
Symbolic Systems, Explicit Properties:
on Hybrid Approaches

for LTL Symbolic Model Checking

Roberto Sebastiani1, Stefano Tonetta2⋆, and Moshe Y. Vardi3

1 DIT, Università di Trento, Italyrseba@dit.unitn.it
2 Fondazione Bruno Kessler, IRST, Italytonettas@fbk.eu

3 Dept. of Computer Science, Rice University, USAvardi@cs.rice.edu

Abstract. In this work we studyhybrid approaches to LTL symbolic model
checking; that is, approaches that use explicit representations of the property au-
tomaton, whose state space is often quite manageable, and symbolic representa-
tions of the system, whose state space is typically exceedingly large. We compare
the effects of using, respectively, (i) a purely symbolic representation of the prop-
erty automaton, (ii) a symbolic representation, using logarithmic encoding, of
explicitly compiled property automaton, and (iii) a partitioning of the symbolic
state space according to an explicitly compiled property automaton. We apply
this comparison to three model-checking algorithms: the doubly-nested fixpoint
algorithm of Emerson and Lei, the reduction of emptiness to reachability of Biere
et al., and the singly-nested fixpoint algorithm of Bloem et al. for weak automata.
The emerging picture from our study is quite clear, hybrid approaches outperform
pure symbolic model checking, while partitioning generally performs better than
logarithmic encoding. The conclusion is that the hybrid approaches benefit from
state-of-the-art techniques in semantic compilation of LTL properties. Partition-
ing gains further from the fact that the image computation isapplied to smaller
sets of states.

1 Introduction

Linear-temporal logic (LTL) [Pnu77] is a widely used logic to describe infinite be-
haviors of discrete systems. Verifying whether an LTL property is satisfied by a fi-
nite transition system is a core problem in Model Checking (MC). The key idea of the
automata-theoretic approach to MC is that LTL formulas can be compiled into equiv-
alent automata with fairness conditions, i.e., conditionson which infinite words are
accepted. Standard techniques consider the formulaϕ that is the negation of the desired
behavior and construct a Generalized Büchi automaton (GBA) Aϕ with the same lan-
guage. Then, they compute the product of this automatonAϕ with the systemM and
check for emptiness. To check emptiness, one has to compute the set offair states, i.e.
those states of the product automaton that are extensible toa fair path. The main obsta-
cle to model checking is thestate-space explosion; that is, the product is often too large
to be handled.
⋆ The author was partly supported by the Provincia Autonoma diTrento (project ANACONDA).

2 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

Explicit-state model checking uses highly optimized LTL-to-GBA compilation, cf.
[DGV99,EH00,SB00,GO01,EWS01,GL02,FW02,GBS02,ST03], which we refer to as
semantic compilation. Such compilation may involve an exponential blow-up in the
worst case, though such blow-up is rarely seen in practice. Emptiness checking is
performed using either a nested depth-first search [CVWY92,SE05] or an optimized
decomposition into strongly connected components [Cou99,GV04]. To deal with the
state-explosion problem, various state-space reductionsare used, e.g., [Val88,Pel94].

Symbolic model checking (SMC) [BCM+92] tackles the state-explosion problem
by representing the product automaton symbolically, usually by means of (ordered)
BDDs. The compilation of the property to symbolically represented GBA is purelysyn-
tactic, and its blow-up is linear (which induces an exponential blow-up in the size of the
state space), cf. [CGH97]. Symbolic model checkers typically compute the fair states
by means of some variant of the doubly-nested-fixpoint Emerson-Lei algorithm (EL)
[EL86,RBS00,FFK+01]. For “weak” property automata, the doubly-nested fixpoint al-
gorithm can be replaced by a singly-nested fixpoint algorithm [BRS99]. An alterna-
tive algorithm [BAS02] reduces emptiness checking to reachability checking (which
requires a singly-nested fixpoint computation) by doublingthe number of symbolic
variables.

Extant model checkers use either a pure explicit-state approach, e.g., in SPIN [Hol03],
or a pure symbolic approach, e.g., in NUSMV[CCGR99]. Between these two approaches,
one can findhybrid approaches, in which the property automaton, whose state space is
often quite manageable, is represented explicitly, while the system, whose state space is
typically exceedingly large, is represented symbolically. For example, the singly-nested
fixpoint algorithm of [BRS99] is based on an explicit construction of the property au-
tomaton. (See [BCZ99,CRB01] for other hybrid approaches.)

In [SSTV04], motivated by previous work ongeneralized symbolic trajectory evalu-
ation(GSTE) [YS02], we proposed a hybrid approach to LTL model checking, referred
to asproperty-driven partitioning(PDP). In this approach, the property automatonAϕ
is constructed explicitly, but its product with the system is represented in a partitioned
fashion. If the state space of the system isS and that of the property automaton isB ,
then we maintain a subsetQ⊆ S×B of the product space as a collection{Qb : b∈B}
of sets, where eachQb = {s∈ S : (s,b) ∈ Q} is represented symbolically. Thus, in
PDP we maintain an array of BDDs instead of a single BDD to represent a subset of the
product space. Based on extensive experimentation, we argued in [SSTV04] that PDP
is superior to SMC, in many cases demonstrating exponentially better scalability.

While the results in [SSTV04] are quite compelling, it is notclear why PDP is su-
perior to SMC. On one hand, one could try to implement PDP in a purely symbolic
manner by ensuring that the symbolic variables that represent the property-automaton
state space precede the variables that represent the systemstate space in the BDD vari-
able order. This technique, which we refer to astop ordering, would, in effect, generate
a separate BDD for each block in the partitioned product space, but without gener-
ating an explicit array of BDDs, thus avoiding the algorithmic complexity of PDP. It
is possible that, under such variable order, SMC would perform comparably (or even
better) than PDP. On the other hand, it is possible that the reason underlying the good
performance of PDP is not the partitioning of the state space, but, rather, the explicit

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 3

compilation of the property automaton, which yields a reduced state space for the prop-
erty automaton. So far, however, no detailed comparison of hybrid approaches to the
pure symbolic approach has been published. (VIS [BHSV+96] currently implements
a hybrid approach to LTL model checking. The property automaton is compiled ex-
plicitly, but then represented symbolically, using the so-calledlogarithmic encoding, so
SMC can be used. No comparison of this approach to SMC, however, has been pub-
lished). Interestingly, another example of property-based partitioning can be found in
the context of explicit-state model checking [GH93].

