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Abstract. This paper describes a tool for extracting formal 1.2 Solution
safety conditions from interlocking tables for railwayéent

locking systems. The tool has been applied to generateysafeyr solution has been to develop a set of tools [13] suppmprtin
conditions for the interlocking system at Stenstrup steio  5utomated formal verification of relay interlocking system
Denmark, and the SAL model checker tool has been used tQue decided that the verification method shoulddenal as
check that these conditions were satisfied by a model of thegrmal verification has been recognised as one of the best
relay circuits implementing the interlocking system atrBte  ways of avoiding errors and is for that reason strongly recom
strup station. mended by the CENELEC standard EN50128 [10] for soft-
ware for railway control and protection systems. Furtheemo
Key words: railways — interlocking systems — formal meth- e decided that the method shoulddagomatecas much as
ods — safety — verification — model checking — interlocking possible to reduce the time consumption. We chose the model
tables — signal control tables checking approach [7] to formal verification as this alloars f
full automation. However, the model checking approach re-
quires as input a formal model of the system behaviour and a
formal specification of the required properties, and it isano
trivial task to create this input. To overcome this problera,

1 Introduction decided also to create tools for generating verifiable fébrma
models and for generating formal requirements, respégtive
1.1 Background and Problem The tools are centred around a domain-specific language

(DSL) for digitised representations of track layout diagsa
interlocking tables, and circuit diagrams used for documen
ing a relay interlocking system. We chose to centre the tools
around a domain-specific language rather than a general pur-
pose modelling language, as it is easier for railway engsee
to use a language that facilitates concepts already knoan an
used in the railway domain. The tools comprise:

With more than 170 million passengers going by train on a
yearly basis in Denmark, the safety of the railway traffic is a
top priority for Railnet Denmark. As in other countries fail

way interlocking systems are used to prevent trains from col
liding and derailing. Many interlocking systems in Denmark
are still relay based, i.e. implemented by complex eleakric

circuits containing relays. These systems are documented b — data validatorsfor checking that the documentation (in

track layout diagrams, relay circuit diagrams and intédoc DSL) follows certain general wellformedness rules,

ing tables (also sometimes called signal control tablesagrt ~ — generatorghat from a DSL description produce input to
route tables). The interlocking tables serve as designfspec the SAL model checker[1]:

cations for relay circuit implementatiohsand the latter are — a formal, behavioural model (state transition system)
verified to satisfy the design requirements by manual inspec of the described interlocking system and its environ-
tion of the circuit diagrams and the tables. Such a manual ment and

verification is very challenging, time consuming, and error — required properties expressed as formulae in the tem-
prone. For these reasons Railnet Denmark asked us to re- poral logic LTL [17].

search a better verification method. . . .
Fig. 1 shows an overview of the generator tools. As it can

1 They are also used for some computer based interlockingragst be seen the model is generated from the circuit diagrams and
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Fig. 1. Overview of generator tools. The tool described in this pagpshown by a solid arrow.

the track layout diagram. Additional generators can be used— The article [14]Modelling and Verification of Relay In-
to derive required properties from the circuit diagrams, th terlocking Systembas main focus on describing how a
track layout diagram, and the interlocking table, respebyi behavioural model of a relay interlocking system can be
The generated properties include the following: extracted from the circuit diagrams describing the system.
The article [15]Formal Development of a Tool for Au-

1. High-level safety conditionsxpressing that there are no

derailments and no collisions. These are generated from
the track layout.

. Low-level safety condition&lso calledsignalling condi-

tions) expressing that general signalling rules of Railnet _
Denmark are obeyed. These are generated from the inter-
locking table.

. Circuit confidence conditionsxpressing that the circuits
are well-designed in a general sense (e.g. not giving rise
to race conditions). These are generated from the circuit
diagrams.

. Model consistency conditiomxpressing consistency be-
tween related state variables of the model (used for model
validation). These are generated from the track layout.

Prototypes of the generator tools have been developed us-

tomated Modelling and Verification of Relay Interlocking
Systemexplains how the model generator tool (making
the extraction described in [14]) was formally developed
using the RAISE formal method.

The development of a domain model for circuit diagrams,
the interlocking system model generator and the circuit
confidence conditions generator was done in a sub-project
described very detailed in the technical project report [5]
This report also gives a first suggestion for how the envi-
ronment can be modelled and which other conditions to
consider.

— Another sub-project, described in the technical report [2]

continued the first sub-project by developing a domain
model for railway networks and interlocking tables, and
generators for extracting behavioural environment mod-

els, and three property generators for extracting higbtlev
safety conditions, low-level safety conditions, and model
consistency conditions, respectively.

ing the RAISE formal method [21,22] due to previous good
experience in using that method. Details on these tools and
their development can be found in [2,5, 15].

