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Abstract A typestate property describes which operations
are available on an object or a group of inter-related objects,
depending on this object’s or group’s internal state, the type-
state. Researchers in the field of static analysis have devised
static program analyses to prove the absence of typestate-
property violations on all possible executions of a given pro-
gram under test. Researchers in runtime verification, on the
other hand, have developed powerful monitoring approaches
that guarantee to capture property violations on actual exe-
cutions. Although static analysis can greatly benefit runtime
monitoring, up until now, most static analyses are incompat-
ible with most monitoring tools. We present CLARA, a novel
framework that makes these approaches compatible. With
CLARA, researchers in static analysis can easily implement
powerful typestate analyses. Runtime-verification research-
ers, on the other hand, can use CLARA to specialize Aspect]-
based runtime monitors to a particular target program. To
make aspects compatible to CLARA, the monitoring tool
annotates them with so-called dependency state machines.
CLARA uses the static analyses to automatically convert an
annotated monitoring aspect into a residual runtime monitor
that is triggered by fewer program locations. If the static anal-
ysis succeeds on all locations, this proves that the program
fulfills the stated typestate properties, making runtime mon-
itoring entirely obsolete. If not, the residual runtime monitor
is at least optimized. We instantiated CLARA with three static
typestate analyses and applied these analyses to monitoring
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aspects generated from tracematches. In two-thirds of the
cases in our experiments, the static analysis succeeds on all
locations, proving that the program fulfills the stated prop-
erties, and completely obviating the need for runtime moni-
toring. In the remaining cases, the runtime monitor is often
significantly optimized.
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Aspect-oriented programming - Finite-state machines -
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1 Introduction

A typestate property [34] describes which operations are
available on a group of inter-related objects, depending on
the group’s internal state, the typestate. Software engineers
use typestate properties to describe important properties of
the programs they develop. For instance, a program should
not write to a connection handle while the handle is in state
“closed”. Figure 1 shows a finite-state machine that expresses
the language of all program executions that violate this prop-
erty. At the beginning, a connection is in the “connected”
state, but it can move to the “error” state when a “discon-
nect” event is followed by a “write”. A “reconnect” event
moves the connection back into the “connected” state, in
which “write” operations are allowed.

Researchers in the static-analysis and programming-
languages community have developed type systems [5, 18]
and static program analyses [9,12,13,20] that attempt to
prove the absence of typestate-property violations for all
possible executions of a given program. Type systems have
the advantage of strong static guarantees: they typically pre-
vent a programmer from writing a program that may contain
typestate violations. On the other hand, they require many
program annotations, which are hard to come up with and
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Fig. 1 “ConnectionClosed” example typestate property

aspect ConnectionClosed {
Set closed = new WeakldentityHashSet();

1
2
3
4 after /+disconnx/ (Connection c) returning:

5 call(x* Connection.disconnect()) && target(c) {
6 closed .add(c);

7

8

9

after /«xreconnx/ (Connection c) returning:
10 call(x Connection.reconnect()) && target(c) {
11 closed .remove(c);

12 }

13

14 after /xwritex/ (Connection c) returning:

15 call(x Connection.write(..)) && target(c) {

16 if (closed . contains(c))

17 error ("May not write to ”+c+7: it is closed!” );
18 }

19 }

Fig. 2 Monitoring aspect for “ConnectionClosed”

hard to maintain. Static typestate analyses require no such
annotations, but have the disadvantage of executing a lot
longer because they are not modular: type systems analyze
one method or class at a time, while typestate analyses must
typically analyze the entire program.

Researchers in runtime verification, on the other hand,
have developed powerful runtime-monitoring tools [1,7,16,
25,27]. These tools augment the program under test with a
runtime monitor that is guaranteed to notify the program-
mer about typestate violations at runtime. Many of these
dynamic-analysis tools use a two-staged approach to instru-
ment the program under test: the tools generate instrumenta-
tion code in the form of Aspect] aspects. The user can then
enable runtime checks for the program under test by weav-
ing these aspects into the program. That way, Aspect] has
become a popular intermediate representation for runtime
monitors.

Figure 2 shows an Aspect] aspect that implements a run-
time monitor for the “ConnectionClosed” example that we
mentioned above. The aspect contains three pieces of advice,
i.e., three code snippets that execute when certain events
occur in the execution of the program under test. The first
piece of advice, at lines 4—7, monitors calls to the discon-
nect method. When such a call is encountered, the piece
of advice adds the target object of the call, i.e., the connec-
tion, to the set closed. The second piece of advice, in lines
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9-12, processes calls to reconnect accordingly, removing
the connection from the set again. The third piece of advice,
in lines 1418, first checks whether the connection that is
written to is currently in the closed set. If it is, then the
advice issues an error message.

Runtime-verification, especially using such aspects, has
several desirable properties. For instance, because finite-state
specifications are evaluated at runtime, these specifications
can be very expressive: they can refer to runtime events, com-
pare runtime values and can evaluate predicates over the cur-
rent heap. Also, when a runtime monitor detects a property
violation, it can react to this violation in many different ways.
A simple monitor could issue an error message, while a more
involved monitor could try to work around the effects of
the detected violation or revert the program to a safe state.
Another positive property is that a runtime monitor can give
the following guarantee: if a program run violates the prop-
erty that the monitor describes, then the monitor will detect
this violation.

On the other hand, runtime verification yields several
drawbacks. One important drawback is that the instrumenta-
tion that is added to the program under test can yield a signif-
icant runtime overhead when test-running the program. After
all, if the runtime monitor needs to monitor many events on
a program run, the monitor has to consume a certain amount
of execution time to update its internal state based on those
events. Certain optimizations can be done and have to be
done on the level of the runtime monitor itself: if the runtime
monitor can compute every single state transition faster, then
the instrumented program will run faster too. Avgustinov
et al. [3] showed which optimizations are necessary to make
runtime monitoring feasible. However, as we will show in
our experiments, in some cases, these optimizations may not
be sufficient.

A second important drawback of runtime verification is
that it does not give any static guarantees. Test-runs and run-
time monitoring can only show the absence of property viola-
tions on any single execution, but cannot prove their absence
on all executions. To gain confidence in the program under
test, the programmer has to achieve adequate test coverage,
i.e., she has to test-run the instrumented program potentially
many times. On the one hand this is time consuming, and on
the other hand this may yield the problem that the program-
mer cannot say for certain when the instrumented program
was tested enough. While an increasing number of different
test runs can strengthen the confidence that the program will
not violate the stated property on any execution, these test
runs still do not constitute a proof. Therefore, it would be
desirable to conduct a static analysis that can prove a pro-
gram safe with respect to the finite-state property already at
compile-time.

In this work, we present CLARA, a novel framework that
aids researchers in implementing hybrid typestate analy-
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Fig. 3 Overview of CLARA
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ses, i.e., static analyses with a dynamic monitoring compo-
nent [15]. Figure 3 gives an overview of CLARA. The major
design goal of CLARA was to allow researchers to combine a
wide range of static typestate analyses with a wide range
of runtime monitors: CLARA takes monitoring aspects as
input and should pose no special syntactic restrictions on
the aspects that it processes. On the one hand, this gives
researchers in runtime verification much flexibility when
generating their aspects, but on the other hand, this deci-
sion poses problems: Aspect] aspects are, in full generality,
Turing-complete, which makes it impossible for CLARA to
extract the original finite-state property from the raw moni-
toring aspect. CLARA’s static analyses, however, cannot func-
tion without a high-level description of these properties. To
solve this problem, CLARA expects all provided monitoring
aspects to be annotated with auxiliary information in the
form of a “dependency state machine”. We show a possi-
ble Dependency-State-Machine annotation for the Connec-
tionClosed example in lines 2—11 of Fig. 4. This annotation
captures the typestate property directly as a textual repre-
sentation of the underlying finite-state machine (Fig. 1).
To allow for seamless integration with existing tools, we

static-analysis engine

partitioning

ranking heuristics

optimized instru-
mented program

collaborative optimized
instrumented program

potential failure
points (ranked)

inspect

designed dependency state machines as a language extension
to Aspect]. Section 2 will explain dependency state machines
further.

