(will be inserted by the editor)

Software Tools for Technology Transfer manuscript No.

Closed-loop Verification of Medical Devices with Model

Abstraction and Refinement*

Zhihao Jiang, Miroslav Pajic, Rajeev Alur and Rahul Mangharam

University of Pennsylvania, Philadelphia PA, USA

Received: date / Revised version: date

Abstract. The design and implementation of software
for medical devices is challenging due to the closed-loop
interaction with the patient, which is a stochastic physi-
cal environment. The safety-critical nature and the lack
of existing industry standards for verification, make this
an ideal domain for exploring applications of formal mod-
eling and closed-loop analysis. The biggest challenge is
that the environment model(s) have to be both complex
enough to express the physiological requirements, and
general enough to cover all possible inputs to the de-
vice. In this effort, we use a dual chamber implantable
pacemaker as a case study to demonstrate verification
of software specifications of medical devices as timed-
automata models in UPPAAL. The pacemaker model
is based on the specifications and algorithm descrip-
tions from Boston Scientific. The heart is modeled using
timed automata based on the physiology of heart. The
model is gradually abstracted with timed simulation to
preserve properties. A manual Counter-Example-Guided
Abstraction and Refinement (CEGAR) framework has
been adapted to refine the heart model when spurious
counter-examples are found. To demonstrate the closed-
loop nature of the problem and heart model refinement,
we investigated two clinical cases of Pacemaker Mediated
Tachycardia and verified their corresponding correction
algorithms in the pacemaker. Along with our tools for
code generation from UPPAAL models, this effort en-
ables model-driven design and certification of software
for medical devices.

Key words: Medical Devices, Implantable Pacemaker,
Software Verification, Cyber-Physical Systems, Model
Abstraction and Refinement, CEGAR

* This research was partially supported by NSF research
grants MRI 0923518, CAREER 1253842, CNS 1035715 and CCF
0915777.

1 Introduction

Over the past four decades, cardiac rhythm management
devices such as pacemakers have expanded their role
from “keeping the patient alive” to “improving the qual-
ity of the patient’s life”. The addition of more safety and
efficacy features has resulted in increased complexity, in-
evitably leading to more potential safety issues. From
1996-2006, the percentage of software-related causes in
medical device recalls have grown from 10% to 21% [1].
During the first half of 2010, the US Food and Drug Ad-
ministration (FDA) issued 23 recalls of defective devices,
all of which are categorized as Class |, meaning there is
a “reasonable probability that use of these products will
cause serious adverse health consequences or death.” At
least six of the recalls were caused by software defects [2].

Medical devices, such as the implantable cardiac pace-
maker, are perfect examples of Cyber-Physical Systems
(CPS), in which the controller (the pacemaker) actively
interacts with a stochastic plant (the heart). While in
other CPS domains like the aviation and automotive in-
dustries, standards are enforced during software devel-
opment, manufacturing, and post-market change [3,4],
there are no well-established standards or tools for de-
velopment of software for medical devices. One reason is
because the software design in medical device industry is
different from other industries. With physiological con-
trol systems, the is a large degree of uncertainty in the
model of the organ and physiological process. The modes
of operation vary across the population of patients, level
of activities, metabolic rates, and so on. Thus, the safety
and efficacy of the device should be evaluated in closed-
loop based on the well-being of the patient, which relies
on extensive domain knowledge on the physical environ-
ment. In model-based design, this unique feature results
in two contradictory requirements on the environment
model.

2 Zhihao Jiang et al.: Pacemaker Verification

- <, ~
\

a 7 \
] f fety/Effi] fety/Effi
Domain Safety/Efficacy | Safety/Efficacy a
[Expert J Requirements J “| properties Model Checking
) L
Software Software] N System Environment
Engineer “1 specifications J model model
b, \
Test
/ Generation
[Elec.trlcal]——{Implementation k:{ Test Cases]
engineer
\ I/

\k Conformance Testing b i

Fig. 1. a. Traditional real-time software development process;
b. model-based design framework

1. The environment model has to be complex
enough
Since the safety properties are specified based on the pa-
tient conditions, the environment model has to be able
to represent specific patient conditions and condition
groups, regardless of the capability of the device. When
a certain algorithm is targeting a very specific patient
condition, the environment model should be complex
enough to distinguish that particular patient condition
from other conditions.

2. The environment model has to be general
enough
Unlike products in other industries, most medical device
products have to be able to deal with large variety of
environmental conditions. Thus the environment model
used during safety evaluation has to be general enough
to cover all possible scenarios.

The more complex the environment model is, there
are usually more constraints on model outputs, which
then reduce the coverage for the input to the device. It
is contradictory that a single model can be both general
and complex. One possible solution is to use multiple
models with different complexity. When different mod-
els are used to prove different properties, we have to
make sure that the models have certain relations so that
properties verified with one model are preserved when
we use other models.

1.1 Model-based Software Design Framework

In the current practice, medical device software is largely
designed informally, as shown in Fig. 1.a. The domain
expert, the physician in this case, first comes up with
physiological safety/efficacy requirements which describe
the objective of the device. Together with the software
engineer, they specify the software specifications for the
device, which explain how the device software would
achieve the requirements. Then, the software engineer
and electrical engineer convert the software specifica-
tions to physical implementation. However, due to the dis-

crepancies created during manual translations, there is
no formal correlation from physiological requirements to
specification and then to implementation. It is not guar-
anteed that the final implementation satisfies all physio-
logical requirements. Thus, the safety and efficacy of the
device cannot be ensured.

Fig. 1.b demonstrates how to establish formal corre-
lations throughout the development process using model-
based design framework. The software specification of
the system is represented by a model. Together with a
model of the environment, the closed-loop system is veri-
fied using model checking against safety properties which
are converted from the safety/efficacy requirements. Sat-
isfaction of the properties ensures that the software spec-
ifications satisfies the safety/efficacy requirements. Us-
ing automatic code generation, the specification as mod-
eled, can be translated into C code and implemented
on hardware. The same system model can be used to
generate test cases for conformance testing of the im-
plementation. Satisfaction of all the tests ensures that
the implementation successfully conforms to the soft-
ware specification. In this paper, we use an implantable
cardiac pacemaker as an example to demonstrate the
use of model checking to verify whether the pacemaker
specification satisfies the safety/efficacy requirements.

1.2 Closed-loop Model Checking

Closed-loop model checking is a widely-used technique
to formally verify the closed-loop system model against
safety and efficacy properties. In this paper, we model
the closed-loop system, which consists of the heart and
a pacemaker, using networks of timed automata [5]. The
closed-loop system model is then verified in model checker
UPPAAL[6] against safety properties specified in Timed
Computational Tree Logic (TCTL).

Safety properties are translated from physiological
requirements learned from cardiac electrophysiology[7]
and [8]. Intuitively the objective of a pacemaker is to
maintain appropriate heart rate. Allowing too slow a
heart rate or driving the heart rate too fast can cause
serious adverse effect to the patient. Thus, it is essential
to maintain appropriate heart rate within a safe range.

Unsafe conditions are specified as unsafe regions within
the state space of the closed-loop system, and their reach-
ability can be checked with a model checker. More im-
portantly, there are closed-loop executions in which the
pacemaker inappropriately raises the heart rate up to
the boundary of the unsafe regions - even from healthy
open-loop heart conditions. These unsafe executions are
referred to as Pacemaker Mediated Tachycardia (PMT),
during which the pacemaker incorrectly drives the heart
into an overly fast rate.

We use these examples to show:

— Whether the anti-PMT algorithms developed by de-
vice manufacturers can successfully detect and ter-
minate corresponding PMT.

Zhihao Jiang et al.: Pacemaker Verification 3

Abstraction E

(Refinement

i»

Tlmed automata mocu

@@@

Physician

Pacemaker

TCTL

Physiological
requirements/

Ho H, H, H,
D No Yes
9
= L o it >y
oo SR Model Ambiguous?
— === z@* Checker
€0y 2

Counter-

No examples

No

System Safe Bug found

Fig. 2. Counter-Example-Guided Abstraction Refinement (CEGAR) framework

— After introducing these additional algorithms into
the previously verified system, whether the combined
system has unsafe states.

— Whether the environment model, the heart model
in this case, is complex enough to distinguish PMT
cases from healthy heart conditions, and at the same
time be general enough to represent all possible heart
conditions.

1.8 Model Abstraction and Refinement

Model abstraction [9] was originally proposed as a pow-
erful state-reduction technique to alleviate the state ex-
plosion problem [10] during model-checking. Models are
created as abstraction of the original system. Since the
abstracted models have more behaviors than the original
system, properties satisfied in an abstract model will also
be satisfied in the original system. In this paper, we first
derived a timed automata model of the heart tissue by
extracting its timing behaviors. With a similar abstrac-
tion scheme used in clinical Cardiac Electro-physiology
study [7], we then abstract the whole heart as electrical
conduction network. The heart model is then further ab-
stracted till its simplest form which covers all possible
inputs to the pacemaker. During each abstraction step,
we prove that the abstracted heart model is a timed simu-
lation of the refined heart model and properties specified
in ATCTL* are preserved.

Now we have a set of heart models from the cellu-
lar level to the whole heart, with abstraction relation-
ship between each level. The question we aim to answer
is: What do we determine which environment model to
use during verification for each of the different safety

properties for the closed loop system? We base our ap-
proach on the Counter-Example-Guided Abstraction Re-
finement (CEGAR) framework, proposed by Clake et al.
[11], which can systematically and automatically handle
model complexity.

In this work, we apply and extend the CEGAR frame-
work to handle the complexity of the heart model dur-
ing verification of a dual chamber pacemaker model. The
framework is shown in Fig. 2. The most abstract heart
model is first combined with a timed-automata-based
pacemaker model [12] based on the algorithm descrip-
tions from Boston Scientific [13]. The closed-loop system
is then verified in model checker UPPAAL [6] against
safety properties (e.g. the pacemaker must not allow the
heart rate to be too slow and must not drive the heart
rate too fast). If the unsafe regions are not reachable
and unsafe executions do not exist, the system is safe.
Otherwise the model checker returns execution traces
as counterexamples which are checked in a more refined
heart model for validity.

There are two scenarios where we use more refined
heart model for model checking:
(1) If the trace is not a valid heart-pacemaker interac-
tion, it is referred to as a spurious counterexample. In this
case we follow the traditional CEGAR framework. The
property is checked with a more refined model until the
spurious behavior is eliminated.
(2) If the trace corresponds to a realistic heart-pacemaker
interaction, we check further whether the returned traces
only contain unsafe conditions that we are looking for.
If the traces returned contains other heart conditions,
the counter-example is referred to as ambiguous. In this
case the property is checked with a more refined model

4 Zhihao Jiang et al.: Pacemaker Verification

until the ambiguity is removed. Otherwise we confirm a
potential bug has been found.