The whole collection of tools can be used to verify an
interlocking system in the following number of steps:

The current paper describes how one offiheperty gen-
eratorstakes interlocking tables as input and generates low-
) o ] ) level safety conditions expressing that the signallingesul
— Write a DSL description of the interlocking system. of Railnet Denmark are obeyed. This generator utilises the
— Validate the description using the data validators. fact that interlocking tables serve as design specificator
— Apply the generators to generate inputto a model checketonain data that can be used to instantiate generic siggall
— Apply the model checker to thatinput to investigate whethyjes to concrete instances that can serve as safety require

er the model satisfies the required properties. ments. More details on this tool and its development can be
found in the technical report [2], except for a descriptidn o
the conditions of Principle 7 in Section 6.5 as these were not

1.3 Focus of this Paper and Relation to Past Papers ) ) :
yet included in the tool when the report was written.

In a series of papers and technical reports our approach and
tools have been described: 1.4 Related Work

— The article [13]Towards a Framework for Modelling and The railway domain has been identified as a grand challenge
Verification of Relay Interlocking Systemises an over-  for computer science, and the modelling, development and
view of our approach and tools without going into techni- verification of interlocking systems has been investigated
cal detalils. many researchers. Different types of interlocking systéors
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instance relay based versus computer based, functiorsalver 2.1 The Physical Domain of a Station

geographical, etcetera) have been modelled using ditferen

modelling formalisms and verified using different verifica- The physical domain under control consists of the railway

tion techniques (e.g. theorem proving and model checking)tracks, points and signals. The tracks are divided into sec-

An overview of results and trends in 2003 can be found in [4] tions, each having a track circuit for detecting whetheratr n

and more recent results can be found in proceedings like [20} is occupied by a train. The points can be switched between

and book chapters like [11,24]. two positions: plus (i.e. straight) and minus (i.e. brangj
Several other research groups [3,25,18,12, 16, 6,19] havend the signals can give proceed and stop indications bigligh

also investigated interlocking systems having interlogkB-  in coloured lamps.

bles as design specifications. One of their goals is to verify  Fig. 2 shows a (simplified) track layout diagram for a typ-

interlocking tables. Their approach for verification isrtarts-  ical station (Stenstrup station in Denmark). The track lgyo

late the tables into execution/design models for intetilagk  diagram outlines the geographical arrangement of the srack

systems (typically by instantiating generic models witthiada and track-side equipment such as track circuits, pointd, an

from the tables) and verify by model checking that these modsignals. From the diagram it can be seen that Stenstrup has

els satisfy high-level safety requirements such as no-colli six track circuits (named A12, 01, 02, 03, 04, and B12), two

sions and no derailments. points (named 01 and 02), and six signals (named A, B, E, F,
Hence, our goal of model checking is different from that G, and H).

of the above mentioned research groups: their goal is téyveri

the interlocking tables, Wh||_e our goal is to verify cwc@*a— 2.2 Train Route Based Interlocking

grams. Consequently, a main difference between their and ou

verification approach is that their interlocking models@dee

rived from the interlocking tables (i.e. from the designspe

ification) while our models are derived from the relay citcui The interlocking systems we are considering usaia route

_d|agrams for the |mple_mentat|on. I_nstead of using intdeloc basedapproach to achieve that. The basic ideas of this ap-
ing tables for generating interlocking models, we use them

for generating requirements (LTL formulas) in terms of sig- proach are:
nalling. Like the others, we also check for no collisions and — Trains should drive on predefineautesthrough the net-
no derailments. work.

Eriksson [9] has also formally verified relay based inter- — Each route is covered by an entry signal that indicates
locking systems by deriving a model from the relay circuits, whether it is allowed for a train to enter the route or not.
but he used theorem proving and not model checking for the  Trains are assumed to respect the signals.
verification. — Two trains must never be allowed to drive on conflict-

ing (e.g. overlapping) routes at the same ti(fe.prevent
collisions.)
— Before a train is allowed to enter a route, the points in
the route must be locked in positions making the route
connected (i.e. itis physically possible to go from one end
of the route to the other end without derailing), and the
route must be empty (i.e. there are no trains on the route).
(To prevent derailments and collisions, respectively.)
The points of a route must not be switched while a train
is driving on the route(To prevent derailments.)

The task of an interlocking system is to control points and
signals such that train collisions and derailments aredsgbi

1.5 Paper Overview

First, in Section 2, an informal introduction to the domain o
the considered interlocking systems is given. Then, in Sec-
tion 3 the notions of Kripke structures (used as behavioural
models) and LTL formulas (used to express safety conditions
are introduced for the convenience of readers who are not
familiar with these notions. In Section 4 the state space of
models and conditions is introduced, in Section 5 it is diort
explained how the models are created, and in Section 6 it is
explained how the considered conditions generator estract2.3 Relay Circuit Inplementations and Diagrams
safety conditions from relay interlocking tables. Secfiae-
ports on how the tool has been applied in the verification ofThe interlocking systems we are considering are implentente
the interlocking system for Stenstrup station in Denmankl, a by electrical relay circuits. The circuits are made up of eom
finally, in Section 8 some conclusions are drawn. ponents such as power supplies (each having a positive and
a negative pole), relays, contacts, lamps inside signat, a
operator buttons, connected by wirestefay is an electrical
2 Train Route Based Interlocking Systems switch operated by an electromagnet to connect or discon-
nect a number of contacts in a circuit. When current flows
In this paper we consider a class of interlocking system®(DS through the relay, the magnetdsawn and some of the as-
type 1954) used for many Danish stations. These systems assciated contacts are connected (these contacts are $esdd to
based on a concept of train routes and implemented by relaypper contactswhile others (thdower contactyare discon-
based electrical circuits. In this section a short intrdiuncto nected. When no current flows through the relay, the magnet
these systems and their documentation is given. is droppedand the associated upper and lower contacts will
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Fig. 2. Track layout diagram for Stenstrup station.

be disconnected and connected, respectively. When centact

are connected/disconnected this may imply that sub-¢gcui

4-

containing these contacts become live/dead. This again may, the initial state the button is not pushed.

imply that relays of these sub-circuits are drawn or dropped
and so on.

