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specification. Such errors may not be detected when the an-
swer of the model-checking tool is positive: while a positiv
answer does guarantee that the model satisfies the specifica-
tion, the answer to the real question, namely, whether the sy
tem has the intended behavior, may be different.
The realization of this unfortunate situation has led to the
development of severalnity check$or formal verification
[32]. The goal of these checks is to detect errors in the syste
LTL Sat|sf|ab|||ty Checking * model or the properties. Sanity checks in industrial toots a
typically simple, ad hoc, tests, such as checking for engbli
conditions that are never enabled [3¥&cuity detectiompro-
vides a more systematic approach. Intuitively, a specifinat
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e-mail:vardi @s. rice. edu with no requests. While vacuity checking cannot ensure that

whenever a model satisfies a formula, the model is correct,
it does identify certain positive results as vacuous, iasieg
the likelihood of capturing modeling and specification esro
Abstract. We report here on an experimental investigation Several papers on vacuity checking have been published over
of LTL satisfiability checking via a reduction to model check the last few years [2, 3,9, 30,29, 33, 37,40], and variougsad
ing. By using large LTL formulas, we offer challenging model trial model-checking tools support vacuity checking [B]3,
checking benchmarks to both explicit and symbolic model Al vacuity-checking algorithms check whether a subfor-
checkers. For symbolic model checking, we use CadenceSM¥,yla of the specification does not affect the satisfaction of
NuSMV, and SAL-SMC. For explicit model checking, we use the specification in the model. In the example above, the sub-
SPIN as the search engine, and we test essentially all pulformulareq does not affect satisfaction in a model with no
licly available LTL translation tools. Our experiments uls request. There is, however, a possibility of a vacuous resul
intwo majorfindings. First, most LTL translation tools aees r that is not captured by current vacuity-checking approache
search prototypes and cannot be considered industriatyual |f the specification isvalid, that is, true inall models, then
tools. Second, when it comes to LTL Satlelablllty CheCkiﬂg, model Checking this Specification a|WayS results in a ple
the symbolic approach is clearly superior to the explick ap answer. Consider for example the specificafitft; — Oby),
proach. whereb; andb, are propositional formulas. bf; andb, are
logically equivalent, then this specification is valid andat-
isfied by all models. Nevertheless, current vacuity-chegki
approaches do not catch this problem. We propose a method
for an additional sanity check to catch exactly this sort of
1 Introduction oversight.
Writing formal specifications is a difficult task, which is
Model-checkingtools are successfully used for checking prone to error just as mplgmeqtaﬂon development IS error
ar_>rone. However, formal verification tools offer little heilp

vyhether systems ha}ve desired properties [12]. The applic debugging specifications other than standard vacuity check
tion of model-checking tools to complex systems involves a.

nontrivial step of creating a mathematical model of the sys- o Clearly, if a formal property is valid, then this is cairtly
p ol ga C YS“due to an error. Similarly, if a formal propertyimsatisfiable
tem and translating the desired properties into a formad-spe

ification. When the model does not satisfy the specification,that s, true 'mo mo_del', 'Fhen this is also qertamly due to an
error. Even if each individual property written by the speci

g‘ggs:;feﬁg)c(;';g I??/I\/Shs:?ogi]r?tas nt)c/J t:rgsi:fgféz\é?eigsvgg:v\\:\gg}ier is satisfiable, their conjunction may very well be ursati
the system and?he, desirec?behaviors Itis often the )éaae ho flable. Recall that a logical formuiis valid iff its negation
y ’ '~ =6 is not satisfiable. Thus, as a necessary sanity check for de-

ver, that there is an errorin th m model or in the form , e .
ever, thatthere s an errorin the syste odelorinthe fo abugglng a specification, model-checking tools should ensur
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overProp, theng¢ is satisfiable precisely when the modél  39], but is somewhat surprising in the context of LTL sat-

doesnot satisfy —=¢. Thus, it is easy to add a satisfiability- isfiability in view of [42].

checking feature to LTL model-checking tools. Related software, calletibtt,! provides an LTL-to-
LTL model checkers can be classifiedealicit or sym- Buchi explicit translator testbench and environment fasib

bolic. Explicit model checkers, such as SPIN [31] or SPOT Profiling. Thel btt tool performs simple consistency checks
[18], construct the state-space of the model explicitly and®" @n explicit tool's output automata, accompanied by sam-
search for a trace falsifying the specification [13]. In con- ple data when |ncon_S|stenC|es in thgse automata are dgtecte
trast, symbolic model checkers, such as CadenceSMV [35]44]- Whereas the primary use bbt t is to assist developers
NuSMV [10], and VIS [6], represent the model and analyzeOf explicit LTL translators in debugging new tools or com-

it symbolically using binary decision diagrams (BDDs) [8]. P&ring a pair of tools, we compare performance with respect
. to LTL satisfiability problems across a host of differentlgo
LTL model checkers follow the automata-theoretic ap- both explicit and symbolic

proach [48], in which the complemented LTL specification

; . . R The structure of the paper is as follows. Section 2 pro-
is explicitly or symbolically translated to a Biichi autotoa, vides the theoretical background for this work. In Section 3
which is then composed with the model under verification;

'we describe the tools studied here. We define our experimen-

see also [47]. Th_e model checker then searches for a tre_u:tedl method in Section 4, and detail our results in Section 5.
of the model that is accepted by the automaton. All symbothe conclude with a discussion in Section 6

model checkers use the symbolic translation describedlijh [1

and the analysis algorithm of [20], though CadenceSMV and

VIS try to optimize further. There has been extensive redear 2 Theoretical Background
over the past decade into explicit translation of LTL to au-

tomata[14,15,21-23, 28,24,27,43,41,45], but itis diftit Linear Temporal Logic (LTL) formulas are composed of a

get a clear sense of the state of the art from a review of thc?. . . .
literature. Measuring the performance of LTL satisfiapilit inite setProp of atomic propositions, the Boolean connec-
’ 9 P tives—, A, V, and—, and the temporal connectivés(until),

checking engbles us to benchmark th.Ef‘ performance of LTL‘J{ (release)x (also calledD for “next time”), O (also called
model checking tools, and, more specifically, of LTL trarsla G for “globally”) and ¢ (also calleds for |n the future”).