As Fig. 3 shows, some software engineers first define
finite-state properties of interest, in some finite-state for-
malism for runtime monitoring, such as tracematches [1],
Extended Regular Expressions (ERE) or Future-time or
Past-time Linear-Temporal Logic [30] (FTLTL/PTLTL). The
engineer then uses some specification compiler, such as
JavaMOP [16] or the AspectBench Compiler [2] (abc) to
automatically translate these finite-state-property definitions
into Aspect] monitoring aspects. Depending on the tool being
used, these aspects may then already be annotated with
appropriate dependency state machines: we implemented
extensions to abc that generate these annotations automat-
ically when transforming tracematches into AspectJ aspects.
For other tools, such as JavaMOP, it should be easy to
extend these tools so that they generate these annotations
as well. In case the specification compiler does not sup-
port dependency state machines, the programmer can eas-
ily add the appropriate annotations to the generated aspects
manually.
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1 aspect ConnectionClosed {

2 dependency {

3 disconn, write, reconn;

4 initial connected: disconn —> connected,

5 write —> connected,

6 reconn —> connected,

7 disconn —> disconnected;
s disconnected: disconn —> disconnected,
9 write —> error;

10 final error;

11 }

12

13 Set closed = new WeakIdentityHashSet();

14

15 dependent after disconn(Connection ¢) returning:
16 call(x Connection.disconnect()) && target(c) {
17 closed . add(c);

18 }

19

20 dependent after reconn(Connection c) returning:
21 call(x Connection.reconnect()) && target(c) {
22 closed .remove(c);

23 }

24

25 dependent after write(Connection c¢) returning:
26 call(x Connection.write (..)) && target(c) {

27 if (closed .contains(c))

28 error (”May not write to ”+c+”: it is closed!”);
29 }

30 }

Fig. 4 Aspect with dependency state machine

CLARA then takes the resulting, annotated monitoring
aspects as input, along with the program under test (either
as Java source code or bytecode). CLARA first weaves the
monitoring aspect into the program. The dependency state
machine defined in the annotation provides CLARA with
enough domain-specific knowledge to analyze the woven
program. Researchers can add a number of static analyses
to CLARA and have them applied in any order. When any
of these analyses determine that an instrumentation point
is irrelevant to all stated properties, i.e., can neither lead
to a violation of this property, nor can prevent a property
violation, then CLARA disables the instrumentation at this
point. The result is an optimized instrumented program that
updates the runtime monitor only at locations that remain
enabled.

In addition, users can instruct CLARA to modify the advice
dispatch of the monitoring aspect in such a way that the
program under test can be used for Collaborative Runtime
Verification [11]. In Collaborative Runtime Verification, dif-
ferent users are sent differently configured versions of the
program under test, where each version only contains partial
monitoring code. This usually helps to keep the monitoring
overhead low. By design, this partitioning of instrumentation
points is orthogonal to the static-analysis engine, i.e., it can
be used in combination with any static analysis (or all of
them).
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Last but not least, CLARA comes with a set of built-in rank-
ing heuristics. These heuristics rank all program points that
CLARA reports as “potential point of failure” according to
some confidence value. As a result, CLARA will often show
first those program points at which the program certainly vio-
lates the stated typestate property. Program points at which a
violation is still possible, but not likely, will show up further
to the bottom of the ranked list. In addition, CLARA associ-
ates with each potentially property-violating program point
all other program points that may have led up to this viola-
tion. This allows programmers to inspect the context of the
violation easily.

To validate our approach, we first generated Aspect]-
based runtime monitors from tracematches [1] (a form of
regular expression). We modified the AspectBench Com-
piler [2], which implements tracematches by transforming
them into regular AspectJ aspects, to automatically annotate
the resulting aspects with dependency state machines, mak-
ing the aspects compatible with CLARA. We then used CLARA
to apply three different static analyses to all annotated mon-
itor definitions.

Our results show that CLARA’s analyses can effectively
support programmers in two ways. First, the analyses reduce
the number of program points that require instrumentation
by large amounts. This makes it easier for programmer to
investigate these program points to determine where a pro-
gram could possibly violate the stated typestate properties.
In many cases, CLARA even managed to eliminate all instru-
mentation, proving that the program cannot violate the stated
properties on any execution. Second, the results show that
CLARA can effectively reduce the runtime overhead that the
runtime monitors induce, speeding up test runs and there-
fore easing the task of validating the typestate properties at
runtime.

Our results further show that CLARA is sufficiently flexi-
ble to support typestate analyses of various levels of details
and various AspectJ-based runtime-monitoring techniques.
CLARA succeeds in decoupling the static typestate analyses
from the runtime-monitoring code.

CLARA is freely available as open source at http://bodden.
de/clara/, along with extensive documentation, the author’s
dissertation, which describes CLARA in detail, and with
benchmark results.

We structured the remainder of this paper as follows. In
Sect. 2, we explain the syntax and semantics of CLARA’s
main abstraction, dependency state machines. In Sect. 3 we
briefly outline the three static example typestate analyses that
we provide with CLARA. A discussion of our special code
generation for collaborative runtime verification follows in
Sect. 4. In Sect. 5 we comment on some experiments which
show that the static analyses can indeed help to improve the
performance of the supplied runtime monitors. We discuss
related work in Sect. 6 and conclude in Sect. 7.


http://bodden.de/clara/
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Fig. 5 Syntax of dependency n= “dependent”.
state machines, as extension . .
(shown in boldface) to the B AdviceName
syntax of Aspect]
AdviceName ::=
= DependencySMDecl.
DependencySMDecl ::= “dependency” “{” AdviceRefList *“;” StateList *;” “}”.

AdviceRefList ::= AdviceRef | AdviceRef “,” AdviceRefList.
AdviceRef ::= AdviceName | AdviceName “(” VarList “)”.
VarList ::= VarName | VarName “,” VarList.

VarName ::=

| “*” .

StateList ::= State | State StateList.

State ::= StateModifier” [“:” TransitionList] “;”.
StateModifier ::= “initial” | “final”.
TransitionList ::= Transition | Transition “,” TransitionList.
Transition ::= “=>7
2 Dependency state machines disconn, write, reconn. We can do so because, by

2.1 Syntax

Figure 4 already demonstrated our language extension using
the ConnectionClosed example. Line 3 establishes the alpha-
bet that the state machine is evaluated over. In our example,
the alphabet of the regular language that the state machine
accepts is {disconn, write, reconn}. Every symbol in
the alphabet refers to a named “dependent” piece of advice
in the same aspect. Note that with our language extension,
we can assign the pieces of advice in lines 15, 20 and 25 of
Fig. 4 proper names. In Fig. 2, which showed the aspect in
plain Aspect], this was not possible, and we therefore wrote
the names as comments. In CLARA, only pieces of advice that
are declared as “dependent” can have names. Other pieces
of advice have no names and execute with Aspect]’s stan-
dard semantics. Lines 410 enumerate all states in the state
machine in question, and for each state enumerate further
a (potentially empty) list of outgoing transitions. An entry
“sl: 1 — s2”readsas “thereexists an 1-transition from
sl to s2”. In addition, a programmer can mark states as
initial or final, i.e., accepting. We give the complete
syntax for dependency state machines in Fig. 5, as a syntactic
extension to Aspect].

According to the semantics that we will give to depen-
dency state machines, the dependency declaration in the
ConnectionClosed example states that any piece of dis-
conn, write or reconn advice must execute on a con-
nection ¢ whenever not executing this piece of advice on ¢
would change the set of events at which the dependency state
machine reaches its final state on c. (More on the semantics
later). Note, however, that the symbol declarations in line 3
omit the variable name c of the connection: we just wrote

default, a dependency annotation infers variable names from
the formal parameters of the advice declarations that it refer-
ences (lines 15, 20 and 25 in the example). This means that
the alphabet declaration in line 3 is actually a short hand
for the more verbose form disconn(c), write(c),
reconn(c).

The semantics of variables in dependency declarations is
similar to unification semantics in logic programming lan-
guages like Prolog [17]: The same variable at multiple loca-
tions in the same dependency refers to the same object. For
each advice name, the dependency infers variable names in
the order in which the parameters for this advice are given at
the site of the advice declaration. Variables for return val-
ues from after returning and after throwing
advice are appended to the end. For instance, the following
advice declaration would yield the symbol createlter(c, 1).

dependent after createlter(Collection c)
returning(Iterator i): call(x Collection.iterator()) { }

We decided to allow for this kind of automatic inference
of variable names because both code-generation tools and
programmers frequently seem to follow the convention that
equally named advice parameters are meant to refer to the
same objects. That way, programmers or code generators can
use the simpler short-form as long as they follow this con-
vention. Nevertheless the verbose form can be useful in rare
cases. Assume the following piece of advice:

dependent before detectLoops(Node n, Node m):
call(Edge.new(..)) && args(n,m) {
if(n==m) { System.out.println("No loops allowed!"); } }
This advice only has an effect when both n and m refer to
the same object. However, due to the semantics of Aspect],
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the advice cannot use the same name for both parame-
ters, which means that the inferred annotation would be
detectLoops(n,m). The verbose syntax for dependent advice
allows us to state nevertheless that for the advice to have
an effect, both parameters actually have to refer to the same
object, for instance k: dependency{ detectLoops(k.k); ... }.

2.2 Type-checking dependency state machines

After parsing, we impose the following semantic checks:

e A piece of advice carries a name if and only if it carries
also a dependent modifier.

e Every advice must be referenced only by a single decla-
ration of a dependency state machine.

e The state machine must have at least one initial and at
least one final state.

e The listed alphabet may contain every advice name only
once, i.e., declares a set.

e The names of states must be unique within the depen-
dency declaration.

e Transitions may only refer to the names of advice that
are named in the alphabet of the dependency declaration,
and to the names of states that are also declared in the
same dependency declaration.

e Every state must be reachable from an initial state.

If the verbose form for advice references is used:

— The number of variables for an advice name equals
the number of parameters of the unique advice with
that name, including the after-returning or after-
throwing variable. (inference ensures this)

— Advice parameters that are assigned equal names
have compatible types: For two advice declarations
a(A x)andb (B vy),witha (p) and b (p) inthe
same dependency declaration, A is cast-convertible
[22, Sect. 5.5] to B and vice versa.