In this paper, we use two Pacemaker Mediated Tachy-
cardia (PMT) (i.e. when the pacemaker drives the heart
into an unsafe state) cases as example to demonstrate
the two scenarios which require heart model refinement.
By using the improved CEGAR framework we are able
to check a wide range of physiological properties. The
framework also improved the model checking efficiency
without losing accuracy. The heart model abstraction
enables model checking for more complex systems and
the model refinement enables us to check more complex
properties. In contrast to the CEGAR framework pro-
posed by Clarke et al., the model abstraction, model
refinement and trace validity check are done manually
and can be potentially automated in the future work.

1.4 Contributions

This paper builds upon our previous work in [12] in
which we described formal modeling of the pacemaker
and verification of closed-loop interactions with a simple
Random Heart Model and its ad-hoc refinements. The
contributions of this paper are thus:

1. We abstracted the heart from top-down till its sim-
plest form, which allows us to verify wide range of
physiological properties.

2. The heart model abstraction is formalized and the
timed simulation relation between each abstraction
level are established and proved.

3. We improved the Counter-Example-Guided Abstrac-
tion and Refinement (CEGAR) framework to balance
model complexity and expressiveness.

4. The safety properties are checked for all possible com-
binations of pacemaker parameters.

The UPPAAL models developed in this paper are avail-
able online [14]. These models can be used as a starting
point for many purposes (e.g. to build models with costs
and probabilities for quantitative analysis of the efficacy
of pacemaker algorithms; development of patient-specific
algorithms). In particular, the verified pacemaker model
can be automatically translated from UPPAAL into State-
flow charts in Simulink for test generation and code gen-
eration using the UPP2SF tool [15].

1.5 Organization

The paper is organized as follow: In Section 2, we intro-
duce the basic description for the heart and pacemaker
operation. In Section 3, we describe the timed automata
model of the heart and its abstractions. In Section 4,
we describe the timed automata model of a dual cham-
ber pacemaker. In Section 5, we verify the pacemaker
model against two basic safety properties in UPPAAL;
In Section 6 and 7, we use model checking to identify

~

Sinoatrial (SA) \}

Marker

Atrioventricular

(AV) node Ventricle

Fig. 3. (a) Electrical Conduction System of the Heart and
pacemaker leads location. (b) Electrical signal sensed from
the pacemaker leads are converted to event markers (AS,VS).
Pacemaker delivers electrical pacing (AP,VP) from corre-
sponding leads when heart rate is slow.

two known cases of PMT, in which the pacemaker in-
appropriately increases the heart rate. We evaluate the
safety and effectiveness of two anti-PMT algorithms cor-
responding to the two common PMT cases, and demon-
strate two scenarios for heart model refinements.

2 Overview of the Heart’s Electrical
Conduction System

In this section, we review basic concepts related to the
heart and its electrical conduction system which inter-
acts with the pacemaker. In-depth material of cardiac
electro-physiology can be found in [16].

2.1 Basics of Cardiac Electrophysiology Operation

The coordinated contraction of the heart is governed by
its Electrical Conduction System (see Fig. 3). The Sinoa-
trial (SA) node, which is a collection of specialized tissue
at the upper right atrium, periodically spontaneously
generates electrical pulses that can cause muscle con-
traction. The SA node acts as the natural pacemaker of
the heart. The electrical pulses first cause both atria to
contract, forcing the blood into the ventricles. The elec-
trical conduction is then delayed at the Atrioventricular
(AV) node, allowing the ventricles to fill fully. Finally,
the fast-conducting His-Pukinje system spreads the elec-
trical activation within both ventricles, causing simulta-
neous contraction of the ventricular muscles, and pumps
the blood out of the heart. The electrical conduction
system of the heart is a timed system and appropriate
timing is key to proper heart rhythm.

Due to various factors such as aging and disease,
the conduction properties of heart tissue may change.
These changes often cause timing anomalies in heart
rhythm, thus decreasing the blood pumping efficiency
of the heart. These timing anomalies are referred to as
arrhythmias, and are categorized into so-called Tachy-
cardia and Bradycardia. Tachycardia features undesirable

Zhihao Jiang et al.: Pacemaker Verification 5

fast heart rate which results in inefficient blood pump-
ing. Bradycardia features slow heart rate which results
in insufficient blood supply. Bradycardia is due to fail-
ure of impulse generation with anomalies in the SA node,
or failure of impulse propagation where the conduction
from atria to the ventricles is delayed or blocked.

2.2 Interfacing the Heart with the Pacemaker

Heart tissue can also be activated by external electri-
cal pulses. Implantable Pacemakers have been developed
to deliver timely electrical pulses to the heart to main-
tain an appropriate heart rate and Atrial-Ventricular
synchrony. Implantable pacemakers normally have two
leads fixed on the wall of the right atrium and the right
ventricle respectively (Fig. 3 (a)). These leads are capa-
ble of both sensing electrical activity in the heart tis-
sue and are able to emit pacing signals into the tissue.
Tissue activation near the leads is sensed by the leads,
triggering an Atrial Sense (AS) and Ventricular Sense
(VS) events in the pacemaker (see Fig. 3 (b)). Atrial
Pacing (AP) and Ventricular Pacing (VP) are delivered
if no sensed events occur within pre-specified deadlines.
A dual chamber pacemaker only utilizes activation tim-
ing information of two small regions in the heart. The
“low-resolution” sensing of the pacemaker results in its
limited knowledge of current heart condition thus could
lead to potential incorrect estimation of the heart’s elec-
trical activity and result in inappropriate therapies.

In order to deal with different heart conditions, mod-
ern pacemakers can be programmed to operate in differ-
ent modes. The modes are labeled using a three char-
acter system (e.g. DDD) by the Heart Rhythm Society
[16]. The first character describes the pacing locations
(i.e. atrium or ventricle or both), the second character
describes the sensing locations, and the third character
describes how the pacemaker software responds to sens-
ing. For example, the dual-chamber DDD mode stands
for sensing in both atrium and ventricle, and pace both
of them if needed. In this effort, we describe two most
commonly used modes of pacemaker, the dual-chamber
DDD mode, that paces both the atrium and the ventri-
cle, senses both chambers, and sensing can both activate
or inhibit further pacing. Similarly, the VDI mode paces
only in the ventricle, senses both chambers, and inhibits
pacing if event is sensed [8]. During certain heart condi-
tion changes, the pacemaker has to switch between dif-
ferent modes to achieve better treatment. It is very im-
portant to ensure that the mode-switches are performed
as intended, and no safety issues can occur during the
transition between different modes.

3 Heart Modeling and Abstraction

In this section, we model the timing behaviors of the
heart using timed automata [5]. We first model the heart

tissue at cellular level. Through a series of abstractions
we end up with a series of heart model with complexity
from maximum to the minimum. By proving the timed
simulation relationship between each pair of heart model
abstractions, the properties proved in the abstract level
can be preserved. By specifying the safety properties
with a universal subset of Timed Computational Tree
Logic (ATCTL)[17], a model checker like UPPAAL [6,
18] can return counter-examples upon violations of the
properties. This enables us to balance model complexity
and property expressiveness using the Counter-Example-
Guided Abstraction and Refinement (CEGAR) frame-

work.

3.1 Timed Automata and Timed Simulation

Timed automata [5] are an extension of a finite automa-
ton with a finite set of real-valued clocks. It has been
used for modeling and verifying systems which are trig-
gered by events and have timing constraints between
events. UPPAAL is a standard tool for modeling and ver-
ification of real-time systems, based on networks of timed
automata. The graphical and text-based interface makes
modeling more intuitive. Requirements can be specified
using Computational Tree Logic (CTL) [19] and viola-
tions can be visualized in the simulation environment.

3.1.1 Syntax of Timed Automata

A timed automaton G is a tuple (S, Sy, X, X,inv, E),
where

— S is a finite set of locations.

— Sy € S is the set of initial locations.

— X is the set of events.

— X is the set of clocks.

— 4nv is the set of invariants for clock constraints at
each location.

— Eis the set of edges. Each edge is a tuple (s, 0, ¥, A, s’)
which consists of a source location s, an event o € X,
clock constraints ¥, A as a set of clocks to be reset
and the target location s’.

For the clock variables X, the clock constraints ¥ €
X can be inductively defined by ¥ := zlc|¥ A ¥,
where L € {<,=,>}, and c € N.

3.1.2 Semantics of Timed Automata

A state of a timed automaton is a pair (s, v) which con-
tains the location s € S and the valuation v for all clocks.
The set of all states is £2. For all A € X, v[A := 0] de-
notes the valuation which sets all clocks € A as zero
and the rest of the clocks unchanged. For all t € R, v+t
denotes the valuation which increase all the clock value
by t. There are two kinds of transitions between states.

6 Zhihao Jiang et al.: Pacemaker Verification

The discrete transition happens when the condition of an
edge has been met. So we have:

(s,0,W,\,s") € E,v = ¥,v[\:=0] Einv(s’)
= (5,v) = (s, v[\ :=0])

The timed transition happens when the timed automaton
can stay in the same location for certain amount of time.

We have:
§ € RV < b,v+6 Einv(s)
= (5,0) > (s,0+0)
3.1.3 Timed Simulation

For two timed automata 7' = <Sl, SE, X X1 inol, E1>
and T2 = <S2, 82,32, X2 inv?, E2>, a timed simulation
relation is a binary relation sim C 2! x 22 where 2!
and 22 are sets of states of T* and T2. We say T2 time
simulates Tt (T <; T?) if the following conditions holds:

— Initial states correspondence: (<s(1), O> , <s(2), O>) € sim

— Timed transition: For every ((s1,v1), (s2,v2)) € sim,
if (s1,v1) LN (s1,v1 + 0), there exists (sa, v2 + 0) such
that (s2,v2) LN (s2,v2 + 0) and
({(s1,v1 +0),(s2,v2 + d)) € sim.

— Discrete transition: For every ({s1,v1), (s2,v2)) € sim,
if (s1,v1) 2 (s}, 0]), there exists (sh,vy) such that
(s59,v2) T (sh,vh) and ((s},v]), (sh,vh)) € sim.

Certain properties are preserved for timed simulation
relation. For ¢ € ATCTL, it M <y M’', we have M’ =
© = M |= ¢.[17] However, M’ = ¢ = M ~ ¢ does not
hold. Violations of ATCTL yield counter-examples and
the validity of which need to be checked on more refined
model.