tion tools. We define LTL formulas inductively:
We report here on an experimental investigation of

LTL satisfiability checking via a reduction to model check- Pefinition 1 For every pe Prop, p is a formula. [ and

ing. By using large LTL formulas, we offer challenging are formulas, then so are:

model-checking benchmarks to both explicit and symbolic —6 oA o=y oUY o
model checkers. For symbolic model checking, we used vy X6 R ¢ 0%
CadenceSMV, NuSMV, and SAL-SMC. For explicit model LTL formulas describe the behavior of the variablesiop
checking, we used SPIN as the search engine, and we testedter a linear series of time steps starting at time zero and
essentially all publicly available LTL translation tooM/e extending infinitely into the future. We satisfy such formu-
used a wide variety of benchmark formulas, either generdas overcomputationswhich are functions that assign truth
ated randomly, as in [15], or using a scalable pattern (e.g.yalues to the elements Brop at each time instant [19].

noo . .
Ni=1 F')Z LTL f?rmulas typlllcally used”for e\f{faluatr:n?l LTI.‘ Definition 2 We interpret LTL formulas over computations
translation tools are usually too small to offer challemgin ¢ formm: o> — 2P©P. We defingt i E & (computationt

benchmarks. Note that_ real specmcat!ons prlcally caruis at time instant i€ w satisfies LTL formul@) as follows:
many temporal properties, whose conjunction ought to be sat

isfiable. Thus, studying satisfiability of large LTL formsles i pfor pe Propif pe m(i).
quite appropriate. MiEAYIfTLiE ¢ andTiE Y.
Our experiments resulted in two major findings. First, ! =0 '.f m '.# ¢.
most LTL translation tools are research prototypes and can- ! ::X(b i ?"3+>1': ¢. hth e dvki<k< i
not be considered industrial quality tools. Many of them are \7\;; h;’\gﬂh qJ) = I, such thatrt ] = g andvk, i < k<,
written in scripting languages such as Perl or Python, which . A . . .
has drastic negative impact on their performance. Further- :r[i;fan»{:wq;lf Vi1 iy, thendk, i <k < j, such
more, these tools generally degrade gracelessly, oftdd-yie A S .
ing incorrect results with no warning. Among all the tools ! A '.f 31. 2 h suc_:h thatre j = ¢.
we tested, only SPOT can be considered an industrial qual- TIELeIY] =0 mjFo.
ity tool. Second, when it comes to LTL satisfiability check- We take mode($) to be the set of computations that satisfy
ing, the symbolic approach is clearly superior to the explic ¢ attime 0, i.e.{Tt: T,OF ¢}.
approach. Even SPOT, the best LTL translator in our experi—ln automata-theoretic model checking, we represent LTL for
ments, was rarely able to compete effectively against thre sy ; . '
. . . : ) ! mulas using Buichi automata.
bolic tools. This result is consistent with the comparisén o
explicit and symbolic approach to modal satisfiability [38, * ww.tcs.hut.fi/Software/lbtt/




Definition 3 A Buchi Automaton (BA) is a quintuple
(Q.%,9,

Jo, F) where:

Q is a finite set of states.

> is a finite alphabet.

0: Qx Z— Qs the transition relation.
(o € Q is the initial state.

F C Qs a set of final states.

A run of a Bichi automaton over an infinite wordswp, wy,

W, ... € X is a sequence of stateg,qi1, o, ... € Q such that

Vi >0, 8(qi,Wi) = gi+1. An infinite word w is accepted by
the automaton if the run over w visits at least one state in F

Explicit Automata Construction Tools

LTL2AUT ............... (Daniele-Guinchiglia—Vardy)

Implementations (Java, Perl) ......... LTL2Buchi, Wring
LTL2BA (C) vvviii i (Oddoux—Gastin)
LTL2Buchi (Java)........... (Giannakopoulou—Lerda)

LTL — NBA (Python)
Modella (C)
SPOT (CH+) oo e e

(Duret-Lutz—Poitrenaud—Rebiha—Baarir—Martinez
TMP (SML of NJ) (Etessami)
Wring (Perl) (Somenzi—Bloem)

(Fritz—Teeger
(Sebastiani—-Tonet

)
..................... a)

infinitely often. We denote the set of infinite words accepted We provide here short descriptions of the tools and their

by an automaton A by l(A).

A computation satisfying LTL formul@ is an infinite word
over the alphabeX = 2P™P, The next theorem relates the ex-
pressive power of LTL to that of Biichi automata.

Theorem 1. [49] Given an LTL formulap, we can construct
a Biichi automaton = (Q,%,3,qo,F) such that/Q| is in

200D 5 = 2ProP, and Ly,(Ay) is exactly models).

This theorem reduces LTL satisfiability checking to
automata-theoretic nonemptiness checking sssatisfiable
iff model$d) # Oiff Ly(Ay) # 0.

We can now relate LTL satisfiability checking to LTL
model checking. Suppose we havaraversal model Mhat
generates all computations over its atomic propositidmet; t
is, we have thalt,(M) = (2°°P)®, We now have tha¥l does
notsatisfy—¢ if and only if ¢ is satisfiable. Thug is satisfi-

algorithms, detailing aspects which may account for our re-
sults. We also note that aspects of implementation inctudin
programming language, memory management, and attention
to efficiency, seem to have significant effects on tool perfor
mance.

