Symbolic Systems, Explicit Properties:
on Hybrid Approaches
for LTL Symbolic Model Checking

Roberto SebastiahiStefano Tonet&, and Moshe Y. Vardi

1 DIT, Universita di Trento, Italyseba@dit.unitn.it
2 Fondazione Bruno Kessler, IRST, Itabnettas@fbk.eu
3 Dept. of Computer Science, Rice University, USakdi@cs.rice.edu

Abstract. In this work we studyhybrid approaches to LTL symbolic model
checking; that is, approaches that use explicit represensaof the property au-
tomaton, whose state space is often quite manageable, ariibBy representa-
tions of the system, whose state space is typically excggdiarge. We compare
the effects of using, respectively, (i) a purely symboligresentation of the prop-
erty automaton, (ii) a symbolic representation, using fitllgmic encoding, of

explicitly compiled property automaton, and (iii) a paditing of the symbolic

state space according to an explicitly compiled propertpraaton. We apply

this comparison to three model-checking algorithms: thebtienested fixpoint

algorithm of Emerson and Lei, the reduction of emptinessaahability of Biere

et al., and the singly-nested fixpoint algorithm of Bloemleta weak automata.

The emerging picture from our study is quite clear, hybrigrapches outperform
pure symbolic model checking, while partitioning gengrakrforms better than
logarithmic encoding. The conclusion is that the hybridrapphes benefit from
state-of-the-art techniques in semantic compilation df pfoperties. Partition-

ing gains further from the fact that the image computatioagplied to smaller

sets of states.

1 Introduction

Linear-temporal logic (LTL) [Pnu77] is a widely used logia tlescribe infinite be-
haviors of discrete systems. Verifying whether an LTL prtypés satisfied by a fi-
nite transition system is a core problem in Model CheckingjMrhe key idea of the
automata-theoretic approach to MC is that LTL formulas cadmpiled into equiv-
alent automata with fairness conditions, i.e., conditionswhich infinite words are
accepted. Standard techniques consider the forgntHat is the negation of the desired
behavior and construct a Generalized Buchi automaton (GBAwith the same lan-
guage. Then, they compute the product of this automaAgowith the systeniM and
check for emptiness. To check emptiness, one has to contpuset offair statesi.e.
those states of the product automaton that are extensibléiopath. The main obsta-
cle to model checking is thetate-space explosiothat is, the product is often too large
to be handled.

* The author was partly supported by the Provincia Autonorfaetito (project ANACONDA).

2 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

Explicit-state model checking uses highly optimized LTd-&BA compilation, cf.
[DGV99,EH00,SB00,GO01,EWS01,GL02,FW02,GBS02,ST03liclv we refer to as
semantic compilationSuch compilation may involve an exponential blow-up in the
worst case, though such blow-up is rarely seen in practiceptiBess checking is
performed using either a nested depth-first search [CVWSE@5] or an optimized
decomposition into strongly connected components [C&i904]. To deal with the
state-explosion problem, various state-space reduciiassed, e.g., [Val88,Pel94].

Symbolic model checking (SMC) [BCKB2] tackles the state-explosion problem
by representing the product automaton symbolically, ugual means of (ordered)
BDDs. The compilation of the property to symbolically repeated GBA is purelgyn-
tactic, and its blow-up is linear (which induces an exponentiahbig in the size of the
state space), cf. [CGH97]. Symbolic model checkers typicaimpute the fair states
by means of some variant of the doubly-nested-fixpoint Eoretsei algorithm (EL)
[EL86,RBS00,FFK 01]. For “weak” property automata, the doubly-nested firpai-
gorithm can be replaced by a singly-nested fixpoint algorifBRS99]. An alterna-
tive algorithm [BAS02] reduces emptiness checking to raadhy checking (which
requires a singly-nested fixpoint computation) by doubling number of symbolic
variables.

Extant model checkers use either a pure explicit-statecgopr; €.g., in SPIN [Hol03],
or a pure symbolic approach, e.g., wEMV[CCGR99]. Between these two approaches,
one can finchybrid approaches, in which the property automaton, whose statesp
often quite manageable, is represented explicitly, whikesdystem, whose state space is
typically exceedingly large, is represented symbolic&byr example, the singly-nested
fixpoint algorithm of [BRS99] is based on an explicit constian of the property au-
tomaton. (See [BCZ99,CRBO01] for other hybrid approaches.)

In [SSTV04], motivated by previous work @eneralized symbolic trajectory evalu-
ation(GSTE) [YS02], we proposed a hybrid approach to LTL modetkirg, referred
to asproperty-driven partitioning PDP). In this approach, the property automatgn
is constructed explicitly, but its product with the systeswepresented in a partitioned
fashion. If the state space of the systensiand that of the property automaton®s
then we maintain a subsé&tC S x B of the product space as a collectip@, : b€ B}
of sets, where eacQ, = {s€ S : (s,b) € Q} is represented symbolically. Thus, in
PDP we maintain an array of BDDs instead of a single BDD toesgnt a subset of the
product space. Based on extensive experimentation, weaigSSTV04] that PDP
is superior to SMC, in many cases demonstrating expongniietter scalability.

While the results in [SSTV04] are quite compelling, it is ictegar why PDP is su-
perior to SMC. On one hand, one could try to implement PDP il symbolic
manner by ensuring that the symbolic variables that reptébe property-automaton
state space precede the variables that represent the ststierspace in the BDD vari-
able order. This technique, which we refer ta@gs ordering would, in effect, generate
a separate BDD for each block in the partitioned product ephat without gener-
ating an explicit array of BDDs, thus avoiding the algoritbraomplexity of PDP. It
is possible that, under such variable order, SMC would perfcomparably (or even
better) than PDP. On the other hand, it is possible that tagore underlying the good
performance of PDP is not the partitioning of the state spbit rather, the explicit

Symbolic Systems, Explicit Properties: on Hybrid Approagifior LTL Symbolic MC 3

compilation of the property automaton, which yields a rextlstate space for the prop-
erty automaton. So far, however, no detailed comparisorybfiti approaches to the
pure symbolic approach has been published. (VIS [BHSS] currently implements
a hybrid approach to LTL model checking. The property automas compiled ex-
plicitly, but then represented symbolically, using thecatledlogarithmic encodingso
SMC can be used. No comparison of this approach to SMC, howeas been pub-
lished). Interestingly, another example of property-lgsartitioning can be found in
the context of explicit-state model checking [GH93].

