Software Tools for Technology Transfer manuscript No.

(will be inserted by the editor)

From Commercial Documents to System Requirements:
an Approach for the Engineering of Novel CBTC Solutions

Alessio Ferrari!, Giorgio O. Spagnolo’,
Giacomo Martelli?, Simone Menabeni?

L ISTI-CNR, Via G. Moruzzi 1, Pisa, ITALY,
e-mail: {lastname}@isti.cnr.it,
WWW home page: http://www.isti.cnr.it/

2 DSI, Universita degli Studi di Firenze, Via di S.Marta 3, Firenze, ITALY,

e-mail: {lastname}@dsi.unifi.it,
WWW home page: http://www.dsi.unifi.it/

Received: date / Revised version: date

Abstract. Communications-based Train Control (CBTC)

systems are the new frontier of automated train control
and operation. Currently developed CBTC platforms are
actually very complex systems including several func-
tionalities, and every installed system, developed by a
different company, varies in extent, scope, number, and
even names of the implemented functionalities. Interna-
tional standards have emerged, but they remain at a
quite abstract level, mostly setting terminology.

This paper presents the results of an experience in
defining a global model of CBTC, by mixing semi-formal
modelling and product line engineering. The effort has
been based on an in-depth market analysis, not limiting
to particular aspects but considering as far as possible
the whole picture. The paper also describes a method-
ology to derive novel CBTC products from the global
model, and to define system requirements for the indi-
vidual CBTC components. To this end, the proposed
methodology employs scenario-based requirements elic-
itation aided with rapid prototyping. To enhance the
quality of the requirements, these are written in a con-
strained natural language (CNL), and evaluated with
natural language processing (NLP) techniques. The fi-
nal goal is to go toward a formal representation of the
requirements for CBTC systems.

The overall approach is discussed, and the current ex-
perience with the implementation of the method is pre-
sented. In particular, we show how the presented method-
ology has been used in practice to derive a novel CBTC
architecture.

Send offprint requests to:

Introduction

Communications-based Train Control (CBTC) is the most
recent technological frontier for signalling and train con-
trol in the metro market [38,31]. CBTC systems offer
flexible degrees of automation, from enforcing control
over dangerous operations acted by the driver, to the
complete replacement of the driver role with an auto-
matic pilot and an automatic on-board monitoring sys-
tem. Depending on the specific installation, different de-
grees of automation might be required. Furthermore,
companies shall be able to provide complete CBTC sys-
tems, but also subsets of systems. The aim is to satisfy
the needs of green-field installations, and address the
concerns of the operators who wish to renew only a part
of an already installed system. In this sense, the product
line engineering technology provides a natural tool to
address the need for modularity required by a market of
this type [14,19].

Entering the CBTC market with a novel product re-
quires such a product to be compliant with the exist-
ing standards. Two international standards provide gen-
eral requirements for CBTC systems. The first is IEEE
1474.1-2004 [31], while the second is IEC 62290 [1,2].
The IEEE standard treats the CBTC system as a com-
position of sub-systems. Instead, the IEC standard look
at the CBTC system as a whole, and considers the differ-
ent Grades of Automation (GoA) that a CBTC system
can achieve. In general, the standards differ in terminol-
ogy and structure. Therefore, a product satisfying the
former is not ensured to accomplish also the require-
ments of the latter.

Railway and metro system developed for Europe shall
be also compliant with the CENELEC standards [11, 10,
12]. This is a set of norms and methods to be used while
implementing a product having a determined safety-cri-
tical nature. Besides product-level standard, a CBTC



2 A. Ferrari et al.: Engineering Novel CBTC Solutions

product is therefore required to satisfy also process-level
standards (i.e., the CENELEC norms).

The challenges related to the introduction of a novel
CBTC system are not limited to the adherence to the
standards. Indeed, also the competitiveness of the prod-
uct plays a crucial role. To be competitive with the solu-
tions of other vendors, a novel CBTC product shall take
into account the existing similar products and installa-
tions. The CBTC market is currently governed by seven
main vendors, namely Bombardier [46], Alstom [45], Tha-
les [50], Invensys Rail Group [32], Ansaldo STS [3], Sie-
mens [44], and GE Transportation [28]. Each vendor pro-
vides its own solution, and different technologies and ar-
chitectures are employed.