An interlocking system can get input from the environ-

Currentwill flow through arelay if there is a path from the
positive pole to the negative pole that goes through theg/rela
and all contacts within this path are connected and all but-

ment: buttons in the circuits can be pushed by an operatotons are pushed. Therefore, from the diagram in Fig. 3 it can

and some of the relays (callébe external relayschange

deduced that for current to flow through rel&R1, button

state (are drawn or dropped) when points change position®1 must be pushed and relad2 must be dropped, or relay

or trains enter or leave track sections. The external redeg's
hence controlled by the environment. All other relays ai@ sa
to beinternaland are controlled by the circuits.

2.3.1 Relay Circuit Diagrams

The electrical circuits implementing a relay interlocksgs-
tem are documented lglay circuit diagramsFor each inter-
nal relay one of the diagrams shows the sub-circuit that con
trols that relay. Fig. 3 shows an example of a (simplified) re-
lay circuit diagram. This diagram shows the sub-circuit-con
trolling a relay named? R1. The circuit consists of a number

of components connected by wires. The wires are depicted as

black lines. At the top is the positive pole and at the bottem i
the negative pole of the power supply. Rel&y®1 is shown
using this signature:

v

RR1

The downwards arrow informs that in the initial state this re
lay is dropped. (If it had been drawn the arrow would have
been upwards.) A number of contacts belonging to other re
lays occur in this circuit. E.g. a contact belonging to ayela
namedA1 is shown using this signature:

+o—|»
Al

The downwards arrow informs that in the initial state relay
Al is dropped. The horizontal bar breaks the wire — this indi-
cates that the contact is disconnected in the initial statd (
in all states wherell is dropped). If the bar had not been
breaking the wire it would have indicated that the contadt ha
been connected in the initial state, as it is the case fordhe c
tact of A2 (which is connected in all states where rel&yis
dropped).

Also a buttonB1 is shown in the diagram using this sig-
nature:

Al must be drawn and rela§2 must be dropped. When that
condition becomes fulfilled, relayx R1 will be drawn, and
when it is not anymore fulfilled, it will be dropped.

2.4 Interlocking Tables

For each station ainterlocking tablespecifies the train routes
of the station and for each of these routes

— the conditions for when the train route can be locked (re-
© served),

— the conditions for when the entry signal of the route is set
to show a proceed aspect,
the conditions for when the entry signal of the route is set
back to show a stop aspect, and
— the conditions for releasing the train route again.

The interlocking table serves as a design specification of
the interlocking system. Hence, it is used by the engineers
who design the electrical circuits of the interlocking gyst
and it is used by the test team who tests that the implicit re-
quirements of the table hold for the implemented interlogki
system.

The aim of the generator tool we describe in this paper
Is to derive explicit, formal requirements from an intekec
ing table such that they can be formally verified to hold for a
formal model of the behaviour of the implemented interlock-
ing system. The formal model is generated from the circuit
diagrams and track layout diagram by other generators of our
tool set.

Table 1 shows a (simplified) interlocking table for Sten-
strup station. The interlocking table has one row for eaain tr
route. For each route

— the Route sub-columns contain basic information about
the train route such as its identification number,

— the Signhalssub-columns state (1) which signals (the en-
try signal and any distant signal for this) should be setto a
proceed aspect when the conditions for entering the route
are met, and (2) which signals must be set to a stop aspect
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Fig. 3. A simple circuit diagram.

Route Signals Track sections Points Stop Route release
ld | From| To|A|B|E|F|G|H|A12| 01| 02| 04| 03|B12| 01| 02 Init Final
2 A G|g rir 0 N t 1 + | + | A/A12 | |01;102 402,101
3 A Hlg r r T T T T T - - | A/A12 | 01,104 104101
5 B E g|r r 0 N t 1 + | + | B:B12 | |03;102 102,103
6 B F g rir T T T T T - - | B:B12 | |03;104 104103
7 E A g|r 0 + + E:01 | |011A12 | |A12,401
8 F A rig T T - F:01 | JO1A12 | |A12,101
9 G B r + 4+ + G:03 | |031B12 | |B12;103
10 H B r{og T T - H:03 | ]03;1B12 | |B12,+03
Route Conflicts
2
3 O 3
5 O O 5
6 O O O 6
7 O O o 7
8 O O O O 8
9 O O O 9
100 O O O O 10

Table 1. Interlocking table (divided in two parts) for Stenstruptista.

(to provide flank or front protection) before the entry sig- when a certain track section (the first section of the route)
nal can be set to proceegl fneans green light (indicating becomes occupied,
proceed) and means red light (indicating stop)), — theRoute releasecolumns define conditions for when the

— thePoints sub-columns state required positions of points  train route can be released (to be explained in Section 6),
(+/- means straight/branching position) for the route tobe  and

connected (and possibly also flank protected), — theRoute conflictsmarks with the symbal which routes
— the Track sectionscolumns state with ah which track are conflicting.

sections must be unoccupied for the route and its safety

distance to be empty, 2.4.1 Data Validation

— the Stop column specifies that a certain signal (the entry
signal of the route) should be switched to a stop aspecOne of our data validator tools can be used to check that such
an interlocking table contains suitable data with right to a
given track layout diagram, e.g. that the track sections of a
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route constitute a connected path in the track layout, tieat t 3.3 Satisfaction Relation between Models and LTL
signal in the Stop column is an entry signal for that path andrormulas
the section in the Stop column is the first section of the route