In this paper we undertake a systematic study of this spmctiurepresentation
approaches: purely symbolic representation (with or wititop ordering), symbolic
representation of semantically compiled automata (witlvitihhout top ordering), and
partitioning with respect to semantically compiled autten@DP). An important ob-
servation here is that PDP is orthogonal to the choice of #poiint algorithm. Thus,
we can study the impact of the representation on differgyaréhms; we use here EL,
the reduction of emptiness to reachability of [BAS02], ahd singly-nested fixpoint
algorithm of [BRS99] for weak property automata. The fochiewr experiments is on
measuringcalability. We study scalable systems and measure how running timesscal
as a function of the system size. We are looking for a muttitive or exponential
advantage of one algorithm over another one.

The emerging picture from our study is quite clear, hybrigrapches outperform
pure SMC. Top ordering generally helps, but not as much asstencompilation.
PDP generally performs better than symbolic represematicemantically compiled
automata (even with top ordering). The conclusion is thatiybrid approaches benefit
from state-of-the-art techniques in semantic compilatibbiT L properties. Such tech-
niques includes preprocessing simplification by meanswifitieg [SB00,EH00], post-
processing state minimization by means of simulations [§BB00,EWS01,GBS02],
and midprocessing state minimization by means of altergaiimulations [GO01,FW02].
In addition, empty-language states of the automata candsamied. PDP gains further
from the fact that the image computation is applied on smaéés of states. The com-
parison to SMC with top ordering shows that managing partitig symbolically is not
as efficient as managing it explicitly.

This paper extends the work presented in [STVO05] by giving:

— a more detailed description of PDP and its relationship witharch algorithms; in
particular, the algorithm that reduces liveness to safetieiscribed in details both
for the explicit-state case and for property-driven pianing.

— a deeper analysis of the results; in particular, the coraparnf the different search
algorithms is shown and discussed.

The outline of the paper is as follows. Section 2 containsiireg background on
explicit-state and symbolic model checking. Section 3 dees hybrid approaches to
symbolic model checking. Section 4 contains experimertsilts. Finally, Section 5
contains some concluding remarks.

4 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi
2 Background

2.1 Properties and systems

We use LTL with its standard syntax and semantics [Pnu77pécify properties. Let
Prop be a set of propositions, which refer to important facts efgiistems under anal-
ysis. A propositional literal (i.e., a propositignin Prop or its negation-p) is a LTL
formula; if 1 and ¢, are LTL formulas, then-¢q1, d1 A d2, d1V d2, Xd1, §1Ud>,
Go1, andF¢1 are LTL formulae, wher&, U, G, andF are the standard “next”, “un-
til”, “globally”, and “eventually” temporal operators rpsctively. We refer the reader
to [CGP99] for a formal definition of the semantics.

We describe the systems under analysis with Fair TransBimstems (FTSs). We
takeZ to be equal to 2°P. An FTS is a tuple(s$, o, T,Z, £, F5), wheres is a set of
states,Sp C S are the initial states] C § x S is the transition relationf : § — X is a
labeling function, andF® C 29 is the set of fairness constraints (each sefihshould
be visited infinitely often).

2.2 Explicit-state LTL model checking

A generalized Biichi automaton (GBA) is a tuglg, by, =, 8, 7 %), whereB is a set of
stateshp € B is the initial statep C B x I x B is the transition relation, an@f? C 2%
is the set of fairness constraints.

The product between an FT8 and a GBAA is the FTS(?, %, T?, 5, L, F7),
where:

— P =S5SxB,

— Py := 5o x {bo},

— (p1,p2) € TTiff pr=(s1,b1), P2 =(s2,b2), (s1,%2) € T, L(s1) =aand(by,a,bp) €
61

— L%(p)=aiff p=(s,b) andL(s) = a,

- _'7"? = {FS X $}F5€_‘f5 U{S X FQ}F'BGT'B-

LTL model checking is solved by compiling the negatipaf a property into a GBA
A? and checking the emptiness of the prodaibietween the FT® andA? [VW86]. In
explicit-state model checking, emptiness checking isgreréd by state enumeration: a
Depth-First Search (DFS) can detect if there exists a faingly-connected component
reachable from the initial states [CVWY92].

2.3 Symbolic LTL model checking

Suppose that for an FT&S,%5,T,Z, £, F) there exists a set of symbolic (Boolean)
variablesv such thats = 2, i.e. a states of § is an assignment to the variables\af
We can think of a subs&) of § as a predicate on the variabMs Since evernya €
can be associated with the set'(a) C 5, a can be thought of as a predicate\too.
Similarly, the transition relatioff is represented by a predicate on the varialles/’,
whereV’ contains one variablé for everyv € V (V represents the next value gt In

Symbolic Systems, Explicit Properties: on Hybrid Approagifior LTL Symbolic MC 5

the following, we will identify a set of states or a transiticelation with the predicate
that represents it.

Giventwo FTSMY = (51,52, T1 5, 21, 1) with §1 = 2" andM2 = (52,52, T2 5,
£2, 72) with $2 = 2¥*, the synchronous compositionMdf andM? is the FTS(S?, ST,TT >, L7, F7),
where

— §7 =2V v? —viyv?,

= S&(v1,v2) = SE(v1) A SE(V2),

- TT(Vl’VZ’V,l’V,Z) = Tl(vlv\/l) /\TZ(VZv\/Z)
-7 (Vj_,Vz) Ll(Vl)/\LZ(Vz),

- FP=7FlugF2

Again, the negatiop of an LTL property is compiled into an FTS, such that the
product with the system contains a fair path iff there is aeys violation of the
property. The standard compilation produces an R8¢, T¢.5, £¢, 7¢), where
St =2V vo = Atomgd) UExtra(¢), so thatAtomg¢) C Prop are the propositions
that occur inp, Extra(¢) NV = 0 andExtra(¢) contains one variable for every temporal
connective occurring ip [BCM192,VW94,CGH97]. We call thisyntactic compila-
tion.

To check language containment, a symbolic model checkeleimgnts a fixpoint
algorithm [BCM"92]. Sets of states are manipulated by using basic set apesaiich
as intersection, union, complementation, and the preiraagiepostimage operations.
Since sets are represented by predicates on Boolean esjiafilersection, union and
complementation are translated into regp.v and—. The preimage and postimage
operations are translated into the following formulas:

Prelmage (Q) = 3V/((QV//V])(V)) AT(V.V))
Postimage (Q) = (IV(Q(V)AT(V,V))IV/V'|

The most used representation for predicates on Booleaablasi are Binary Deci-
sion Diagrams (BDDs) [Bry86]. For a given variable order,[Bfare canonical repre-
sentations. However, the order may affect considerablgiteeof the BDDs. By means
of BDDs, set operations can be performed efficiently.

2.4 Emerson-Lei algorithm

In a symbolic approach, the application of a DFS, as in eitgdtate model checking,
is not efficient. In fact, the effectiveness of symbolic altfons relies on handling sets
of states. The standard approach in SMC is the one of Emérsigfi=L) [EL86].