In this paper an experience is presented, where do-
main analysis has been used to derive a global CBTC
model, from which specific product requirements for novel
CBTC systems can be derived. The global model is built
upon the integration of the guidelines of the product-
level standards, and is driven by the architectural choices
of the different vendors. The model is represented in the
form of a feature diagram [34,4,15], following the prin-
ciples of the product-line engineering technology. From
the global feature diagram, we derive the actual prod-
uct requirements. To this end, we draw graphical for-
mal models of the product architecture, together with
scenario models in the form of simplified sequence di-
agrams. Architecture and scenario models are used to
define and enrich the natural language requirements of
the actual product.

After the definition of the product requirements, we
define requirements for the individual systems that com-
pose the CBTC product. To this end, we employ scenario-
based requirements elicitation [47], aided with rapid pro-
totyping [29]. A constrained natural language and natu-
ral language processing techniques [18] are used to evalu-
ate and enhance the quality of the system requirements.
The approach is oriented to satisfy the guidelines of the
CENELEC standards for system requirements. A tran-
sition from the constrained natural language to a formal
representation of the requirements is also foreseen.

Examples are presented throughout the paper to ex-
plain the approach, and to show the results of the current
implementation of the proposed methodology.

The paper is structured as follows. In Sect. 1, the
CBTC operational principles are presented. In Sect. 2,
an overview of the approach is given. In Sect. 3, an analy-
sis of the standards and of the architectures of the CBTC
vendors is presented. In Sect. 4, the global CBTC model
is described. In Sect. 5, the architecture and scenario
models are derived, together with the requirements for
the actual product. In Sect. 6, the approach for the def-
inition of the requirements for the individual systems
that compose the CBTC product is presented. Sect. 7
describes the current experience with the implementa-
tion of the method, and the lessons learnt. In Sect. 8,

related works are discussed. Sect. 9 draws final conlu-
sions and remarks.

1 Communications-based Train Control
Systems

CBTC systems [38,31] are novel signalling and control
platforms tailored for metro. These systems provide a
continuous automatic train protection as well as im-
proved performance, system availability and operational
flexibility of the train.

The conventional metro signalling/control systems
that do not use a CBTC approach are exclusively based
on track circuits and on wayside signals. Track circuits
are used to detect the presence of trains. Wayside signals
are used to ensure safe routes and to provide informa-
tion to the trains. Therefore, the position of the train
is based on the accuracy of the track circuit, and the
information provided to the train is limited to the one
provided by the wayside signals. These systems are nor-
mally referred as fixed block systems, since the distance
between trains is computed based on fixed-length sec-
tions (i.e., the length of a track circuit - see upper part
of Figure 1).

CBTC overcomes these problems through a continu-
ous wayside-to-train and train-to-wayside data commu-
nication. In this way, train position detection is provided
by the onboard equipment with a high precision. Fur-
thermore, much more control and status information can
be provided to the train. Currently, most of CBTC sys-
tems implement this communication using radio trans-
mission [35].

The fundamental characteristic of CBTC is to ensure
a reduction of the distance between two trains running in
the same direction (this distance is normally called head-
way). This is possible thanks to the moving block prin-
ciple: the minimum distance between successive trains is
no longer calculated based on fixed sections, as occurs
in presence of track circuits, but according to the rear
of the preceding train with the addition of a safety dis-
tance as a margin. This distance is the limit distance
(MA, Movement Authority) that cannot be shortened
by a running train (see lower part of Figure 1).

The control system is aware at any time about the
exact train position and speed. This knowledge allows
the onboard ATP (Automatic Train Protection) system
to compute a dynamic braking curve to ensure safe sepa-
ration of trains, which guarantees that the speed limit is
not exceeded. The ATP system ensures that the MA is
not shortened by the train, in addition to the continuous
protection of the train in every aspect.

From the architectural point of view, CBTC systems
are characterized by a division in two parts: onboard
equipment and wayside equipment. The first is installed
on the train and the latter is located at a station or along
the line.