— Each variable should be mentioned at least twice
inside a dependency declaration. If a variable v is
only mentioned once we give a warning because in
this case the declaration states it no dependency with
respect to v. The warning suggests to use the wild-
card “*” instead. Semantically, * also generates a
fresh variable name. However, by stating * instead
of a variable name, the programmer acknowledges
explicitly that the parameter at this position should
be ignored when resolving dependencies.

Note that these checks are very minimal and allow for a
large variety of state machines to be supplied. For instance,
we do allow multiple initial and final states. We also allow
the state machine to be non-deterministic. The state machine
can have unproductive states from which no final state can be
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reached, and the state machine even does not have to be con-
nected, i.e., it may consist of multiple components which are
not connected by transitions. In this case, the state machine
essentially consists of multiple state machines that share a
common alphabet. Note that we forbid multiple dependency
declarations to reference the same piece of advice: because
these dependency declarations could use different alphabets
the semantics of which would be unclear.

2.3 Semantics

We define the semantics of a dependency state machine
as an extension to the usual advice-matching semantics of
Aspect] [24]. In Aspect], pieces of advice execute at “join-
points”, which are effectively periods of program execution.
Programmers can determine the set of joinpoints at which
a piece of advice should apply through “pointcuts”, which
are predicates over joinpoints. In the example from Fig. 2,
the expression call(x Connection.disconnect()) && target(c) is a
pointcut that picks out all method calls to the disconnect
method of class Connection. At the same time, the point-
cut binds the target object of the call to the variable c.

Let A be the set of all pieces of advice and J be the
set of all joinpoints that occur on a given program run. We
model advice matching in Aspect] as a function match that
we regard as given by the underlying Aspect] compiler:

match: Ax J — {B|B:V— OyU{L}L

Let V be the set of all variable names and O the set of all
runtime objects. For each pair of advice a € A and joinpoint
j € J, match returns L in case a does not execute at j. If a
does execute then match returns a variable binding 8, a map-
ping from a’s parameters to objects ({ } for parameter-less
advice).

Based on this definition, we informally demand for any
dependent piece of advice a, that a only has to execute when
it would execute under Aspect]’s semantics it and when it not
executing a at j would change the set of joinpoints at which
the dependency state machine reaches its final state for a
binding “compatible” with 8. (We define this term later).

Semantics by example. Figure 6 contains a small exam-
ple program that we use to explain the intuition behind
this semantics. The program contains several lines that trig-
ger joinpoints that the ConnectionClosed aspects monitor.
In Aspect] terminology, researchers frequently call a pro-
gram point that triggers a joinpoint j the “joinpoint shadow”
of j, or just “shadow” for short. The example program vio-
lates the ConnectionClosed property in lines 5 and 7 by
first disconnecting the connection o(c1) and then writing to
o(c1). (For any variable v, we use o(v) to refer to the object
that v references). The joinpoint shadows [28] at these two
lines are also the only two shadows in the program that the
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1 public static void main(String args|]) {

2 Connection ¢l = new Connection(args[0]),
3 ¢2 = new Connection(args[1]);
4 cl.write(args[2]); //write(cl)

5 cl.disconnect (); //disconnect(cl)

6 cl.disconnect (); //disconnect(c1)

7 cl.write(args[2]); //write(cl)

s cl.disconnect (); //disconnect(c1)

9 c2.write(args [2]); //write(c2)

10
}

Fig. 6 Example program

ConnectionClosed monitoring aspect from Fig. 2 must mon-
itor so that this aspect correctly issues its error message at
runtime. In particular, since the connection starts off in its
initial state “connected”, the write event at line 4 has no
impact on the connection’s state: the monitor loops on state
“connected”, and hence we call the write shadow at this
line “irrelevant”. Similarly, at line 6, the monitor is guaran-
teed to be in the “closed” state. Monitoring further di sconn
events does not change the automaton state in this situation
either. Hence, the disconn shadows at this line is irrele-
vant as well. The disconn event at line 8 does cause a state
change (from “connected” to “closed”), but this state change
does not matter: because no write event ever follows on
o(c1l), this state change cannot impact the set of future join-
points at which the dependency state machine reaches its final
state (because there are none), and hence cannot impact the
set of joinpoints at which the runtime monitor will have a vis-
ible effect, i.e., will issue its error message. This is true even
though another write event which follows at line 9. This
latter wri te event occurs on c2 and not on c1. Because we
know that c2 cannot possibly reference the same object as
cl,ie., o(cl) # o(c2), this write event is not what we
call “compatible” with the disconn event at line 8.

Formal semantics. In our view of Aspect], pieces of advice
are matched against “parameterized traces”, i.e., traces that
are parameterized through variable bindings. The semantics
of state machines are usually defined using words over a
finite alphabet X. In particular, state machines as such have
no notion of variable bindings. In the following, we will call
traces over X, which are given as input to a dependency state
machine “ground traces”, as opposed to the parameterized
trace that the program execution generates. We will define the
semantics of dependency state machines over ground traces.
We obtain these ground traces from the parameterized exe-
cution trace by projecting each parameterized event onto a
set of ground events. This yields a set of ground traces—one
ground trace for every variable binding.

Further, we will define the semantics of dependency state
machines in terms of “events”, not joinpoints. Joinpoints dif-
fer from events in that joinpoints describe regions in time,

while events describe atomic points. A joinpoint has a begin-
ning and an end, and code can be executed before or after the
joinpoint (i.e., at its beginning or end) or instead of the join-
point. In particular, joinpoints can be nested. For instance,
a field-modification joinpoint can be nested in a method-
execution joinpoint. Pieces of advice, even “around advice”,
execute at atomic events before or after a joinpoint. Because
these events are atomic, they cannot be nested. Joinpoints
merely induce these events.

Event. Let j be an Aspect] joinpoint. Then j induces two
events, jhefore and Jjafer Which occur at the beginning, respec-
tively, end of j. For any set J of joinpoints we define the set
E(J) of all events of T as:

EWT) = U {Jbefore, Jafter}-

jed
In the following, we will often just write £ instead of £(J),
if J is clear from the context.

For any declaration of a dependency state machine, the set
of dependent-advice names mentioned in the declaration of
the dependency state machine induces an alphabet X, where
every element of ¥ is the name of one of these dependent
pieces of advice. For instance, the alphabet for the Con-
nectionClosed dependency state machine from Fig. 2 would
be ¥ = {disconn, write, reconn}. Matching these pieces of
advice against a runtime event e results in a (possibly empty)
set of matches for this event, where each match has a bind-
ing attached. We call this set of matches the parameterized
event é.

Parameterized event. Let ¢ € £ be an event and X be the
alphabet of advice references in the declaration of a depen-
dency state machine. We define the parameterized event e to
be the following set:

¢:=|Jl@. B) | B =matche.a) A B # L}.

acx

Here, match(e, a) is the “usual” matching function that the
original Aspect] semantics provide, overloaded for events.
We call the set of all parameterized events &:

£:=|Jte}

Itis necessary to consider sets of matches because multiple
pieces of advice can match the same event. While this is not
usually the case, we decided to cater for the unusual cases,
too. As an example, consider the dependency state machine
in the UnusualMonitor aspect in Fig. 7a. The aspect defines
a dependency between two pieces of advice a and b. Note
that the pointcut definitions of a and b overlap, i.e. describe
non-disjoint sets of program events. The advice b executes
before all non-static calls to methods named foo. The advice
a executes before these events too, because, by its definition,
it executes before any non-static method call.
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1 aspect UnusualMonitor {
2 dependency{

3 a, b;
4 //transitions omitted from example
s}
6
7 dependent before a(Object x):
8 call(x x(..)) && target(x) { ...}
9
10 dependent before b(Object x):
11 call(x foo (..)) && target(x) { ... }
12}
()

1 SomeClass vl = new SomeClass();
2 SomeClass v2 = new SomeClass();
3 vl.foo(); vl.bar(); v2.foo();

(b)

Fig. 7 UnusualMonitor aspect and example program. (a) Unusual-
Monitor aspect with overlapping pointcuts. (b) Example program

Next, assume that we apply this aspect to the small exam-
ple program in Fig. 7b. We show the program’s execution
trace in the first row of Fig. 8 (to be read from left to
right). This execution trace naturally induces the parame-
terized event trace that we show in the second row of the
figure: this trace is obtained by matching at any event every
piece of advice against this event.

Next we explain how we use projection to obtain “ground
traces”, i.e. X-words, from this parameterized event trace.

Projected events. For every ¢ € £ and binding 8 we
define a projection of ¢ with respect to 8. Projection yields
a set of ground events from ¥ which an ordinary finite-state
machine can process. The projection with respect to 8 con-
tains all ground events a that are, in e, associated with a
binding B, that is “compatible” with 8. In other words, the
projection contains all ground events at ¢ that may refer to
the same objects as f:

el B:={aeX|3a,p,) € e.compatible(B,, B)}
Here, compatible is a relation over binding as follows:

compatible(B1, B2)
== Vv € (dom(B1) Ndom(B2)) . B1(v) = B2(v)

Fig. 8 Traces resulting from
code in Fig. 7; note that

o(vl) # o(v2)

execution trace
parameterized trace t

In this equation, dom (f;) denotes the domain of §;, i.e.,
the set of all variables that B; assigns a value. This means
that 81 and B, are compatible as long as they do not assign
different objects to the same variable.