The algorithm of [EL86] checks the emptiness of the prodyctbmputing the
set of states which can be extended to a fair path. Theses stedecalledair states
EL computes the set of fair states with a double-nested fitpmmputation, as the
one shown in Figure 1. The outer fixpoint keeps an approxondli of the set. At
every iteration it refines the approximation by restrictihg set to the states that can be
extended to a fair path lying iB. This is computed with the inner fixpoint.

6 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

1 EL(Q)
2 begin
3 Z2:=Q;
4 repeat
5 7 =7
6 for F e F do
7 Y :=EU(ZFN2Z);
8 Z:=ZNPrelmage(Y);
9 until 2/ =27;
10 return Z
11 end
12 EU(Q1,Q2)
13 begin
14 R:=Qy;
15 repeat
16 Z:=QiNPrelmage(R);
17 R:=RUZ;
18 until Z=R;
19 return R
20 end
Fig. 1. Emerson-Lei algorithm.

2.5 Alternatives to EL

Symbolic model checkers typically compute the fair statemibans of some variant of
EL [RBS00,FFK'01]. There are interesting alternatives that try to soheegmptiness
problem in a more efficient way.

Weak automata For “weak” property automata, the doubly-nested fixpoigbakhm
can be replaced by a singly-nested fixpoint [BRS99]. Thihésdase of safety prop-
erties, where we can identify a d&tof “bad” states, and a violation of the property is
just an initial path that reaches one of these states. Thercan check the language
emptiness by searching for a path reachiidn other cases, the fairness conditions
partition the Strongly Connected Components (SCCs) in twajgs: for every fairness
conditionF, either an SCC is contained ihor it does not intersedt. Then, ifB is the
set of states of the accepting SCCs, we can check the langogg@ess by looking for
a cycle inB reachable from the initial states. This requires just alsifigpoint com-
putation. The drawback of this approach is that not all LTtrrfalas can be translated
into “weak” automata. We refer to this technique as w/s.

Liveness to safety An alternative algorithm [BAS02] reduces emptiness chagho
reachability checking (which requires a singly-nesteddinpcomputation). Intuitively,
theliveness-to-safeigorithm (12s) applies a forward search and it non-detaistically

Symbolic Systems, Explicit Properties: on Hybrid Approggifior LTL Symbolic MC 7

saves a visited state: the emptiness is violated if the be@a@ches a state that was
previously saved. To assure that the loop is fair, one hasdtbamother symbolic
variable for every fairness constraint. Formally, if theguct machine is the FSM
M= (5,%,T,%,L, F) with § = 2, I12s produces the FSMI' = (§', 5§, T',%, L', F')
where

- 8" =2 with V' =V UV, U {savesavedlooped; UVy, where
e \ contains one (copy) variablg for every variablesin V;
e save saved andloopedare new (fresh) variables;
e V4 contains one variablig- for everyF in F;
— 8= SoA—saved\ Apc s VF
— T'(v,v¢,savesaved,looped v, V,v;,savé saved,looped,vr) = T(v,V) A
V. < ((save\!savedA\ V) V v¢) A
saved « (savev saved A
Vi < (Ve V ((savevsaved AF)) A
looped— (saved\ Agc g VE A Avey (V< Vo)),
— L'(v,v¢,savesavedvg) = L'(v);
- ' ={F'} andF’ = looped

In other words, the value cfaveis always non-deterministic; onsavebecomes
true, we sesavedto true and we store the current stateSpf.e. we copy the value of
eachvin v¢; from that point, we setr to true when we visiF; finally, loopedis true if,
after visiting every fair condition, we loop back to the gdstate. Thus, we can reach
F’ in S if and only if there exists a reachable fair loop3{for a formal proof, see
[BAS02]).

The drawback of this technique is that it requires to doutertumber of symbolic
variables.

3 Hybrid approaches

3.1 Symbolic systems, explicit-state property automata

Between the explicit-state and the symbolic approach destin Section 2hybrid
approaches represent the system symbolically and the pyoguetomaton explicitly.
Thus, they semantically compile the LTL formula into a GBAe \Wentify two main
classes of hybrid approaches. In the first class, the eigliafe automaton is encoded
into an FTS, the synchronous product between the resulfi®ywith the FTS of the
system is built, and finally the product state space is sedrfiir an accepting fair path
by applying an algorithm based on a fully symbolic image catapon. In the second
class, the search is performed on an implicit represemtatiéthe product state space,
but the algorithm adopts an hybrid image computation thatliines the symbolic im-
age computation of the system with the explicit list of sieswes of the GBA.

The flow of the two approaches is depicted in Figure 2. Notiee the choice be-
tween the two does not affect the set of states visited. bhdbe product representation
is completely orthogonal to the model-checking algorithm.

8 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

PROPERTY
o
GBA
¢
SYMBOLIC PROPERTY-DRIVEN PROEERTY
COMPILATION FTS PARTITIONING
Vo, 19, To)
SYSTEM FTS GBA
M, Im, Tw)
SYSTEMFTS PRODUCT FTS)
(V. Im,) (Ve,Ip, Tp)
SYMBOLIC IMAGE SYMBOLIC IMAGE ——— ppp IMAGE
V(@Y NVDV) ATV.V) WV(QV/NVV) ATVVY)
SEARCH ALGORITHM SEARCH RESULT SEARCH ALGORITHM SEARCH RESULT

Fig. 2. Hybrid approaches’ flow.

3.2 Symbolic compilation of explicit-state property autonaton

Given the GBAA = (B,bo,Z,d,) corresponding to the formulf, we can compile
Ainto the FTS(SA, S, TA,Z, LA, FA), wheres? = 2V, VA = Extra(A) U Atomg),
Extra(A) NProp= 0 and|Extra(A)| = log(|B|), S5 representgbo}, TA(s,a,s, &) is
true iff (s,a,8) € 8, LA(s,a) = aand finally everyFA ¢ 7 represents the correspon-
dent sef € 7. Intuitively, we number the states of the GBA and then usafyimota-
tion to refer to the states symbolically. This is referre@stogarithmic encoding

3.3 Property-driven partitioning (PDP)

Given an FTSM and a GBAA, we can consider the partitioning of the product state
space{ % }pes, Where?, = {pe€ P: p=(sb)}. Thus, a subsep of P can be rep-
resented by the following set of statesMf {Qp}pes, WhereQ, = {s: (s,b) € Q}. If

Q! = {Ql}bes and Q? = {Q2}pes, We translate the set operations used in symbolic
algorithms into:

Q'NQ = {QpA Qe Jbes
Qv Q= {QpV Qloes
Q= {-Qo}pes 1)
PdpPrelmage (Q) := {V (pak)csPreimage (Qu)Aa}tpes
PdpPostimage (Q) := {V iy ab)csPostimage (Qu Aa)}pes