An (execution)pathin a Kripke structure S, s, R, L) is an
infinite sequence of stateg(1), p(2), . .. such that for each
i>1,(p(i),p(i+1)) € R. Inthe following, we use the nota-
tion p* for the suffix ofp starting ap(i), i.e.p’ = p(i), p(i +
According to our method, to verify an interlocking system, 1)

the generator tools should be applied to the documentation  The satisfaction relation= between pathg in a Kripke

of the system (expressed i_n the domain-specific language) i@tructure(S, s, R, L) and LTL formulasp over the same set
order to derive (1) a behavioural mod#l of the system and ¢y ariablesl” is the least relation satisfying:

its environment, and (2) formal safety conditiopghat the
system must fulfil. The verification problem is then to check — p = v, if v € L(p(1))

3 Background on Models and Assertions

that each conditior is satisfied by the model/. This is — p E —¢, ifitis not the case that = ¢
written M = ¢. —-pEonY,ifpEdandp E

In order to use the SAL model checker [1] to performthis — p = ¢V, ifp=dorp =
check, we have chosen the conditiehto be LTL formulas —plE ¢ =, if p E Y whenevep | ¢
and the modeld/ to be Kripke structures represented in the — p = X (¢), if p* = ¢ (from the next time step must be
input language [8] of the SAL model checker. true)

This section gives a short introduction to LTL and Kripke — p = G(¢), if forall i > 1, p’ = ¢ (¢ must hold on the
structures, and it defines the satisfaction relatiaMore de- entire path)

tails on these topics can for instance be found in [7,17]. The — p |= F(¢), if there is some& > 1 such thap’ = ¢ (¢
section also shortly explains how the Kripke structures are eventually holds, i.e. holds somewhere on the path)

represented in SAL. - p = U(g,), if there exists > 1 such thap’ = ¢ and
forall 1 < k < 4, p* = & (¢ must remain true until)
3.1 LTL Formulas becomes true)

- p E Wig,9) iff p = U(o,9) vV G(¢) (¢ must remain

The generated conditions are LTL formulas built over a finite true forever or until becomes true)

set of propositional state variabl®s that characterises the The satisfaction relatios= between Kripke structured/ =

state of the system. The set of LTL formulas ovéiis the (S,s0, R, L) and LTL formulasy over the same set of vari-
least set satisfying the following rules: ablesV is defined as followsM = ¢, iff for all pathsp
— If v € V, thenv is an LTL formula. starting in the initial state, of M (i.e. for whichp(1) = so),

— If ¢,4 are LTL formulas, ther¢, ¢ A, ¢ V U, ¢ = p = ¢ holds.

¥, X(9), G(9), F(¢), U(o,1)), andW(¢,7) are LTL
formulas. 3.4 SAL Representations of Kripke Structures

3.2 State Transition System Models This subsection shortly explains how Kripke models are rep-
_ _ resented in SAL.
As models we use Kripke structures that describe how the A generatedSAL specification consists of the following

state of a system can evolve over time. elements:
A Kripke structureover a finite set of propositiorfavari-
ablesV is a four tuple(S, so, R, L), where — a declaration of a finite sét of propositional (Boolean)

state variables,
— an initialisation assigning initial values (true or falde)
the variables i/,
— asetoftransition rules of the foreand — update where
— cond (called the enabling condition) is a propositional
formula over the variables il using the connectives
-, A, V, and=-, and
— update is a multiple assignment of Boolean values
2 More general Kripke models allow non-propositional vakatprovided (true and false) to the primed versionsof some of
these have finite domains. However, for the models preseéntiis article, the variables in V.
prgpos't'ona' variables are sufficient, _ . Intuitively, the rule states that for states in which the en-
In the models we are considering, there is only one possifilalistate. bli dition is t th t h tate t
More general Kripke structures allow for a set of initialteta abling conai IOI’.I IS ruej' € syslem can change state o a
4 R s total means that for alk € S there is a state’ € S such that new state that IS Obtame(_j from the current state by per-
(s,s") €R forming the assignments in thedate.

— Sis a finite set of states,

— 50 € Sis aninitial staté,

— R C S x Sis atotaf, binary relation on the state space
describing possible state changes, and

- L: S — 2V, where2V denotes the power set df, is a
function that labels each state with variables that are true
in that state.
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Such a specification represents the following Kripke strrest  and only when one of the train routesassociated withr is
(S, s0, R, L) overV: locked. Which of the routes is locked is determined by the
point settings: Route is locked, wher(x) is dropped and
the points settings are as required for rauteccording to the
interlocking tablé’

As an example, for Stenstrup station there are four lock-
ing relays,ia (for routes 2 and 3);b (for routes 5 and 6)ya
(for routes 7 and 8), andb (for routes 9 and 10).

The safety requirements that will be formalised in Sec-
tion 6 can be expressed in terms of the states of the relays
mentioned above.