Parameterized and projected event trace. Any finite
program run induces a parameterized event trace f = é1, . ..,
é, € £*. For any variable binding 8 we define a set of pro-
jected traces 7 |, B C X* as follows. 7 | B is the smallest
subset of X* for which holds:

Vi=ey,...,ep € 2%

if VieN with 1<i<n:e;€é | p then teflp

We call traces like 7, which are elements of X*, “ground”
traces, as opposed to parameterized traces, which are ele-
ments of £*.

For our example, the third and fourth row of Fig. 8 show
the four ground traces that result when projecting this param-
eterized event trace onto the variable bindings x = o(v1) and
x = o(v2).Forx = o(v1) we obtain the two traces “aa’ and
“ba”, for x = o(v2) we obtain the two traces “a” and “b”.

A dependency state machine will reach its final state (and
the related aspect will have an observable effect, e.g., will
issue an error message) whenever a prefix of one of the
ground traces of any variable binding is in the language
described by the state machine. This yields the following
definition.

Set of non-empty ground traces of a run. Let E*
be the parameterized event trace of a program run. Then we
define the set groundTraces(f) of non-empty ground traces
of £ as:

groundTraces(t) := U A Naboas
BeB

We intersect with £ 7 to exclude the empty trace. This is
because the empty trace cannot possibly cause the monitor-
ing aspect to have an observable effect.

The semantics of a dependency state machine

We define the semantics of dependency state machines as
a specialization of the predicate match(a, e), which models
the decision of whether or not the dependent advice a € A

vl.foo();
{(avf = O(Vl)),
(b,x = o(v1))}

vl.bar();

{(a,z = o(v1))}

v2.foo();
{(a7 T = O(VQ)),
(b,x = o(v2))}

projected ground traces a a
for t | = o(v1) b a

projected ground traces a
for ¢ | z = o(v2) b
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matches at event e € £, and if so, under which variable bind-
ing. As noted earlier, this predicate match is given through
the semantics of plain Aspect]. We call our specialization
stateMatch and define it as follows:

stateMatch : Ax E*xN — {B|B:V — O}U{L}
stateMatch(a, f, i)
= let B = match(a, e) in
B if B # L A3t € groundTraces(f)

such that necessaryShadow(a, t, i)
1 else

As we can see, stateMatch takes as arguments not only the
piece of advice for which we want to determine whether it
should execute at the current event, but also the entire param-
eterized event trace 7, and the current position i in that event
trace. Note that / contains also future events that are yet
to come. This makes the function stateMatch undecidable.
This is intentional. Even though there can be no algorithm
that decides stateMatch precisely, we can derive static anal-
yses that approximate all possible future traces. The func-
tion necessaryShadow mentioned above is a parameter to
the semantics that can be freely chosen, as long as it adheres
to a certain soundness condition that we define next. We say
that a static optimization for dependency state machines is
sound if it adheres to this condition.

Soundness condition. The soundness condition will demand
that an event needs to be monitored if we would miss a match
or obtain a spurious match by not monitoring the event. A
dependency state machine M matches, i.e., causes an exter-
nally observable effect after every prefix of the complete exe-
cution trace that is in £(M), the language that M accepts.

Set of prefixes. Let w € ¥* be a ¥ word. We define the
set pref(w) as:

pref(w) := {p € £* | Is € ¥* such that w = ps}

Matching prefixes of a word. Let w € £* be a ¥ word
and £ C ¥ a ¥ language. Then we define the matching pre-
fixes of w (with respect to £) to be the set of prefixes of w

in L:
matches g (w) = pref(w) N L

We will often write matches(w) instead of matches 0 (w) if £
is clear from the context.

As before, the predicate necessaryShadow can be freely
chosen, as long as it adheres to the following soundness
condition:

Soundness condition. Let £ := L£(M). For any sound
implementation of necessaryShadow we demand:

YaeX Vi=t,....t;,....t, €XT VieN:
a=tN
matchesp(ty, ..., t,) Zmatchesp (1, ..., ti—1tig1, .-, )

—> necessaryShadow(a, t, i)

Hence the soundness condition states that, if we are about
to read a symbol a, then we can skip a if the monitoring
aspect would have an observable effect when processing the
complete trace ¢ just as often (and at the same points in time)
as it would when processing the partial trace where t; = a is
omitted.

2.4 Approximations of dependency state machines

It may be interesting to know whether it is possible to pro-
vide CLARA with approximate dependency state machines
as input that do not fully reflect the actual property that is
monitored. This may be of particular concern when the run-
time monitor is supposed to monitor a language £ that cannot
be fully expressed with a finite-state machine monitoring a
regular language Lpsm. In such cases, we can give different
guarantees for the following two situations:

1. £ € Lpsm: In this case, CLARA guarantees that the
static optimizations will not introduce any false nega-
tives. In other words, every trace that would cause the
un-optimized monitor to reach a final state and execute
its error handler will also do so for the optimized moni-
tor. However, there may be false positives: the optimized
monitor may miss some events that would otherwise reset
the monitor into a “safe state” and therefore may signal
some errors that did not actually occur.

2. L 2 LpsMm: In this case, the situation is just inverted.
CLARA guarantees the absence of false positives, but can-
not guarantee that the optimized monitor will actually
signal all property violations.

If neither of the above inclusions hold between the spec-
ified and the monitored language then CLARA cannot give
any guarantees: there may be false positives as well as false
negatives.

3 Included analyses

In version 1.0, CLARA comes pre-equipped with three static
analyses. As shown in Fig. 3, CLARA executes these analyses
right after weaving, in its static-analysis engine. All analyses
have direct access to all declared dependency state machines
and to the woven program. Further, the analyses have access
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to a list of joinpoint shadows, i.e., a list of those program
points that may trigger events that the monitoring aspects
react to. For every such shadow, CLARA exposes the follow-
ing pieces of information:

e The dependent piece of advice that this shadow invokes,
along with the name of this piece of advice and an ordered
list of variable names that the advice binds.

e The shadow’s source-code position. If the program is
given in the form of bytecode, CLARA attempts to extract
the shadow’s line number from debug information in the
bytecode.

e The dynamic residue of the shadow, i.e., an abstract rep-
resentation of the dynamic check that determines, at run-
time, whether the advice will actually execute at this
program point. Static analyses can replace this residue
according to their analysis information. For instance, if
an analysis determines that a shadow never needs to exe-
cute, then the analysis can set the residue to the constant
NeverMatch.

e A mapping from the variables that the advice binds at
this shadow to a points-to set that models all objects that
these variables could possibly point to. Computing this
mapping may be expensive. Therefore, CLARA computes
the mapping only when it is requested.

In the following, we will describe how the three static
analyses use the above information to determine “irrelevant
shadows”, or “nop shadows”, as we often call them. Those
are shadows that we can safely refrain from monitoring at
runtime, without jeopardizing the correctness of the result-
ing residual monitor: when disabling a nop shadow s, then
the fact that this shadow is a nop shadow guarantees that the
resulting reduced event trace, which misses events that would
otherwise be triggered by s, causes the runtime monitor to
reach its final state at exactly the same events as a complete
trace, i.e., with s enabled, would have caused.

3.1 Quick Check

The Quick Check executes, as the name suggests, very
quickly, usually within milliseconds. The check only acces-
ses syntactic information that is readily available after
the weaving process. For every given dependency state
machine M, the Quick Check first determines for every sym-
bol a in the alphabet of M how many shadows exist in the
program that are labeled with a. If for some symbol a there
exist no shadows at all, then the Quick Check removes all
edges from M that carry a as label. Next, the Quick Check
reduces the dependency state machine by removing all states
and edges that have become unreachable, or from which final
state cannot be reached any more. Let us call the resulting
state machine M. Then, in a last step, the Quick Check
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disables all shadows that trigger events the symbol of which
is not in the alphabet of M. For further details about the
Quick Check, we refer the interested readers to [10,12].

As an example, let us assume that we wish to verify that
some program adheres to the ConnectionClosed, and that the
Quick Check discovers that there exists no joinpoint shadow
for write in the entire program: the program disconnects
and reconnects connection objects, but it never writes to any
connection. In this case, the Quick Check would remove the
write-edge from the state machine in Fig. 1. This, in turn,
means that the resulting state machine contains no path from
an initial to a final state. Hence, the reduced alphabet is
empty. As a result, the Quick Check can disable all shad-
ows for this program: the Quick Check just proved that the
program can never violate the ConnectionClosed property on
any execution.

Correctness. The Quick Check is easy to prove correct.
Discarding transitions that are labeled with a symbol a that
matches nowhere in the program cannot change matches(t)
for any trace ¢ because no such trace can contain a. Discard-
ing unreachable states also does not impact matches(t), and
neither does disabling symbols that the state machine does
not refer to after all such states have been removed. O

3.2 Orphan-shadows analysis

The second analysis stage, the orphan-shadows analysis, per-
forms the same check, but on a per-object basis. This stage
uses a flow-insensitive, context-sensitive points-to analy-
sis [31] to disambiguate pointer references. This allows the
analysis to decide which joinpoint shadows could potentially
refer to the same objects. The analysis then uses this infor-
mation as follows. In our example, if the program discon-
nects a particular connection ¢, but never writes to c, then
for this ¢ the dependency is not fulfilled and therefore one
does not need to monitor any disconnect, reconnect
or write events on this connection. In [10, 12], we also give
further details about the orphan-shadows analysis.