Symbolic Systems, Explicit Properties: on Hybrid Approagifior LTL Symbolic MC 9

1 beginPdpEL(Q)

2 Z=Q; Il for all beB, 7,:=Qy

3 repeat

4 72 =27 /I for all beB, Z,:=Z

5 for F € ¥ do

6 G :=PdpRestrict(~ S,F) ; Il for all be B,
II'f beF Ry:=S else R,:=0

7 Y :=PdpEU(Z,GNZ);

8 Z :=ZNPdpPrelmage(Y) ; Il see Eq. 1

9 until 2/ =27;
10 return Z

11 end

12 PdpEU(Q1,Q2)

13 begin

14 R:=Q2; Il for all be B, Ry:=Qxp
15 repeat

16 Z:= QiNPdpPrelmage(R) ; Il see Eq. 1
17 R:=RUZ; Il for all be B, Ry:=RyVZ,

18 until Z=R;
19 return R
20 end

Fig. 3. Partitioned version of EL

All symbolic model-checking algorithms that operate on gineduct FTS can be
partitioned according to the property automaton, opegaiima BDD array rather than
on a single BDD (see [SSTV04]).

3.4 PDP version of EL

The PDP version of the EL algorithm is shown in Figure 3. ThHéedénce with the
non-partitioned versions is that whilgJ and EL operate on a single set of states in
the product automato®dpEU and PdpEL operate on an array of sets of states of the
system (one set for every vertex of the GBA). Thus, everyaldei in the algorithms
of Figure 3 can be considered as an array of propositioneddtas, implemented as
BDDs. The side comments explain the operation performechersingle BDD. The
backward image of an array is given by Equation 1.

3.5 Explicit-state and hybrid versions of 12s

The combination of PDP with 12s is not straightforward. Thwe dedicate this sec-
tion to show how we solved it. First, we have to conceive anmata-theoretic version
of 12s. We used this technique to convert the property automento an equivalent
automaton on finite words. Second, we must combine this @ipirepresented au-
tomaton with the system, for which we use the standard syimbetsion of I12s.

10 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

Recall that 12s doubles the number of symbolic variablesitepto reduce empti-
ness to reachability (see Section 2.5). This is equivatesqtiaring the size of the state
space. Since in PDP we work directly with the state spaceagftbperty automaton, we
need to square the explicit state space, while doublinguh@xer of symbolic variables
that describe the system.

If the property automaton is the GBA = (B,hg,%,0,{F}), we can find an au-
tomatonA’ on finite words, which is empty (i.e. has empty language) i anly if A
is empty. To this purpose, we apply the I12s idea straighfoailydo the GBAA. As 12s
uses a linear number of additional variables to non-det@sti¢ally store the current
state, we similarly add a copy @éffor every statd € B (when a run passes to the copy
corresponding tb, we virtually storeb as the state to reach again to find a loop). Since,
we are considering GBAs with only one fair conditibn we can restrict the number
of copies to|F| (i.e., we store a state only if it is iR). Formally, we definé\ as the
following automator’ = (B x ({0} UF), (bp,0),%,&,{F’}) whered' andF’ C B x B
are defined as follows:

— & ={((b,0),a,(b',0))|(b,a,b') € d}u
{((b,0),a,(,b))|(b,a,b’) e dandb € F}U
{((b,b"),a, (b,b"))|(b,a,b’) € dandb” € F}

— F' = Uper (bib)

In other words, there ail€ |+ 1 copies ofA: initially, we start from the copy “0”; from
a stateb in F, we can pass to the cop¥™; when we reacltb in the copy b”, we find
an accepting loop oA.

The hybrid version of I12s combines the standard symbolisivarof 12s applied to
the system (doubling the number of variables) and the abgrpkc# version of 12s
applied to the property automaton (considering a linear memof copies). To this
purpose, we must modify slightly the constructionAfin order to synchronize the
property automaton with the system generated by I2s: theerfrown the copy “0” to
the copy b” must happen when the system saves the current state in tordied a
fair loop (see Section 2.5); we must redelwhen the system loops back to the saved
state. Formally, we build the automat®fi = (B x ({0} UF)UF x {1}, (bo,0),ZU
{savesavedlooped;,d”’, {F x {1}}) whered” is defined as follows:

- 8" ={((b,0),a,(b,0))|(b,a,b’) € d}U
{((b,0),an saver —saved(b',b))|(b,a,b’) e andb € F}U
{((b,b"),ansaved(b',b"))|(b,a,b/) € dandb” € F}u
{((b,b"),anlooped (b,1))|(b,a,b’) € dandb” = b’}

This automaton is used to guide the partitioning of the pobdith the system.

3.6 Hypothesis

Our hypothesis is that hybrid approaches combine the baistris of explicit-state and
symbolic model checking techniques. On the one hand, theyawsymbolic represen-
tation for the system and a symbolic algorithm, which maydfiéfrom the compact

representation of BDDs. On the other hand, they may beneiit &tate-of-the-art tech-
niques in LTL-to-Biuchi compilation, which aim at optimig the state space of the

Symbolic Systems, Explicit Properties: on Hybrid Approagifior LTL Symbolic MC 11

property automaton, and prune away redundant and empgy-aye parts. Optimiza-
tions include preprocessing simplification by means of itwg [SB00,EH00]; post-
processing minimization by means of simulations [SB00,&HOVS01,GBS02], and
midprocessing minimization by means of alternating siioe]GO01,FW02].

In addition, PDP has the advantage of using a partitionesiaerof the product
state space. Partitioned methods usually gain from theliatthe image operation is
applied to smaller sets of states, cf. [FK@)]. Furthermore, PDP enables traversing
the product state space without computing it explicitlye Bxperiments reported in the
next section test our hypothesis.

4 Experimental results

We tested the different product representations on twabtabystems with their LTL
properties, by using three different model-checking atpors. Every plot we show in
this paper is characterized by three elements: the syitetine LTL propertyp and the
model-checking algorithm used.

4.1 \Verification models

The two systems and their properties are inspired by cadeestaf the Bandera Project
(http://bandera.projects.cis.ksu.edu).

The first system is a gas-station model. ThereNapeistomers who want to use one
pump. They have to prepay an operator who then activatesutimg pVhen the pump
has charged, the operator give the change to the customewillvefer to this system
asgas. In this system, customers are symmetric. For this reaserrgéer only to the
first and second customer in the properties, even if theractmllyN customers.

We consider four properties for thgas systemgas.propl states that, if the first
customer started the pump and has not yet finished when tbadeastomer prepays,
then the second customer must be the next sepasgrop2 states the same property
of gas.propl , but with the assumption that whenever the first custometestahe
pump, she does not do a second prepayment before receidnghénge of the first
prepaymentgas.prop3 states that, if the first customer prepays first, then she will
be served firstgas.prop4 states that whenever the first customer starts the pump, the
second customer must wait until the first finished.