Classical AlgorithmsFollowing [49], the first optimized
LTL translation algorithm was described in [27]. The basic
optimization ideas were: (1) generate states by demand only
(2) use node labels rather than edge labels to simplify trans
lation to Promela, and (3) usegeneralized Bchiacceptance
condition so eventualities can be handled one at a time. The
resulting generalized Biichi automaton (GBA) is then “dege
eralized” or translated to a BATL2AUT improved further

on this approach by using lightweight propositional reasgn

to generate fewer states [15]. We tested two implementsition
of LTL2AUT, one included in the Java-based LTL2Buchi tool

able precisely when the model checker finds a counterexamgnd one included in the Perl-based Wring tool.

ple.

3 Tools Tested

In total, we tested eleven LTL compilation algorithms from
nine research tools. To offer a broad, objective picturéhef t
current state-of-the-art, we tested the algorithms agams
eral different sequences of benchmarks, comparing, wher

TMP?2 [21] andWring 2 [43] each extend LTL2AUT with
three kinds of additional optimizations. First, in tipee-
translation optimizationthe input formulais simplified using
Negation Normal Form (NNF) and extensive sets of rewrite
rules, which differ between the two tools as TMP adds rules
for left-append and suffix closure. Secomdid-translation
optimizatiors tighten the LTL-to-automata translation algo-
rithms. TMP optimizes an LTL-to-GBA-to-BA translation,
while Wring performs an LTL-to-GBA translation utilizing

appropriate, the size of generated automata in terms of nunmBoolean optimizations for finding minimally-sized covers.

bers of states and transitions, translation time, modalyais
time, and correctness of the output.

3.1 Explicit Tools

The explicit LTL model checker SPIN [31] accepts either
LTL properties, which are translated internally into Biich

Third, the resulting automata are minimized further during
post-translation optimizationTMP minimizes the resulting
BA by simplifying edge terms, removing “never accepting”
nodes and fixed-formula balls, and applying a fair simutatio
reduction variant based on partial-orders produced by-ter
tive color refinement. Wring uses forward and backward sim-
ulation to minimize transition- and state-counts, respeb,
merges states, and performs fair set reduction via strongly

automata, or Biichi automata for complemented propertieggnnected components. Wring halts translation with a GBA,
(“never claims”). We tested SPIN with Promela (PROcessyhich we had to degeneralize.

MEta LAnguage) never-claims produced by several LTL
translation algorithms. (As SPIN'’s built-in translatodigmi-

nated by TMP, we do not show results for this translator.) The

algorithms studied here represent all tools publicly alzg
in 2006, as described in the following table:

2 We used the binary distribution calledun_del ayed_trans_06_
onpi | ation. x86- i nux.www. bel | - | abs. com proj ect/ TMP/

3 Version 1.1.0, June 21, 2003w, i st.tugraz. at/staff/bl oen
wring. htn

C



LTL2Buchi 4 [28] optimizes the LTL2AUT algorithm by  alternating automata, but borrows ideas from all the toels d
initially generating transition-based generalized Bieito-  scribed above, including reduction techniques, the useésf T
mata (TGBA) rather than node-labeled BA, to allow for more BAs, minimizing non-determinism, and on-the-fly construc-
compaction based on equivalence classes, contradictinds, tions. It adds two important optimizations: (1) unlike ather
redundancies in the state space. Special attention teegffigi  tools, it uses pre-branching states, rather than postehiag
is given during the ensuing translation to node-labeled BA.states (as introduced in [14]), and (2) it uses BDDs [7] for
The algorithm incorporates the formula rewriting and BA- propositional reasoning.
reduction optimizations of TMP and Wring, producing au-
tomata With .Iess than or equal to the number of states and , Symbolic Tools
fewer transitions.

5 . - - - . .
Modella® focuses on minimizing theonqetgrmman)f Symbolic model checkers describe both the system model
the property automaton in an effort to minimize the size of . . .
and property automaton symbolically: states are viewed as

f[he pro.d'uct.of the property and system model gutomata .durt'ruth assignments to Boolean state variables and the ti@msi
ing verification [41]. If the property automaton is determin

istic, then the number of states in the product automatoln wil relation is defined as a conjunction of Boolean constraints o

be at most the number of states in the system model. Thugaws of current and next states [8]. The model checker uses

reducing nondeterminism is a desirable goal. This is accomfJt BDD-based fix-point algorithm to find &ir path in the

plished usingsemantic branchingor branching on truth as- model-automaton product [20].

10
signments, rather than ttsgntactic branchingf LTL2AUT. Cadenge'SM\? [35] gnd NUSMV.. [10] both evolved

. : from the original Symbolic Model Verifier developed at CMU
Modella also postpones branching when possible.

[36]. Both tools support LTL model checking via the sym-
bolic translation of LTL to CTL tableau with FAIRNESS con-
straints, as described in [11]. FAIRNESS constraints $peci
sets of states that must occur infinitely often in any patkeyTh
are necessary to ensure that the subformjukelds in some
time step for specifications of the fortn ¢ ¢ and QY. Ca-
denceSMV additionally implements heuristics that attetopt
reduce LTL model checking to CTL model checking in some
cases [9].

SAL'! (Symbolic Analysis Laboratory), developed at
SRI, is a suite of tools combining a rich expression language
with a host of tools for several forms of mechanized formal
analysis of state machines [4]. SAL-SMC (Symbolic Model
Checker) uses LTL as its primary assertion language and di-
rectly translates LTL assertions into Blichi automata,olvhi
are then represented, optimized, and analyzed as BDDs.
SAL-SMC also employs an extensive set of optimizations
during preprocessing and compilation, including partielle
uation, common subexpression elimination, slicing, campi
ing arithmetic values and operators into bit vectors andtyin
“circuits,” as well as optimizations during the direct teda-
tion of LTL assertions into Biichi automata [16].