Correctness. The orphan-shadows analysis distingui-
shes two objects referred to by variables x and y only if the
points-to sets of x and y have an empty intersection. In this
case, it is known that x and y cannot refer to the same objects
and therefore events that bind the same specification variable
to x, respectively y, cannot possibly yield the same ground
trace. Otherwise the orphan-shadows analysis behaves just
like the Quick Check and is correct for the same reasons. O

3.3 Nop-shadows analysis

The nop-shadows analysis is the analysis that is most
involved. It is the only one of the three analyses stages that
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is flow-sensitive, i.e., that takes into account the order in
which the program under test may trigger events of interest.
Like the orphan-shadows analysis, the nop-shadows analy-
sis also uses pointer information to disambiguate pointer
references. Unlike the orphan-shadows analysis, however,
the nop-shadows analysis does not only use flow-insensitive
points-to information for this purpose, but instead uses
object representatives [14], a special pointer abstraction that
combines points-to information with flow-sensitive must-
alias and must-not-alias information. This abstraction yields
enhanced precision when the order of events matters. In par-
ticular, the must-alias information allows us to determine that
a particular event must have occurred before another, on the
same object.

We based the nop-shadows analysis entirely on our seman-
tics of dependency state machines. This semantics states
that a dependent advice must be dispatched on some vari-
able binding B if not dispatching the advice would alter the
set of events (or joinpoints) at which the monitor reaches
its final state for a binding that is compatible with 8. The
nop-shadows analysis exploits this definition by computing
an equivalence relation between states of the dependency
state machines. This relation allows the analysis to iden-
tify “nop shadows” as shadows that only switch between
equivalent states. We say that two states ¢; and g, are
“continuation-equivalent” at a joinpoint shadow s (or “equiv-
alent” for short), and write g =; ¢ if, given all possi-
ble continuations of the execution after s, the fact whether
the monitor is in state g; or in state g» at s does it not
impact when the dependency state machines reach its final
state on these possible continuations. The analysis uses alias
information to disambiguate states for different variable
bindings.

Given this equivalence relation, we can then identify shad-
ows s that only switch between “equivalent” states on all pos-
sible executions that lead through s. Using a forward analysis,
we first compute all possible states just before s. Then, if for
every such state g the target state after executing s is equiva-
lent to g, by definition of our semantics of dependency state
machines we know that dispatching a piece of advice a at
such a shadow s would have no effect. We exploit this fact
in two different ways. First, we filter the shadow from the
list of shadows that are displayed to the user after weaving.
This aids the programmer in reasoning about the effects that
the aspect may have. Second, we remove all advice-dispatch
code from this shadow, potentially speeding up the execution
of the woven program.

Consider again the example that is given in Fig. 6. We first
focus on the write shadow at line 4. Given the only pos-
sible execution path that leads up to this line, we know that
the dependency state machine must be in state “connected”
when reaching the line. We also know that a write transi-
tion leads from “connected” back to “connected” only, i.e.,

the transition loops. State “connected” is obviously equiva-
lent to itself: g1 = g implies g1 =; ¢». Therefore, the nop-
shadows analysis can safely disable the advice dispatch at the
shadow at line 4. When identifying such a “nop shadow” and
disabling the advice dispatch at this shadow, we re-iterate the
nop-shadows analysis, this time under the new assumption
that no advice will be dispatched at the shadow. During this
re-iteration, the analysis will disable the write shadow at
line 9, and either of the di sconnect shadows at line 5 or 6,
depending on which one is analyzed first, and the discon-
nect shadow atline 8. This last shadow atline § is interesting
in the sense that it switches between equivalent states that are
not equal, i.e., we have g = ¢» although g; # ¢>. At this
shadow, the non-deterministic dependency state machine is
simultaneously in states “connected” and “error”’. From these
states, the disconnect transition moves into state “dis-
connected”. Although this is definitely not the same internal
state, the state “disconnected” is equivalent to both other
states it given all possible continuations, i.e., given all exe-
cutions that could follow line 8: after this line, we only see
a write event, but this event occurs on another object and
is therefore not relevant to the disconnect transition in
line 8.

Computing the appropriate equivalence relation requires
both a forward and a backward-analysis component: the
forward component computes equivalencies between states
“with respect to the past”, while the backward analy-
sis computes equivalencies “with respect to the future”,
i.e., with respect to the possible continuations. The for-
ward-analysis component works by propagating through the
program the states of a determinized version of the orig-
inal dependency state machine M. The backward-anal-
ysis component is an exact dual of the forward one: it
propagates backward through the program the states of a
determinized version of the inverted state machine of M.
To obtain an efficient implementation, our analysis uses
flow-sensitive information on an intra-procedural, i.e., per-
method level only, and uses a coarse grain flow-insensi-
tive abstraction at method boundaries. Space limitations
prevent us from explaining the nop-shadows analysis any
further. We give further details on this analysis in previous
work [9].

Correctness. The nop-shadows analysis is correct by con-
struction. If at a statement s transitions only between states
that are provably continuation-equivalent with respect to all
possible continuations then

matches (1, ..

S lic1lils e, t}’l)

cannot hold if s triggers the ith event. Therefore, it is sound
to define necessaryShadow(a, t, i) = false. O
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3.4 Adding analyses to CLARA

Researchers in the field of static analysis can easily inte-
grate their own analyses into CLARA by scheduling a new
ReweavingPass. CLARA executes all such analysis passes
right after weaving, and before later-on re-weaving the pro-
gram based on the analysis information (hence the name).
CLARA executes all passes in sequence. For instance, CLARA
executes the three default analyses in the order in which
we presented them here: simple and quick ones first, more
involved ones later. This makes sense because in many cases
even simple analyses, like the Quick Check, are already pow-
erful enough torecognize all shadows as irrelevant. When this
happens, the remaining analysis stages need to do nothing at
all.

Programmers can insert their own analysis at any point
in the sequence. Every pass uses a unique pass identifier.
Users can refer to these identifiers to enable or disable
analysis passes on CLARA’s command line. For instance,
when given the command-line parameters “-static-
analyses quick-osa”, CLARA will enable the Quick
Check and the orphan-shadows analysis, however disable
the nop-shadows analysis. It may be the case that analysis
stages are inter-dependent. For instance, our current imple-
mentation of the nop-shadows analysis assumes that the
orphan-shadows analysis has executed previously, because
the nop-shadows analysis reuses the points-to information
that the orphan-shadows analysis computed. Programmers
can explicitly declare such dependencies when instantiating
aReweavingPass. CLARA then checks the command-line
parameters and reports a helpful error message when the user
attempts to run CLARA with an combination of analyses that
would violate these dependencies.

4 Collaborative runtime verification

In the last section, we have presented a set of static program
analyses and optimizations that evaluate runtime monitors
ahead of time. These analyses can often reduce and some-
times completely eliminate the performance penalties that
runtime monitors induce. However, even the most sophisti-
cated static-analysis techniques will fail in some cases: for
some programs instrumentation remains even after apply-
ing all our static-analysis stages. When this instrumentation
happens to reside within a hot loop, the performance penalty
can be large. This may be acceptable in a pre-deployment
setting, where developers can produce a large number of
slow test runs on dedicated machines. But even then the run-
time overhead that the instrumentation induces may be too
large.

The situation is even worse when considering a setting
in which instrumentation-carrying programs are deployed.

@ Springer

In the verification community it is now widely accepted that,
especially for large programs, verification is incomplete, and
hence bugs may arise in deployed code on the machines of
end users. If deployed code carried instrumentation for run-
time verification, developers could track down the causes of
observed failures more easily.

In such a setting it is mandatory that the monitoring
code only induces a low runtime overhead. According to
researchers in industry [23], companies would likely be
willing to accept runtime verification in deployed code if
the verification overhead was below 5%. Hence in this
chapter, we show how to reduce the runtime verification-
induced overhead further, using methods from remote sam-
pling [26]. Because companies that produce large pieces
of software (which are usually hard to analyze) often have
access to a large user base, one can leverage the size of
the user base to deploy different partial instrumentation
(“probes”) for each user. A centralized server can then com-
bine runtime-verification results from runs with different
probes. Sampling-based approaches have many different
applications. We are most interested in using sampling to
reduce instrumentation overhead for individual end users.
We have developed an approach to partition this overhead,
called it spatial partitioning.

Spatial partitioning works by partitioning the set of instru-
mentation points into subsets. We call each subset of instru-
mentation points a it probe. Each user is given a program
instrumented with only a few probes. This works very well
in many cases.