The second system is a model of a stack with the standard mbptesh functions,

a function to process the elements of the stack in a top-daderpand a function to
check if the stack is empty. In this case, scalability is gilsg the maximum sizé&l of
the stack.

We consider five properties for thstack systemstack.propl states that, if we
push some datdl and call the top-down processing function before remottiegi1,
then we will surely processl. stack.prop2 states that, if we push some data and call
the empty function before any pop call, then the function galy that the stack is not
empty.stack.prop3 states that between a push call and a empty call returninghtba
stack is empty, there must be a pop cstick.prop4 states that, if we pustil and
later we pushd2 and later we call the top-down function, and in the mearadiland

12 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

Name |Formula Type
gas.propl |G((pumpstartedl A ((!pumpchargedl) U operatorprepaid.2)) terminal
— (('operatoractivatel) U
(operatoractivate? | Gloperatoractivatel)))
gas.prop2 |(G(pumpstartedl. — neither
(('operator.prepaid.1) U
(operatorchangel | Gloperator.prepaid.1))))

— (G((pumpstartedlL A ((!pumpcharged.) U operatorprepaid.2))
— (('operatoractivatel) U
(operatoractivate?2 | Gloperatoractivatel)))

gas.prop3 |((loperatorprepaid.2) U operatorprepaid.1) terminal
— ('pumpstarte® U (pumpstartedL | G(! pumpstarted)))

gas.propd |G(pumpstartedl termina
— (('pumpstarted?) U (pumpcharged. | G(! pumpstarted))))

stack.propl |G(callPushdlL A ((!returnPopdl) U callTop.Down) weak
— F(callTopDown A F(callProcessd)))

stack.prop2 |G((callPushA (IreturnPop U callEmpty) weak
— F(callEmpty A F(returnEmptyFalsg)

stack.prop3 |G((callPushd. A F(returnEmptyTrug) — termina
(freturnEmptyTrue U returnPofd)

stack.prop4 |G((callPushd. A (('returnPopdl) U (callPush® A weak

(('returnPopdL A !returnPop®) U callTop.Down))))

— F(callTopDown A F(callProcess@ A FcallProcessd)))
stack.props |G((callPushd. A (!returnPopdL U callPush@)) termina
— ('returnPopd. U (!returnPopc | G!returnPopdl)))

Table 1. The LTL properties of thgas and thestack systems. First column shows the name, the
second column the LTL formula, and the third column the typ#he corresponding automaton.

d2 are not popped, then the function will proce@sand lated1. stack.prop5 states
that, if we pushdl and later we pusti2, and in the meanwhilél is not popped, then
d2 must be popped beforA.

The properties of these two systems are displayed in Table 1.

4.2 LTL to Biichi automata conversion

In this section, we focus the attention on the compilatiobTdf formulas into GBAs.

For syntactic compilation, we uséf@smv , distributed together with NSMV. As for
semantic compilation, we usetbDELLA, which uses also some techniques described
in [EHO0,SB00,EWS01,GL02]. In Table 2, we reported the sizthe automata used

in the tests.

Note that the automata createdb®DELLA are degeneralized, i.e. they have only
one fairness constraint. Degenerilization involves a blgan the number of states that
is linear in the number of fairness constraints (withoutatesgyalization, the same linear
factor shows up in the complexity of emptiness testing).

Symbolic Systems, Explicit Properties: on Hybrid Approagifior LTL Symbolic MC 13

ItI2smv modella
property |extra variablegairness constrainfs states |extra variablegairness constraints
([log(states))
gas.propl 4 4 6 3 1
gas.prop?2 7 7 32 5 1
gas.prop3 3 3 4 2 1
gas.prop4 3 3 6 3 1
stack.propl 4 4 4 2 1
stack.prop? 4 4 4 2 1
stack.prop3 3 3 6 3 1
stack.prop4 6 6 9 4 1
stack.propb 4 4 5 3 1

Table 2. Number of states, number of (extra) symbolic variables,ramdber of fairness condi-
tions of the automata corresponding to the LTL propertigmefand thestack systems, obtained
with It2smv andMODELLA.

4.3 Model checking algorithms
We investigated three different MC algorithms for emptielsecking (see Section 2):

EL: the first model checking algorithm we used is the classic Boretei algorithm
[EL86], which computes the set of fair states;

I2s: the second algorithm is the reduction of liveness checkirsgtety checking [BAS02];

w/s: the third technique consists of checking if the automatasinigle enough to ap-
ply a single fixpoint computation in order to find a fair loopRB99]; we checked
which automata were weak or terminal: we found that autorateesponding to
stack.propl, stack.prop2 and stack.prop4 were weak, atdhbh automata cor-
responding to gas.propl, gas.prop3, gas.prop4, stagidod stack.prop5 were
terminal.

4.4 Tested hybrid approaches

Hereafter)og-encode stands for the logarithmic encoding of the explicit repreeae
tion of the automata. Note that an explicit LTL-to-Buchinepiler usually uses fewer
symbolic variables than standard syntactic compilatia®e ($or example, the data in
Table 2 where the semantic compileoDELLA is compared to the syntactic compiler
[tI2smv). Nevertheless, one may think that the syntactic compitativhose transition
constraints are typically simpler, is more suitable for bpitic model checking. As we
see below, this is not the case.

We usetop-order to denote the top-ordering option of putting the symbolid-va
ables of the property automaton at the top of the variablerard. Consider a BDRI
that represents a set of states of the product of the systénthvei property automaton.
Let us consider an assignment to the symbolic variablessoptbperty automaton cor-
responding to the stat®. If you follow this assignment in the structureafyou find a
sub-BDD, which corresponds to the §g4, of system’s states that are paired witin

14 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

Property—automaton variable

Sub-BDDs

bl b2 b3

Fig. 4. Example of BDD with the top-ordering of property-automatamiables.

the product (see Figure 4). Thus, by traversing the prodat# space with the option
top-order , every BDD will contain an implicit partitioning of the set states it repre-
sents (note that although this is a partitioning of the pobdtate space, the sub-BDDs
may share some states of the system).

Finally, we consider the PDP representation of the prodatt space. PDP uses the
same automaton encodedlbg-encode to partition the state space. Unlitap-order
the partitioning is handled explicitly (see [SSTV04]).