It is known that timed simulation relation is also
closed under composition [17]. So when we have two
heart models Hy =; Ho we will have H;||P =<; Hs||P
where P is the timed-automata model of the pacemaker.
For ¢ € ATCTL, we have Hs||P = ¢ = Hi||P = .
With this property we can verify the pacemaker model
with abstract heart model. In the rest of the section, we
will describe how we develop our initial heart model from
the physiological perspective and abstract the model step
by step so that the complexity of the model is reduced
for verification. Given two heart models Hy, Hy and a
timed simulation mapping sim=4{2; X {25, there are no au-
tomated methods to check Hi <; Hs. In the Appendix,
we show the manual proof for the timed simulation rela-
tion between two heart models Hy and Hs. Other timed
simulation relations can be proved similarly.

3.2 Initial Tissue Model

The initial model of the heart abstracts the electrical be-
haviors of the heart tissue. When the tissue is activated

by an external electrical signal, the voltage across the
tissue increases rapidly. When the voltage reaches a cer-
tain threshold, the adjacent tissue will be activated. This
activation then propagates throughout the heart, caus-
ing coordinated contraction of the heart muscles. Fig. 4
(a) shows the voltage change over time across a heart
tissue region (solid line) and its adjacent tissue region
(dotted line). After the activation, the heart tissue must
recover from the activation (i.e. recharge) before it can
be activated again. The time interval before the tissue
voltage drops back to resting voltage is referred to as the
Refractory Period. The refractory period can be divided
into the Effective Refractory Period (ERP) and the Rela-
tive Refractory Period (RRP) according to their different
response to new activation signals [7] [16].

We construct our initial heart model by modeling the
timing behaviors of the heart tissue. The timed automa-
ton Ny is shown in Fig. 4 (b). The tissue starts from
the Rest location. The tissue can self-activate after cer-
tain period and go to cond location which models the
short delay before it activates the adjacent tissue. After
the cond location the model goes to ERP location dur-
ing which no activation events can be processed. The
duration of the cond location and ERP location depend
on the state of the tissue when it was activated by the
previous activation signal. In this model, we use non-
determinism to cover all possible duration length. After
the ERP finishes, the model goes from the ERP location
to the RRP location. If the heart tissue receives activa-
tion when it is in the RRP location, it will go to the ERP
location with prolonged ERP length, which is covered
by non-determinism. The tissue then goes back to the
Rest location after the RRP period.

Consider the Act_node? event as input and Act_next!
as output; Ng covers all possible timing behaviors of a
heart tissue. The whole heart can be modeled by com-
posing tissue models with different parameters Hy =
N}||Ng --- N. However, for a real heart the number
n is very large and their connectivity and parameter
values are difficult, and perhaps impossible, to deter-
mine, which makes verification with Hy infeasible. For
the remainder of the section, please refer to both Fig. 4
along with Fig. 5 for progressive abstraction of the heart
model. The abbreviations for the locations in Fig. 5 are
shown in the table below. The figures are more under-
standable in color.

3.8 Abstraction 1: Model Conduction Delay with Path

During the Electro-physiology testing procedure [16], the
physician places catheters with multiple electrodes into
different locations of the patient’s heart to perform a
“timing analysis” of the propagation of electrical signals
through heart. The local electrical activity of heart tis-
sue at the locations of the electrodes can be monitored.
The physician then evaluates the heart condition by ex-
amining the refractory properties of local tissue, and the

Zhihao Jiang et al.: Pacemaker Verification

A

Vout

: Refrictory

node

Original tissue Model

Rest
t<=Trest_max

Act_node?

t>Trrp_min =0

t=0

RRP
t<=Trrp_max

b

NO

Abstraction 1

t>Trest min

Rest
t<=Trest_max

temp

C

>Trrp_min
t=0

RRP

t<=Trrp_max

N1

Abstraction 2)

t<=Trest_max

est

t>Trest_min

Sinoatrial (;

Atrioventricular

(AV) node Ventricle
NO ..‘0
\...o °
cond o ® [
t<=Tcond_max Y ®
t>Tcond_min [) a [)
t=0 o ®
Act_next! [] ‘ (J
cre &pee
‘ t<=Terp_max .‘ .
®00000®
Act_path_1? Idle Act_path_2? N1 P1\
t1=0 & 12=0 N
1
Conflict| t<=1
Ante t1>Tcond_min t2>Tcond_min Rytro
Act_node_2! Act_node_1!
t1<=Tcond_max t2<=Tjcond_max
t1+t2>Tcpnd_min
Act_node_2? Act_node_1?
Double\.jﬂ+t2<:Tcond7max
Act_path_1? Act_path_2?
Ante =0 g/li =0 etro
Act_path 2? @) Act path 17

t<=Terp_max

N2

t>Trest_min

Rest

e

t<=Trest_max

&)
t<=Tcpnd_max
t>Tcond min
Act_node_1!

P2

“Rct_path_127

v Act_path_2?
(@)

NS

t<=Tconfd_max
t>Tcond min

Act_node_2!

—_— =
Act_path_1?

t=0
Act_path 2?

t=0

Ante Act_path 17

t<=Tcdnd_max
t>Tcond min J -

Act_node_1!

t<=Tcond[max
onda_min
Act_node_2!
Act_path_2?

P3

Rest

t<=Trest_max

t=0
Act_path!

N4

Fig. 4. (a) Electrical voltage change on the surface of the heart tissue and its adjacent tissue region (dotted) upon activation.
The whole process is divided into timing periods with different behaviors. (b) The original tissue model which captures the
timing behaviors of the heart tissue. (¢) The conduction property is separated to the path automaton and the heart can
be modeled as conduction network. (d) Equivalent locations are merged. (e) The blocking property of the ERP location is
replaced by a non-deterministic transition in the path automaton. (f) The correlation between the two nodes is replaced by
allowing the node automaton to have more behaviors.

8 Zhihao Jiang et al.: Pacemaker Verification

Act_path_1! Act_node_2!

Act_node_1! Act_path_2!

Act_path_1! Act_node_2!
Act_path_1! Act_node_2!

i b B

Act_node_1! Act_path_2!

Act_node_1! Act_path_2!

q.nﬁmicoa

Act_path_1! Act_node_2! Act_path_1! Act_node_2!

1 2
% % Ni N4

Act_node_1! Act_path_2! Act_node_1! Act_path_2!

Fig. 5. (a) Model conduction delay between nodes as path; (b) Merging RRP with Rest; (c) Replace blocking property of ERP with
non-deterministic conduction; d. Use self activation to replace conduction

Zhihao Jiang et al.: Pacemaker Verification 9

Location | Abbreviation | Description
ERP ER Effective Refractory Period
RRP RR Relative Refractory Period
Rest RE Rest Period
Cond CO Conduction Period
Idle 1D No Conduction
Ante AN Antegrade Conduction
Retro RT Retrograde Conduction
Double DO Both Way Conduction

Table 1. Abbreviations used in heart models

timing delays for an electrical activation to conduct from
one electrode to another. Due to the limited number of
electrodes that can be placed into the heart, the physi-
cian can examine the refractory properties at the loca-
tions of the electrodes, and only consider the conduction
delays between the electrodes. The procedure give us the
intuition to abstract the heart as a conduction network
as shown in Fig. 4 (c).

3.3.1 Tissue level abstraction

At the tissue level, we model the conduction delay be-
tween node automata using a path automaton. So two
adjacent node automata N}||NZ can be simulated by
two node automata and a path automaton (Ni || Py||N?)
(Fig. 4 (c)). In the new node automaton Njp, location
cond is replaced by a committed location temp. In cond
location, Ny does not have a transition for Act_node?,
which is equivalent to the ERP location. So the time for
the cond location is added to the new ERP location:

Ny.Terp-max = Ny.Terp-max + No.Tcond_-max

Ny Terp-min = Ny.Terp_min + No.Tcond_min

The path automaton P; models the conduction property
of between N} and N§ with

Py.Tcond_min = min(N}.Tcond_min, N3.Tcond_-min)

Py.Tcond_max = maz(N} .Tcond_mazx, Ni.Tcond_maz)

The location correspondence and abstraction are shown
in Fig. 5 (a). A typical timed execution where a node
N¢ got activated and activates the other node NZ after
delay is shown below:

RE”RE Act_node_17
CO|RE ER|CO

Correspondingly, in N}||P;||N?, the path P; is im-
mediately activated when the node N7 is activated, and
after the same conduction delay the node N7 on the
other end of the path is activated.

REHIDHRE Act_node_17
Act_path_1!

d>Tcond-min

6>Tcond-min

xt!

ER||AN|RE ER||CF|ER
Act_node_2!

We use Double location in path automaton to model
when both node automata are in Cond location. When

one of the nodes finishes conducting, it will send Act_next!
event to the adjacent node and enter ERP location. Since
the other node is in Cond or ERP location, there is no
transition for the Act_next! event and the conduction is
blocked. So the locations for CO||ER, ER||CO, ER||ER
are abstracted as a single location ER||ID| ER. We claim
that N ||Ng =; Ni||P1||[N? and the heart can be mod-
eled as H; = N{||P!||N?--- P/"||N7. This model trans-
formation does not simplify the heart model, but it pro-
vides an abstract conduction path of arbitrary length
with node and path automata.

3.3.2 Conduction Path Abstraction

A node automaton can generate Act_path! events by
self-activation, and prevent Act_node! event to trigger
Act_path! during ERP. If the self-activation period is
too long for a node automaton N7, and its ERP is short
enough not to block any Act_node! event, it can be re-
moved from the model and the paths connect to it can
be merged. A conduction path with N*||P||N?||P?||N3
can be abstracted into N*||P3||N® with the following
assumptions:

min(N . Terp_min, N®.Terp_min) > N Terp_maz
maz(N'. Trest_.maz, N3 Trest_maz) < N*.Trest_min

The first assumption infers that when the location of N3
changes from ERP to RRP, it is guaranteed that N .ERP
&& N?.ERP. Under this assumption N2 won’t block any
activation signal travel from N' to N3 and vice versa.
The second assumption guarantees that the clock t of
N? will be reset before reaching Trest_min in Rest loca-
tion, so there will not be self-activation from N2. Under
these two assumptions we can have N* = N1, N° = N3,
P23 Tcond_min = P! Tcond_min + P2 Tcond_min

P3 Tcond_max = P! Tcond_max + P2 Tcond_max

This can be generalized for acyclic conduction paths of
arbitrary length. The first assumption can be achieved
by assigning node automata to the locations with longer
ERP. Since the pacemaker only has two leads monitor-
ing the timing delay between heart activation events, and
the AV node has the longest ERP period, the heart struc-
ture can be abstracted with two nodes and a path Hy =
N{||PL|N2||P?|| N}, with the Act_node events from Ni
and N as input to the pacemaker.