A. Ferrari et al.: Engineering Novel CBTC Solutions 3

Braking Curve

N N I \,k

End of MA | ¢

(= End of Track Circuit)

Braking Curve

'Sy SISV SIN

Fixed Block

End of MA | ¢
(Based on the position of the
preceding train)

Moving Block

Fig. 1: Fixed block vs moving block

CBTC systems also allow automatic train control
functions by implementing both the ATO (Automatic
Train Operation) and the ATS (Automatic Train Super-
vision) functionalities. The ATO enables driverless oper-
ation, ensuring the fully automatic management of the
train in combination with ATP. The ATS offers func-
tions related to the supervision and management of the
train traffic, such as adjustment of schedules, determina-
tion of speed restrictions within certain areas and train
routing.

A CBTC system might include also one or more in-
terlocking (noted in the following as IXL). The IXL mon-
itors the status of the objects in the railway yard (e.g.,
switches, track circuits) and, when routing is required by
the ATS, allows or denies the routing of trains in accor-
dance to the railway safety and operational regulations.

2 Method Overview

In this work an approach has been defined to identify
a global model of CBTC and derive the product re-
quirements for a novel CBTC system. The method starts
from the available international requirements standards
— IEEE 1474.1-2004 [31] and IEC 62290 [1,2] — and from
the public documents provided by the current CBTC
vendors. Three main phases have been identified to move
from these heterogeneous natural language description of
the expected CBTC features to the actual CBTC prod-
uct requirements. Furthermore, one additional phase is
required to define the requirements of the single systems
that compose the CBTC product.

Figure 2 summarizes the approach followed. Activi-
ties are depicted as circles and artifacts are depicted as
rectangles with a wave on the bottom side.

First, domain analysis is performed (Sect. 3). During
this phase, the requirements standards are analysed to-
gether with the documents of the different vendors. The
former are used to identify the functionalities expected
from a standard-compliant CBTC system (Functional-
ity Identification), while the latter are used to identify
the system architectures adopted by the vendors (Archi-
tecture Identification). Requirements standards are also

employed in the Architecture Identification task to pro-
vide a common vocabulary to describe the architectures.

In the second phase, a product family for CBTC sys-
tems is defined (Sect. 4). The architectures identified in
the previous phase are evaluated, and a feature model is
derived to hierarchically capture all the different archi-
tectural options available in the market (Feature Mod-
elling).

The third phase drives the definition of the actual
product features (Sect. 5). From the feature model that
represents the product family, a product instance is cho-
sen. A detailed architecture is defined for such a prod-
uct instance, taking into account the functionalities ex-
tracted from the standards (Product Architecture Mod-
elling). Then, scenarios are derived to analyse the dif-
ferent behavioural aspects of the product (Product Sce-
nario Modelling).

The final product requirements are the results of the
adaptation of the standard CBTC requirements to the
desired product. This adaptation is provided according
to (1) the functionalities extracted from the standards,
(2) the product architecture, and (3) the product sce-
narios.

In the fourth phase requirements are defined for the
individual sub-systems that compose the overall CBTC
product (Sect. 6). This phase is oriented to accomplish
the process-level requirements prescribed by the CEN-
ELEC norms [11,10,12]. First, a Preliminary System
Specification (PSS) document is defined, which is based
on the functionalities extracted from the product stan-
dards and on the product architecture chosen (PSS Def-
inition). Then, an approach based on prototyping is em-
ployed to define the System Requirements Specification
(SYS-RS) document, which collects the requirements for
the system (SYS-RS Definition).

Currently, most of the tasks of the approach are based
on engineering activities with limited automation. Such
activities have been mainly performed using Microsoft
Word! and Microsoft Excel?> documents. Microsoft Vi-
sio® was employed whenever graphical diagrams were re-

I http://office.microsoft.com/en-us/word/
2 http://office.microsoft.com/en-us/excel/
3 http://office.microsoft.com/en-us/visio/



4 A. Ferrari et al.: Engineering Novel CBTC Solutions

Architecture Feature

Identification

Architectures

Functionalities |
e

Functionality
Identification

i | Requirements
i| Standards

Product
Scenario
odelling

Product
Requirements

System

PSS SYS-RS

"

Requirements
(SYS-RS)

Definition Definition

Fig. 2: Overview of the product requirements definition process adopted

quired (i.e., during Architecture Identification, Feature
Modelling, Product Architecture Modelling and Product
Scenario Modelling). Furthermore, Microsoft Visual Stu-
dio* was used to implement a prototype system during
the System Requirements Definition phase.