45 Results

We used NNSMYV as platform to perform out tests. We ruuBMV on the Rice Teras-
cale Cluster (RTCY) a TeraFLOP Linux cluster based on Intel Itanium 2 Procesgor
timeout has been fixed to 72 hours for each run. The executimn (in seconds) has
been plotted in log scale against the size of the systemtfienumber of customers in
thegas system and the size of the stack in teck system). The results are shown in
Figs. 5-30. Every plot corresponds to one system, one property, oneshubecking
algorithm. Figs. 5-13 show the results of EL algorithm. Fity$-22 show the results of
12s. Figs. 23-30 show the results of w/s (in these plots,astict compilation uses EL).
Analyzing the plots, we see that syntactic compilation genfs always worse than
semantic compilation. This is the case for all experiment®hbe, the property 2 of the
gas example with the EL algorithm, where the syntactic comjalais more efficient
than PDP, and comparableltg-encode . In all other cases, the syntactic compilation

4 http:/lwww.citi.rice.edu/rtc/
SAll examples, data and tools used in these tests, as wellrgsrlplots, are available at
http://www.science.unitn.it/"stonetta/ CAV05

Symbolic Systems, Explicit Properties: on Hybrid Approagifior LTL Symbolic MC 15

is not efficient and is outperformed by the semantic comipilatindependently from
the system, the property or the search algorithm under deradion. In the case of
the stack system, the gap is considerable. This suggests that theggain by the
simplification of the property automaton obtained with satitacompilation can be
magnified by the complexity of the system state space. Fardlison, the improvement
can reach three order of magnitude (see Fig. 13).

Thetop-order option typically helps logarithmic encoding, while in thase of
syntactic compilation it is less reliable: in some cases {ggs. 17, 23, 24, and 25), it
degrades the performance a lot.

PDP usually performs better th&g-encode , even if combined wittop-order
Therefore, we conclude that the results confirm our hypéthlegbrid approaches per-
form better than standard techniques, independently ofrthéel checking algorithm
adopted. Moreover, they usually benefit from partitionifigally, by handling the par-
titioning explicitly, we get a further gain. This last postiows that accessing an adja-
cency list of successors may perform better than exisigngjaantifying the variables
of a BDD.

4.6 Scaling up the number of partitions

In the previous section, we have seen that PDP has the bdéstmpance among the
techniques we tested. However, a doubt may arise aboutdk#fity of the partition-

ing when the number of partitions grows. For this reason, eakéd for some LTL

properties whose corresponding automaton has a large mwhiséates. We took as
example the following property used in [BLSO1]:

((GF p0 — GF pl) A (GF p2 — GF po)
(GFp3— GF p2) A (GF p4 — GF p2)
(

GF p5 — GF p3) A (GF p6 — GF(p5V p4))
(GF p7 — GF p6) A (GF pl — GF p7))
— GFp8

Trying to compile this property into a GBA, we faced an instireg problem: no com-
piler we tried managed to translate this property in reaisienéme®. For this reason,
we built a new compiler specialized for this kind of propest{Boolean combination
of GF formulas). The resulting automaton has 1281 states. Wekeldebis property
on the leader election algorithm LCR, cf. [Lyn96]. We indtated the propositions in
order to make the property true in one case, false in anotlher.results are plotted
in Figs. 31-32. Note that the pattern is the same as in thequsvesults. More im-
portantly, partitioning does not seem to be affected by thmalver of partitions. Notice
that the logarithmic encoding pays an initial overhead farogling symbolically the au-
tomaton. However, as the size of the system grows, this igaboutperforms syntactic
compilation.

6 Actually, the only translator that succeeded Widgba (http://spot.lip6.friwikil).
However, we had to disable simulation-based reduction abttie resulting automaton had
more than 70000 states and even parsing such an automatomewe than model checking
time.

16

Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

100000

10000

1000

10

10000

Legend Figs. 5-32

—oe— synt. compilation
,,,,,,, x--- gynt.compilation
with top-order
*--|og-encode
a-- |og-encode
with top-order
PDP

2 4 6 8 10 12 14 16 18 20

Fig. 6.gas, prop. 2, EL

1000

10

2 4 6 8 10 12 14 16 18 20

Fig.8.gas, prop. 4, EL

10000

1000

10

10000

1000

10

0.1

2 4 6 8 10 12 14 16 18 20

Fig.5.gas, prop. 1, EL

1e+06

100000

10000

1000

2 4 6 8 10 12 14 16 18 20

Fig.7.gas, prop. 3, EL

10 11 12 13 14 15 16

Fig.9.stack , prop. 1, EL

Symbolic Systems, Explicit Properties:

1000

o

1
400

100000

10000

1000

10000

450 500 550 600 650 700 750 800

Fig. 10.stack , prop. 2, EL

o 11 12 13 14 15

Fig. 12.stack , prop. 4, EL

1000

10

0.1

10

20 30 40 50 60 70 80 90 100

Fig. 14.gas, prop. 1, I12s

on Hybrid Approagifior LTL Symbolic MC

10000

1000

10 R/

Fig. 11.stack , prop. 3, EL

10000

1000

10X

0.1 B8
50

100000

10000

1000

10

10 20 30 40 50 60 70 80 90 100

Fig. 15.gas, prop. 2, I12s

17

18

10000

1000

10

0.1

10

100000

10000

20 30 40 50 60 70 80 90

Fig. 16.gas, prop. 3, I12s

100

1000
3

1e+06

100000

11 12 13 14

Fig. 18.stack , prop. 1, I2s

15

Fig. 20.stack , prop. 3, I2s

10000

Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

1000

10

1e+06

20 30 40 50 60 70 80 90 100

Fig. 17.gas, prop. 4, 12s

100000

10000 |

100000

Fig. 19.stack , prop. 2, I2s

10000 F .

10
1

X

o 11 12 13 14 15

Fig. 21.stack , prop. 4, I2s

Symbolic Systems, Explicit Properties: on Hybrid Approagifior LTL Symbolic MC

1e+06

100000

10000

1000

10000

1e+06

100000

10000

1000

Fig. 24.gas, prop. 3, safety

16

.26.stack , prop. 1, weak

10000

1000 |

10

0.1

10000

8 10 12 14 16 18 20

Fig. 23.gas, prop. 1, safety

1000

10

0.1

1000

o 4 6 8 10 12 14 16 18 20

K-t

Fig. 25.gas, prop. 4, safety

Fig. 27.stack , prop. 2, weak

19

20 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

10000 100000

1000 10000

1000

Y1

Fig. 28.stack , prop. 3, safety Fig. 29.stack , prop. 4, weak

10000

Legend Figs. 5-32
—e— synt. compilation

,,,,,,, x-- synt.compilation
with top-order
*--|og-encode
- @ |log-encode
f | with top-order
; -~ PDP

1000

0.1

50 100 150 200 250 300 350 400

Fig. 30.stack , prop. 5, safety

4.7 MC-algorithm comparisons

As a side-effect of our investigation, we can compare therdlyns for emptiness
checking that we tested. In Figs. 33-41, we plotted the pevdmce of EL, 12s and w/s
on the systems and properties we have described above. é&@rdalduct representa-
tion we used PDP (we noticed that the pattern is not diffebgntising the syntactic
compilation or the log-encoding of the semantic compilatio

Analyzing the plots, we can see that on one hand the improneaofen/s is not
compelling for these examples; on the other hand, the @féaatss of 12s depends
enormously on the system under verification (in the gas Bystee have a positive
exponential gap, while in the stack system the gap is langedative).