3.3.3 Resolve Non-determinism with Linear
interpolation

Abstraction 1 can be used in verification but not testing
due to the non-deterministic choices of parameters. It
captures all behaviors of the heart tissue but is not able
to simulate a particular behavior, especially over multi-
ple heart cycles. In [20], we developed the Virtual Heart
Model (VHM) which resolved the non-determinism in
Abstraction 1 with linear interpolations and can be used

10

Zhihao Jiang et al.: Pacemaker Verification

N\ N
AS [AR] AS AS Atrium
AP
V Ventricle
VP Vs VP VP
0‘— extension
AVI AVI unsensed | AVI AVI
PVARP PVARP PVARP | PVARP |
VRP VRP VRP_| VRP
AEI 4 LRI LRI
LRI LRI
URI | URI |
URI URI

reset

Fig. 6. (a) The heart model generates heart events (Aget,Vget) and responds to pacemaker events (AP,VP). (b) Basic 5 timing cycles
of DDD pacemaker which maintain minimal heart rate, minimal A-V delay and filter noises

to mimic the behavior of different heart conditions. For
example, the non-deterministic ERP range [Tinin, Tmaz)
is interpolated as a linear function:

Tonin + (1 — (1 =t/Trrp)®) - (Traz — Tonin) (1)

where t is the time since the node enters the RRP loca-
tion.

8.4 Abstraction 2: Merging Equivalent Locations

The heart model Hj still has equivalent locations. In
Abstraction 2 we further abstract the node and path
automata. With non-determinism, the node automaton
react to Act_node! event the same way in RRP and Rest
state. In the new node automaton N2 we merge the RRP
state with the Rest state with:

Ny . Trest_min = Ni.Trest_min + Ny. Trrp-min

Ny . Trest_maxr = Ni.Trest_max + N1.Trrp-max

Since during ERP state, the node automata won’t re-
act to any Act_node! event, for a N{||P;|| N7 setting, the

symbolic state ER||DOJ ER is equivalent to ER||ID| ER.

Under the assumption that the ERP period of a node
automaton is much longer than the conduction delay of
a path automaton, it is guaranteed that both node au-
tomata will be in ERP location when the path exits the
Double location. In the path automaton, the Double and
Conflict location is merged with the Idle state. The loca-
tion abstraction and mapping is in Fig. 5 (b). The heart
can be modeled as Hy = N3 || P3| N2||P#||N3.

8.5 Abstraction 3: Replacing Blocking with
Non-deterministic Conduction

In Abstraction 3, we replace the blocking behavior of the
ERP location of the node with non-deterministic conduc-
tion in the path automaton. There exists a transition

Act_node_1?_ Act_path_1?

RE|ID||RE RE|ID|RE
Act_path_1!

in N3 ||Ps|| N2 to replace transition

ER|ID|ER 29°% 1", pR|ID|ER

in Ny || P3| N3

Without the ERP constraint the AV node is no longer
needed and the heart can be modeled as Hz = N1 | P3| NZ.
The location abstraction and mapping is in Fig. 5 (c).
The detailed proof for this timed simulation relation is
in the appendix.

3.6 Abstraction 4: Random Heart Model (RHM)

In Abstraction 4, we further simplify the heart model
by removing the conduction path between two nodes.
By setting Trest_min for both nodes to 0 the new heart
model Hy = N3||N3 covers all possible behavior of Hj.
The location abstraction and mapping is in Fig. 5 (d).
This random heart model with two nodes is the most
abstract model that will be used at the beginning of the
closed-loop verification process in Section 5.
Eventually we have a series of heart models with:
Ng|ING - - N§!
=¢ Ny ||PL|INT - P NT!
=¢ Ny || Pr{INT || PP || N?
=t Ny ||Py | N3|| P3| N3
=¢ N3|| P3| N3
= Nj|INZ

4 Pacemaker Modeling

In this section, we discuss our timed-automata model of
the pacemaker. The overview of the closed-loop system is
showed in Fig. 6(a). The interactions between the heart
and the pacemaker are modeled by using binary event
channels. The activation of N of the heart is the input
to the atrial lead

N'. Act_path! —Aget!

Zhihao Jiang et al.: Pacemaker Verification

AS?

AVI

11

t>=TLRI-TAVI

APl t=0

(a) LRI component

A AS!
VS? —>
PVARP | o)
2 —>
t>=TPVARP

) t>=TPVAB
=/ pvAB
t<=TPVAB

inter1
AS! AR!

(d) PVARP component

(b) AVI component

PVARP
t<=TPVARP

VP! vS?
WaitURI
clk<=TURI
t>=TAVI && clk<TURI
AVI
t<=TAVI
VP? ’ ‘ S?

URI

t>=TAVI && clk>=TURI

(c) URI component

Vget? \
Vjp? vRp Sty

inter

VSl

Vget?

t>=TVRP
(e) VRP component

Fig. 7. (a)LRI component delivers AP! event if the V-A delay exceeds TLRI-TAVI; (b)AVI component delivers VP! if the A-V
delay exceeds TAVI while the V-V delay is longer than TURI; (c)URI component keeps track of the V-V delay; (d)PVARP
component filters certain Aget! from the heart and generates AS!; (¢)VRP component filters certain Vget! from the heart and

generates VS!

and for ventricular lead
N2.Act_path! —Vget!

The pacemaker accordingly generates atrial or ven-
tricular pacing actions
APl— N Act_node!
VP!— N2 Act_node!
to the corresponding nodes in the heart. We now present

4.1.1 Lower Rate Interval (LRI)

The Lower Rate Interval (LRI) component is shown in
Fig. 7(a). This component defines the longest interval
allowed between two ventricular events, thus keeps the
heart rate above a minimum value. In DDD mode, the
LRI interval is divided into a V-A interval (TLRI-TAVT)
and a A-V interval (TAVI). The LRI component main-

our pacemaker model within the closed-loop heart-pacemaker{,ins a maximum V-A delay while the AVI component

system.

4.1 Basic DDD pacemaker modeling

The DDD pacemaker has 5 basic timing cycles triggered
by events, as shown in Fig. 6(b). We decomposed our
pacemaker model into 5 components which correspond
to the 5 counters. P = LRI||AVI|[URI|| PV ARP|VRP.
These components synchronize with each other using
broadcast channels and shared variables (as shown in
Fig. 7).

maintains a maximum A-V delay so together they main-
tain the maximum V-V delay. In the LRI component,
the clock is reset when a ventricular event (VS, VP) is
received. If no atrial event has been sensed (AS), the
component will deliver atrial pacing (AP) after TLRI-
TAVI. The UPPAAL design of LRI component is shown
in Fig. 7(a).

4.1.2 Atrio-Ventricular Interval (AVI) and Upper Rate
Interval (URI)

The function of the AVI component is to maintain the
appropriate delay between the atrial activation and the
ventricular activation. It defines the longest interval be-

12 Zhihao Jiang et al.: Pacemaker Verification

Vget?
;
wait_1st Vget?

(a) Monitor PLRI_test

wait_2nd secV

VP?

wait_v wait_vp vp? secv

Vget?
t=0

Vget? t=0
(b) Monitor PURI_test

Fig. 8. (a) Monitor for LRL: Interval between two ventricular events should be less than TLRI, (b) Monitor for URL: Interval between

a ventricular event and a VP should be longer than TURI

tween an atrial event and a ventricular event. If no ven-
tricular event has been sensed (VS) within TAVI after
an atrial event (AS, AP), the component will deliver ven-
tricular pacing (VP). In order to prevent the pacemaker
from pacing the ventricle too fast, a URI component uses
a global clock clk to track the time after a ventricular
event (VS, VP). The URI limits the ventricular pacing
rate by enforcing a lower bound on the times between
consecutive ventricle events. If the global clock value is
less than TURI when the AVI component is about to
deliver VP, AVI will hold VP and deliver it after the
global clock reaches TURI. The UPPAAL design of AVI
and URI component is shown in Fig. 7(b) and (c).

4.1.3 Post Ventricular Atrial Refractory Period
(PVARP) and Post Ventricular Atrial Blanking
(PVAB)

Ventricular events, especially Ventricular Pace (VP) are
sometimes so strong that the atrial lead can sense the ac-
tivation as well. This signal may be falsely recognized as
an atrial event and disrupt normal pacemaker function.
This scenario is called crosstalk and was discussed in our
previous work [21]. In order to prevent this undesired
behavior, there is a blanking period (PVAB) followed
by a refractory period (PVARP) for the atrial events
after each ventricular event (VS, VP). Atrial events dur-
ing PVAB are ignored and atrial events during PVARP
trigger AR! event which can be used in some advanced
diagnostic algorithms. The UPPAAL design of PVARP
component is shown in Fig. 7(d).

4.1.4 Ventricular Refractory Period (VRP)

Correspondingly, the VRP follows each ventricular event
(VP, VS) to filter noise and early events in the ventricu-
lar channel which could otherwise cause undesired pace-
maker behavior. Fig. 7(e) shows the UPPAAL design of
VRP component.

4.1.5 Parameter Selection

In order to cope with the large variety of patient condi-
tions, the timing parameters of the pacemaker can be
programmed to discrete values. In our previous work
[12], we picked a set of default values for the parameters
and verified safety properties on it. In order to evaluate

the safety of the pacemaker software, it is important to
check all possible parameter combinations. Since there
are only a finite number (i.e. 8000) of different parame-
ter combinations [13], in this paper we enumerate all of
them and check all properties on each combination.

5 Reachability of Unsafe Regions

In this section, we define unsafe regions regarding brady-
cardia and tachycardia and specify two fundamental safety
properties. These two fundamental safety properties are
strict so that they must be satisfied by any pacemaker
under all heart conditions.

5.1 Lower Rate Limit

The most essential function for the pacemaker is to treat
bradycardia by maintaining the ventricular rate above a
certain threshold. We define the region where the ven-
tricular rate is slow, as unsafe. The monitor PLRI test is
designed to measure interval between ventricular events
and is shown in Fig. 8(a). For property

wrrr =A[] (PLRI_test.secV imply PLRI_test.t<TLRI)

we have Hy||P||PLRI test = ¢rRr.

5.2 Upper Rate Limit

The pacemaker is not designed to treat tachycardia so it
can only pace the heart to increase its rate and cannot
slow it down. However, it is still important to guarantee
it does not pace the ventricles beyond a maximum rate
to ensure safe operations. To this effect, an Upper Rate
Interval (URI) is specified such that the pacemaker can
increase the ventricular rate up to this limit.