Alternating Automata Tooldnstead of the direct translation
approach of [49], an alternative approach, basedlternat-
ing automatawas proposed in [46]. In this approach, the LTL
formula is first translated into an alternating Biichi augem
ton, which is then translated to a nondeterministic Biichi a
tomaton.

LTL2BA 6 [24] first translates the input formula into a
very weakalternating automaton (VWAA). It then uses vari-
ous heuristics to minimize the VWAA, before translatingpit t
GBA. The GBA in turn is minimized before being translated
into a BA, and finally the BA is minimized further. Thus, the
algorithm’s central focus is on optimization of intermeadia
representations through iterative simplifications andoe-
fly constructions.

LTL —NBA? follows a similar approach to that of LTL2
BA [22]. Unlike the heuristic minimization of VWAA used
in LTL2BA, LTL —NBA uses a game-theoretic minimization
based on utilizing a delayed simulation relation for on-tlye
simplifications. The novel contribution is that that sintida
relation is computed from the VWAA, which is linear in the
size of the input LTL formulaheforethe exponential blow-up
incurred by the translation to a GBA. The simulation relatio
is then used to optimize this translation. 4 Experimental Methods

Back to ClassicsSPOTE is the most recently developed

LTL-to-Buichi optimized translation tool [18]. It does nase 4.1 Performance Evaluation

4 Original Version distributed from http://]avapat hfinder. We ran all tests in the fall of 2006 on Ada, a Rice University

sour cef orge. net/; description: http://ti.arc.nasa.gov/profile/ Cray XD1 clustet2 Ada is comprised of 158 nodes with 4
dimtral projects-tool s/ \#LTL2Buchi

5 Version 1.5.8.1. http://wm. science.unitn.it/~stonetta/ processors (cores) per hode for a total of 632 C.PUS In pairs
model | a. ht of dual core 2.2 GHz AMD Opteron processors with 1 MB L2

6 Version 1.0; October 2001.http://ww.|sv. ens-cachan.fr/ cache. There are 2 GB of memory per core or a total of 8 GB
~gastin/ltl2balindex. php _

7 This original version is a prototypeht t p://wwx. ti . informatik. ° Release 10-11-02pht t p: // www. kenneni | . cont snv. ht i
uni - ki el . de/ ~fritz/; downl oad: htt p: // www. ti . i nfor nati k. 10 Version 2.4.3-zchaffht t p: / / nusmv. i rst.itc.it/
uni - ki el . de/ ~fritz/LTL- NBA zip 11 Version 2.4 http://sal .csl.sri.com

8 Version 0.3http://spot.|ip6.fr/wiki/Spot W ki 12 http://rcsg. rice. edu/ ada/



of RAM per node. The operating system is SUSE Linux 9.0 od }
with the 2.6.5 kernel. Each of our tests was run with excleisiv .
access to one node and was considered to time out after Ijowever, in all of our random and counter formulas, there

hours of run time. We measured all timing data using the Unix"evermore than 3 varllables'. Forthese small numbgrs of vari-
time command. ables, our (exponentially sized) model is more simple and

contains fewer lines of code than the equivalent lineadgdi
Explicit Tools Each test was performed in two steps. First, M0del- When we did scale the number of variables for the

we applied the translation tools to the input LTL formula and Pattérmn formula benchmarks, we kept the same model for
ran them with the standard flags recommended by the toolsconsistency. The scalability of the universal model we ehos

authors, plus any additional flag needed to specify that théjid n_ot affect our results because a_lll of the expl_icit tostse
output automaton should be in Promela. Second, each ou{grmmated early enough that the size of the universal model

put automaton, in the form of a Prometever-claim was was still reasonably small. (At 8 variables, our model ha3 30

checked by SPIN. (SPIN never-claims are descriptions of bel_ines of code, whereas the linearly sized model we show here

haviors that should never happen.) In this role, SPIN serveg'aS 38.) F.urthermore,.the timeouts and errors yve encouhtere
as a search engine for each of the LTL translation tools; itVNen testing the explicit-state tools occurred in the Lokt

takes a never-claim and checks it for non-emptiness in con2utomaton stage of the processing. All of these tools spent
junction with an input mode!? In practice, this means we Cconsiderably more time and memory on this stage, making
call spi n -a on the never-claim and the universal model to the choice of universal Promela model in the counter and pat-
compile these two files into a C program, which is then com-tern formulabenchmarks irrelevant: the tools consisyetett

piled using gcc and executed to complete the verification runm.inated before the call to SPIN to combine their automata
In all tests, the model was aniversal Promela pro-  With the Promela model.

gram, enumerating all possible traces oReop. For exam- o )
ple, whenProp = {A, B}, the Promela model is: SMV We compare the explicit tools with CadenceSMV and

NuSMV. To check whether a LTL formuliis satisfiable, we
model check-¢ against a universal SMV model. For exam-
ple, if = (X(a U b)), we provide the following inputs to

bool A B;
/* define an active procedure
to generate values for A and B */

active proctype generateVal ues() NuSMV and CadenceSMV:
{ do
:. atonmic{ A=0; B=0, } NuSMV: CadenceSMV:
coatomic{ A=0;, B=1; } . .
;o atomic{ A=1, B=0; } MODULE nai n nmodule main () {
.. : - 1. _ 1. VAR
cooatomic{ A=1, B=1; } . . . .
od } a . bool ean; a . bool ean;
b : bool ean; b : bool ean;
We use theat omi c{} construct to ensure that the Boolean  LTLSPEC ! (X(a=1 U b=1)) assert !(X(a Ub));
variables change value in one unbreakable step. When com- FAI RNESS FAIR TRUE;
bining formulas with this model, we also preceeded each for- 1 }

mula with an.X-operator to skip SPIN’s assignment upon

declaration and achieve nondeterministic variable assign gy negates the specificatiorg, symbolically com-

ments in the initial time steps of the test formulas. Notd tha piles ¢ into A, and conjoins, with the universal model.