Symbolic Systems, Explicit Properties: on Hybrid Approagifior LTL Symbolic MC 21

100000 =< 1e+06

100000 + P
10000 -

10000 |

Fig. 31.LCR large prop. (true), EL Fig. 32.LCR large prop. (false), EL

5 Conclusions

The main finding of this work is that hybrid approaches to Lyimdolic model check-
ing outperform pure symbolic model checking. Thus, a uniftneatment of the system
under verification and the property to be verified is not gdsé. We believe that this
finding, on one hand, calls for further research into the raigmics of LTL symbolic
model checking. The main focus of the research in this areabkan either on the
implementation of BDD operations, cf. [OYY93], or on symisadlgorithms for FTS
emptiness, cf. [RBS00], ignoring the distinction betwegstam and property. While ig-
noring this distinction allows for simpler algorithms, @mes with a significant perfor-
mance penalty. On the other hand, the paper shows thattpraets of LTL symbolic
model checking would better consider to implement or reseseantic compilation of
LTL formulas, rather than a simpler but less efficient synobmpilation.

A second contribution of the paper is a clarification on thasoms why PDP is
superior to standard MC: part of the improvement is due taftamization applied to
the explicit-state automaton corresponding to the LTL fallas; a second factor is the
exploitation of the explicit automata transitions in thengutation of the image used in
the search.

As a final remark, we note that the benchmarks we used in theriexgntal eval-
uation cannot be considered sufficiently representatind,@e need to confirm our
conclusions by more extensive benchmarking.

Acknowledgements

We are grateful to R.E. Bryant, A. Goel and F. Somenzi for mgknteresting obser-
vations on the variable ordering of the property automataoding.

We are grateful to Armin Biere and Viktor Schuppan for pranglus with their
tools in order to test the combination of “liveness to sdfetith automata-theoretic
approaches.

22

100000 |

10000

1000 |

0.1

—e— PDP + EL
36w PDP + 125
PN PDP + safety

10 20 30 40 50 60 70 80 90

Fig. 33.gas, prop. 1

100

100000 |

10000

1000 |

0.1

10 20 30 40 50 60 70 80 90

Fig. 35.gas, prop. 3

100

100000 | -

10000

1000

10

—e— PDP + EL
w36 PDP + 125
e PDP + weak

11 12 13 14 15

Fig. 37.stack , prop. 1

16

100000

10000

1000

10

0.1

100000

10000

1000

10

0.1

100000

10000

1000

10

Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

—e— PDP + EL

PDP + I2s

O 10 20 30 40 50 60 70

Fig. 34.gas, prop. 2

80 90 100

e

O 10 20 30 40 50 60 70

Fig. 36.gas, prop. 4

80 90

Fig. 38.stack , prop. 2

Symbolic Systems, Explicit Properties: on Hybrid Approagifior LTL Symbolic MC 23

—e— PDP + EL —— PDP + EL
100000 - TR EBE Y Shery 3 100000 | AL PDP + weak i
T 7
e >
10000 | e > 4
»_)("'“J 10000 7
,»‘XJ}
1000 sk B
1000 1
100 4
10 E
2
1k T
0.1 1
50 100 150 200 250 300 350 400 10 11 12 13 14 15
Fig. 39.stack , prop. 3 Fig. 40.stack , prop. 4
—e— PDP + EL
100000 | -==->€---- PDP + I12s u
PN PDP + safety
I >
10000 - < T 4
T
1000 > 4
100 <
10 |
s]
>
0.1 |
0.01
50 100 150 200 250 300 350 400
Fig. 41.stack , prop. 5
References

[BAS02] A.Biere, C. Artho, and V. Schuppan. Liveness Cheglas Safety Checkingdglectr.
Notes Theor. Comput. Sc66(2), 2002.

[BCMT92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and 0. Hwang. Sym-
bolic Model Checking: 1% States and BeyondInformation and Computatign
98(2):142-170, 1992.

[BCZ99] A. Biere, E. M. Clarke, and Y. Zhu. Multiple State aBéhgle State Tableaux for
Combining Local and Global Model Checking. @orrect System Desigrolume
1710 ofLNCS pages 163-179. Springer-Verlag, 1999.

[BHSVT96] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincenitel. Somenzi, A. Aziz,
S. T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, 8d€gr, R. K. Ran-
jan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa. Vis: atsyn for verification
and synthesis. In R. Alur and T. A. Henzinger, editétgceedings of the 8th Inter-
national Conference on Computer Aided Verification CAYy\8fume 1102, pages
428-432. Springer Verlag, 1996.

24 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

[BLS01] K. Baukus, Y. Lakhnech, and K. Stahl. VerificationRdrameterized Protocols.
UCS 7(2):141-158, 2001.

[BRS99] R.Bloem, K. Ravi, and F. Somenzi. Efficient DecisRnmocedures for Model Check-
ing of Linear Time Logic Properties. IBAV, pages 222-235, 1999.

[Bry86] R. E. Bryant. Graph-Based Algorithms for BooleamEtion Manipulation.IEEE
Transactions on Computer€-35(8):677—691, August 1986.

[CCGR99] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. R, NUSMV: a new Symbolic
Model Verifier. InProceedings of the 11th International Conference on Coerput
Aided Verificationvolume 1633 oLNCS pages 495 — 499. Springer-Verlag, 1999.

[CGH97] E.M. Clarke, O. Grumberg, and K. Hamaguchi. Anotheok at LTL Model Check-
ing. Formal Methods in System Desigi0(1):47-71, 1997.

[CGP99] E.M. Clarke, O. Grumberg, and D. A. Pelé&tibdel checkingMIT Press, 1999.

[Cou99] J.-M. Couvreur. On-the-fly verification of lineantporal logic. InWorld Congress
on Formal Methodspages 253-271, 1999.

[CRBO1] A. Cimatti, M. Roveri, and P. Bertoli. Searching Raaet Automata by Combining
Explicit-State and Symbolic Model Checking. Rroceedings of the 7th Interna-
tional Conference on Tools and Algorithms for the Constarctand Analysis of
Systemsvolume 2031 o£ NCS pages 313-327. Springer-Verlag, 2001.

[CVWY92] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yakakis. Memory-Efficient
Algorithms for the Verification of Temporal PropertieBormal Methods in System
Design 1(2/3):275-288, 1992.