We require that a ventricle pace (VP) can only occur
at least TURI after a ventricle event (VS, VP). The
monitor PURI_test is shown in Fig. 8(b). For the property
wurr =A[] (PURI_test.secV imply PURI_test.t>TURI)
we have Hy||P||PURI test = puRy.

Since ¢ grr and oy gy belong to ATCTL*, the verified
properties are preserved in the real heart.

In the following two sections, we discuss two closed-
loop unsafe executions where the pacemaker inappropri-
ately increases the heart rate. Such executions are re-
ferred to as Pacemaker Mediated Tachycardia (PMT).

Zhihao Jiang et al.: Pacemaker Verification 13

Sinoatrial (B}
(SA) node

Atrioventricular
(AV) node
RA = Right atrium
RV = Right ventricle
LA = Left atrium
LV = Left ventricle

Bundle of His

Left and right
bundle branches

Fast “pathway”: pacemaker
A-V synchrony

24
AS AS AS AS As AS

rrt t 1

?s lv? lVP lVP lVP lVP

| 1 1y
0 1000 2000 3000 ms

(a) Virtual circuit formed by the pacemaker and the (b) Pacemaker trace for ELT initialized by a early ven-

heart

tricular signal

Fig. 9. Endless Loop Tachycardia case study demonstrating the situation when the pacemaker drives the heart into an unsafe state [22]

We use existential properties Pg € ETCT L+ to show the
existence of these executions and use —Pg to prove the
correctness of the corresponding Anti-PMT algorithms.
Since AGy = —-EF(—y), the properties also belong to
ATCTL* and are preserved for the real heart.

6 Endless Loop Tachycardia

The AVI component of a dual-chamber pacemaker in-
troduces a virtual A-V conduction pathway. This forms
a timing loop with the intrinsic (physiological) A-V con-
duction pathway (see Fig. 9(a)). A Premature Ventric-
ular Contraction (PVC), i.e. an early extra beat in the
ventricular, may trigger another ventricular event (VS)
and initiate a V-A conduction through the intrinsic path-
way (Marker 1 in Fig. 9(b)). The pacemaker registers

this signal as an Atrial Sense (AS) (Marker 2 in Fig. 9(b)).

This event triggers a VP after TAVI, as if the signal con-
ducts through the “virtual” A-V pathway (Marker 3 in
Fig. 9(b)). We call it “virtual” pathway as the “con-
duction” delay is fulfilled by a timer in the pacemaker
instead of a physical signal propagation along the heart
tissue. The VP will trigger another V-A conduction and
this VP-AS-VP-AS looping behavior will continue (see
Fig. 9(b)). The interval between atrial events is TAVI
plus the V-A conduction delay, which is normally shorter
than the delay between intrinsic heart beats, thus will
drive the ventricular rate as high as the Upper Rate
Limit. During ELT, the heart rate is not only high, but
also fixed, which is unsafe scenario.

Due to the limited information the pacemaker has
about the heart, the pacemaker cannot distinguish a ret-
rograde atrial event from an intrinsic atrial event which
is triggered by the SA node. From the pacemaker’s point
of view, the pacemaker paces the ventricles as specified
for every AS. That is why open-loop testing is unable to
detect this closed-loop behavior.

Modern pacemakers are equipped with anti-ELT al-
gorithms to identify and terminate potential ELT. One
common algorithm identifies ELT by the ELT pattern

and terminates ELT by increasing TPVARP time once
to block the AS caused by the V-A conduction. By in-
creasing the blocking interval after a ventricular event,
the pacemaker effectively ignores the early atrial signal
detected due to the PVC.

6.1 Existence of ELT

Two monitors were designed to show the existence of
ELT. One monitor, PELT _det, shows the persistence of
the VP-AS pattern and the other monitor, Pvv, shows
that the ventricular rate is always no slower than the
upper rate limit (Fig. 10). The property
vrrr =E[] ((not PELT _det.err) && (not Pvv.err))
checks the existence of ELT behavior. After our initial
verification we have:
Hy||P||PELT det||Pvv = pprT

The evidence trace shows the behavior of the system.

For simplicity we only show the state of the heart:
AVIt>TAVIAURI.t>TURI
RE|RE — =
V Pl—Act_node_2!
N'.t>0
Act_path_1!—AS!
AVIt>TAVIAURI.t>TURI

V P!— Act_node_2!

N'.t>0
RE||RE =
Act_path_1!—AS!

RE|RE

RE|RE

RE|RE

6.2 Trace Validation and Heart Model Refinement

We check this trace on more refined Hs||P and discov-
ered that the trace above can correspond to two different
scenarios:

RE|AN||pp 2= AVINURIIZTORT

V P!— Act_node_2!
N t>N'.Trest.min

Act_path_11—AS!
AVIt>TAVIANURIt>TURI

V P!— Act_node_2!

N t>N'.Trest.min REHANHRE
Act_path_1!—AS!

RE||ID|RE

RE||AN||RE

RE||ID|RE

14 Zhihao Jiang et al.: Pacemaker Verification

VP?

ABLOCK?

VB?

Vs? [VB?
VP? Y

1
PELT det

AS?
it yp; VP? t>TURI &
O—

ta TUR\
Pv_v

Fig. 10. (a) Any pattern other than VP-AS will result in error state (b) If the ventricular rate is slower than the Upper Rate

Limit will go to error state

t>200

t<150

=150 && t<=200

VP_AS!
Init vpl AB1

reset!

cancel

t>=TPVARP TPVARP=100

VP?

t>=TPVAB
PVAB
t<=TPVAB

PVARP
t<=TPVARP

A_act?

AR!
TPVARP=500

ock! |nter1

|eset7

VP_AS?

|eset7

VP_AS?

reset’

VP_AS?

Imé/P AS?

teset’

VP_AS?

reset7

VP_AS?

reset7

VP AS?

reset7

VP_AS?

&

Fig. 11. (1) The component PVAS sends VP_AS! event when a VP-AS pattern with delay between [150,200] is detected; (2)
Component ELTct. After 8 VP-AS pattern, the algorithm increase TPVARP to 500ms. (3) Modified PVARP component.

TPVARP can only be set to 500 for one timing cycle.

and

RE||ID|RE AVIAt>TAVIANURI 4>TURI

V P!— Act_node_2!
P.t>P.Tcond-min

Act_node_1!— Act_path_1!—AS!
AVIt>TAVIANURI.t>TURI

V P!— Act_node_2!
P.t>P.Tcond-min

RE|RT||RE

RE||ID|RE

RE|RT|RE
RE||ID|RE

Act_node_1!—Act_path_1!— AS!

Both traces correspond to actual clinical scenarios.
However, the second trace corresponds to the ELT be-
havior which inappropriately increased the heart rate.
By setting N'.Trest_min > TURI in Hz we can model
the healthy heart and the first scenario will be elimi-
nated. However, in H4 the Trest_min is set to 0 so the
two cases cannot be distinguished. So we use the refined
heart model Hs with N!'.Trest_min > TURI. With the
new heart model we have:

H;||P||PELT det||Pvv = wrLT
The evidence trace, which is exactly the second trace
above, shows exactly the ELT scenario.

6.3 ELT termination algorithm

The ELT will persists without intervention and the pa-
tient’s heart is forced to beat at a fast rate approaching
the Upper Rate Limit. Thus, device manufacturers re-
quire a way to identify ELT and terminate it despite
of the limited information the pacemaker can get. The
ELT detection algorithm by Boston Scientific [23] uti-
lizes these three features:

— Ventricular rate at Upper Rate Limit
— VP-AS pattern
— Fixed V-A conduction delay

The pacemaker first monitors VP-AS pattern with ven-
tricular rate at upper rate limit. Then it compares the
VP-AS interval with previous intervals. ELT is confirmed
if the difference between the current VP-AS interval and
the first VP-AS interval are within +32ms for 8 consec-
utive times. Then the pacemaker increases the PVARP
period to 500ms once so that the next AS will be blocked
and will not trigger a VP. ELT will then be terminated.
As the V-A conduction delays are patient-specific, the
algorithm compares the VP-AS interval to a previously
sensed value instead of an absolute value. Since we can

Zhihao Jiang et al.: Pacemaker Verification 15

()

PMT ApproEriate
' [AR] [AR] [AR]
IAS AS AS AS AP AP
rreersr ot 1
lVP VP TVP VP VS lVS
0 lOIOO ZOIOO 30‘00 4(‘)00 =ms

(b)

Fig. 12. (a) Open-loop: 3:1 A-V conduction during SVT and low ventricular rate without SVT; (b) With DDD pacemaker: the pacemaker
paces the ventricle for every atrial sense (AS), thus increase the ventricular rate inappropriately

not store past clock values in UPPAAL, we can not ex-
plicitly model this ELT detection algorithm. However,
since the conduction delay in our heart model is within
a known range, we can compare the VP-AS interval with
this range. The VP-AS pattern detection module VPAS
for our anti-ELT algorithm is shown in Fig. 11 (1). It
detects the VP-AS pattern with ventricular rate at the
Upper Rate Limit and sends out a VP_AS event if the
interval qualifies.

A counter ELTct counts the number of qualified VP-
AS patterns. It increases the PVARP period to 500ms if
eight consecutive VP-AS patterns are detected. (Fig. 11
(2)) The PVARP component is also modified so that the
PVARP period can only be changed once by the anti-
ELT algorithm. (Fig. 11 (3))

6.4 Verification of the algorithm:

With the new pacemaker model

P, = LRI||AVI|URI||PVARP'|VRP||ELTct|VPAS
we first check whether the two fundamental safety prop-
erties still hold when the anti-ELT algorithm is intro-
duced. We have

H3||P1||PLRIJ§6515): YPLRI
H3HP1HPURIJ€St): QURI
Then we check the existence of ELT and we have:

H;||Py||PELT det||Pvv V£ pprr

which indicates the algorithm successfully eliminated all
ELT executions.

7 Verification of the Mode-Switch Algorithm

7.1 Supraventricular tachycardia (SVT)

SVT is an arrhythmia which features an abnormally fast
atrial rate. Typically, in the open loop case, the AV node,
which has a long refractory period, can filter most of the
fast atrial activations during SVT thus the ventricular
rate remains relatively normal. Fig. 12(a) demonstrates

a pacemaker event trace during SVT, with a ODO mode
pacemaker which just sensing in both channels. In this
particular case, every 3 atrial events (AS) correspond to
1 ventricular event (VS) during SVT. As an arrhythmia,
SVT is still considered as a safe heart condition since
the ventricles operate under normal rate can and still
maintain adequate cardiac output.