the size of this model is exponential in the number of atomic;¢ "5 ;tomaton is not empty, then SMV finds a fair path,

propositions. It is also possible construct a model thabhis | . e .

ear in the number of variables like thfs which satisfies the formuld. In this way, SMV acts as both
a symbolic compiler and a search engine.

bool A B;
active proctype generateval ues() SAL-SMC We also chose SAL-SMC to compare to the ex-
{ do _ plicit tools. We used a universal model similar to those for
r+ atom cf CadenceSMV and NuSMV. (In SAL-SMC, primes are used
i to indicate the values of variables in the next state.)
cootrue -> A= 0;
Drotrue -> A= 1 tenp: CONTEXT =
fi; BEG N
i f
co true -> B =0; mai n: MODULE =
©r true -> B = 1 BEG N
fi; QUTPUT
} a : bool ean,
b : bool ean
13 |t would be interesting to use SPOT’s SCC-based searchitigof26]
as the underlying search engine, rather than SPIN’s nestith-dirst search
algorithm [13]. 15 In our experiments we used FAIRNESS to guarantee that thesmod
14 We thank Martin De Wulf for asking this question. checker returns a representation of an infinite trace astecexample.



I NI TI ALI ZATI ON
a IN {TRUE, FALSE};
b IN { TRUE, FALSE} ; 100

99

Satisfiability of 2-Variable Random Formulas

TRANSI TI ON
[ TRUE -->
a' |IN {TRUE, FALSE};
Omext time ais intrue or false
b" IN {TRUE, FALSE};
Omext time b is in true or false
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END; %VCDULE
93

formula: THEOREM main |- ((((QF(TRUE)))))
=> (NOT( Ua,b) )));

92

Percentage of Satisfiable Formulas
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SAL-SMC negates the specification¢, directly trans-
lates¢ into Ay, and conjoinsA, with the universal model.
Like the SMVs, SAL-SMC then searches for a counterexam-
ple in the form of a path in the resulting model. There is not
a separate command to ensure fairness in SAL models likémplement theR_ operator directly. Tools with better initial
those which appear in the SMV models abva@herefore, formula reduction algorithms performed well in these tests
we ensure SAL-SMC checks for an infinite counterexampleOur experiments showed that most of the formulas of every
by specifying our theorem ds ¢(true) — —¢. length we generated were satisfiable. Figure 1 demonstrates

the distribution of satisfiability for the case of 2-varialvan-
dom formulas.

Fig. 1. Satisfiability of 2-Variable Random Formulas

4.2 Input Formulas

. Counter Formulas Pre-translation rewriting is highly effec-
We benchmarked the tools against three types of scalable fog e for random formulas, but ineffective for structured-fo

mulas: random formulas, counter formulas, and pattern for'mulas [21,43]. To measure performance on scalable, non-
mulas. Scalability played animportantrole inour expeme  onqom formulas we tested the tools on formulas that de-
since the goal was to challenge the tools with large formUIa%cribe n-bit binary counters with increasing values of

and state spaces. All tools were applied to the same formulagpege formulas are irreducible by pre-translation renti

and the reSl_JIts (satlsﬁa_ble or unsatlsflaple) were compareqmique|y satisfiable, and represent a predictably-sizaté st
The symbolic tools, which were always in agreement, Werégn»e ~ \Whereas our measure of correctness for random for-
considered as reference tools for checking correctness. 155 is a conservative check that the tools find satisfiable

Rand lasin ord hof th bi formulas to be satisfiable, we check for precisely the unique
andom Formulasin order to cover as much of the problem counterexample for each counter formula. We tested four

fspacel as posrslbler,] er tEStIGdI setshof 250 r"’mdompl'g‘?nelr""tegnstructions of binary counter formulas, varying two fac-
ormulas varying the formula length and number of variab €Stors: number of variables and nesting 6.

as in [15]. We randomly generated sets of 250 formulas vary-
ing the number of variable$y, from 1 to 3, and the length
of the formulaL, from 5 up to 65. We set the probability of
choosing a temporal operater= 0.5 to create formulas with

thth f‘ non(t)rtl\rlllal tehmporal struc;ure_:ng a f.‘]? ntrllvla\ll\li, aole tnates; the need fatl-connectives in the formula. We can nest
structure. er choices were decided uniformly. We Teport,. provide more succinct formulas or express the formu-

median running times as the distribution of run times has §_¢ using a conjunction of unnestadsub-formulas

high variance and contains many outliers. All formulas were Let b be an atomic proposition. Then a corr;putat'm)n

generated prior to testing, so each tool was run orstirae ?verb s a word in(200)0 By divi.ding n a computamy
e

formulas. While we made sure that, when generating a s . .
lengthn, we can viewrtas a sequence ofbit values, denot-
of lengthL, every formula was exactly of lengthand not . .
T ing the sequence of values assumed by-#it counter start-
up to L, we did find that the formulas were frequently re- . : . . .
. ing at 0, and incrementing successively by 1. To simplify the
ducible. Conversely, subformulas of the fogm®  had to .
be expanded te:(—¢ 7 —) since most of the tools do not formulas, we represent each blobkbs, . .., bn-1 as having
the most significant bit on the right and the least signifiddint
16 http://sal-wiki.csl.sri.com/index.php/FAQ#Da&AL _have constructs on the left. For example, for= 2 theb blocks cycle through
for_fairess.3F the values 00, 10, 01, and 11. Figure 2 pictures this automa-

We can represent a binary counter using two variables: a
counter variable and a marker variable to designate thebegi
ning of each new counter value. Alternatively, we can use 3
variables, adding a variable to encode carry bits, whiahieli




a=1&b=0 a=0&b=0 a=1&b=1 a=0&b=0

-5 O O 0 ¢

a=1&b=0

a=0&b=1 a=1&b=1

a=1&b=0

a=0&b=1

Fig. 2. Example: 2-bit Binary Counter Automaton (a = marker; b = detn

ton. For technical convenience, we use an atomic propositio
mto mark the blocks. That is, we intemdto hold at point
precisely when = 0 modn.