In this paper we undertake a systematic study of this spectrum of representation
approaches: purely symbolic representation (with or without top ordering), symbolic
representation of semantically compiled automata (with orwithout top ordering), and
partitioning with respect to semantically compiled automata (PDP). An important ob-
servation here is that PDP is orthogonal to the choice of the fixpoint algorithm. Thus,
we can study the impact of the representation on different algorithms; we use here EL,
the reduction of emptiness to reachability of [BAS02], and the singly-nested fixpoint
algorithm of [BRS99] for weak property automata. The focus of our experiments is on
measuringscalability. We study scalable systems and measure how running time scales
as a function of the system size. We are looking for a multiplicative or exponential
advantage of one algorithm over another one.

The emerging picture from our study is quite clear, hybrid approaches outperform
pure SMC. Top ordering generally helps, but not as much as semantic compilation.
PDP generally performs better than symbolic representation of semantically compiled
automata (even with top ordering). The conclusion is that the hybrid approaches benefit
from state-of-the-art techniques in semantic compilationof LTL properties. Such tech-
niques includes preprocessing simplification by means of rewriting [SB00,EH00], post-
processing state minimization by means of simulations [SB00,EH00,EWS01,GBS02],
and midprocessing state minimization by means of alternating simulations [GO01,FW02].
In addition, empty-language states of the automata can be discarded. PDP gains further
from the fact that the image computation is applied on smaller sets of states. The com-
parison to SMC with top ordering shows that managing partitioning symbolically is not
as efficient as managing it explicitly.

This paper extends the work presented in [STV05] by giving:

– a more detailed description of PDP and its relationship withsearch algorithms; in
particular, the algorithm that reduces liveness to safety is described in details both
for the explicit-state case and for property-driven partitioning.

– a deeper analysis of the results; in particular, the comparison of the different search
algorithms is shown and discussed.

The outline of the paper is as follows. Section 2 contains required background on
explicit-state and symbolic model checking. Section 3 describes hybrid approaches to
symbolic model checking. Section 4 contains experimental results. Finally, Section 5
contains some concluding remarks.

4 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

2 Background

2.1 Properties and systems

We use LTL with its standard syntax and semantics [Pnu77] to specify properties. Let
Propbe a set of propositions, which refer to important facts of the systems under anal-
ysis. A propositional literal (i.e., a propositionp in Prop or its negation¬p) is a LTL
formula; if ϕ1 and ϕ2 are LTL formulas, then¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, Xϕ1, ϕ1Uϕ2,
Gϕ1, andFϕ1 are LTL formulae, whereX, U , G, andF are the standard “next”, “un-
til”, “globally”, and “eventually” temporal operators respectively. We refer the reader
to [CGP99] for a formal definition of the semantics.

We describe the systems under analysis with Fair TransitionSystems (FTSs). We
takeΣ to be equal to 2Prop. An FTS is a tuple〈S ,S0,T,Σ,L,F S 〉, whereS is a set of
states,S0 ⊆ S are the initial states,T ⊆ S ×S is the transition relation,L : S → Σ is a
labeling function, andF S ⊆ 2S is the set of fairness constraints (each set inF S should
be visited infinitely often).

2.2 Explicit-state LTL model checking

A generalized Büchi automaton (GBA) is a tuple〈B ,b0,Σ,δ,F B〉, whereB is a set of
states,b0 ∈ B is the initial state,δ ⊆ B×Σ×B is the transition relation, andF B ⊆ 2B

is the set of fairness constraints.
The product between an FTSM and a GBAA is the FTS〈P ,P0,TP ,Σ,LP ,F P 〉,

where:

– P := S ×B ,
– P0 := S0×{b0},
– (p1, p2)∈TP iff p1 =(s1,b1), p2 =(s2,b2), (s1,s2)∈T,L(s1)= a and(b1,a,b2)∈

δ,
– LP (p) = a iff p = (s,b) andL(s) = a,
– F P := {FS ×B}FS∈F S ∪{S ×FB}FB∈F B .

LTL model checking is solved by compiling the negationϕ of a property into a GBA
Aϕ and checking the emptiness of the productP between the FTSM andAϕ [VW86]. In
explicit-state model checking, emptiness checking is performed by state enumeration: a
Depth-First Search (DFS) can detect if there exists a fair strongly-connected component
reachable from the initial states [CVWY92].

2.3 Symbolic LTL model checking

Suppose that for an FTS〈S ,S0,T,Σ,L,F 〉 there exists a set of symbolic (Boolean)
variablesV such thatS = 2V , i.e. a states of S is an assignment to the variables ofV.
We can think of a subsetQ of S as a predicate on the variablesV. Since everya ∈ Σ
can be associated with the setL−1(a) ⊆ S , a can be thought of as a predicate onV too.
Similarly, the transition relationT is represented by a predicate on the variablesV∪V ′,
whereV ′ contains one variablev′ for everyv∈V (v′ represents the next value ofv). In

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 5

the following, we will identify a set of states or a transition relation with the predicate
that represents it.

Given two FTSM1 = 〈S1,S1
0 ,T1,Σ,L1,F 1〉 with S1 = 2V1

andM2 = 〈S2,S2
0 ,T2,Σ,

L2,F 2〉with S2 = 2V2
, the synchronous composition ofM1 andM2 is the FTS〈SP ,SP0 ,TP ,Σ,LP ,F P 〉,

where

– SP = 2VP

, VP = V1∪V2,
– SP0 (v1,v2) = S1

0 (v1)∧S
2
0 (v2),

– TP (v1,v2,v′1,v
′
2) = T1(v1,v′1)∧T2(v2,v′2)

– LP (v1,v2) = L1(v1)∧L
2(v2),

– F P = F 1∪F 2.

Again, the negationϕ of an LTL property is compiled into an FTS, such that the
product with the system contains a fair path iff there is a system’s violation of the
property. The standard compilation produces an FTS〈Sϕ,S

ϕ
0 ,Tϕ,Σ,Lϕ,F ϕ〉, where

Sϕ = 2Vϕ
, Vϕ = Atoms(ϕ)∪Extra(ϕ), so thatAtoms(ϕ) ⊆ Prop are the propositions

that occur inϕ, Extra(ϕ)∩V = /0 andExtra(ϕ) contains one variable for every temporal
connective occurring inϕ [BCM+92,VW94,CGH97]. We call thissyntactic compila-
tion.

To check language containment, a symbolic model checker implements a fixpoint
algorithm [BCM+92]. Sets of states are manipulated by using basic set operations such
as intersection, union, complementation, and the preimageand postimage operations.
Since sets are represented by predicates on Boolean variables, intersection, union and
complementation are translated into resp.∧, ∨ and¬. The preimage and postimage
operations are translated into the following formulas:

PreImage (Q) = ∃V ′((Q[V ′/V])(V ′)∧T(V,V ′))
PostImage (Q) = (∃V(Q(V)∧T(V,V ′)))[V/V ′]

The most used representation for predicates on Boolean variables are Binary Deci-
sion Diagrams (BDDs) [Bry86]. For a given variable order, BDDs are canonical repre-
sentations. However, the order may affect considerably thesize of the BDDs. By means
of BDDs, set operations can be performed efficiently.

