CONCUR’99–10th Int. Conference on Concurrency Theory,
Lecture Notes in Computer Science, pages 46–65. Springer-Verlag, 99.

[8] J. Tretmans and E. Brinksma. Côte de Resyste–Automated Model Based Testing.
In M. Schweizer, editor, Progress 2002–3rd Workshop on Embedded Systems, pages
246–255, Utrecht, The Netherlands, Oct. 2002. STW Technology Foundation.

[9] L. Verhaard, J. Tretmans, P. Kars, and E. Brinksma. On asynchronous testing.
In G.V. Bochman, R. Dssouli, and A. Das, editors, Fifth inteernational workshop
on protocol test systems, pages 55–66, North-Holland, 93. IFIP Transactions.

[10] T. Walter, I. Schieferdecker, and J. Grabowski. Test architectures for distributed
systems : state of the art and beyond. In Petrenko and Yevtushenko, editors,
Testing of Communicating Systems, volume 11, pages 149–174. IFIP, Kap, Sep.
98.

15