— S =V — {true, false} is the finite set of states, where
astateis a truth valuation of the variables in,

— 5o € Sis an initial state deduced from the initialisation,
— R C Sx Sisabinary relationon the state space induced
by the transition rules(s, s’) € R if there is a transition

rule cond — update such that (i) the enabling condition
cond is true when evaluated i (ii) for each assignment
v = ein update, s'(v) = e, and (iii) for all variables
in V' not having an assignmentirpdate, s'(v) = s(v),

— L: S — 2V is defined by:L(s) = {v|v € V A s(v) =
true} fors € S. 4.2 State Variables and Initial States

The setV of variables, over which the models and the condi-
4 State Space tions are defined, includes:

. . . — A Boolean variable- for each relayr in the circuit di-
For a given interlocking system, our tools can be used to agrams. When a relay variablds true/false, it models
generate a model and safety conditions for the system. The 4 the associated relay is drawn/dropped.

model and the safety conditions are defined over a common_ a ggglean variablé for each button in the circuit dia-
set of variables describing the state space. This sectisin fir
describes informally the common state space and then it de-
fines the seV of variables capturing the possible states of the
system. In sections 5 and 6, it is described how models and
conditions, respectively, are generated by the generadts.t

grams. When a button variabbes true/false, it models
that the associated button is pushed/released.

— A Boolean auxiliary variablédle. When it is true, it mod-
els that the interlocking system is in an idle state waiting
for new input.

The initial state of buttons ifalse the initial state of track
section relay variables isue (modelling that the track sec-
. s . . tions are initially unoccupied), the initial states of poie-
The relays and buttons in the circuits implementing an m'lay variableglus P andminus P aretrue andfalse, respec-

terlocking system change state over time as reaction td ian{iver, and the initial states of internal relays are dediffem
from the environment as described in Section 2.3. the circuit diagrams

In the relay circuits of an interlocking system there are
relays monitoring the states of the track side equipment:

— For each poinP, there are two relayslus P andminusP 5 Behavioural Models
that are drawn when and only whéhis in the plus and
the minus position, respectively. Our framework provides tool components that from the cir-
— For each track section there is a relay that is drawn  cuit diagrams and the track layout diagram of an interlogkin
when and only when the track section is unoccupied.  system can be used to create a behavioural mbfieff the
— Foreach signa$, there are two relayBedS andGreenS  interlocking system and its interface to the environmenmt. |
that are drawn when and only when there is a red light andSection 4 we described the state variablesibfand stated
agreen lightinS, respectively. the initial values of these variables. In this section we wil
shortly outline which transition rules are generated. Tap-t
sition rules describe how the internal relays, the exteraal
lays, and the buttons can change state over time.

4.1 State Space

The two first classes of relays are said toea¢ernalas they
are controlled by the environment. All other relays, inadhgd
the last class of relays, are controlled by the circuits ard a
said to banternal.

The remaining internal relays store the internal state of5.1 State Transition Rules for Internal Relays and Buttons
the interlocking system. For instance, there are relaypkee

ing track of which routes are locked. For some interlocking The state transition rules for internal relays and buttaes a
systems, there is one locking relay for each route, howevelgenerated from the circuit diagrams.

for systems of DSB type 1954, some routes share a relay. We  For each internal relayin the circuit diagrams two rules
will use the notatiori(z) to denote the locking relay asso- are generated:

ciated with a router. A locking relayr is dropped, when ) ) ,
—-r A isConducting — 1’ = true

5 Note that we only consider SAL specifications for which thiatien
defined in this way is total (as required for Kripke strucg)réNe use the 6 Note: two routes can only share a locking relay when at leastpmint
SAL deadlock checker to check that. is required to be set in different positions for the two reute
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for drawingr and instantiating a formal condition pattern with data fromaegi
interlocking table, and finally an example of this is given fo
the interlocking table for Stenstrup in Table 1.

for droppingr. HereisConducting, is a condition for cur- In the formal condition patterns the following notation
rent to flow through the relay. It expresses that there is fa patWill be used for a route::

from the positive pole to the negative pole that goes through _ 1, : the locking relayi(z) of z.

the relay and all contacts within this path are connected and— Royte Locked,: the condition-L, A PointsSet, express-

r A —isConducting — r’ = false

all buttons are pushed. _ o _ ing that router is locked.

~ Asanexample, fromthe diagramin Fig. 3in Section2.3.1 _ pyintsSet,: a condition expressing that the pointsiof

it can deduced that for current to flow through relay:1, are set as required according to the “Points” fieldsafor

button B1 must be pushed and relay2 must be dropped, in the interlocking table.

or relay A1 must be drawn and relayi2 must be dropped.  _ 7racksFree,: a condition expressing that the track sec-

Therefore, the following two rules for relag k1 are gener- tions of = are unoccupied as required according to the

ated: “Track sections” fields for in the interlocking table.
~RR1A (AL A —A2) V (B A —A2)) — RRY = true — SignalsSetz: a condition expressing that th_e covering
RR1A —((AL A —=A2) V (B1 A —A2)) — RRY = false signals ofz are set to a stop aspect as required accord-

ing to the “Signals” fields for: in the interlocking table.
Similarly, for each button in the relay circuit diagrams — StopSection,: the track section (relay) specified in the
a rule for pressing it is generated, and a rule for releasing “Stop field” for z in the interlocking table.

buttons is also generated. — Init,: a condition expressing that the second last track
More details on these transition rules can be found in [5,  section ofx is occupied and the last track sectionaof
15]. is unoccupied as specified in the “Init” field ferin the

“Route release” columns in the interlocking table.

— FEnd,: a condition expressing that the second last track
section ofz is unoccupied and the last track sectionrof
is occupied as specified in the “Final” field ferin the
“Route release” columns in the interlocking table.

5.2 State Transition Rules for External Relays

The state transition rules for external relays are genérate
from the track layout diagram.