2.4 Emerson-Lei algorithm

In a symbolic approach, the application of a DFS, as in explicit-state model checking,
is not efficient. In fact, the effectiveness of symbolic algorithms relies on handling sets
of states. The standard approach in SMC is the one of Emerson-Lei (EL) [EL86].

The algorithm of [EL86] checks the emptiness of the product by computing the
set of states which can be extended to a fair path. These states are calledfair states.
EL computes the set of fair states with a double-nested fixpoint computation, as the
one shown in Figure 1. The outer fixpoint keeps an approximation Z of the set. At
every iteration it refines the approximation by restrictingthe set to the states that can be
extended to a fair path lying inZ. This is computed with the inner fixpoint.

6 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

EL(Q)1

begin2

Z := Q;3

repeat4

Z′ := Z;5

for F ∈ F do6

Y :=EU(Z,F ∩Z) ;7

Z := Z∩PreImage(Y) ;8

until Z′ = Z ;9

return Z10

end11

EU(Q1,Q2)12

begin13

R := Q2;14

repeat15

Z := Q1∩PreImage(R) ;16

R := R∪Z;17

until Z = R ;18

return R19

end20

Fig. 1.Emerson-Lei algorithm.

2.5 Alternatives to EL

Symbolic model checkers typically compute the fair states by means of some variant of
EL [RBS00,FFK+01]. There are interesting alternatives that try to solve the emptiness
problem in a more efficient way.

Weak automata For “weak” property automata, the doubly-nested fixpoint algorithm
can be replaced by a singly-nested fixpoint [BRS99]. This is the case of safety prop-
erties, where we can identify a setB of “bad” states, and a violation of the property is
just an initial path that reaches one of these states. Then, we can check the language
emptiness by searching for a path reachingB. In other cases, the fairness conditions
partition the Strongly Connected Components (SCCs) in two groups: for every fairness
conditionF , either an SCC is contained inF or it does not intersectF . Then, ifB is the
set of states of the accepting SCCs, we can check the languageemptiness by looking for
a cycle inB reachable from the initial states. This requires just a single fixpoint com-
putation. The drawback of this approach is that not all LTL formulas can be translated
into “weak” automata. We refer to this technique as w/s.

Liveness to safetyAn alternative algorithm [BAS02] reduces emptiness checking to
reachability checking (which requires a singly-nested fixpoint computation). Intuitively,
theliveness-to-safetyalgorithm (l2s) applies a forward search and it non-deterministically

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 7

saves a visited state: the emptiness is violated if the search reaches a state that was
previously saved. To assure that the loop is fair, one has to add another symbolic
variable for every fairness constraint. Formally, if the product machine is the FSM
M = 〈S ,S0,T,Σ,L,F 〉 with S = 2V , l2s produces the FSMM′ = 〈S ′,S ′

0,T
′,Σ,L ′,F ′〉

where

– S ′ = 2V′
with V ′ = V ∪Vc∪{save,saved, looped}∪VF , where

• Vc contains one (copy) variablevc for every variablev in V;
• save, saved, andloopedare new (fresh) variables;
• VF contains one variablevF for everyF in F ;

– S ′
0 := S0∧¬saved∧

V

F∈F ¬vF

– T ′(v,vc,save,saved, , looped,vF , v′,v′c,save′,saved′, looped′,v′F) = T(v,v′) ∧
v′c ↔ ((save∧!saved∧v)∨vc) ∧
saved′ ↔ (save∨saved) ∧
v′F ↔ (vF ∨ ((save∨saved)∧F)) ∧
looped→ (saved∧

V

F∈F vF ∧
V

v∈V(v↔ vc));
– L ′(v,vc,save,saved,vF) = L ′(v);
– F ′ = {F ′} andF ′ = looped

In other words, the value ofsaveis always non-deterministic; oncesavebecomes
true, we setsavedto true and we store the current state ofS, i.e. we copy the value of
eachv in vc; from that point, we setvF to true when we visitF; finally, loopedis true if,
after visiting every fair condition, we loop back to the stored state. Thus, we can reach
F ′ in S′ if and only if there exists a reachable fair loop inS (for a formal proof, see
[BAS02]).

The drawback of this technique is that it requires to double the number of symbolic
variables.

3 Hybrid approaches

3.1 Symbolic systems, explicit-state property automata

Between the explicit-state and the symbolic approach described in Section 2,hybrid
approaches represent the system symbolically and the property automaton explicitly.
Thus, they semantically compile the LTL formula into a GBA. We identify two main
classes of hybrid approaches. In the first class, the explicit-state automaton is encoded
into an FTS, the synchronous product between the resulting FTS with the FTS of the
system is built, and finally the product state space is searched for an accepting fair path
by applying an algorithm based on a fully symbolic image computation. In the second
class, the search is performed on an implicit representation of the product state space,
but the algorithm adopts an hybrid image computation that combines the symbolic im-
age computation of the system with the explicit list of successors of the GBA.

The flow of the two approaches is depicted in Figure 2. Notice that the choice be-
tween the two does not affect the set of states visited. Indeed, the product representation
is completely orthogonal to the model-checking algorithm.

8 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

SYMBOLIC IMAGE

SEARCH RESULTSEARCH ALGORITHM

PROPERTY
ϕ

GBA

FTS
〈Vϕ, Iϕ,Tϕ〉

PRODUCT FTS
〈VP, IP,TP〉

SYSTEM FTS
〈VM, IM,TM〉

∃V ′((Q[V′/V])(V ′)∧T(V,V ′))

COMPILATION

SYMBOLIC

SYMBOLIC IMAGE

SEARCH ALGORITHM SEARCH RESULT

PDP IMAGE

PROPERTY
ϕ

GBA

∃V ′((Q[V′/V])(V′)∧T(V,V′))

PROPERTY-DRIVEN

PARTITIONING

SYSTEM FTS
〈VM, IM,TM〉

Fig. 2. Hybrid approaches’ flow.
.

3.2 Symbolic compilation of explicit-state property automaton

Given the GBAA = 〈B ,b0,Σ,δ,F 〉 corresponding to the formulaϕ, we can compile
A into the FTS〈SA,SA

0 ,TA,Σ,LA,F A〉, whereSA = 2VA
, VA = Extra(A)∪Atoms(ϕ),

Extra(A)∩Prop= /0 and|Extra(A)| = log(|B |), SA
0 represents{b0}, TA(s,a,s′,a′) is

true iff (s,a,s′) ∈ δ, LA(s,a) = a and finally everyFA ∈ F A represents the correspon-
dent setF ∈ F . Intuitively, we number the states of the GBA and then use binary nota-
tion to refer to the states symbolically. This is referred toaslogarithmic encoding.