Other internal tools, developed by ISTI-CNR, have
been also employed in the process. NLP tools for term
identification have been experimentally used to identify
the features from the Vendors Documents [27], while the
QuARS tool [18] was used to detect ambiguities in the
SYS-RS document. When appropriate, alternative soft-
ware packages, and possible tool choices to improve the
robustness of the approach, are referred throughout the

paper.

3 Domain Analysis

The Domain Analysis phase is composed of two sub-
phases, namely Functionality Identification and Archi-
tecture Identification. In the first phase, the available
CBTC standards are analysed, and a list of functionali-
ties for CBTC systems is provided. In the second phase,
the publicly available documents of the selected vendors
are inspected to identify the CBTC architectures avail-
able in the market.

3.1 Functionality Identification

In this phase, functionalities are identified for a generic
CBTC system by evaluating the available international

4 http://www.microsoft.com/visualstudio/eng/
visual-studio-2013

standards. Currently, the reference standards are IEEE
1474.1-2004 [31] and IEC 62290 [1,2], which are briefly
summarized below.

3.1.1 IEEE 1474.1-2004

The IEEE 1474.1-2004 has been defined by the Commu-
nications-based Train Control Working Group of IEEE
(Institute of Electrical and Electronic Engineers) and ap-
proved in 2004. Such standard concerns the functional
and performance requirements that a CBTC system shall
implement. The requirements concern the functions of
Automatic Train Protection (ATP), Automatic Train
Operation (ATO) and Automatic Train Supervision (ATS),
implemented by the wayside and onboard CBTC system.
The ATO and ATS functions are considered optional
by the standard. In addition to these requirements, the
standard also establishes the headway criteria, system
safety criteria and system availability criteria applica-
ble to different transit applications, including the Auto-
mated People Movers (APM).

3.1.2 IEC 62290

The IEC 62290 is a standard defined by the IEC (In-
ternational Electrotechnical Commission) come into ef-
fect in 2007. This standard brings the fundamental con-
cepts, the general requirements and a description of the
functional requirements that the command and control
systems in the field of urban guided transport, like the
CBTC, shall possess. In reference to the fundamental
concepts, the standard establishes four levels or Grades
of Automation (GoA-1 to 4). The increasing GoA corre-
sponds to increasing responsibility of the command and



A. Ferrari et al.: Engineering Novel CBTC Solutions 5

control system w.r.t. the operational staff. For example,
a GoA-1 system simply enforces brakes when the driver
violates the braking curve. A GoA-4 system does not
have a driver, nor yet an onboard human supervisor.

The standards have been evaluated to derive a complete
set of CBTC functionalities. The approach adopted is as
follows. First, the functionalities that the IEEE 1474.1-
2004 standard specifies have been extracted. Such func-
tionalities have been divided between ATP, ATO and
ATS according to the anticipated classification provided
by the same standard. Starting from this first group of
functionalities, the activity continued with the analysis
of the TEC 62290 standard, for identifying possible ad-
ditional functionalities in comparison to those already
extracted. Each functionality is traced to the paragraph
of the corresponding standard from which it has been
originally derived. We have derived 67 functionalities in
total (see Sect 7 for further details), which have been
validated by our industrial partner.

Example functionalities, which are useful to under-
stand the examples reported in the rest of the paper, are
reported below together with the related subsystem and
the reference to the standard documents.

Train Location Determination. (ATP onboard - IEEE

6.1.1) This functionality determines the position of
the train;

Safe Train Separation. (ATP onboard - IEEE 6.1.2)
This functionality uses the location information of
the train to compute the braking curve and ensure
safe separation of trains;

Movement Authority Determination. (ATP wayside

- IEC 5.1.4.1) This functionality computes the MA
message to be sent to the train based on the position
of the other trains and on the railway status;

Route Interlocking Controller. (ATP wayside - IEEE

6.1.11) This functionality controls an external IXL
and performs the route requests and locks. IXL sys-
tems are normally based on fixed block principles.
This function is able to bypass the interlocking inputs
concerning the position of the trains coming from the
track circuits. In this way, the functionality is also
able to ensure the increased performance guaranteed
by the moving block principles;

Train Routing. (ATS - IEEE 6.3.4) This functional-
ity allows setting the route for the train in accor-
dance with the train service data, predefined routing
rules and possible restrictions to the movement of the
train;

Train Identification and Tracking. (ATS-IEEE 6.3.3)

This functionality monitors the position and the iden-
tity of the trains.