For 1tto represent an-bit counter, the following proper-
ties need to hold:

The marker consists of a repeated pattern of a 1
followed by n-1 0's.

The first n bits are 0's.

If the least significant bit is O,

then it is 1 n steps later and

the other bits do not change.

Al'l of the bits before and including the first 0
inan n-bit block flip their values

in the next block; the other bits do not change.

Forn =4, these properties are captured by the conjunction of

the following formulas:

Lo(m & ( [T(m-> ((X('mM) & (X(X('m))
&& (X(X(X('m)))
&& (X(X(X(X(m)))))))
2. ('b) && (X('b)) && (X(X(!b))) && (X(X(X(!b))))
3. []( (m&& 'b) ->
( X(X(X(X(b)))) &&
X((('m &&
(b -> X(X(X(X(b))))) &&
(b -> X(X(X(X('b))))) ) Um) ) )
4. 1] ( (m&&b) ->
( XCXOX(X('h)))) &&
(X ( Eb l&l&‘m&&x(x( (X('b))))) U
m
(Im&& 'b && X(X(X(X(b)))) &&
X(( 'mé&& (b -> X(X(X(X(b))))) &&
('b - ;<( (;<( X('b))))) ) U

->
m)))))))

Note that this encoding creates formulas of len@th?).
A more compact encoding results in formulas of len@ti).
For example, we can replace formula (2) above with:

2. (('b) & X(('b) && X(('b) & X(1b))))

We can eliminate the use @f-connectives in the formula
by adding an atomic propositianrepresenting the carry bit.
The required properties of ambit counter with carry are as
follows:

1) The marker consists of a repeated pattern of a 1
followed by n-1 0's.

2) The first n bits are 0's.

3) If misland bis Othencis O
and n steps later bis 1.

4) If misland bis 1thencis 1

and n steps later b is 0.
5) If there is no carry,

then the next bit stays the same n steps later.
6) If there is a carry, flip the next bit

n steps later and adjust the carry.

Forn= 4, these properties are captured by the conjunction of
the following formulas.

Lo(m & ([T(m-> ((X(!m) && (X(X('m))
& (X(X(X('m)))
&&(X(X(X( X(m)))))))
2. ('b) & (X(1b)) && (X(X(1b))) && (X(X(X(!'b))))
8. [] (((mé&&!b) -> (Tc & X(X(X(X(b))))) )
4. [1 ( (m&& b) >(c & X(X(X(X('b))))) )
5[] (fc & X('m) -
( X(te) && (X( ) -> X(X(X(X(X(b)))))) &&
(X(1b) -> X(X(X(X(X('b)))))) )
6. [1 (c->((X!'b) ->

( X('c) && X(X(X(X(X('b))))) ) ) &k
( X(c) && X(X(X(X(X(b))))) ) ))
The counterexample trace for a 4-bit counter with carry
is given in the following table. (This traces ofandb are, of
course, the same as for counters without carry.)

A 4-bit Binary Counter

m | 1000 1000 1000 1000 1000 1000
b | 0000 1000 0100 1100 0010 1010
c | 0000 1000 0000 1100 0000 1000
m | 1000 1000 1000 1000 1000 1000
b | 0110 1110 0001 1001 0101 1101
c | 0000 1110 0000 1000 0000 1100
m | 1000 1000 1000 1000 1000
b | 0011 1011 0111 1111 0000
c | 0000 1000 0000 1111 0000

Pattern Formulas We further investigated the problem space
by testing the tools on the eight classes of scalable forsnula
defined by [25] to evaluate the performance of explicit state
algorithms on temporally-complex formulas.

E(nN=A0p
i=1
U =(..(pUp2) U...) Upn
/\ O0pi vOOpiy1)
Uza(n) =p1 U (p2 U (... Pr-1 U Pn)...)
Ci(n)=\/O0pi
i=1
n=AO0p
i=1
Q(n) = A(Opi VOpi11)

n=AOp
i—1



5 Experimental Results

Our experiments resulted in two major findings. First, most
LTL translation tools are research prototypes, not indaistr
quality tools. Second, the symbolic approach is clearlyesup
rior to the explicit approach for LTL satisfiability checlgn

5.1 The Scalability Challenge

When checking the satisfiability of specifications we need ta
consider large LTL formulas. Our experiments focus on chal-
lenging the tools with scalable formulas. Unfortunatelpsin

explicit tools do not rise to the challenge. In general, the p

formance of explicit tools degrades substantially as the au
tomata they generate grow beyond 1,000 states. This degr
dation is manifested in both timeouts (our timeout bound was
4 hours per formula) and errors due to memory managemen

Total Processing Time on 2-variable Counter Formulas
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This should be contrasted with BDD tools, which routinely
handle hundreds of thousands and even millions of nodes.

Fig. 3. Performance Results: 2-Variable Counters

We illustrate this first with run-time results for counter
formulas. We display each tool’s total run time, which is
a combination of the tool's automaton generation time and
SPIN’s model analysis time. We include only data points for
which the tools provide correct answers; we know all counter
formulas are uniquely satisfiable. As is shown in Figures 3
and 417 SPOT is the only explicit tool that is somewhat com-
petitive with the symbolic tools. Generally, the explicbts
time out or die before scaling to= 10, when the automata
have only a few thousands states; only a few tools passe
n=_8.