3.3 Property-driven partitioning (PDP)

Given an FTSM and a GBAA, we can consider the partitioning of the product state
space:{Pb}b∈B , wherePb = {p ∈ P : p = (s,b)}. Thus, a subsetQ of P can be rep-
resented by the following set of states ofM: {Qb}b∈B , whereQb = {s : (s,b) ∈ Q}. If
Q1 = {Q1

b}b∈B andQ2 = {Q2
b}b∈B , we translate the set operations used in symbolic

algorithms into:

Q1∧Q2 := {Q1
b∧Q2

b}b∈B

Q1∨Q2 := {Q1
b∨Q2

b}b∈B
¬Q := {¬Qb}b∈B

PdpPreImage (Q) := {
W

(b,a,b′)∈δ PreImage (Qb′)∧a}b∈B

PdpPostImage (Q) := {
W

(b′,a,b)∈δ PostImage (Qb′ ∧a)}b∈B

(1)

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 9

begin PdpEL(Q)1

Z′ := Q ; // for all b∈ B , Z′
b := Qb2

repeat3

Z′ := Z ; // for all b∈ B , Zb := Z′
b4

for F ∈ F do5

G :=PdpRestrict(S ,F) ; // for all b∈ B ,6

// if b∈ F Rb := S, else Rb := /0
Y :=PdpEU(Z,G∩Z) ;7

Z := Z∩PdpPreImage(Y) ; // see Eq. 18

until Z′ = Z ;9

return Z10

end11

PdpEU(Q1,Q2)12

begin13

R := Q2 ; // for all b∈ B , Rb := Q2b14

repeat15

Z := Q1∩PdpPreImage(R) ; // see Eq. 116

R := R∪Z ; // for all b∈ B , Rb := Rb∨Zb17

until Z = R ;18

return R19

end20

Fig. 3. Partitioned version of EL

All symbolic model-checking algorithms that operate on theproduct FTS can be
partitioned according to the property automaton, operating on a BDD array rather than
on a single BDD (see [SSTV04]).

3.4 PDP version of EL

The PDP version of the EL algorithm is shown in Figure 3. The difference with the
non-partitioned versions is that whileEU and EL operate on a single set of states in
the product automaton,PdpEU andPdpEL operate on an array of sets of states of the
system (one set for every vertex of the GBA). Thus, every variable in the algorithms
of Figure 3 can be considered as an array of propositional formulas, implemented as
BDDs. The side comments explain the operation performed on the single BDD. The
backward image of an array is given by Equation 1.

3.5 Explicit-state and hybrid versions of l2s

The combination of PDP with l2s is not straightforward. Thus, we dedicate this sec-
tion to show how we solved it. First, we have to conceive an automata-theoretic version
of l2s. We used this technique to convert the property automaton into an equivalent
automaton on finite words. Second, we must combine this explicitly-represented au-
tomaton with the system, for which we use the standard symbolic version of l2s.

10 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

Recall that l2s doubles the number of symbolic variables in order to reduce empti-
ness to reachability (see Section 2.5). This is equivalent to squaring the size of the state
space. Since in PDP we work directly with the state space of the property automaton, we
need to square the explicit state space, while doubling the number of symbolic variables
that describe the system.

If the property automaton is the GBAA = 〈B ,b0,Σ,δ,{F}〉, we can find an au-
tomatonA′ on finite words, which is empty (i.e. has empty language) if and only if A
is empty. To this purpose, we apply the l2s idea straighforwardly to the GBAA. As l2s
uses a linear number of additional variables to non-deterministically store the current
state, we similarly add a copy ofA for every stateb∈ B (when a run passes to the copy
corresponding tob, we virtually storeb as the state to reach again to find a loop). Since,
we are considering GBAs with only one fair conditionF , we can restrict the number
of copies to|F| (i.e., we store a state only if it is inF). Formally, we defineA′ as the
following automatonA′ = 〈B× ({0}∪F),(b0,0),Σ,δ′,{F ′}〉 whereδ′ andF ′ ⊆B×B

are defined as follows:

– δ′ = {((b,0),a,(b′,0))|(b,a,b′) ∈ δ}∪
{((b,0),a,(b′,b))|(b,a,b′) ∈ δ andb∈ F}∪
{((b,b′′),a,(b′,b′′))|(b,a,b′) ∈ δ andb′′ ∈ F}

– F ′ =
S

b∈F(b,b)

In other words, there are|F |+1 copies ofA: initially, we start from the copy “0”; from
a stateb in F, we can pass to the copy “b”; when we reachb in the copy “b”, we find
an accepting loop ofA.

The hybrid version of l2s combines the standard symbolic version of l2s applied to
the system (doubling the number of variables) and the above explicit version of l2s
applied to the property automaton (considering a linear number of copies). To this
purpose, we must modify slightly the construction ofA′ in order to synchronize the
property automaton with the system generated by l2s: the move from the copy “0” to
the copy “b” must happen when the system saves the current state in orderto find a
fair loop (see Section 2.5); we must reachF when the system loops back to the saved
state. Formally, we build the automatonA′′ = 〈B × ({0}∪ F)∪ F ×{1},(b0,0),Σ ∪
{save,saved, looped},δ′′,{F ×{1}}〉 whereδ′′ is defined as follows:

– δ′′ = {((b,0),a,(b′,0))|(b,a,b′) ∈ δ}∪
{((b,0),a∧save∧¬saved,(b′,b))|(b,a,b′) ∈ δ andb∈ F}∪
{((b,b′′),a∧saved,(b′,b′′))|(b,a,b′) ∈ δ andb′′ ∈ F}∪
{((b,b′′),a∧ looped,(b′,1))|(b,a,b′) ∈ δ andb′′ = b′}

This automaton is used to guide the partitioning of the product with the system.

3.6 Hypothesis

Our hypothesis is that hybrid approaches combine the best features of explicit-state and
symbolic model checking techniques. On the one hand, they use a symbolic represen-
tation for the system and a symbolic algorithm, which may benefit from the compact
representation of BDDs. On the other hand, they may benefit from state-of-the-art tech-
niques in LTL-to-Büchi compilation, which aim at optimizing the state space of the

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 11

property automaton, and prune away redundant and empty-language parts. Optimiza-
tions include preprocessing simplification by means of rewriting [SB00,EH00]; post-
processing minimization by means of simulations [SB00,EH00,EWS01,GBS02], and
midprocessing minimization by means of alternating simulation [GO01,FW02].