However, in the closed loop case with the pacemaker,
the AVI component of a dual chamber pacemaker is
equivalent to a virtual pathway in addition to the in-
trinsic conduction pathway between the atria and the
ventricles. The pacemaker tries to maintain 1:1 A-V con-
duction and thus increases the ventricular rate inappro-
priately to match the atrial rate. Fig. 12(b) shows the
pacemaker trace of the same SVT case with DDD pace-
maker. Although half of the fast atrial events are fil-
tered by the PVARP period ([AR]s), the DDD pace-
maker still drives the closed-loop system into 2:1 A-V
conduction with faster ventricular rate, which is inap-
propriate. This problem can be resolved by switching the
pacemaker from the dual chamber mode, which couples
the atrial and ventricular rates, into a single chamber
mode to maintain appropriate ventricular rate indepen-
dent of the atrial rate.

7.2 Emistence of PMT during SVT

The monitor Pv_v is designed to show existence of PMT
during SVT. It goes to the error state if the ventricular
rate drops below the Upper Rate Limit (Fig. 15).

We specify
vms = Ef](notPv_v.err)
which verifies the existence of PMT. To identify the
PMT scenario, we first set Hs.N'.Trest_min < 100 so
that the atrial rate can be high and H3.N2.Trest_min >
TURI so that the intrinsic heart rate is less than TURI.
The property is first verified on pacemaker without the
mode-switch algorithm. We have
H;sl|P||Pvv = ous

The property is satisfied and the evidence trace shows
the behavior of the system.

REHIDHRE N t>N'.Trest.min
Act_path_1!—AS!

16 Zhihao Jiang et al.: Pacemaker Verification

AP? t=0 AS?

wait2nd

Fast! waitist
—
Interval [Slow!
> APed

Fast! t=0

Slow! t=0

t>thresh Slow! t=0

I ‘\H.‘I'I
—

du_end?

du_end? du_end? A du_end?
C

du_end? du_end? ‘

du_end?

du_end? |
switch2

VS?

V3

VS?

VS?

V7 VB

Fig. 13. (a) Component INT An atrial event (AS,AR) arrive before thresh after the previous atrial event is regarded as fast
event. Atrial event arrive after thresh and AP are regarded as slow event; (b) Component CNT After 8 fast event the algorithm
will start a duration by sending du_beg and will switch to VDI mode when the duration ends (du_end); (¢) Component DUR

The duration length is 8 ventricular events (VS,VP)

P.t>P.Tcond_-min

Act_node_2!— Act_path_1!—V S!
N't>N'.Trest_min

RE||AN|RE

RE||ID|RE
Act_path_1!—AS!
RE”ANHRE P.t>P.Tcond-min
Act_node_2!—Act_path_1'—V S!
RE||ID|RE

The time between two VS! events are less than TURI
so the property holds. But that is not exactly the PMT
case we are looking for.

7.8 Trace Validation and Heart Model Refinement

When a path Ps receives a Act_path_1! event, there are

two non-deterministic transitions. 1D A%P*Iy
and ID 24P AN From the trace above we can
see that every atrial event triggers the path conduction.
When the trace is validated against

Hy = N}|[P} | N3 || P3N

we have:
RE|ID|RE|ID|RE

N t>NY. Trest_min

Act_path_1'—AS!
Pl.¢>P' Tcond-min

ER||AN|RE|ID|RE

Act_node_2!— Act_path_2!
N'.4>N'.Terp.min

ER|ID|ER|AN|RE
RE|ID|ER|AN||RE

N'.4>N'.Trest_min

Act_path_1'—AS!
PLt>Pl. Tcond_min

Act_node_-2!

ER||AN||ER||AN|RE

ER|ID|ER|AN|RE
The second Act_node_2! is blocked by N2 so it won’t

conduct to N3 and trigger VS!. So it turns out to be a
spurious counter-example. ER||AN||ER||AN||RE is the

dead-end state where the trace cannot proceed in the re-
fined model and ER||AN||RE||AN|RE is the bad state
which is in the same abstract state as the dead-end state
and enables the trace to proceed in the abstract model.
The heart model needs to be refined so that the bad state
and the dead-end state are separated and the spurious
counter-example is eliminated. So we refine the heart
model from Hs to Hy with Hs <; H,. Our second veri-
fication effort shows that:
Hy||P|[Po_v b= purs

The property is satisfied and the evidence trace shows
the behavior of the system.

' !] in
RE|ID||RE||ID|RE X=X Trestm
Act_path_-1!—AS!

1 1 .
ER||AN|RE||ID||RE AP 4>P' . Tcond-min

ct_node_2!— Act_path_2!
N'.4>N'.Terp.min

ER||ID|ER|AN|RE
RE|ID|ER|AN|RE

N 4>N'.Trest_min

Act_path_ 11— AS!
AVIt>TAVINURI.t>TURI

Act_-node_3!—V P!

ER||AN|ER|AN||RE

ER||AN|ER|DO||ER

In the trace, the pacemaker delivers VP for every atrial
event, increasing the ventricular rate, which is exactly
the PMT case.

7.4 Mode-Switch Algorithm

We now analyze the approach use in pacemakers to pre-
vent prolonged ventricular pacing under SVT. Intuitively,
the mode-switch algorithm first detects SVT. After con-
firmed detection, it switches the pacemaker from a dual-
chamber mode to a single-chamber mode. During the

Zhihao Jiang et al.: Pacemaker Verification

t>=TLRI VP?
VPL_t=0 vDI? t=0
?
VDI_LRI \/tS;O
t<=TLRI B
t<=TLRI-TAVI

TLRI-TAVI
t=0

©>
AP!

AS?
aSensed

17

VDI? t=0

Vs?

clk>=TURI VP! WaitURI

s g) clk<=TURI

t>=TAVI && clk>=TURI

t>=TAVI && clk<=TURI

NG G
VS?
vor (|ppp? DDD? VDI?
t>=TAVI
VDLIdle AS? VDI_AVI
=0 t<=TAVI
AP? %20

VS?

Fig. 14. (a) After switching to VDI mode, the new LRI component LRI" maintains a minimum V-V interval; (b) After switching
to VDI mode, the new AVI component AVI' keeps track of the time after each atrial events.

single-chamber mode, the A-V synchrony function of the
pacemaker is deactivated thus the ventricular rate is de-
coupled from the fast atrial rate. After the algorithm
determines the end of SVT, it will switch the pacemaker
back to the dual chamber mode.

The mode-switch algorithm specification we use is
similar to the one described in the Boston Scientific pace-
makers manual [13]. The algorithm first measures the in-
terval between atrial events outside the blanking period
(AS, AR). The interval is considered as fast if it is above
a threshold (Trigger Rate) and slow otherwise. In our
UPPAAL model we model it as INT (see Fig. 13 (1)). A
counter CNT increments for fast events and decrements
for slow events (see Fig. 13 (2)). After the counter value
reaches the Entry Count, the algorithm will start a Du-
ration (DUR) which is a time interval used to confirm
the detection of SVT (see Fig. 13 (3)). In the Duration,
the counter keeps counting. If the counter value is still
positive after the Duration, the pacemaker will switch to
the VDI mode (Fallback mode). In the VDI mode, the
pacemaker only senses and paces the ventricle. At any
time if the counter reaches zero, the Duration will termi-
nate and the pacemaker is switched back to DDD mode.
In our UPPAAL model of the mode-switch algorithm,
we use nominal parameter values from the clinical set-
ting. We define trigger rate at 170bpm (350ms), entry
count at 8, duration for 8 ventricular events and fallback
mode as VDI

In order to model both DDD and VDI modes and the
switching between them, we made modifications to the
AVTI and LRI components. In each component two copies
for both modes are modeled, and switch between each
other when switching events (DDD, VDI) are received.
During VDI mode, VP is delivered by the LRI compo-
nent instead of the AVI component. The clock values are

shared between both copies in order to preserve essential
intervals even after switching. The modified AVI (AVI")
and LRI (LRI")components are shown in Fig. 14. So the
new pacemaker model is:

P,=LRI'|AVI'|URI||[PVARP|VRP||INT||CNT||DUR

7.5 Verification against fundamental safety properties

We verify the same fundamental safety properties on the
pacemaker model with mode-switch algorithm. We have:

HQHPQ”PURI,teSt ’: PURI

HQHPQHPLRI,test l# LRI

The Upper Rate Limit property still holds but the Lower
Rate Limit property is violated. The counterexample
is proved to be valid after checking the trace of more
refined heart models. By analyzing the trace we found
that when the pacemaker is switching from VDI mode
to DDD mode, the responsibility to deliver VP switched
from LRI component to AVI component. Since the clock
reference is different (Ventricular events in LRI compo-
nent and Atrial events in AVI component), the clock
value for delivering the next VP is not preserved. As a
result, if an atrial event which triggered the mode-switch
from VDI to DDD happens within [TLRI-TAVI, TLRI)
after the last ventricular event, the next ventricular pac-
ing will be delayed by at most TAVI time, which violates
the Lower Rate Limit property (Fig. 16(a)).

7.6 Verification Result

After implementing the Mode-switch algorithm, we ver-
ified the model against the same existence property. We
expect the violation of this property, since during VDI

18 Zhihao Jiang et al.: Pacemaker Verification

two_v

wait_2nd
— ?
LAY t>TURI

VS? t=0

err

wait_1st

t<=TURI t=0

Fig. 15. Monitor Pv_v for SVT: There exists an endless se-
quence in which interval between ventricular events is at most
TURI

Slow
VDI MS DDD
AS A;et AS
AS AS f
T I TAVI __Fast __ _>i<_ _Fast __
TLRI l PVAB
VS (VP) VP VS

(a) (b)
Fig. 16. (a) Safety Violation: VP is delayed due to the reset of
timer during mode-switch, (b) Correctness Violation: The blocking
period may block some atrial events, turning two Fast events to
one Slow event [12]

mode the ventricular rate of the heart model is less than
the Upper Rate Limit and will not trigger ventricular
pacing. However, this property is still satisfied, indicat-
ing the mode-switch algorithm failed to eliminate the
PMT scenario. The evidence trace returned by UPPAAL
shows that a subset of atrial events fall into the blank-
ing period after a ventricular event (see Fig. 16(b)). As
a result, two fast events are reduced to one slow event
and mode switch may never happen. This scenario does
exist in all our refined heart models, we conclude that
the trace is physiologically feasible. The mode-switch al-
gorithm in our pacemaker model can not terminate all
PMT behaviors as specified.