[DGV99] N. Daniele, F. Giunchiglia, and M.Y. Vardi. Improd@utomata generation for linear
temporal logic. InProceedings of the 11th International Conference on Coerput
Aided Verificationvolume 1633 oL.NCS pages 249-260. Springer-Verlag, 1999.

[EHOO0] K. Etessami and G. Holtzmann. Optimizing Buchi Amata. InProceedings of
CONCUR’200Qvolume 1877 of.NCS 2000. Springer.

[EL86] E.A. Emerson and C.L. Lei. Efficient Model Checkingiragments of the Proposi-
tional p-Calculus. InProceedings of the Symposium on Logic in Computer Science
pages 267—-278. IEEE Computer Society, 1986.

[EWS01] K. Etessami, T. Wilke, and R. Schuller. Fair simigatrelations, parity games, and
state space reduction for biichi automata. In Fernand@Qrepul G. Spirakis, and
Jan van Leeuwen, editorButomata, Languages and Programming, 28th interna-
tional colloguium volume 2076 oL NCS Springer, July 2001.

[FFKT01] K. Fisler, R. Fraer, G. Kamhi, M.Y. Vardi, and Z. Yang. lwete a best symbolic
cycle-detection algorithm? IRroceeding of the 7th International Conference on
Tools and algorithms for the construction and analysis stams volume 2031 of
LNCS pages 420-434. Springer-Verlag, 2001.

[FKZ*00] R. Fraer, G. Kamhi, B. Ziv, M.Y. Vardi, and L. Fix. Prioded Traversal: Efficient
Reachability Analysis for Verification and Falsificatiom Proceeding of the 12th
International Conference on Computer-Aided Verificatiosolume 1855 ofLNCS
pages 389—-402. Springer-Verlag, 2000.

[FWO02] C. Fritz and T. Wilke. State space reductions forraliing Blichi automata: Quoti-
enting by simulation equivalences. Rroceedings of 22th Conference on the Foun-
dations of Software Technology and Theoretical Computem8e volume 2556 of
Lecture Notes in Computer Scienpages 157-169, December 2002.

[GBS02] S. Gurumurty, R. Bloem, and F. Somenzi. Fair SinotaMinimization. InPro-
ceedings of CAV’0humber 2404 in LNCS. Springer, 2002.

[GH93] P. Godefroid and G.J. Holzmann. On the VerificatioriTemporal Properties. In
PSTV pages 109-124, 1993.

Symbolic Systems, Explicit Properties: on Hybrid Approagifior LTL Symbolic MC 25

[GLO2]

[GO01]

[GVO04]

[Hol03]

[Lyn96]
[OYY93]

[Peloa]

[Pnu77]

[RBS00]

[SBOO]

[SE05]

[SSTVO04]

[STO3]

[STVO5]

[Valgg]

[VW86]

[VW94]

D. Giannakopoulou and F. Lerda. From States to Ttams: Improving Translation
of LTL Formulae to Biichi Automata. IRroceedings of FORTE'02number 2529

in LNCS. Springer, 2002.

P. Gastin and D. Oddoux. Fast Itl to buichi automatagiation. InComputer Aided
Verification, Proceedings of 13th International Conferenmlume 2102 of_ecture
Notes in Computer Sciengeages 53-65. Springer-Verlag, 2001.

J. Geldenhuys and A. Valmari. Tarjan’s algorithm reslon-the-fly LTL verification
more efficient. IfProc. 10th Int’| Conf. on Tools and Algorithms for the Consttion
and Analysis of Systerrisecture Notes in Computer Science 2988, pages 205-219.
Springer-Verlag, 2004.

G.J. Holzmann.The SPIN model checker: Primer and reference manéaldison
Wesley, 2003.

N. A. Lynch. Distributed Algorithms Morgan Kaufmann Publishers Inc., 1996.

H. Ochi, K. Yasuoka, and S. Yajima. Breadth-first iaation of very large binary-
decision diagrams. |Proceedings of the 1993 IEEE/ACM international confer-
ence on Computer-aided design (ICCAD’93ges 48-55. IEEE Computer Society
Press, 1993.

Doron Peled. Combining Partial Order Reductionshw®n-the-fly Model-
Checking. InCAV, pages 377-390, 1994.

A. Pnueli. The temporal logic of programs.Rroceedings of 18th IEEE Symp. on
Foundation of Computer Scienqgeages 46-57, 1977.

K. Ravi, R. Bloem, and F. Somenzi. A Comparative $tofiSymbolic Algorithms
for the Computation of Fair Cycles. Proceedings of the 3rd International Confer-
ence on Formal Methods in Computer-Aided Desigsilume 1954 oL NCS pages
143-160. Springer-Verlag, 2000.

F. Somenzi and R. Bloem. Efficient Buchi AutomatanfraTL Formulae. InPro-
ceedings of the 12th International Conference on Compiitéed Verificationvol-
ume 1855 oLNCS pages 247-263. Springer-Verlag, 2000.

S. Schwoon and J. Esparza. A note on on-the-fly vetiicalgorithms. InProc.
11th Int'l Conf. on Tools and Algorithms for the Constructiand Analysis of Sys-
tems Lecture Notes in Computer Science 3440, pages 174-19thgépiVerlag,
2005.

R. Sebastiani, E. Singerman, S. Tonetta, and MaxlVGSTE is Partitioned Model
Checking. InProceedings of the 15th International Conference on Coarpéided
Verification (CAV)volume 3114 of NCS pages 229-241. Springer-Verlag, 2004.
R. Sebastiani and S. Tonetta. “More Deterministig’ ‘%6maller” Buchi Automata
for Efficient LTL Model Checking. InProceedings of the Conference on Correct
Hardware Design and Verification Methods (CHARME)lume 2860 ofLNCS
pages 126-140. Springer-Verlag, 2003.

R. Sebastiani, S. Tonetta, and M.Y. Vardi. Symb@&igstems, Explicit Properties:
On Hybrid Approaches for LTL Symbolic Model Checking. Rroceedings of
the 16th International Conference on Computer-Aided \éiion (CAV’'05) pages
350-363, 2005.

A. Valmari. Error Detection by Reduced Reachabpif@raph Generation. IATPN
1988.

M.Y. Vardi and P. Wolper. An Automata-Theoretic Amaich to Automatic Program
Verification. InProceedings of the 1st Symposium on Logic in Computer Sgienc
pages 332—-344. IEEE Computer Society, 1986.

M.Y. Vardi and P. Wolper. Reasoning about Infinite Gmuiations.Information and
Computation115(1):1-37, 1994.

26 Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi

[YS02] J. Yang and C.-J.H. Seger. Generalized Symbolicettajy Evaluation - Abstrac-
tion in Action. In Proceedings of the 4th International Conference on Formal
Methods in Computer-Aided Desigrolume 2517 of NCS pages 70-87. Springer-
Verlag, 2002.