In addition, PDP has the advantage of using a partitioned version of the product
state space. Partitioned methods usually gain from the factthat the image operation is
applied to smaller sets of states, cf. [FKZ+00]. Furthermore, PDP enables traversing
the product state space without computing it explicitly. The experiments reported in the
next section test our hypothesis.

4 Experimental results

We tested the different product representations on two scalable systems with their LTL
properties, by using three different model-checking algorithms. Every plot we show in
this paper is characterized by three elements: the systemM, the LTL propertyϕ and the
model-checking algorithm used.

4.1 Verification models

The two systems and their properties are inspired by case studies of the Bandera Project
(http://bandera.projects.cis.ksu.edu).

The first system is a gas-station model. There areN customers who want to use one
pump. They have to prepay an operator who then activates the pump. When the pump
has charged, the operator give the change to the customer. Wewill refer to this system
asgas . In this system, customers are symmetric. For this reason, we refer only to the
first and second customer in the properties, even if there areactuallyN customers.

We consider four properties for thegas system.gas.prop1 states that, if the first
customer started the pump and has not yet finished when the second customer prepays,
then the second customer must be the next served.gas.prop2 states the same property
of gas.prop1 , but with the assumption that whenever the first customer started the
pump, she does not do a second prepayment before receiving the change of the first
prepayment.gas.prop3 states that, if the first customer prepays first, then she will
be served first.gas.prop4 states that whenever the first customer starts the pump, the
second customer must wait until the first finished.

The second system is a model of a stack with the standard pop and push functions,
a function to process the elements of the stack in a top-down order, and a function to
check if the stack is empty. In this case, scalability is given by the maximum sizeN of
the stack.

We consider five properties for thestack system.stack.prop1 states that, if we
push some datad1 and call the top-down processing function before removingthed1,
then we will surely processd1. stack.prop2 states that, if we push some data and call
the empty function before any pop call, then the function will say that the stack is not
empty.stack.prop3 states that between a push call and a empty call returning that the
stack is empty, there must be a pop call.stack.prop4 states that, if we pushd1 and
later we pushd2 and later we call the top-down function, and in the meanwhiled1 and

12 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

Name Formula Type
gas.prop1 G((pumpstarted1 ∧ ((!pumpcharged1) U operator prepaid 2)) terminal

→ ((!operator activate1) U
(operator activate2 | G!operator activate1)))

gas.prop2 (G(pumpstarted1→ neither
((!operator prepaid 1) U
(operator change1 | G!operator prepaid 1))))
→ (G((pumpstarted1 ∧ ((!pumpcharged1) U operator prepaid 2))
→ ((!operator activate1) U
(operator activate2 | G!operator activate1)))

gas.prop3 ((!operator prepaid 2) U operator prepaid 1) terminal
→ (!pumpstarted2 U (pumpstarted1 | G(!pumpstarted2)))

gas.prop4 G(pumpstarted1 terminal
→ ((!pumpstarted2) U (pumpcharged1 | G(!pumpstarted2))))

stack.prop1 G(callPushd1 ∧ ((!returnPopd1) U callTop Down) weak
→ F(callTop Down ∧ F(callProcessd1)))

stack.prop2 G((callPush∧ (!returnPop U callEmpty)) weak
→ F(callEmpty∧ F(returnEmptyFalse)))

stack.prop3 G((callPushd1 ∧ F(returnEmptyTrue)) → terminal
(!returnEmptyTrue U returnPopd1))

stack.prop4 G((callPushd1 ∧ ((!returnPopd1) U (callPushd2∧ weak
((!returnPopd1 ∧ !returnPopd2) U callTop Down))))
→ F(callTop Down ∧ F(callProcessd2 ∧ FcallProcessd1)))

stack.prop5 G((callPushd1 ∧ (!returnPopd1 U callPushd2)) terminal
→ (!returnPopd1 U (!returnPopd2 | G!returnPopd1)))

Table 1.The LTL properties of thegas and thestack systems. First column shows the name, the
second column the LTL formula, and the third column the type of the corresponding automaton.

d2 are not popped, then the function will processd2 and laterd1. stack.prop5 states
that, if we pushd1 and later we pushd2, and in the meanwhiled1 is not popped, then
d2 must be popped befored1.

The properties of these two systems are displayed in Table 1.

4.2 LTL to Büchi automata conversion

In this section, we focus the attention on the compilation ofLTL formulas into GBAs.
For syntactic compilation, we usedltl2smv , distributed together with NUSMV. As for
semantic compilation, we usedMODELLA , which uses also some techniques described
in [EH00,SB00,EWS01,GL02]. In Table 2, we reported the sizeof the automata used
in the tests.

Note that the automata created byMODELLA are degeneralized, i.e. they have only
one fairness constraint. Degenerilization involves a blow-up in the number of states that
is linear in the number of fairness constraints (without degeneralization, the same linear
factor shows up in the complexity of emptiness testing).

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 13

ltl2smv modella
property extra variablesfairness constraints states extra variablesfairness constraints

(⌈log(states)⌉)
gas.prop1 4 4 6 3 1
gas.prop2 7 7 32 5 1
gas.prop3 3 3 4 2 1
gas.prop4 3 3 6 3 1

stack.prop1 4 4 4 2 1
stack.prop2 4 4 4 2 1
stack.prop3 3 3 6 3 1
stack.prop4 6 6 9 4 1
stack.prop5 4 4 5 3 1

Table 2. Number of states, number of (extra) symbolic variables, andnumber of fairness condi-
tions of the automata corresponding to the LTL properties ofgas and thestack systems, obtained
with ltl2smv andMODELLA .

4.3 Model checking algorithms

We investigated three different MC algorithms for emptiness checking (see Section 2):

EL: the first model checking algorithm we used is the classic Emerson-Lei algorithm
[EL86], which computes the set of fair states;

l2s: the second algorithm is the reduction of liveness checking to safety checking [BAS02];
w/s: the third technique consists of checking if the automaton issimple enough to ap-

ply a single fixpoint computation in order to find a fair loop [BRS99]; we checked
which automata were weak or terminal: we found that automatacorresponding to
stack.prop1, stack.prop2 and stack.prop4 were weak, and that the automata cor-
responding to gas.prop1, gas.prop3, gas.prop4, stack.prop3 and stack.prop5 were
terminal.

4.4 Tested hybrid approaches

Hereafter,log-encode stands for the logarithmic encoding of the explicit representa-
tion of the automata. Note that an explicit LTL-to-Büchi compiler usually uses fewer
symbolic variables than standard syntactic compilation (see, for example, the data in
Table 2 where the semantic compilerMODELLA is compared to the syntactic compiler
ltl2smv). Nevertheless, one may think that the syntactic compilation, whose transition
constraints are typically simpler, is more suitable for symbolic model checking. As we
see below, this is not the case.