7.7 Trace Validation on Real Pacemaker and
Pacemaker Refinement

In the previous subsections, we have found two potential
safety violations in our pacemaker model. However, this
does not mean the actual pacemaker has the same viola-
tion. Jiang et al. have implemented the VHM model onto
a programmable integrated circuit (FPGA) platform and
had it interact with a real pacemaker at run-time [24].
The closed-loop behavior can be checked in closed-loop
with a real pacemaker. If the trace is not feasible in the
closed-loop system, the pacemaker model needs to be re-
fined to eliminate the execution. However, refining the
pacemaker model requires more detailed representation
of the pacemaker software, which was not available to us
at that time.

8 Related Work

Chen et. al [25] extended our verification work [12]. They
developed a hybrid heart model which is able to simu-
late action potential at tissue level. The model is a more

refined model than our Virtual Heart Model [20], with
linear dynamics on each state of the heart tissue. They
also developed a probability model to simulate natu-
ral pacemaker function. They then used the combined
heart model for quantitative verification of the pace-
maker. However, since the pacemaker only sense the tim-
ing of the heart tissue activation, their hybrid extension
for action potential does not bring much benefit but in-
creased model complexity dramatically. As a result, they
have to use bounded model checking thus sacrificed ac-
curacy.

Jee et. al present a safety assured development ap-
proach of real-time software using pacemaker as their
case study in [26]. They formally model and verify a sin-
gle chamber VVI pacemaker using UPPAAL and then
implement it and check the preservation of properties
transferred from model to implementation code.

Tuan et. al propose an RTS formal model for pace-
maker and its environment and verified it against num-
ber of safety properties and timed constraints using the
PAT model checker [27]. They have modeled the pace-
maker for all 18 operating modes as described in Boston
scientific, but their work lacks specification and analysis
of complex behaviors of the pacemaker, such as mode-
switch.

Wiggelinkhuizen uses mCRL2 and UPPAAL to for-
mally model the pacemaker from the firmware design of
Vitatron’s DA+ pacemaker [28]. Two main approaches
have been used to investigate the feasibility of applying
formal model checking to the design of device firmware.
The main approach consists of verifying the firmware
model in context of a formal heart model and a formal
model of a hardware module which fails for high heart
rates because of the state explosion. Another approach
is to verify a part of firmware design which was feasible
and was able to detect a known deadlock rather soon.

Macedo et. al have developed a concurrent and dis-
tributed real-time model for a cardiac pacemaker through
a pragmatic incremental approach [29]. The models are
expressed using the VDM and are validated primarily
by scenario-based test, where test scenarios are defined
to model interesting situations such as the absence of
input pulses. The models cover 8 modes of pacemaker
operation.

Gomes et. al present a formal specification of pace-
maker system using the Z notation in [30]. They have
also tried to validate that the formal specification satis-
fies the informal requirements of Boston Scientific by us-
ing a theorem prover, ProofPower-Z. They have partially
checked the consistency of their specification through
reasoning. No validation experiment regarding safety con-
ditions were performed yet.

Mery et. al in [31], formally model all operational
modes of a single electrode pacemaker system using event-
B and prove them. They use an incremental proof-based
approach to refine the basic abstract model of the system
and add more functional and timing properties. They use

Zhihao Jiang et al.: Pacemaker Verification 19

the ProB tool to validate their models in different situ-
ations such as absence of input pulses.

9 Conclusion and Future Work

In this paper, we first extend our TACAS’12 paper [12]
by formalizing the heart model abstraction process. By
establishing the timed simulation relation between ab-
straction levels the safety properties specified in ATCTL*
are preserved during refinement. Based on the heart model
formulation we proposed a Counter-Example-Guided Ab-
straction and Refinement (CEGAR) framework to bal-
ance model complexity and fidelity for pacemaker ver-
ification. We demonstrated how to identify two unsafe
Pacemaker Mediated Tachycardia (PMT) executions us-
ing model checking and heart model refinement for more
specific heart conditions. We also verified the safety and
effectiveness of the corresponding Anti-PMT algorithms.

The work in this paper demonstrated the application
of formal methods and model checking techniques for
evaluating safety and efficacy of Cyber-Physical Systems
like medical devices. This is a step toward certification of
verified models and automated synthesis to verified code
for medical device regulatory efforts. As future work,
there are several directions worth exploration:

1. The CEGAR framework enables us to explore more
complex pacemaker algorithms for more specific heart
conditions.

2. In the CEGAR framework, model abstraction, model
refinement and trace validity check are performed
manually using physiological reasoning. The domain
knowledge can be potentially formalized into rules
and the abstraction and refinement process can be
automated.

3. In this paper we only evaluated binary safety proper-
ties. We are interested in quantitative properties such
as power consumption and physiological efficacy. Our
current efforts are on extending this framework to in-
corporate tools and techniques for quantitative veri-
fication of closed-loop medical devices.

4. In this work we only investigate the interaction be-
tween the heart and the pacemaker so that only sim-
ple rate-based properties can be specified. Investigat-
ing the interaction between the heart and the oxygen
demands from the rest of the body will give us better
metric for the efficacy of the devices.

Acknowledgements. The authors would like to thank Ashutosh
Trivedi, from the University of Pennsylvania and the Indian
Institute of Technology, Mumbai, for fruitful discussions dur-
ing the preparation of this paper.

References

1. List of Device Recalls, U.S. Food and Drug Admin., (last
visited Jul. 19, 2010).

2. K. Sandler, L. Ohrstrom, L. Moy, and R. McVay. Killed
by Code: Software Transparency in Implantable Medical
Devices. Software Freedom Law Center, 2010.
AUTOSAR website: http://www.autosar.org/.

AVSI website: http://www.avsi.aero.

5. R. Alur and D. L. Dill. A Theory of Timed Automata.
Theoretical Computer Science, 126:183-235, 1994.

6. K.G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL
in a Nutshell. International Journal on Software Tools
for Technology Transfer (STTT), pages 134-152, 1997.

. ML.E. Josephson. Clinical Cardiac Electrophysiology. Lip-
pincot Williams and Wilkins, 2008.

8. S. Barold, R. Stroobandt, and A. Sinnaeve. Cardiac
Pacemakers Step by Step. Blackwell Futura, 2004.

9. E. M. Clarke, O. Grumberg, and D. E. Long. Model
Checking and Abstraction. ACM Trans. Program. Lang.
Syst., 16(5):1512-1542, 1994.

10. Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model Checking. 2000.

11. Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,
and Helmut Veith. Counter Example-Guided Abstrac-
tion Refinement for Symbolic Model Checking. J. ACM,
50(5):752-794, 2003.

12. Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev
Alur, and Rahul Mangharam. Modeling and Verifica-
tion of a Dual Chamber Implantable Pacemaker. Tools
and Algorithms for the Construction and Analysis of Sys-
tems, 7214:188-203, 2012.

13. The Compass - Technical Guide to Boston Scientific Car-
diac Rhythm Management Products. 2007.

14. Zhihao Jiang, Miroslav Pajic, Rajeev Alur, and Rahul
Mangharam. Pacemaker UPPAAL model download:
http://mlab.seas.upenn.edu.

15. Miroslav Pajic, Zhihao Jiang, Insup Lee, Oleg Sokolsky,
and Rahul Mangharam. From Verification to Implemen-
tation: A Model Translation Tool and a Pacemaker Case
Study. In Proceedings of the 2012 IEEE 18th Real Time
and Embedded Technology and Applications Symposium,
RTAS ’12, pages 173-184, 2012.

16. R.N. Fogoros. EP Testing. Blackwell Science, 1999.

17. Satoshi Yamane. Timed Weak Simulation Verification
and its Application to Stepwise Refinement of Real Time
Software. International Journal of Computer Science
and Network Security, 6, 2006.

18. Gerd Behrmann, Alexandre David, and Kim G. Larsen.
A Tutorial on UPPAAL. Formal Methods for the De-
sign of Real-Time Systems, Lecture Notes in Computer
Science, pages 200-236, 2004.

19. Edmund M. Clarke and E. Allen Emerson. Design and
Synthesis of Synchronization Skeletons Using Branching-
Time Temporal Logic. In Logic of Programs, Workshop,
pages 52-71, 1982.

20. Zhihao Jiang, Miroslav Pajic, and Rahul Mangharam.
Cyber-Physical Modeling of Implantable Cardiac Medi-
cal Devices. Proceedings of the IEEE, 100(1):122 -137,
Jan. 2012.

21. Zhihao Jiang and Rahul Mangharam. Modeling Car-
diac Pacemaker Malfunctions with the Virtual Heart
Model. In Engineering in Medicine and Biology Soci-
ety, EMBC, 2011 Annual International Conference of the
IEEFE, pages 263 —266, Sept 2011.

-~ w

20

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Zhihao Jiang et al.: Pacemaker Verification

Z. Jiang, M. Pajic, and R. Mangharam. Model-based
Closed-loop Testing of Implantable Pacemakers. In IC-
CPS’11: ACM/IEEE 2nd Intl. Conf. on Cyber-Physical
Systems, 2011.

PACEMAKER System Specification. Boston Scientific.
2007.

Zhihao Jiang, Sriram Radhakrishnan, Varun Sampath,
Shilpa Sarode, Miroslav Pajic, and Rahul Mangharam.
Heart-on-a-Chip: A Closed-loop Testing Platform for Im-
plantable Pacemakers. In Third Workshop on Design,
Modeling and Evaluation of Cyber Physical Systems (Cy-
Phy), CPS Week, 2013.

T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre.
Quantitative Verification of Implantable Cardiac Pace-
makers. In Hybrid Systems: Computation and Control
(HSCC 2013), 2013.

E. Jee, S. Wang, J. K. Kim, J. Lee, O. Sokolsky, and
I. Lee. A Safety-Assured Development Approach for
Real-Time Software. The Proceedings of 16th IEEE
International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 133-142,
2010.

L. A. Tuan, M. C. Zheng, and Q. T. Tho. Modeling and
Verification of Safety Critical Systems: A Case Study on
Pacemaker. Fourth International Conference on Secure
Software Integration and Reliability Improvement, pages
23-32, 2010.

J. E. Wiggelinkhuizen. Feasibility of Formal Model
Checking in the Vitatron Environment. Master thesis,
Eindhoven University of Technology, 2007.

Macedo H. D., Larsen P. G., and Fitzgerald J. Incremen-
tal Development of a Distributed Real-Time Model of a
Cardiac Pacing System using VDM. Formal Methods,
pages 28-30, 2008.

A. O. Gomes and M. V. Oliveira. Formal Specifica-
tion of a Cardiac Pacing System. In Proceedings of the
2nd World Congress on Formal Methods (FM ’09), pages
692-707, 2009.