ATS User Interface. (ATS - IEEE 6.3.2) This func-
tionality implements the graphical user interfaces to
display the status of the metro, and to allow the op-
erator to perform supervision of the overall system.

3.2 Architecture Identification

In this phase, different possible architectures for a CBTC
system are identified by evaluating the available informa-
tion about the CBTC products on the market.

Several implementations of CBTC systems are of-
fered by different vendors. In our work, we focused on
the systems proposed by Bombardier [46], Alstom [45],
Thales [50], Invensys Rail Group [32], Ansaldo STS [3],
Siemens [44], and GE Transportation [28].

The major subsystems identified in the evaluated
CBTC systems are ATP, ATS, ATO and IXL. The a-
dopted terminology is the one provided by the CBTC
standards, since the vendors use slightly different terms
to refer to the same components. There are also other
additional subsystems, which include, e.g., the fire emer-
gency system, the passenger information system, and the
closed-circuit television.

The possible CBTC architectures have been identi-
fied by analyzing the relationship between the different
subsystems. As examples, we focus on the relationships
among ATP, ATS and IXL. The most relevant configura-
tions identified for these systems are summarized below.

Centralized Control. (Figure 3a) In this configura-
tion, the ATS controls both the ATP and the IXL.
The ATS is called ATS Router since it has a direct in-
terface with the IXL to perform routing. The wayside
ATP is called Wayside ATP Simple since it has no
direct interface with the IXL, and the communication
among these two subsystems is managed through the
ATS. Furthermore, the wayside ATP communicates
with the onboard ATP, as in all the other configura-
tions.

Built-in IXL. (Figure 3b) In this configuration there is
no external IXL, since the ATP encapsulates also the
functions of the IXL (ATP Wayside IXL). We call the
ATS of this configuration ATS Simple since it has no
direct interface with an IXL.

Controllable IXL. (Figure 3c) The wayside ATP has
a control interface (ATP Wayside Controller) with
an external IXL, and acts as intermediary between
the ATS Simple and the IXL. We call the IXL of
this configuration IXL Controllable since, unlike
the IXL Pure of the first configuration, allows the
ATP Wayside Controller to bypass some of its con-
trols to achieve improved performances. It is worth
noting that this solution would not be possible with
an ATS controlling the IXL. Indeed, the ATS is nor-
mally not meant as a safety-related system, while the
ATP and the IXL are safety-critical platforms.

Configurations 3a and 3b are both used by Bombardier.
The second architecture is described in the Bombardier
documentation as CITYFLO 650 with built-in IXL. Tho-
ugh architecture 3a is not explicitely described, the Bom-
bardier documentation states that, when available, the
IXL works as a backup system in case of ATP failure.



6 A. Ferrari et al.: Engineering Novel CBTC Solutions

ATP Wayside ATS ATP Wayside ATS
Simple Router IXL Simple
ATP IXL ATP
Onboard Pure Onboard

(a) Centralized Control

(b) Built-in IXL

ATP ATP Wayside ATS
Onboard Controller Simple
IXL
Controllable

(c) Controllable IXL

Fig. 3: Architectures extracted

Therefore, we can argue that the IXL control resides in
the ATS and not in the ATP.

Architecture 3c has been derived evaluating the Al-
stom system. The IXL employed by Alstom is provided
by the same supplier of the Bombardier IXL, but Alstom
does not use this IXL as a backup system. Therefore, we
can argue that the ATP is in charge of controlling the
IXL, as in architecture 3c. Though this type of architec-
ture really complicates the safety-case, it is the only way
to achieve the benefits of the moving block principles in
an area that is controlled by an IXL.

4 Product Family Definition

The development of industrial software systems may of-
ten profit from the adoption of a development process
based on the so-called product families or product line
approach [19,14]. This development cycle aims at low-
ering the development costs by sharing an overall ref-
erence architecture for each product. Each product can
employ a subset of the characteristics of the reference
architecture in order to, e.g., serve different client or ju-
risdictions.