We usetop-order to denote the top-ordering option of putting the symbolic vari-
ables of the property automaton at the top of the variable ordering. Consider a BDDd
that represents a set of states of the product of the system with the property automaton.
Let us consider an assignment to the symbolic variables of the property automaton cor-
responding to the stateb1. If you follow this assignment in the structure ofd, you find a
sub-BDD, which corresponds to the setQb1 of system’s states that are paired withb in

14 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

v2

b1 b2 b3

v1

Property−automaton variables

Sub−BDDs

Fig. 4. Example of BDD with the top-ordering of property-automatonvariables.

the product (see Figure 4). Thus, by traversing the product state space with the option
top-order , every BDD will contain an implicit partitioning of the set of states it repre-
sents (note that although this is a partitioning of the product state space, the sub-BDDs
may share some states of the system).

Finally, we consider the PDP representation of the product state space. PDP uses the
same automaton encoded bylog-encode to partition the state space. Unliketop-order ,
the partitioning is handled explicitly (see [SSTV04]).

4.5 Results

We used NUSMV as platform to perform out tests. We run NUSMV on the Rice Teras-
cale Cluster (RTC)4, a TeraFLOP Linux cluster based on Intel Itanium 2 Processors. A
timeout has been fixed to 72 hours for each run. The execution time (in seconds) has
been plotted in log scale against the size of the system (i.e., the number of customers in
thegas system and the size of the stack in thestack system). The results are shown in
Figs. 5-305. Every plot corresponds to one system, one property, one model checking
algorithm. Figs. 5-13 show the results of EL algorithm. Figs. 14-22 show the results of
l2s. Figs. 23-30 show the results of w/s (in these plots, syntactic compilation uses EL).

Analyzing the plots, we see that syntactic compilation performs always worse than
semantic compilation. This is the case for all experiments but one, the property 2 of the
gas example with the EL algorithm, where the syntactic compilation is more efficient
than PDP, and comparable tolog-encode . In all other cases, the syntactic compilation

4 http://www.citi.rice.edu/rtc/
5 All examples, data and tools used in these tests, as well as larger plots, are available at

http://www.science.unitn.it/˜stonetta/CAV05 .

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 15

is not efficient and is outperformed by the semantic compilation, independently from
the system, the property or the search algorithm under consideration. In the case of
the stack system, the gap is considerable. This suggests that the gaingiven by the
simplification of the property automaton obtained with semantic compilation can be
magnified by the complexity of the system state space. For this reason, the improvement
can reach three order of magnitude (see Fig. 13).

The top-order option typically helps logarithmic encoding, while in the case of
syntactic compilation it is less reliable: in some cases (see Figs. 17, 23, 24, and 25), it
degrades the performance a lot.

PDP usually performs better thanlog-encode , even if combined withtop-order .
Therefore, we conclude that the results confirm our hypothesis: hybrid approaches per-
form better than standard techniques, independently of themodel checking algorithm
adopted. Moreover, they usually benefit from partitioning.Finally, by handling the par-
titioning explicitly, we get a further gain. This last pointshows that accessing an adja-
cency list of successors may perform better than existentially quantifying the variables
of a BDD.

4.6 Scaling up the number of partitions

In the previous section, we have seen that PDP has the best performance among the
techniques we tested. However, a doubt may arise about the feasibility of the partition-
ing when the number of partitions grows. For this reason, we looked for some LTL
properties whose corresponding automaton has a large number of states. We took as
example the following property used in [BLS01]:

((GF p0→ GF p1)∧ (GFp2→ GF p0)
(GF p3→ GF p2)∧ (GF p4→ GF p2)
(GF p5→ GF p3)∧ (GF p6→ GF(p5∨ p4))
(GF p7→ GF p6)∧ (GF p1→ GF p7))
→ GF p8

Trying to compile this property into a GBA, we faced an interesting problem: no com-
piler we tried managed to translate this property in reasonable time6. For this reason,
we built a new compiler specialized for this kind of properties (Boolean combination
of GF formulas). The resulting automaton has 1281 states. We checked this property
on the leader election algorithm LCR, cf. [Lyn96]. We instantiated the propositions in
order to make the property true in one case, false in another.The results are plotted
in Figs. 31-32. Note that the pattern is the same as in the previous results. More im-
portantly, partitioning does not seem to be affected by the number of partitions. Notice
that the logarithmic encoding pays an initial overhead for encoding symbolically the au-
tomaton. However, as the size of the system grows, this technique outperforms syntactic
compilation.

6 Actually, the only translator that succeeded wasltl2tgba (http://spot.lip6.fr/wiki/).
However, we had to disable simulation-based reduction so that the resulting automaton had
more than 70000 states and even parsing such an automaton took more than model checking
time.