We also found that SAL-SMC does not scale. Figure 5
demonstrates that, despite median run times that are comp
rable with the fastest explicit-state tools, SAL-SMC doet n
scale pash = 8 for any of the counter formulas. No matter
how the formula is specified, SAL-SMC exits with the mes-
sage “Error: vector too large” when the state space inceease
from 28 x 8 = 2048 states at = 8 to 2 x 9 = 4608 states at

Total Processing Time on 2-variable Linear Counter Formula S
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n= 9. SAL-SMC'’s behavior on pattern formulas was similar
(see Figures 8 and 13). While SAL-SMC consistently found
correct answers, avoided timing out, and always exitedegrac
fully, it does not seem to be an appropriate choice for formu-

Fig. 4. Performance Results: 2-Variable Linear Counters

Figure 8 shows performance on theclass formulas. Re-

las involving large state spaces. (SAL-SMC has the addedall thatE(n) = A{L; Opi. The minimally-sized automaton

inconvenience that it parses LTL formulas differently ttzdin
of the other tools described in this paper: it treats all terap
operators as prefix, instead of infix, operators.)

representinde (n) has exactly 2 states in order to remember
which pi’s have been observed. (Basically, we must declare
a state for every combination ¢i’s seen so far.) However,

Figures 6 and 7 show median automata generation angélone of the tools create minimally sized automata. Again, we
model analysis times for random formulas. Most tools, with see all of the explicit tools do not scale beyand 10, which
the exception of SPOT and LTL2BA, timeout or die before is minimally 1024 states, in sharp contrast to the symbolic
scaling to formulas of length 60. The difference in perfor- tools.

mance between SPOT and LTL2BA, on one hand, and the rest

of the explicit tools is quite dramatic. Note that up to léngt
60, model-analysis time is negligible. SPOT and LTL2BA
can routinely handle formulas of up to length 150, while Ca-

denceSMV and NuSMYV scale past length 200, with run timeﬁp

of a few seconds.

17 wWe recommend viewing all figures online, in color, and maguiifi

Graceless DegradatiorMost explicit tools do not behave ro-
bustly and die gracelessly. When LTL2Buchi has difficulty
rocessing a formula, it produces over 1,000 lineg afa.
ang. StackOverfl owError exceptions. LTL2BA periodi-
cally exits with “Command exited with non-zero status 1”
and prints into the Promela file, “lti2ba: releasing a free
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Fig. 5. Performance Results: 3-Variable Linear Counters Fig. 6. Random Formulas — Automata Generation Times
Random Formula Analysis: P = 0.5; N = 2
block, saw 'end of formula’.” Python traceback errors hin- 6 LTL2AUTE) CadenceSMV
der LTL—NBA. Modella suffers from a variety of mem- | &5 [ LTLZAUTCW)
ory errors including*** glibc detected *** double & [ Lrizsun Spot
. |.——— LTL->NBA
free or corruption (out): Ox 55ff4008 ***. Some- § C Modela
times Modella causes a segmentation fault and other time 2 | o
Modella dies gracefully, reporting “full memory” beforeiex S e L sy LTL28A
ing. When used purely as a LTL-to-automata translator, SPIN £ | Nusmv
. . (] B
often runs for thousands of seconds and then exits with non € | NuSMY
zero status 1. TMP behaves similarly. Wring often triggers Z r
Perl “Use of freed value in iteration” errors. When the trans % r
lation results in large Promela models, SPIN frequentlidge z°r
segmentation faults during its own compilation. Forexaanpl | & [
. ] -
SPOT translates the formul&8) to an automaton with 258 = 1
states and 6,817 transitions in 0.88 seconds. SPIN analyz¢ § L ;;
the resulting Promela model in 41.75 seconds. SPOT trans N T T Rt e DU PR T
lates theE(9) formula to an automaton with 514 states and ® 0 L}I‘;Olengltﬁ5 150 175 200
20,195 transitions in 2.88 seconds, but SPIN segmentatio

faults when trying to compile this model. SPOT and the SMV
tools are the only tools that consistently degrade gralyeful

they either timeout or terminate with a succinct, desorgpti _
message. show an analysis of correctness for random formulas. Here

A more serious problem is that of incorrect results, i.e., W& counted “correct” as any verdict, either “satisfiable” or
reporting “satisfiable” for an unsatisfiable formula or vice ~unsatisfiable,” that matched the verdict found by the two
versa. Note, for example, in Figure 8, the size of the automaSMVs for the same formula as the two SMVs always agree.
ton generated by TMP is independentpfvhich is an obvi- We excluded data for any formulas that timed out or triggered
ous error. The problem is particularly acute when the resdrm  €1TOr messages. Many of Fhe tools show degraded correctness
automatondy is empty (no state). On one hand, an empty S the formulas scale in size.
automaton accepts the empty language. On the other hand,

SPIN conjoins the Promela model for the never-claim with Does Size Matter?The focus of almost all LTL translation
the model under verification, so an empty automaton, wherpapers, starting with [27], has been on minimizing automata
conjoined with a universal model, actually acts as a universize. It has already been noted that automata minimization
sal model. The tools are not consistent in their handling ofmay not result in model checking performance improvement
empty automata. Some, such as LTL2Buchi and SPOT returf21] and specific attention has been given to minimizing the
an explicit indication of an empty automaton, while Modella size of the product with the model [41,25]. Our results show
and TMP just return an empty Promela model. We have takenthat size, in terms of both number of automaton states and
an empty automaton to mean “unsatisfiable.” In Figure 9 wetransitions is not a reliable indicator of satisfiabilityeziking