A point P can be switched between three positions: the ) o
plus position, the minus position, and the intermediaté-pos 6-1 No Locking of Conflicting Routes
tion between the plus position and the minus position. For
each pointP in the track layout diagram, four transition rules Principle 1. When a train router is locked, none of its con-
are generated describing how the relpiss P andminusP  flicting routesy must be locked.
associated withP, change state when the point is switched

between its three possible positions. For each route, this is expressed by a condition of the fol-

For each track sectionin the track layout diagram, tran- lowing form:
sition rules for drawing and dropping the correspondingkra G(RouteLocked, = /\ ~RouteLocked,)
relay are generated. The rules reflect the possible trairemov yeCon flicting Routes(z)
ments and therefore depend on the track layout. ‘ ' ' (1)

More details on these transition rules can be found in [2].

whereCon flicting Routes(x) is the set of routes that are in

) conflict with x according to the interlocking table.
6 Safety Requirements

Example 1. Applying this principle to train route 2 for Sten-

This section first describes which formal requirements theSt'Up, the generated condition will be in the following form
generator tool derives from an interlocking table (that has®S the route is in conflict with train routes 3, 5, 6_' 7,8and 10
been checked by the data validator tool) and then it informgccording to the interlocking table for Stenstrup:

how the tool was formally specified. G(RouteLockeds =
The formal requirements are formulas in LTL, expressed - RouteLockeds N
as conditions on the relay variables keeping the state otgoi — RouteLockeds A
track sections, signals, and route lockings. They expedesys — RouteLockedg A
conditions at the design level (i.e. concrete instances®f t — RouteLockeds A
general signalling principles) that an interlocking systaust — RouteLockeds A
satisfy. - RouteLocked)

In each of the subsections 6.1- 6.6 below, first a general
signalling principle is stated informally, then it is expplad ~ Expanding each of the expressiaRsute Locked,, using the
how formal, concrete instances of this can be generated bglata in the interlocking table, this gives
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G(—ia A plusO1A plus02=-
= (= ia A minusO1A minus02)A
= (= ib A plusO1A plus02)A
= (= ib A minusO1A minus02)A
= (- uaA plusO1)A
= (= uaA minusOL)A
= (= ub A minus02)

)

6.2 Locking and Points Positions

Principle 2. When a locking relay is dropped, one of the
routesz, which is controlled by-, must have the points of
that route set as required for route according to the inter-
locking table. (This implies that a route can’t be lockeddvef
its points are set.)

For each locking relay, this is expressed by a condition of
the following form:

PointsSet,) (2)

G(-r =

V

z€ Routes(r)

where Routes(r) is the set of routes controlled byr, i.e.
for whichl(z) =r.

Example 2. Applying this principle to locking relayia for

Stenstrup, the following condition is generated as routes 2

and 3 are the routes controlled by,

G(—ia= (plusO1A plus02)V (minusO1A minus02))

The condition expresses that whanis dropped, points 01
and 02 are either both set in the plus position or both set

the minus position as required by the interlocking table for

routes 2 and 3, respectively.

6.3 Signal Aspects

Only certain combinations of lights are allowed aspectbef t
signals.

For each signab, this is expressed by a condition of the fol-
lowing form:

G(idle N = GreenS = RedS) (4)
Example 4. Applying this principle to signal A for Stenstrup,
the following condition is generated:

G(idle A — GreenA= RedA)

6.4 Proceed Signal

Principle 5. When a signalS shows a proceed aspect, one
of the routesr, starting fromS, must be ready for use, i.e. (1)
the routex must be locked, (2) all the track sections of the
route must be unoccupied as stated in the interlocking table
and (3) all covering signals of the route must show a stop as-
pect as stated in the interlocking table.

For each signa¥, this is expressed by a condition of the fol-
lowing form:

G(idle A GreenS =

\/(RouteLockedz A TracksFreegy A\ SignalsSety))
z€Routes(S)

(®)

whereRoutes(S) is the set of routes starting from sigral
From the condition, it can be derived that the green light
must be turned off when the right-hand side becomes false.

. As it takes time for the system to turn the green light ifie

as been included on the left-hand side of the implication.

Example 5. Applying this principle to signal A, a condition
of the following form is generated as train routes 2 and 3 star
from signal A:

G(idle A GreenA=
(RouteLockedy N TracksFreeg A SignalsSets) V
(RouteLockeds N TracksFrees A\ SignalsSets))

Principle 3. A signal must never display a red light and greenEXpanding each of the sub-formulae using the data in the in-

light at the same time.

For each signab, this is expressed by a condition of the fol-

lowing form:

G(idle = —(RedS A GreenS)) 3)

Example 3. Applying this principle to signal A for Stenstrup,
the following condition is generated:

G(idle = — (RedAA GreenA))

Principle 4. When the green light is turned off in a sigrig|
the red light must be turned on.

terlocking table, this gives:

G(idle A GreenA=

((—ia A plusO1A plus02)A
(A12A01A02A03A B12)A
(RedFA RedG)

)

v

((—ia A minusO1A minus02)A
(A12A01A 04N 03AB12)A
(RedEA RedH)

)
)
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6.5 Stop Signal

Principle 6. When track sectiorftopSection,., specified in
the "Stop” field for routex in the interlocking table, is occu-
pied in anidle state, the signal, in the same field must show
a stop aspect (i.e. the red light must be on).

For each route, this is expressed by a condition of the fol-
lowing form:

G(idle N = StopSection, = RedS.,) (6)

In the condition it is necessary to includdle on the left-
hand side of the implication in order to give the system time
to change the setting of the signal as a reaction on the occ
pation of StopSection,.