16 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

Legend Figs. 5-32
synt. compilation

synt.compilation

with top-order

log-encode

log-encode

with top-order

PDP

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

Fig. 5. gas , prop. 1, EL

0.1

1

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18 20

Fig. 6. gas , prop. 2, EL

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

Fig. 7. gas , prop. 3, EL

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

Fig. 8. gas , prop. 4, EL

1

10

100

1000

10000

100000

1e+06

10 11 12 13 14 15 16

Fig. 9. stack , prop. 1, EL

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 17

1

10

100

1000

400 450 500 550 600 650 700 750 800

Fig. 10.stack , prop. 2, EL

0.1

1

10

100

1000

10000

50 100 150 200 250 300 350 400

Fig. 11.stack , prop. 3, EL

1

10

100

1000

10000

100000

10 11 12 13 14 15

Fig. 12.stack , prop. 4, EL

0.1

1

10

100

1000

10000

50 100 150 200 250 300 350 400

Fig. 13.stack , prop. 5, EL

0.1

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100

Fig. 14.gas , prop. 1, l2s

1

10

100

1000

10000

100000

10 20 30 40 50 60 70 80 90 100

Fig. 15.gas , prop. 2, l2s

18 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

0.1

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100

Fig. 16.gas , prop. 3, l2s

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100

Fig. 17.gas , prop. 4, l2s

10

100

1000

10000

100000

10 11 12 13 14 15

Fig. 18.stack , prop. 1, l2s

1000

10000

100000

1e+06

100 200 300 400 500 600 700

Fig. 19.stack , prop. 2, l2s

100

1000

10000

100000

1e+06

50 100 150 200 250 300 350 400

Fig. 20.stack , prop. 3, l2s

10

100

1000

10000

100000

10 11 12 13 14 15

Fig. 21.stack , prop. 4, l2s

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 19

100

1000

10000

100000

1e+06

50 100 150 200 250 300 350 400

Fig. 22.stack , prop. 5, l2s

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

Fig. 23.gas , prop. 1, safety

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

Fig. 24.gas , prop. 3, safety

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16 18 20

Fig. 25.gas , prop. 4, safety

1

10

100

1000

10000

100000

1e+06

10 11 12 13 14 15 16

Fig. 26.stack , prop. 1, weak

1

10

100

1000

400 450 500 550 600 650 700 750 800

Fig. 27.stack , prop. 2, weak

20 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

0.1

1

10

100

1000

10000

50 100 150 200 250 300 350 400

Fig. 28.stack , prop. 3, safety

1

10

100

1000

10000

100000

10 11 12 13 14 15

Fig. 29.stack , prop. 4, weak

0.1

1

10

100

1000

10000

50 100 150 200 250 300 350 400

Fig. 30.stack , prop. 5, safety

Legend Figs. 5-32
synt. compilation

synt.compilation

with top-order

log-encode

log-encode

with top-order

PDP

4.7 MC-algorithm comparisons

As a side-effect of our investigation, we can compare the algorithms for emptiness
checking that we tested. In Figs. 33-41, we plotted the performance of EL, l2s and w/s
on the systems and properties we have described above. For the product representa-
tion we used PDP (we noticed that the pattern is not differentby using the syntactic
compilation or the log-encoding of the semantic compilation).

Analyzing the plots, we can see that on one hand the improvement of w/s is not
compelling for these examples; on the other hand, the effectiveness of l2s depends
enormously on the system under verification (in the gas system, we have a positive
exponential gap, while in the stack system the gap is largelynegative).

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 21

1

10

100

1000

10000

100000

3 3.5 4 4.5 5 5.5 6

Fig. 31.LCR, large prop. (true), EL

1

10

100

1000

10000

100000

1e+06

3 3.5 4 4.5 5 5.5 6

Fig. 32.LCR, large prop. (false), EL

5 Conclusions

The main finding of this work is that hybrid approaches to LTL symbolic model check-
ing outperform pure symbolic model checking. Thus, a uniform treatment of the system
under verification and the property to be verified is not desirable. We believe that this
finding, on one hand, calls for further research into the algorithmics of LTL symbolic
model checking. The main focus of the research in this area has been either on the
implementation of BDD operations, cf. [OYY93], or on symbolic algorithms for FTS
emptiness, cf. [RBS00], ignoring the distinction between system and property. While ig-
noring this distinction allows for simpler algorithms, it comes with a significant perfor-
mance penalty. On the other hand, the paper shows that practitioners of LTL symbolic
model checking would better consider to implement or re-usesemantic compilation of
LTL formulas, rather than a simpler but less efficient symbolic compilation.

A second contribution of the paper is a clarification on the reasons why PDP is
superior to standard MC: part of the improvement is due to theoptimization applied to
the explicit-state automaton corresponding to the LTL formulas; a second factor is the
exploitation of the explicit automata transitions in the computation of the image used in
the search.

As a final remark, we note that the benchmarks we used in the experimental eval-
uation cannot be considered sufficiently representative, and we need to confirm our
conclusions by more extensive benchmarking.

Acknowledgements

We are grateful to R.E. Bryant, A. Goel and F. Somenzi for making interesting obser-
vations on the variable ordering of the property automaton encoding.

We are grateful to Armin Biere and Viktor Schuppan for providing us with their
tools in order to test the combination of “liveness to safety” with automata-theoretic
approaches.

22 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

PDP + EL
PDP + l2s
PDP + safety

Fig. 33.gas , prop. 1

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

PDP + EL
PDP + l2s

Fig. 34.gas , prop. 2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

PDP + EL
PDP + l2s
PDP + safety

Fig. 35.gas , prop. 3

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

PDP + EL
PDP + l2s
PDP + safety

Fig. 36.gas , prop. 4

 1

 10

 100

 1000

 10000

 100000

 10 11 12 13 14 15 16

PDP + EL
PDP + l2s
PDP + weak

Fig. 37.stack , prop. 1

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600 700 800

PDP + EL
PDP + l2s
PDP + weak

Fig. 38.stack , prop. 2

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 23

 0.1

 1

 10

 100

 1000

 10000

 100000

 50 100 150 200 250 300 350 400

PDP + EL
PDP + l2s
PDP + safety

Fig. 39.stack , prop. 3

 1

 10

 100

 1000

 10000

 100000

 10 11 12 13 14 15

PDP + EL
PDP + l2s
PDP + weak

Fig. 40.stack , prop. 4

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 50 100 150 200 250 300 350 400

PDP + EL
PDP + l2s
PDP + safety

Fig. 41.stack , prop. 5

References

[BAS02] A. Biere, C. Artho, and V. Schuppan. Liveness Checking as Safety Checking.Electr.
Notes Theor. Comput. Sci., 66(2), 2002.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Sym-
bolic Model Checking: 1020 States and Beyond.Information and Computation,
98(2):142–170, 1992.

[BCZ99] A. Biere, E. M. Clarke, and Y. Zhu. Multiple State andSingle State Tableaux for
Combining Local and Global Model Checking. InCorrect System Design, volume
1710 ofLNCS, pages 163–179. Springer-Verlag, 1999.

[BHSV+96] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz,
S. T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ran-
jan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. Vis: a system for verification
and synthesis. In R. Alur and T. A. Henzinger, editors,Proceedings of the 8th Inter-
national Conference on Computer Aided Verification CAV’96, volume 1102, pages
428–432. Springer Verlag, 1996.

24 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

[BLS01] K. Baukus, Y. Lakhnech, and K. Stahl. Verification ofParameterized Protocols.J.
UCS, 7(2):141–158, 2001.

[BRS99] R. Bloem, K. Ravi, and F. Somenzi. Efficient DecisionProcedures for Model Check-
ing of Linear Time Logic Properties. InCAV, pages 222–235, 1999.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

[CCGR99] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new Symbolic
Model Verifier. InProceedings of the 11th International Conference on Computer-
Aided Verification, volume 1633 ofLNCS, pages 495 – 499. Springer-Verlag, 1999.

[CGH97] E.M. Clarke, O. Grumberg, and K. Hamaguchi. AnotherLook at LTL Model Check-
ing. Formal Methods in System Design, 10(1):47–71, 1997.

[CGP99] E.M. Clarke, O. Grumberg, and D. A. Peled.Model checking. MIT Press, 1999.
[Cou99] J.-M. Couvreur. On-the-fly verification of linear temporal logic. InWorld Congress

on Formal Methods, pages 253–271, 1999.
[CRB01] A. Cimatti, M. Roveri, and P. Bertoli. Searching Powerset Automata by Combining

Explicit-State and Symbolic Model Checking. InProceedings of the 7th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, volume 2031 ofLNCS, pages 313–327. Springer-Verlag, 2001.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient
Algorithms for the Verification of Temporal Properties.Formal Methods in System
Design, 1(2/3):275–288, 1992.