Spatial partitioning reduces the overhead of runtime ver-
ification by only leaving a subset of a program’s shadows
enabled. However, choosing an arbitrary subset of shadows is
more than unsatisfactory; in particular, arbitrarily disabling
shadows for weakly referenced symbols may lead to false
positives. Consider the example from Fig. 9, in combina-
tion with the HasNext property [12]. This property states
that it is an error to call next () twice in a row on some
iterator without calling hasNext () in between (to check
if the iterator actually has a next element). The example
program in Fig. 9 was taken from an earlier version of our
own implementation of CLARA. The program uses two dif-
ferent iterators, “entryIter” and “iterator”, to print
the contents of a map to a StringBuffer. We have underlined
the shadows at which events occur that are of interest to
the HasNext pattern. In this example, one safe spatial par-
titioning would be to disable all shadows in the program
except for those referring to entryIter (lines 3,4 and 17).
However, many partitionings are unsafe; for instance, dis-
abling the hasNext shadow on line 3, but enabling the
next shadow on line 4 on a map with two or more entries
gives a false positive, since the monitor “sees” two calls to
next () and not the call to hasNext () that would prevent
the match.
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Fig. 9 Example program using

private void mapToString(Map<String, List<String>> map, StringBuffer sb) {

1
two iterators 2 for (Iterator <Map.Entry<String, List<String>>> entrylter =
3 map.entrySet().iterator (); entrylter.hasNext();) {
4 Map.Entry<String, List<String>> entry = entrylter.next();
5 sb.append(entry.getKey());
6 List <String> args = entry.getValue();
7 if (largs.isEmpty()) {
8 sb.append(” (”);
9 for (Iterator <String> iterator = args.iterator(); iterator .hasNext();) {
10 String varName = iterator.next();
1 sb.append(varName);
12 if (iterator .hasNext())
13 sb.append(”,”);
14 }
15 sb.append(”)”);
16
17 if (entryIter .hasNext()) {
18 sb.append(”,”);
19
20 sb.append(” ”);

21
22 sb.append(”\n”);

23 }

Enabling arbitrary subsets of shadows can also lead to
wasted work. Disabling the next shadow in the above exam-
ple and keeping the hasNext shadow enabled would, of
course, lead to overhead from the hasNext shadow. But
hasNext shadows can never lead to a complete match with-
out any next shadows: hasNext shadows can only force
the runtime monitor to exit a state; hasNext shadows are
no progress shadows. We therefore need a more principled
way of determining sensible groups of shadows to enable or
disable.

Spatial partitioning uses information from dependency
state machines to compute a set of “probes”. Each probe
is a set of shadows that is both “consistent” and “complete”.
The probe is consistent because we require that all shadows
that are part of the probe must be compatible with each other
(with respect to the dependency state machine that defines
the probe). In other words, there must be no two shadows
in the probe that assign the same variable v to two disjoint
points-to sets. (If this occurred then we knew that the shad-
ows would assign v to different objects). The probe also
has to be complete: no shadow that is compatible may be
left out.

The concrete algorithms to compute consistent and com-
plete probes go beyond the scope of this paper. We refer the
interested readers to previous work [8,11].

It is interesting to note that by the way in which we con-
struct probes, spatial partitioning can guarantee complete
coverage in the following sense. Assume a program run r
that leads to a property violation in the fully instrumented
program. Further assume that we obtain k different probes
through spatial partitioning, and that we distribute differently
instrumented versions of the program to a number of users,

such that every single one of the k probes is enabled in at
least one user’s program version. When all these users now
re-execute the same program run r then there will be at least
one user for which r causes the runtime monitor to notify
this user about the property violation.

Further, we wish to note that spatial partitioning in CLARA
is compatible with any of the other static analyses: at any
point in time, users of CLARA can opt to have all remaining
shadows partitioned, no matter which analysis stages exe-
cuted earlier.

5 Experimental results

In this section, we will both empirically motivate the need
for the static analyses and optimizations that we presented,
and we show that the static analyses that CLARA provide can
indeed benefit runtime monitoring. Throughout this paper,
we consider two possibilities of verifying that a program sat-
isfies a finite-state property: statically and through runtime
verification. When a programmer weaves a runtime monitor
into her program under test, the Aspect] compiler emits a list
of source code locations at which runtime events of inter-
est could occur—the joinpoint shadows. After the compila-
tion has finished, the programmer could in principle inspect
all joinpoint shadows manually to see whether the shadows
may indeed contribute to a property violation. However, this
approach is only viable if just a handful of shadows exist.
The second approach is to not consider the joinpoint shad-
ows at all, but to instead run the woven program and see if
it reports a property violation at runtime. To give meaning-
ful results, this approach requires good test coverage and,
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Table 1 Monitored

. . Property name
specifications for classes of the

Description

Java Runtime Library (available ASyncContainsAll

at http://www.bodden.de/clara/

benchmarks/) ASynclterC
ASynclterM

FailSafeEnum
FailSafeEnumHT
FailSafelter
FailSafelterMap
HasNextElem
HasNext
LeakingSync
Reader

Writer

Synchronize on d when calling c.containsAll (d) ) for synchronized
collections ¢ and d

Only iterate a synchronized collection ¢ when owning a lock on ¢

Only iterate a synchronized map m when owning a lock on m

Do not update a vector while iterating over it

Do not update a hash table while iterating over its elements or keys

Do not update a collection while iterating over it

Do not update a map while iterating over its keys or values

Always call hasMoreElements before calling nextElement on an Enumeration
Always call hasNext before calling next on an Iterator

Only access a synchronized collection using its synchronized wrapper

Do not use a Reader after its InputStream was closed

Do not use a Writer after its OutputStream was closed

equally important, requires the monitoring instrumentation
to induce a low enough runtime overhead so that test runs can
be completed in a reasonable amount of time. In our exper-
iments, we applied a number of runtime monitors to a num-
ber of programs and then sought to determine whether either
approach, static inspection or runtime verification would be
possible for any combination of aspect and program.

For our experiments, we therefore wrote a set of 12 trace-
match [1] specifications for different properties regarding
collections and streams in the Java Runtime Library. Table 1
gives brief descriptions for each of these properties. The
author’s dissertation [8, Sect. 2] explains all of these proper-
ties in great detail. We selected properties of the Java Run-
time Library because this allowed us to find a large set of
programs to which these properties are of interest. Although
this selection of properties induces a bias to our results,
we believe that this bias is minor: we have no reason to
believe that the properties of other application interfaces
would be in any way more complex than those of the Java
Runtime Library. This is especially true in light of a study
by Dwyer et al. [19], which showed that most specification
patterns mentioned in the scientific literature are indeed quite
simple.

Although one can apply CLARA to any AspectJ-based run-
time monitor, we decided to restrict our experiments to mon-
itors generated from tracematch specifications. In particular,
we will not consider JavaMOP-based specifications. In pre-
vious work [10], we showed that CLARA always produces
equivalent analysis results for equivalent runtime monitors,
independent of the specification formalism that the program-
mer used to define these monitors. Hence, there is little ben-
efit from re-doing all the experiments again with equivalent
JavaMOP-based specifications. Note that the monitors that
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abc generates from tracematches are already heavily opti-
mized [3] to induce a minimal runtime overhead. Therefore,
our baseline is by no means a naive baseline. All our trace-
match definitions are available for download at http://www.
bodden.de/clara/benchmarks/.

Note that our tracematches contain no recovery code or
even notification code of any kind: the bodies of the trace-
matches are empty. This is for two reasons. First, the content
of the bodies would only impact our static-analysis results
if the body called back into the program under test. This is
unlikely for a monitoring aspect. Hence, we can just as well
assume that the body is empty. The content of the body does,
however, have an impact on the runtime overhead of the run-
time monitor. We are interested in measuring the time that the
monitor has to consume to update its internal state based on
the events that it monitor. By using empty tracematch bodies
we can make sure that we measure only this overhead, and
not any additional overhead that error-reporting or recovery
code would cause.

For our benchmarks, we used version 2006-10-MR2 of the
DaCapo benchmark suite [6]. The suite contains 11 differ-
ent workloads that exercise 10 different programs. In Table 2,
we give brief descriptions of the benchmarks (taken from [6])
and also state the number of methods that they contain. Note
that, on average, a DaCapo benchmark has about four times
as many methods and about four times as much code as one of
the well-known SPEC benchmarks [32,33]. The benchmarks
hsqldb, lusearch and xalan are multi-threaded. The bench-
marks luindex and lusearch are two different workloads that
produce two different program runs of the same program
lucene. All benchmarks use dynamic class loading, and the
benchmark jython even generates classes dynamically which
it then executes.
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Table 2 The DaCapo benchmarks, version 2006-10-MR2 (taken from http://dacapobench.org/)

Benchmark Classes Methods Description

antlr 224 2,972 Parses one or more grammar files and generates a parser and lexical analyzer for each

bloat 263 3,986 Performs a number of optimizations and analysis on Java bytecode files

chart 512 7,187 Uses JFreeChart to plot a number of complex line graphs and renders them as PDF

eclipse 344 3,978 Executes some of the (non-gui) JDT performance tests for the Eclipse IDE

fop 967 6,889 Takes an XSL-FO file, parses it and formats it, generating a PDF file

hsqldb 385 5,859 Executes a JDBCbench-like in-memory benchmark, executing a number of transactions
against a model of a banking application

jython 508 7,240 Interprets a the pybench Python benchmark

luindex 311 3,013 Uses lucene to index a set of documents; the works of Shakespeare and the King James
Bible

lusearch 311 3,013 Uses lucene to do a text search of keywords over a corpus of data comprising the works
of Shakespeare and the King James Bible

pmd 530 4,785 Analyzes a set of Java classes for a range of source code problems

xalan 562 6,463 Transforms XML documents into HTML

5.1 Monitoring without static analysis

We used CLARA to weave any of the 12 monitoring aspects
separately into each one of the 10 DaCapo programs. By
default, CLARA weaves only into the application itself, not
into the Java Runtime Library. Hence, the runtime mon-
itors that we use do, for example, monitor events where
the benchmark program uses collections and streams of the
Java Runtime Library, but it does not monitor events where
these objects are used inside the Java Runtime Library. As a
baseline, we also compiled every benchmark program with
the CLARA, but with no aspects present. This results in an
un-instrumented program that has a bytecode layout simi-
lar to the instrumented programs that CLARA produces when
aspects are present.