The production process in product lines is hence or-
ganized with the purpose of maximizing the common-
alities of the product line and minimizing the cost of
variations [39]. A description of a product family (PF)
is usually composed of two parts. The first part, called
constant, describes aspects common to all products of
the family. The second part, called variable, represents
those aspects, called variabilities, that will be used to
differentiate a product from another. Variability mod-
elling defines which features or components of a system
are optional, alternative, or mandatory.

The product family engineering paradigm is com-
posed of two processes: domain engineering and applica-
tion engineering. Domain engineering is the process in
which the commonality and the variability of the prod-
uct family are identified and modelled. Application en-
gineering is the process in which the applications of the

ANAALLL

alternative OR mandatory optional require  exclude

Fig. 4: Feature diagram notations

product family are built by reusing domain artefact and
exploiting the product family variability [39].

4.1 Feature Modelling

The modelling of variability has been extensively studied
in the literature, with particular focus on feature mod-
elling [34,4,15]. Feature modelling is an important tech-
nique for modelling the product family during the do-
main engineering.

The product family is represented in the form of a
feature model. A feature model is as a hierarchical set
of features, and relationships among features. A formal
semantics is defined for these models, and each feature
model can be characterized by a propositional logic for-
mula [4,41].

Relationships between a parent feature and its child
features (or subfeatures) are categorized as: AND - all
subfeatures must be selected; alternative - only one sub-
feature can be selected; OR - one or more can be selected;
mandatory - features that are required; optional - fea-
tures that are optional; a require b, if the presence of a
requires the presence of b ; a exclude b, if the presence
of a excludes the presence of b and vice-versa.

A feature diagram is a graphical representation of a
feature model [34]. It is a tree where primitive features
are leaves and compound features are internal nodes.
Common graphical notations are depicted in Figure 4.



A. Ferrari et al.: Engineering Novel CBTC Solutions 7

CBTC
ATP IXL ATS
N\ / N\
ATP 'ATP IXL IXL ATS ATS
Onboard Wayside Controllable Pure Router Simple

A b >
1 ’ -,
1 7 /,’

ATP ATP ATP d

IXL Simple Controller | .~ e

~< ~o -

Fig. 5: Simplified excerpt of the CBTC global feature diagram

4.2 A Global Feature Diagram for CBTC

A global feature model for CBTC has been defined by
integrating the different architectural choices identified
during the architecture identification task (Sect. 3.2).
We show the model for the GoA-1 level, according to
the IEC 62290 terminology [1]. In other terms, such a
model assumes the presence of a driver on board (i.e.,
there is no ATO system). In our current experience, we
have defined a global feature model that includes the
ATO as well. However, for space and clarity reasons, we
discuss the model only for the GoA-1 level.

An informal bottom-up approach has been followed
to pass from the architectures to the global feature dia-
gram. First, all the identified components have been con-
sidered as leaves of the diagram. Then, internal nodes
and hierarchy are provided for those components that
occurred with different variants in the architectures. Fi-
nally, constraints are provided by inspecting the differ-
ent architectures: if a component always occurs together
with another component, a require constraint is defined.

A simplified excerpt of the global feature diagram as-
sociated to our model is given in Figure 5. The diagram
includes the architectural components (which in our di-
agram become features) already identified in Sect. 3.2.

The require constraint requires a product to include
IXL Pure and ATS Router whenever the product in-
cludes ATP Simple. Indeed, the control interface with
the IXL has to be implemented by the ATS if the ATP
does not include it, as in the case of ATP Simple. Also
IXL Controllable is required whenever the ATP Con-
troller is used. In this case, a proper controllable inter-
face of the IXL is required to let the ATP system control
its functionalities.

The ATP Onboard is required by any product of this
family. On the other hand, the features IXL Pure and
IXL Controllable cannot cohabit in any product of
this family. The same observation holds for ATS Router

and ATP Simple. Indeed, only one type of IXL and one
type of ATS is allowed in a product.
It is worth noting that the feature diagram allows new
configurations that were not identified in the domain
analysis phase performed. These configurations repre-
sent new possible products. For example, an ATP IXL
can - optionally - cohabit with an IXL of any type. In
this case, the additional IXL works as a backup system.
The propositional logic formula associated to the ex-
cerpt is the conjunction of the formula of the ATP sub-
tree with the formulas associated to the IXL and ATS
sub-trees, and with the require constraints. For exam-
ple, the formula associated to the IXL sub-tree is:

(CBTCAtrue)A(IXL = CBTC)A((IXL Controllable < (IXLA—IXL Pure))A
(IXL Pure = (IXL A —IXL Controllable)))

Similar formulas can be written for the other sub-trees
and for the require constraints. Tools such as Splot [36],
can be used to verify the consistency of the feature model,
and check for the presence of dead features (i. e., features
that cannot be instantiated in any product), or incon-
sistent relationships among features.