Note that condition (6) is a consequence of conditions (5)

and (4) if it has been generated from a well-formed inter-
locking table as~ StopSection, implies ~ TracksFree,

for all routesy starting fromS,, (due to the fact that for a
well-formed interlocking tableStopSection, is included in
the track sections of any rougestarting froms,.), and this
implies ~GreensS,, (due to (5)), which implieRedS, (due

to (4)).

Example 6. Applying this principle to route 2 for Stenstrup,
the following condition is generated:

G(idleA = Al2 = RedA)

It expresses that when track section A12 (the first section of

the route) is occupied by a train (or another object), then th

entry signal, A, must show a stop aspect (i.e. the red light

must be on).

Principle 7. When the setting of the entry sigrfabf a locked
route x is changed to stop (i.e. the red light is turned on), it
must keep this setting as long as the route is still locked.

This principle prohibits that the signal is changed to peste

u
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It expresses that if the red light in signal A is off (i-eaRed

is true) while route 2 (or route 3) is locked (i.eia is true)

and if the red light is turned on in the next state (i.e. X(aRed

is true), then the red light must be kept as long as the route
is still locked, i.e. the red light can’t be turned off befae
release (where ia becomes true). Next subsection states the
conditions for when a release can happen.

6.6 Train Route Release

Before a locked train route can be released, the two last sec-
tionst1 and¢2 of the route must first have been in a state
(called therelease start stajewheret1 is occupied and2 is
unoccupied, and then in a state (called iblease end staje
wheret1 is unoccupied and? is occupied. This sequence

of states is called the release sequence. This sequence will
happen when a train passes the second last track section and
ends on the last track section of the route. The “Route re-
lease” columns of the interlocking table state the reletse s
and end states for each train route.

Principle 8. When a train route has been locked, the route
must not be released before the release sequence for thee rout
has taken place.

For each route;, this is expressed by a condition of the fol-
lowing form:

G(L, A X(RouteLockedA F(L,)) =
X(
U(-L,,
=L, A Init, A
X(U(-Ls, L A End,))
)

)
)

where L, is the locking relay ofr, Init, is a condition ex-
pressing the release start stated#oiznd, is a condition ex-
pressing the release end state foiU is the LTL until op-

in the case where a train, that has entered the route, reverserator, X is the next state operator atfd is the eventually
direction and leaves the route before the route has been r@perator.

leased.
For each signab and each route € Routes(S), this
principle is expressed by a condition of the following form:

G(~ Ly A~ RedS A X (RedS) = X (W (RedS, Ly))) (7)

whereL, = I(z) is the locking relay ofr, andWV is the LTL
weak until operator and is the next state operator.

Example 7. Applying this principle to signal A and route 2
(or route 3) for Stenstrup, the following condition is gener
ated:

G(-ia A maRedA X(aRed)= X(W(aRed,ia)))

If condition L, is true, it implies thatRoute Locked,. is
false, asRouteLocked, = —L,APointsSet,. Therefore,
the left-hand side of the implication is true if routels not
locked in the current state, it becomes locked in next stade a
later it becomes released (unlocked) again. The right-hand
side of the implication expresses the condition that froe th
next state (i.e. the state in which the route became locked ac
cording to the left-hand side condition), the route will het
released, i.eL, will not become true, until after the release
sequence.

Example 8. Applying this principle to train route 2 for Sten-
strup Station, the following condition is generated:
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G(iaN X((—ia A plusO1A plusO2)A F(ia)) = model for the behaviour of the implemented relay interlock-
X( ing system (described by 18 circuit diagrams) and its envi-
U(—ia, ronment (allowing operator input and an arbitrary number of
—ia A (=01 A 02) A trains driving according to the traffic rules). This statasi-
X(U(—ia, —ia A (01 A =02)) tion system model had 71 Boolean variables (i®8. @ates)
) and 141 transition rules.
) We then used the SAL symbolic model checker [1] to ver-
) ify that the generated model satisfied the 204 generated con-

ditions. All conditions turned out to be valid. The SAL sym-
The left-hand side of the implication says that route 2polic model checker is a BDD-based model checker for finite
is not locked (i.e. ia is true) in the current state, it beceme state systems.
locked (i.e.— ia A plusO1A plus02) in the next state and Details on the elapsed execution time for checking the 52
later on it becomes released (unlocked) again (i.e. Fig.  sjgnalling conditions (generated from the interlockinigléd
right-hand side says that in the next state the route wil sta and the 152 other conditions can be found in Table 3. Each
locked at least until the release start state (where traitlose  ¢|ass of conditions were verified separately and withou uti

Ol is occupied and track section 02 is unoccupied) and in thesing intermediate results among queries. The elapsed time
state after this release start state, the route will costlvet  \was measured with the LinuxMintt ne command on a

ing locked until the release end state where track section 0L enovo T420.

is again unoccupied and track section 02 has been occupied. According to the signalling engineers it would last about
a month to validate the circuit diagrams for Stenstrup @tati

6.7 Development of the Tool by their traditional manual inspection, and they would only
check a small part of our 204 conditions. So it is really much

A prototype of the generator tool was developed by creatingaster to use our tools.

an executable specification in the RAISE specification lan-  We also tried to introduce some design flaws in the relay

guage RSL [21]. In this section the overall structure of thecircuits to demonstrate that these can be found by using our

specification is outlined. tools. E.g. we introduced flaws such that a signal could reach

The main components of the specification are: a state where both the red light and the green light weredurne
on at the same time. In this case the model checker detected
that the signal aspect condition in formula (3) was broken fo
that signal.