5.1.1 Number of shadows after weaving

Table 3 shows for every tracematch/benchmark combina-
tion the number of shadows that the woven program for this
combination contains. Note that the benchmarks luindex and
lusearch share the same code base. Therefore, these bench-
marks produce the same number of shadows in all cases.
As the table shows, the compilation process produced some
shadows in all, but 11 out of the 120 combinations. More-
over, the number of shadows is usually quite large. A total of
100 cases result in more than 10 shadows, and 88 cases result
in even more than 50 shadows; on average the compilation
results in 326 shadows spread over 82 methods. Therefore,
in all but a few lucky cases it would be impractical for a
programmer to investigate all these program points manu-
ally to see if these points contribute to a property violation.

Table 3 Number of shadows right after weaving

antlr bloat chart eclipse  fop
ASyncContainsAll 0 71 6 10 0
ASynclterC 0 1,621 498 214 146
ASynclterM 0 1,684 507 236 176
FailSafeEnumHT 133 102 44 217 205
FailSafeEnum 76 3 1 117 18
FailSafelter 23 1,394 510 391 288
FailSafelterMap 130 1,180 374 548 1,374
HasNextElem 117 2 0 89 10
HasNext 0 849 248 109 72
LeakingSync 170 1,994 920 1,325 2,347
Reader 50 7 65 218 102
Writer 171 563 70 1,045 429

luindex

hsqldb  jython  lusearch pmd xalan
ASyncContainsAll 0 31 18 10 0
ASynclterC 33 128 149 671 0
ASynclterM 39 138 152 718 0
FailSafeEnumHT 114 153 37 100 319
FailSafeEnum 120 110 61 21 222
FailSafelter 112 253 217 546 158
FailSafelterMap 252 250 136 583 540
HasNextElem 53 64 22 6 63
HasNext 16 63 74 346 0
LeakingSync 528 1,082 629 986 1,005
Reader 1,216 139 226 102 106
Writer 1,378 462 146 62 751

It may, however, be possible to monitor these programs for
violations at runtime.
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5.1.2 Runtime overhead through monitoring code

To determine the runtime overhead that the monitoring
aspects cause, we first executed the un-instrumented pro-
grams to establish a baseline. We used the standard work-
load size of the DaCapo harness. The DaCapo benchmark
suite comes with a —converge option, that tries to make
the determined runtime values better comparable. When the
option is enabled, then DaCapo runs the benchmark in ques-
tion multiple times until the relative standard deviation of the
determined runtimes drops below 3%. DaCapo then assumes
that the benchmark has reached a “stable state”, e.g., that the
virtual machine has loaded and just-in-time compiled all of
the benchmark’s methods. DaCapo then runs the benchmark
one more time and reports the runtime of this last run. In the
past, we have experienced problems with this approach: if,
coincidentally, the last run is extraordinarily better or worse
than the previous runs then the runtime that DaCapo reports
will deviate from the “normal” runtime. We hence modified
the harness so that it would instead proceed as follows.

DaCapo first runs the benchmark once without collect-
ing any timing information—a warm-up run. Then DaCapo
re-runs the benchmark multiple times, again until the relative
standard deviation of the determined runtimes drops below
3% (but at least 5 times and at most 20 times). Then we report
the mean of these runs. This gives us the advantage that the
number that we report originates from a sample of runs from
which we know that this sample deviated no more than 3%.

We executed the benchmarks using the HotSpot Client
VM (build 1.4.2_12-b03, mixed mode), with its standard
heap size on a machine with an AMD Athlon 64 X2 Dual
Core Processor 3800+ running Ubuntu 7.10 with kernel ver-
sion 2.6.22-14 and 4 GB RAM. Then we executed, in the very
same way, the programs that have had the monitoring aspects
woven into them.

Table 4 shows for every benchmark the baseline execu-
tion time (with no aspect present, in milliseconds), and for
every monitoring aspect the relative runtime overhead that
this aspect causes, in percent, both before and after having
applied our static optimizations. For instance, antlr showed
a 378.62-times overhead when instrumented with the Writer
tracematch and with optimizations disabled, but only 36%
overhead when optimizations were enabled. We do not show
values that are within the 3% error margin. The value “>1h”
means that a single benchmark run took longer than 1h. In
this case, we aborted the run after this first hour. The bench-
marks eclipse, hsqldb and xalan showed no overheads.

As the results show, runtime verification is indeed a via-
ble solution for many of the benchmark/property configura-
tions that we consider. The vast majority of test runs do not
expose any perceivable overhead. This is true even for bench-
mark/property combinations that have a high number of shad-
ows. For instance, chart-ASynclterM has 507 shadows, but
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shows no perceivable runtime overhead. This is because the
specific test run does not exercise the instrumented collec-
tions and iterators a lot. Nevertheless, there are some cases
for which the overhead is high. In about one quarter of our
test runs the overhead was at least 10%, and in five cases
the overhead was so high that even a single execution of the
benchmark took longer than 1 h. Such overheads clearly pre-
vent programmers from using runtime verification in these
particular cases. In the following sections we will show that
our static analyses can significantly lower and sometimes
completely eliminate the runtime overhead in the majority
of cases.

5.2 Monitoring with all three static analyses enabled

We next re-compiled all 120 benchmark/property combina-
tions, but this time with all three analyses stages, i.e., Quick
Check, orphan-shadows analysis and nop-shadows analy-
sis enabled. Note that, because the nop-shadows analysis is
flow-sensitive, it is not sound to apply the analysis to multi-
threaded programs. When a program is multi-threaded, then
this means that the program’s threads could execute shadows
in an order that the nop-shadows analysis did not anticipate.
After all, the nop-shadows analysis assumes that its intra-
procedural control-flow graphs soundly model all possible
control flow. In future work, we plan to make our analysis
thread safe by using a may-happen-in-parallel analysis [4] to
determine which methods could potentially execute in par-
allel. The benchmarks hsqldb, lusearch and xalan are multi-
threaded. For now, we just analyzed these three benchmarks
like all other benchmarks, i.e., we made the un-safe assump-
tion that these programs do not execute dependent-advice
shadows in parallel.

DaCapo’s benchmarks load classes using reflection. Static
analyses like ours have to be aware of these classes so that
they can construct a sound call graph. We wrote an Aspect]
aspect that would print at every call to forName and a few
other reflective calls the name of the class that this call loads
and the location from which it is loaded. We further dou-
ble-checked with Ondfej Lhotdk, who compiled such lists of
dynamic classes earlier. We then provided the abc-internal
call-graph analysis with this information. The resulting call
graph is sound for the program runs that DaCapo performs.
A limitation of our approach is that obtaining a call graph
that is sound for all runs may be challenging for programs
that use reflection.

For eclipse we were unable to determine where dynamic
classes are loaded from. Eclipse loads classes not from JAR
files, but from “resource URLs”, which eclipse resolves inter-
nally, usually to JAR files within other JAR files. CLARA cur-
rently cannot load classes from such URLs and that is why
we omit eclipse in our experiments. The jython benchmark
generates code at runtime, which it then loads. We did not
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Table 4 Runtime overheads before and after static analyses

antlr bloat chart fop

Before After Before After Before After Before After
Baseline 4,079 9,276 14,666 2,562
ASyncContainsAll
ASynclterC 140 5
ASynclterM 139
FailSafeEnumHT 10 4
FailSafeEnum
FailSafelter >1h >1h 8 8 14
FailSafelterMap >1h 22027 7 OOME
HasNextElem
HasNext 329 258
LeakingSync 9 163 91 209
Reader 30,218
Writer 37,862 36 >1h 228 5

jython luindex lusearch pmd

Before After Before After Before After Before After
baseline 11,105 17,144 13,940 13,052
ASyncContainsAll
ASynclterC 28
ASynclterM 35
FailSafeEnumHT >1h >1h 32
FailSafeEnum 30 18
FailSafelter 20 2,811 524
FailSafelterMap 13 13 >1h >1h
HasNextElem 12
HasNext 70 64
LeakingSync >1h 34 365 16
Reader 77
Writer

Baseline in milliseconds, rest in percent, values within the 3% error margin omitted, values of at least 10% in boldface

eclipse, hsqldb and xalan show no overheads
OOME OutOfMemoryException during static analysis

analyze this code and so made the unsound assumption that
this code would not invoke any dependent advice.

5.2.1 Shadows remaining after all three analyses stages

Table 5 summarizes our analyses result. The table reports, as
white slices, the fraction of shadows that the analysis iden-
tified as irrelevant. In gray we show the fraction of shadows
which are known to trigger actual violations at runtime. No
sound static analyses could disable these shadows: because
the shadows trigger a property violation at runtime they need
to remain enabled. The remaining black slice represent shad-
ows which we are unsure about. These shadows remain active

even after analysis, either due to analysis imprecision or due
to actual property violations.