[DGV99] N. Daniele, F. Giunchiglia, and M.Y. Vardi. Improved automata generation for linear
temporal logic. InProceedings of the 11th International Conference on Computer-
Aided Verification, volume 1633 ofLNCS, pages 249–260. Springer-Verlag, 1999.

[EH00] K. Etessami and G. Holtzmann. Optimizing Büchi Automata. InProceedings of
CONCUR’2000, volume 1877 ofLNCS, 2000. Springer.

[EL86] E.A. Emerson and C.L. Lei. Efficient Model Checking inFragments of the Proposi-
tional µ-Calculus. InProceedings of the Symposium on Logic in Computer Science,
pages 267–278. IEEE Computer Society, 1986.

[EWS01] K. Etessami, T. Wilke, and R. Schuller. Fair simulation relations, parity games, and
state space reduction for büchi automata. In Fernando Orejas, Paul G. Spirakis, and
Jan van Leeuwen, editors,Automata, Languages and Programming, 28th interna-
tional colloquium, volume 2076 ofLNCS. Springer, July 2001.

[FFK+01] K. Fisler, R. Fraer, G. Kamhi, M.Y. Vardi, and Z. Yang. Is there a best symbolic
cycle-detection algorithm? InProceeding of the 7th International Conference on
Tools and algorithms for the construction and analysis of systems, volume 2031 of
LNCS, pages 420–434. Springer-Verlag, 2001.

[FKZ+00] R. Fraer, G. Kamhi, B. Ziv, M.Y. Vardi, and L. Fix. Prioritized Traversal: Efficient
Reachability Analysis for Verification and Falsification. In Proceeding of the 12th
International Conference on Computer-Aided Verification, volume 1855 ofLNCS,
pages 389–402. Springer-Verlag, 2000.

[FW02] C. Fritz and T. Wilke. State space reductions for alternating Büchi automata: Quoti-
enting by simulation equivalences. InProceedings of 22th Conference on the Foun-
dations of Software Technology and Theoretical Computer Science, volume 2556 of
Lecture Notes in Computer Science, pages 157–169, December 2002.

[GBS02] S. Gurumurty, R. Bloem, and F. Somenzi. Fair Simulation Minimization. InPro-
ceedings of CAV’02, number 2404 in LNCS. Springer, 2002.

[GH93] P. Godefroid and G.J. Holzmann. On the Verification ofTemporal Properties. In
PSTV, pages 109–124, 1993.

Symbolic Systems, Explicit Properties: on Hybrid Approaches for LTL Symbolic MC 25

[GL02] D. Giannakopoulou and F. Lerda. From States to Transitions: Improving Translation
of LTL Formulae to Büchi Automata. InProceedings of FORTE’02., number 2529
in LNCS. Springer, 2002.

[GO01] P. Gastin and D. Oddoux. Fast ltl to büchi automata translation. InComputer Aided
Verification, Proceedings of 13th International Conference, volume 2102 ofLecture
Notes in Computer Science, pages 53–65. Springer-Verlag, 2001.

[GV04] J. Geldenhuys and A. Valmari. Tarjan’s algorithm makes on-the-fly LTL verification
more efficient. InProc. 10th Int’l Conf. on Tools and Algorithms for the Construction
and Analysis of Systems, Lecture Notes in Computer Science 2988, pages 205–219.
Springer-Verlag, 2004.

[Hol03] G.J. Holzmann.The SPIN model checker: Primer and reference manual. Addison
Wesley, 2003.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.
[OYY93] H. Ochi, K. Yasuoka, and S. Yajima. Breadth-first manipulation of very large binary-

decision diagrams. InProceedings of the 1993 IEEE/ACM international confer-
ence on Computer-aided design (ICCAD’93), pages 48–55. IEEE Computer Society
Press, 1993.

[Pel94] Doron Peled. Combining Partial Order Reductions with On-the-fly Model-
Checking. InCAV, pages 377–390, 1994.

[Pnu77] A. Pnueli. The temporal logic of programs. InProceedings of 18th IEEE Symp. on
Foundation of Computer Science, pages 46–57, 1977.

[RBS00] K. Ravi, R. Bloem, and F. Somenzi. A Comparative Study of Symbolic Algorithms
for the Computation of Fair Cycles. InProceedings of the 3rd International Confer-
ence on Formal Methods in Computer-Aided Design, volume 1954 ofLNCS, pages
143–160. Springer-Verlag, 2000.

[SB00] F. Somenzi and R. Bloem. Efficient Büchi Automata from LTL Formulae. InPro-
ceedings of the 12th International Conference on Computer-Aided Verification, vol-
ume 1855 ofLNCS, pages 247–263. Springer-Verlag, 2000.

[SE05] S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. InProc.
11th Int’l Conf. on Tools and Algorithms for the Construction and Analysis of Sys-
tems, Lecture Notes in Computer Science 3440, pages 174–190. Springer-Verlag,
2005.

[SSTV04] R. Sebastiani, E. Singerman, S. Tonetta, and M. Y. Vardi. GSTE is Partitioned Model
Checking. InProceedings of the 15th International Conference on Computer-Aided
Verification (CAV), volume 3114 ofLNCS, pages 229–241. Springer-Verlag, 2004.

[ST03] R. Sebastiani and S. Tonetta. “More Deterministic” vs. “Smaller” Büchi Automata
for Efficient LTL Model Checking. InProceedings of the Conference on Correct
Hardware Design and Verification Methods (CHARME), volume 2860 ofLNCS,
pages 126–140. Springer-Verlag, 2003.

[STV05] R. Sebastiani, S. Tonetta, and M.Y. Vardi. SymbolicSystems, Explicit Properties:
On Hybrid Approaches for LTL Symbolic Model Checking. InProceedings of
the 16th International Conference on Computer-Aided Verification (CAV’05), pages
350–363, 2005.

[Val88] A. Valmari. Error Detection by Reduced Reachability Graph Generation. InATPN,
1988.

[VW86] M.Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Program
Verification. InProceedings of the 1st Symposium on Logic in Computer Science,
pages 332–344. IEEE Computer Society, 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about Infinite Computations.Information and
Computation, 115(1):1–37, 1994.

26 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

[YS02] J. Yang and C.-J.H. Seger. Generalized Symbolic Trajectory Evaluation - Abstrac-
tion in Action. In Proceedings of the 4th International Conference on Formal
Methods in Computer-Aided Design, volume 2517 ofLNCS, pages 70–87. Springer-
Verlag, 2002.