Fig. 7. Random Formulas — Model Analysis Times



Fig. 8. E-class Formula Data

run-time. Intuitively, the smaller the automaton, the eagi
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F O mulas. In Figure 12 we see the performance in terms of size
L g of generated automata. Performance in terms of run time is
T plotted in Figure 14, where each tool was run until it timed
DI Minimum Number of States out or reported an error for more than 10% of the sampled
g . formulas. SPOT and LTL2BA consistently have the best per-
5 [ formance in terms of run time, but they are average perform-
g ers in terms of automata size. LTL2Buchi consistently pro-
g ) duces significantly more compact automata, in terms of both
s0E states and transitions. It also incurs lower SPIN model-anal
i ysis times than SPOT and LTL2BA. Yet LTL2Buchi spends
- so much time generating the automata that it does not scale
nearly as well as SPOT and LTL2BA.
0 | || 1
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5.2 Symbolic Approaches Outperform Explicit Approaches

Across the various classes of formulas, the symbolic tools
outperformed the explicit tools, demonstrating fasterfqrer
mance and increased scalability. (We measured only com-

is to check for nonemptiness. This simplistic view, however bined automata-generation and model-analysis time for the
ignores the effort required to minimize the automaton. It is symbolic tools. The translation to automata is symbolic and
often the case that tools spend more time constructing the fois very fast; it is linear in the size of the formula [11].) We
mula automaton than constructing and analyzing the producsee this dominance with respect to counter formulas in Fig-
automaton. As an example, consider the performance of thares 3 and 4, for random formulas in Figures 6, 7, and 14,
tools on counter formulas. We see in Figures 3 and 4 dramatiand forE-class formulas in Figure 8. Fai-class formulas,
differences in the performance of the tools on such formulasno explicit tools could handle = 10, while the symbolic

In contrast, we see in Figures 10 and 11 that the tools d&SMV tools scale up tan = 20; see Figure 13. Recall that
not differ significantly in terms of the size of generated au-U(n) = (...(p1 U p2) U ...) U pn, SO while there is not
tomata. (For reference, we have marked on these graphs theclear, canonical automaton for eddkclass formula, it is
minimum automaton size for ambit binary counter, which ~ clear that the automata size is exponential.

is (2") xn+ 1 states. There ar€' umbers in the series of The only exception to the dominance of the symbolic
bits each plus one additional initial state, which is neetded tools occurs with 3-variable linear counter formulas, veher
assure the automaton does not accept the empty string) SImSPOT outperforms all symbolic tools. We ran the tools on
larly, Figure 8, shows little correlation between autonsit®  many thousands of formulas and did not find a single case in
and run time foiE-class formulas. which any symbolic tool yielded an incorrect answer yet ev-
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Number of Automata States for 2-variable Counter Formulas
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Fig. 11. Automata Size: 2-Variable Linear Counters . . . .
We return to the topic of model checking in the concluding

discussion.

Figures 6, 7, and 14 reveal why the explicit tools gen-
erally perform poorly. We see in the figures that for most
explicit tools automata-generation times by far dominate

The dominance of the symbolic approach is consistentmodel-analysis times, which calls into question the focus i
with the findings in [38,39], which reported on the superi- the literature on minimizing automata size. Among the ex-
ority of a symbolic approach with respect to an explicit ap- plicit tools, only SPOT and LTL2BA seem to have been de-
proach for satisfiability checking for the modal logic In signed with execution speed in mind. Note that, other than
contrast, [42] compared explicit and symbolic translagioh ~ Modella, SPOT and LTL2BA are the only tools implemented
LTL to automata in the context of symbolic model checking in C/C++.
and found that explicit translation performs better in -
text. Consequently, they advocateydrid approach, combin- ) )
ing symbolic systems and explicit automata. Note, however6 Discussion
that not only is the context in [42] different than here (mlode
checking rather than satisfiability checking), but alsofttre ~ Too little attention has been given in the formal-verifioati
mulas studied there are generally small and translatios tim literature to the issue of debugging specifications. We exdigu
is negligible, in sharp contrast to the study we present.herehere for the adoption of a basic sanity check: satisfiability

ery explicit tool gave at least one incorrect answer during o
tests.
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Run Times for U-class Formulas
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Fig. 13.U-class Formula Data Fig. 14. Automata generation and SPIN Analysis Times for 3-Varidbém-

dom Formulas

checking for both the specification and the complemented
specification. We showed that LTL satisfiability checking ca

be done via a reduction to checking universal models anqﬂodel checking in general. First, LTL translation tools ciee

b_e_nchmark_ed a large array of tools with respect to S"’lt's‘f'a'to be fast and robust. In our judgment, this rules out imple-
bility checking of scalable LTL formulas.

mentations in languages such as Perl or Python and favors

We found that the existing literature on LTL to automata ¢ or C++ implementations. Furthermore, attention needs to
translation prOVideS little information on actual tool f]HF be given to gracefu| degradation_ In our experience’ tool er
mance. We showed that most LTL translation tools, with theygrs are invariably the result of graceless degradationtdue
exception of SPQT, are research prototypes, which cannot bgoor memory management. Second, tool developers should
considered industrial-quality tools. The focus in theritere  focus on overall performance instead of output size. It has
has been on minimizing automata size, rather than evalualyready been noted that automata minimization may not re-
ing overall performance. Focusing on overall performancegyit in model checking performance improvement [21] and
reveals a large difference between LTL translation toais. | specific attention has been given to minimizing the size of
particular, we showed that symbolic tools have a clear edgene product with the model [41]. Still, no previous study of
over explicit tools with respect to LTL satisfiability chenl. | T|_ translation has focused on model checking performance,

While the focus of our study was on LTL satisfiability leaving a glaring gap in our understanding of LTL model
checking, there are a couple of conclusions that apply tachecking.
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