As the table shows, our analysis is very effective in most
cases. Black slices due to imprecision almost only remain
for bloat, jython and pmd. Bloat is notorious for having very
long-lived objects and a literally very bloated code base. This
makes it hard for static analyses to handle this benchmark. In
fact, bloat has been removed from the current version 9.12.
jython and pmd both make heavy use of dynamic class load-
ing and reflection. This confuses our pointer analysis, which
has to make very conservative approximations in such sit-
uations. As a result, our pointer analysis believes that cer-
tain iterators and enumerations in these benchmark could
be aliased although, in fact, this cannot be the case. We are
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Table 5 Shadows identified as irrelevant, and therefore disabled

antlr bloat chart fop

ASyncContainsAll 2 2
ASynclterC o P =
ASynclterM T = %
FailSafeEnum : 2 g ) g ‘ £
FailSafeEnumHT { & 2 & 8 L% 0 L5
FaitSatelver - 35 @955 (% 55 ok
FailSafelterMap ° = @ A y 2 OOME
HasNextElem : 2= g ) 2
HasNext @ e ‘ a8 z

Reader : = 9 ) N b B

i 35 o S 0 T 0
‘Writer @ T @ =63 . . 70 . . 199

hsqldb  jython luindex lusearch  pmd xalan
S0 S0 S0 . 0
31 . S 18 . S 18 . S 10
.0 L0 T o .0
33 . 128 - ‘149 . 149 671
.0 .0 .0 T o .0
39 - 138 . 152 - [ 152 718
S0 RIS26 0 T 0 S o 0
120 \ /7110 .7 61 o6l 21 222
. 3o 33|28 . @ Y0 .0 0
o114 153 37 4 37 B 100 319
0 A 112 .0 = 11]5 287 o
ol W o M 217 217 546 158
.0 A 133 .0 0 204 . 0
252 - . 250 136 136 @ 583 . 540
. 0 ‘ A, 34 . 0 0 . 0 B[]
53 L . 64 22 Poll . - 11 R 63
.0 W 24 .0 L0 184
6 - . 63 74 74 346
. 0 ¥ W0 .0 L0 .0 B ©
528 - /1082 ° 629 629 986 - 1005
.8 7 L o4lo .0 L0 L0 S o
1216 . 139 226 226 102 7 106
R U .0 .0 L0 T o
1378 .. . 462 - 146 - 146 - 62 - .. 751

White slices represent shadows that our three analyses stages managed to identify as irrelevant. Black slices represent shadows that we fail to
identify as irrelevant, due to analysis imprecision or because the shadows actually are relevant to triggering a property violation at runtime. Red (or
gray) slices represent shadows that we confirmed to be relevant, through manual inspection. The outer rings represent the aspect’s runtime overhead
after optimizing the advice dispatch. Solid: overhead > 15%, dashed: overhead < 15%, dotted: no overhead

OOME OutOfMemoryException during static analysis

currently trying to extend CLARA so that it can handle reflec-
tion with more fine-grained approximations.

5.2.2 Runtime overhead after all analyses

Table 5 shows the runtime overhead that remains after apply-
ing our optimizations, but only qualitatively, in the form
of rings. Solid rings mean an overhead of more than 15%,
dashed rings mean an overhead of under 15% and a dotted
ring means no observable overhead. Note that in cases where
the analyses manage to disable all shadows, the overhead
will naturally be zero because in these cases CLARA effec-
tively emits an un-instrumented program. Table 4 shows the
overhead numbers in its “after” columns.

The author’s dissertation [8] contains more information
about the experiments. In particular, it presents all raw data.
The dissertation also discusses the relative impacts of the
three analyses stage, and presents results on the effective-
ness of our approach for collaborative runtime verification.

6 Related work

CLARA’s static analyses belong to the family of typestate
analyses. Strom and Yemini [34] were the first to suggest the
concept of typestate analysis. In the last few years, research-
ers have presented several new approaches with varying
cost/precision trade-offs. In the following, we describe the
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approaches that are most relevant to our work. We distinguish
type-system based approaches, static verification approaches
and hybrid verification approaches.

Type-system based approaches. Type-system based approa-
ches define a type system and implement a type checker. This
is to prevent programmers from compiling a potentially prop-
erty-violating program in the first place and gives the advan-
tage of strong static guarantees. On the other hand, the type
checker may reject useful programs that statically appear to
violate the stated property, but will not actually violate the
property at runtime. Our approach allows the programmer to
define a program that may violate the given safety property.
Our analysis then tries to verify that the program is correct,
and when this verification fails it delays further checks until
runtime.

Bierhoff and Aldrich [5] present an intra-procedural type-
system based approach that enables the checking of typestate
properties in the presence of aliasing. The author’s approach
aims at being modular, and therefore abstains from poten-
tially expensive whole-program analyses like ours. To be able
to reason about aliases nevertheless, Bierhoff and Aldrich
associate special access permissions with references. Access
permissions allow the type checker to reason about a refer-
ence locally. The author’s current approach assumes that a
program contains information about access permissions and
also typestate changes in the form of special program anno-
tations. Our approach does not require any program annota-
tions; it is fully automatic.
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DeLine and Fihndrich’s approach [18] is similar in flavor
to Bierhoff and Aldrich’s, but uses a more restrictive abstrac-
tion of aliases that allows for less flexible calling conventions
for typestate-changing methods. The authors implemented
their approach in the Fugue tool for specifying and check-
ing typestates in .NET-based programs. As in Bierhoff and
Aldrich’s approach, DeLine and Fihndrich assume that a pro-
grammer (or tool) has annotated the program under test with
information about how calls to a method change the typestate
of the objects that this method references.

Static analysis approaches Unlike type systems, static analy-
sis approaches perform a whole-program analysis and, unlike
hybrid approaches, they have no runtime component.

Fink et al. [21] present a static analysis of typestate prop-
erties. Their approach, like ours, uses a staged analysis
which starts with a flow-insensitive pointer-based analysis,
followed by flow-sensitive checkers. The authors’ analyses
allow only for specifications that reason about a single object
at a time, while we allow for the analysis of multiple inter-
acting objects. Fink et al.’s algorithms only determine “final
shadows” that complete a property violation (like “write” in
our example), but not shadows that initially contribute to a
property violation (e.g. “close”) or can prevent a property
violation (e.g. “reconnect”). Therefore, these algorithms are
unsuitable for generating residual runtime monitors.

Hybrid analysis approaches Naeem and Lhotdk present
a fully context-sensitive, flow-sensitive, inter-procedural
whole-program analysis for typestate-like properties of mul-
tiple interacting objects [29]. Naeem and Lhotdk’s analysis
is fully inter-procedural. This can yield enhanced precision
in cases where combinations of objects that are relevant
to a given specification are used by multiple methods. Our
benchmark set showed some instances where this additional
information would have been helpful, but not many. It even
holds that, although our analysis is mostly intra-procedural,
there are some instances where our combination of analy-
ses is more precise than Naeem and Lhotdk’s. This is due
to the highly context-sensitive points-to sets that we com-
pute. Unfortunately, as we showed in earlier work [9], their
analysis therefore suffers from an unsoundness problem. All
analyses that CLARA provides were proven sound [8].
Dwyer and Purandare use existing typestate analyses to
specialize runtime monitors [20]. Their work identifies “safe
regions” in the code using a static typestate analysis. Safe
regions can be methods, single statements or compound state-
ments (e.g., loops). A region is safe if its deterministic tran-
sition function does not drive the typestate automaton into
a final state. A special case of a safe region would be a
region that does not change the automaton’s state at all—an
“identity region”. For regions that are safe, but no identity
regions, the authors summarize the effect of this region and

change the program under test to update the typestate with the
region’s effects all at once when the region is entered. This has
the advantage that the analyzed program will execute faster
because it will execute fewer transitions at runtime. However,
unlike our approach, the author’s analysis does not aid pro-
grammers who wish to inspect their code manually. The fact
that the author’s transformation changes the points at which
transitions occur makes it even harder for programmers to
manually inspect these program points. Dwyer and Puran-
dare’s approach is, although hybrid, not based on shadow
histories and hence we have no reason to believe that it is
unsound. The approach cannot generally handle groups of
multiple interacting object, but ours can.

7 Conclusion

We have presented CLARA, a framework for evaluating finite-
state runtime monitors ahead of time, through static analy-
sis. CLARA is compatible with any runtime monitor that is
expressed as an Aspect] aspect. To make such an aspect ana-
lyzable by CLARA, one just needs to assure that the aspect is
annotated with a dependency state machine, a textual finite-
state machine representation of the property at hand. We
have presented the syntax and semantics of dependency state
machines. We further presented CLARA’s extensible static-
analysis engine, along with three example analyses that we
provide with CLARA. Through experiments with the DaCa-
po benchmark suite, we have shown that the static-analysis
approach that CLARA provides can greatly reduce the amount
of instrumentation necessary for runtime monitoring in most
Java programs. Our experiments further revealed that this
reduced amount of instrumentation yields a largely reduced
runtime overhead in many cases.

CLARA is available as open source. We hope that other
researchers will soon be joining us in using CLARA, and that
this will foster progress in the field of typestate analysis.
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