D. Mery and N. K. Singh. Pacemaker’s Functional Be-
haviors in Event-B. Research report, INRIA, 2009.

A Appendix

Proof for N1||P2||N2 <; Ni||P3|N2

In this subsection we manually prove the timed simu-
lation relation N2 || P||NZ =<, N3i||P3||N%. The other re-
lations can be proved accordingly.

A.1 Timed Simulation Relation sim

For two timed automata T' and T2, we write timed
simulation relation sim is defined on (21 x {29 where
(s,v) € £ and v is the valuation of all clocks t; € Xj.
((s,v),(s',v")) is in sim if and only if v" = v(\ + §), for
0 € D, such that sim(s,v) = (s/,v(A + D))

Let 71 = N}||P,|N2 and T? = N||P5|N2. X, =
{tnd, tps,tn3} and X, = {tni, tps,tn3}, the state map-
ping for the timed simulation relation is shown below:

sim(RE|ID||RE,v) = (RE|ID||RE,v(tn} + D1,tn? +
Ds)) where Dy = [N3.Terp_-min, NJ.Terp_maz),
Dy = [N3.Terp_min, N3.Terp-max)

A special condition for this mapping is the initial state:
sim(RE|ID||RE,v(tn} := 0,tp3 := 0,tn3 :=0)) =
(RE|ID||RE,v(tng + D1, tn§ + D2))

sim(ER||AN||RE,v) = (RE|AN||RE,v)
sim(RE||RT| ER,v) = (RE|RT||RE,v)
sim(ER||ID|ER,v) = (RE||ID||RE,v)

sim(ER||ID||RE,v) = (RE|ID|RE, v(tn + D))
where D = [N2.Terp-min, N3.Terp_mazx]

sim(RE|ID||ER,v) = (RE||ID||RE,v(tn} + D))
where D = [N3.Terp_-min, Ns.Terp_mazx]
The location mapping is shown in Fig. 5.

A.2 Timed Transitions

Here we want to ensure every timed transition for T'!
has a corresponding timed transition in 72. We denote
S = (s,v) and S5 = (s,v+4). For each location in T we
have S 2 S5 for V5 € R under condition v+ 6 = inv(s).
In T? we use S’ = (s',v') and S§ = (s',v" + §). For
(S,8’) esim we show that there exists S5 such that
s 5 s and (ss,s5) €sim. For every location we list
all the corresponding components and provide proof.

For location RE||ID||RE in T' we have:
S = (RE||ID|RE,v)

Ss = (RE||ID||RE, v+ 9)

inv(s) = tny + 8 < Ni.Trest_mar &&

Zhihao Jiang et al.: Pacemaker Verification 21

tn3 +§ < N2.Trest_max)
Dy = [N3.Terp_min, N3 . Terp_mazx],
Dy = [N2.Terp-min, N2.Terp-max).
S’ = (RE||ID||RE, v(tnk + Dy, tn? + Dy))
Si = (RE|ID||RE,v(tn} 4+ Dy, tn% + D3) +)
inv(s') = tni + D1+ < N}.Trest_.maz and tn? + Dy +
0 < N32.Trest,maa:
Since

N3.Trest_max = No. Trest_max + No. Terp_max

we have inv(s) = inv(s’) so the correspondence holds.

For location ER||AN||RE in T" we have:
S = (ER|AN||RE, v)
Ss = (ER||AN||RE,v + §)
inv(s) = tpy + 0 < Po.Tcond_max
S’ = (RE||AN||RE,v)
S5 = (RE||AN||RE,v +9)
inv(s’) = tps + 6 < P3.Tcond-mazx
Since Py.Tcond_max == P3.Tcond_-max, we have
inv(s) = inv(s’) so the correspondence holds.

For location RE||RT||ER in Tt we have:
S = (RE||RT||ER,v)
Ss = (RE||RT||ER,v + 0)
inv(s) = tpa + § < Py.Tcond_mazx
S’ = (RE||RT|RE,v)
S5 = (RE||RT||RE,v+9)
inv(s’) = tps + 6 < P3.Tcond-max
Since Py.Tcond_max == P3.Tcond_-max, we have
inv(s) = inv(s’) so the correspondence holds.

For location ER|ID||ER in T* we have:
S = (ER||ID|ER,v)
Ss = (ER||ID||ER,v +9)
inv(s) = tny + 6 < Ni.Terp-max&&
tn3 + 0 < N2.Terp_max
S’ = (RE||ID||RE,v)
S5 = (RE||ID||RE,v+9)
inv(s') = tn} + 8 < Ni.Trest-mar&&
tn3 + 6 < N2.Trest_max

Since

N3.Trest_max = No. Trest_max + No. Terp_max

We have inv(s) C inv(s’) so the correspondence holds.

For location ER||ID|RE in T' we have:
S = (ERJ||ID|RE,v)

Ss = (ER||ID||RE,v+9)

inv(s) = tny + 8 < Ni.Terp-max&&
tn3 + 6 < N2.Trest_max

D = [N2.Terp-min, N3.Terp_-max]

S" = (RE||ID||RE,v(tn3 + D)

Si = (RE|ID|RE,v(tn + D) +9)
inv(s') = tni + 6 < Ni.Trest- mar&&
tn3 + D + 6 < Ni.Trest-max

Since
N3. Trest_max = Ny.Trest_max + No. Terp-max

We have inv(s) C inv(s’) so the correspondence holds.

For location RE|ID||ER in T* we have:
S = (RE||ID| ER,v)
Ss = (RE||ID||ER,v + §)
inv(s) = tnd + § < Ni.Trest. maz&&
tn3 + & < N2.Terp-max
D = [N}.Terp_min, Ny.Terp_max]
S" = (RE|ID|RE,v(tn} + D)
St = (RE|ID||RE,v(tn} + D) +9)
inv(s') = tni + D + § < Ni.Trest max&&
tn3 + 6 < N2.Trest_max

Since

N3.Trest_max = Ny. Trest_max + No.Terp-max

We have inv(s) C inv(s’) so the correspondence holds.

A.8 Discrete Transitions

During a discrete transition, a state S = (s,v) proceed
to Sy = (s/,v(\ := 0)). Here we prove that for every
discrete transition S = Sy in T, there exists S; =
(s1,v) such that (S,S;) €sim, S; = Sy for Sy =
(sh,v(N :=0)) and (Sx, Sx1) €sim.

Self-activation for N} triggers antegrade conduction,

we have N3.Trest = Ny.Terp + No. Trest
tnd>N3 . Trest-min||Act-node-1?

(RE|ID|RE)
Act_path_-1!
3
RE|ID||REv) tng>Ng.Trest-min||Act-node1?

Act_path_1!

RE||AN|RE,v(tn} := 0,tps := 0))

—~~

Self-activation for N7 triggers retrograde conduction,
we have N3.Trest = Ny.Terp + No. Trest.

RE|ID||RE,v) L3> Ne Trestamin|Act-node 21

—~

Act_path_2!
(RE|RT||ERv(tp = 0,tn3 :=0))
.
tn2>NZ.Trest-min)||Act_node_2?
RE|ID|RE)

Act_path_2!
RE|RT||REv(tps := 0,tn3 := 0))

—~

N2 activated after antegrade conduction

tpe>Tcond-min
ER”AN”RE,,U) 2Act,node,Ql

ER||ID||ER,v(tn? := 0))

—~

—

tpz3>T cond_-min

RE| AN||REv)
Act_node_2!
RE|ID|RE,v(tn? := 0))

—~

22 Zhihao Jiang et al.: Pacemaker Verification

N3} activated after retrograde conduction
tpe >Tcond_min)
RE|RT|ERw)
Act_node_1!
ER||ID|ERw(tn} :=0))

—~

=

tps>Tcond_min)

RE||RT|RE.v)
Act_node_1!
RE|ID||REw(tn} := 0))

—~

ERP of Nj finishes first

nl ! Terp-min
ER|ID|ERw) Z2zteTer
RE||ID|ERv(tn} := 0))

=~

tné >N§ Terp-min
—)

RE||ID|REv)
RE|ID||RE)

—~

ERP of N2 finishes first

ER”IDHER,U) tn§>N§‘Te7“PJnin
ER||ID||RE,v(tn3 := 0))

@/\/\

tng > N§ Terp-min
%

RE||ID||REv)
RE||ID||RE v)

—~~

ERP of N22 finishes after]\721
(RE”IDHER,’U) tns >Ny . Terp-min
(RE|ID||REv(tn3 := 0))
I
D = [N}.Terp-min, N3.Terp-max]

n?2 2 Terp-min

(RE|ID|RE.v(tn} + D)) L2 XaTere
(RE||ID||REv(tn} + D))

ERP of N21 finishes after N22

nl ! Terp-min

(ER||ID|RE,p) L2222 Terr
(RE||ID||REw(tn} := 0))
N3
D = [N3.Terp-min, Ni.Terp-max]

RE|ID|REv(tn2 + D)) >N Terp-min
RE|ID|REv(tn2 + D))

—~

N2 is activated when N3 is in ERP

Act_node_27
ER”IDHRE’U) Act_path_2!

R||ID||ER,v(tn3 := 0))

Act_node_2?
REHIDHRE’U) Act_path_2!

RE|ID||REw(tn? :=0))

NZ% is activated when Nj is in ERP

Act_node_17
RE | | D ‘ | ER’U) Act_path_1!

ER||ID|ERw(tnd :=0))

—~

@/\

Act_node_17
Act_path_1!

—~

RE|ID|REv)

(RE|ID||REw(tn} := 0))

Blocking during ERP is simulated by a non-deterministic

transition in the path

(ER|ID||ERv) 242 (ER|ID|ER.v)

)

(RE||ID|REv) Act_node1? ~ Act_path 17
Act_path_1!

(RE||ID||RE)

Act_node_27

(ER||ID||ERw) 2092, (ER||ID||ERw)
Y
RE|ID|RE)

(
(RE||ID||REv)

Act_node2? Act_path 27
Act_path_2!

(ER||ID||REv) 294", (ER||ID||RE)
I
D = [N2.Terp-min, N3.Terp-max]

RE||ID||RE,v(tn§ + D)) Act_node_1? Act_path_17

(Act_path_1!
(RE||ID||REw(tn3 + D))

(RE||ID|ER,v) 2410%2" (RE||ID||ER,v)
Y
D = [N} .Terp_min, Ny.Terp_-max]

Act_node_2?_ Act_path_2?7

RE||ID||REw(tn} + D))
RE||ID|REv(tn} + D))

Act_path_2!

—~