Furthermore, we made some validation of the model. For
instance, we model checked that the behavioural model al-
lows trains to move through the network.

The safety conditions all take the for@(a = b). If for

The generator functiopen is specified to take d'able  sych a conditiong is always false, the condition is trivially
value as input and to return atssertion — set value, i.e. &  trye. For a given condition and model, one can check that
set of Assertion values (representations of LTL formulas). this is not the case by checking th@f—a) is violated. If it
For each signalling principléstated aboveyen instantiates  tyrns out that is always false, it can be an indication that
the formal condition pattern of prInCIpleth data from the there may an error in the model or that the conditiohas
interlocking table Obtaining a S@Eti of assertions, and then been formulated Wrong|y_ By making such CheCkS, we actu-

— a specification of a data typBable for representing in-
terlocking tables,

— a specification of a data typéssertion for representing
conditions, i.e. LTL assertions (formulas), and

— a functiongen for generating conditions from interlock-
ing tables.

it returns the union of all these sets. ally found a flaw in an earlier formulation of the left-hand
More details about the tool and its development can besjge condition of Principle 7.
foundin [2].

7 Experiments 8 Conclusions

We applied the developed signalling conditions generator t Summary. This paper has described a tool component of a

the interlocking table (shown in Table 1) for Stenstrupistat  tool set that supports formal verification of relay inteRg

in Denmark. In this way 52 conditions were generated. Ta-systems.

ble 2 shows for each signalling principle stated in Sectipn 6  Given the interlocking table of a relay interlocking sys-

the number of conditions generated from the interlocking ta tem, the tool can automatically generate formal safety re-

ble. quirements for the implementation of the relay interlogkin
We also applied other conditions generators from our toolsystem. The requirements express that the signalling rules

set to generate 152 other desired properties from the statioare followed. Other tool components of the tool set can be

documentation. Furthermore, we applied yet other generataused to generate a formal model of an interlocking system

tools from our tool set to generate a state transition systenand its environment. Having generated the requirements and
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signalling principle number of generated condition
1 (no locking of conflicting routes) 8
2 (points set correctly while locked
3 (not read and green signal)

4 (red signal when not green)

5 (only green signal when allowed
6 (red signal when required)

7 (keep red signal until release)

8 (only allowed train route release
total 52

Table 2. For each signalling principle stated in Section 6, the nunobsignalling conditions generated from the interlockiagle for Stenstrup station.

[

oo oo M

kind of conditions number of generated conditionsexecution time
signalling 52 409
no collisions, no derailments 12 20
circuit confidence 102 5139
model consistency 38 20

Table 3.For each of the four classes of conditions introduced ini&edt (1) the number of conditions generated from the docuai®n of Stenstrup station
and (2) elapsed execution time in seconds for checking ttesditions.

the model, a model checker can be used to verify that thesthat the use of standard model checking techniques for veri-
requirements always hold for the formal model. fying similar systems is only feasible for small railway -sta
To use such an automated, formal verification approach igions. For instance, in [12] a systematic study of applica-
a great improvement compared to manual inspections of inbility bounds of the symbolic model-checker NuSMV and
terlocking tables, track layout diagrams and circuit démgs: ~ the explicit model checker SPIN showed that these popular
It is much faster and less error prone, it is much more com-model checkers could only verify small railway stations. So
plete with right to what is being checked, and the checkingit is likely that the application of our method to larger sta-
it-self is exhaustive considering all possible scenaridge  tions would also lead to state space explosion. If this hagpe
approach has successfully been applied to the relay isterlo  more advanced verification techniques must be investigated
ing system for Stenstrup station. Our safety conditions are independent of the model checking
Although the signalling conditions generator tool has beertechnique so the conditions generator tool described & thi
developed for a certain type of interlocking systems (the re Paper can be used in connection with more advanced model
lay based DSB type 1954), it is expected that it can easilychecking techniques. Several domain-specific techniques t
be adapted to other DSB types of interlocking systems thapush the applicability bounds for model checking interlock
are based on similar interlocking tables, as the safetyieonding systems have been suggested. For instance, one could
tions for these systems are basically the same. With regpect combine bounded model checking with inductive reasoning,
the input of the generator (i.e. the interlocking tablelsgre ~ as donein [16]. In [23] Winter pushes the applicability bdsn
may be small variations in the concrete syntax, but at leasef symbolic model checking (NuSMV) by optimising the or-
for the Danish systems, the content is basically the sanre. Fdlering strategies for variables and transitions using doma
other systems there may, apart from variations in the comcre knowledge about the track layout. In [19], it is suggested to
syntax of the tables, also be minor variations in the sigmgll  reduce the state space using several abstraction tecknique
principles and therefore in the actual content of the talfles reduction of the number of track sections and the number of
instance, if the signalling principle for releasing a tredmte  trains, and compositional reasoning by decomposition®f th
does not require the same release sequence of track sectioflway network into several smaller networks.
as in the Danish systems, the release conditions in thestable We also plan to make a similar tool set for the new ERTMS
will be different and the same holds for the formal releasebased signalling systems that are going to be implemented in
conditions that should be generated. In such a case the-genddenmark over the next decade.
ator tool should be changed accordingly.
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