5 Product Features Definition

The provided feature model represents a global model
for CBTC at the GoA-1 level. From this global model
we choose a product instance, which in our example case
corresponds to the Controllable IXL architecture of Fig-
ure 3c¢. Then, we model the detailed architecture of the
product according to the functionalities extracted from
the standards in the domain analysis phase. The archi-
tecture represents a static view of our product in the
form of a block diagram. In order to assess the architec-
ture, we provide realistic scenarios using architecture-
level sequence diagrams. This phase can be regarded as
the application engineering process of the product fam-



8 A. Ferrari et al.: Engineering Novel CBTC Solutions

CBTC
ATP IXL ATS
N\
ATP 'ATP IXL IXL ATS ATS
Onboard Wayside Controllable Pure Router Simple
A < v
! v -’
E // //
ATP ATP ATP
IXL Simple Controller | .-~ .-~

Fig. 6: Selection of features for our example product

ily engineering paradigm. Architecture and scenarios are
employed to derive requirements for the actual product.

5.1 Product Architecture Modelling

The graphical formalism adopted to model the product
architecture is a block diagram with a limited number
of operators. We have designed this simple language ac-
cording to our previous experiences in the railway in-
dustry [24,23]. Companies tend to be skeptical about
the benefit given by the adoption of complex and rigid
languages during the early stages of the development.
Instead, they are more keen to accept a lightweight for-
malism that allows them to represent architectures intu-
itively and with a limited effort.

The diagrams are composed of blocks and arrows.
Blocks can be of two types: system blocks, which repre-
sent individual hardware/software systems, or function-
ality blocks, which represent hardware/software function-
alities inside a system. Two types of arrows are also
provided: usage arrows, allowed between any block, and
message arrows, allowed solely between functionalities
belonging to different systems. If a usage arrow is di-
rected from a block to another, this implies that the
former uses a service of the latter. If a message arrow
is directed from a functionality to another, this implies
that the former sends a message — the label of the arrow
— to the latter.

We describe the usage of this formalism with an ex-
ample. Given the global CBTC model, we first select the
features that we wish to implement in our final product.
For example, Figure 6 highlights in pink (grey if printed
in B/W) the features that are selected for a CBTC sys-
tem that uses a controllable interlocking (see Figure 3c).

An excerpt of the detailed architecture for the se-
lected product is depicted in Figure 7. It is worth noting
that the functionality blocks used are part of the func-
tionalities identified during the domain analysis phase.
The selection and apportionment of such functionalities

is manually performed by the person who defines the
detailed architecture.

The Train Location Determination functionality
belonging to the onboard ATP sends the train location
information to the ATP wayside system. The Movement
Authority (MA) Determination functionality forwards
this information to the ATS for train supervision, and
uses this information to compute the MA. The MA is
sent to the ATP Onboard — to enforce train separation
—and to the ATS User Interface, which visualizes the
MA. The Train Routing functionality of the ATS re-
quires the routes to the wayside ATP, which controls
the routing by means of the Route Interlocking Con-
troller functionality connected to the IXL. We recall
that the Route Interlocking Controller functional-
ity is used to modify the interlocking inputs concerning
the location of the trains — normally based on fixed block
principles — to achieve the increased performance of the
moving block paradigm.

5.2 Product Scenario Modelling

The architecture provided during the previous activity
has been defined according to the functionalities extrac-
ted from the standards. Nevertheless, some connections
among functionalities, or some message exchange, might
be missing from the model, since the architecture has not
been evaluated against actual scenarios. In order to re-
fine the architecture, and provide coherent requirements
for the product, graphical scenarios are defined.

The graphical formalism adopted to model the sce-
narios at the architectural level is a modified version of
the UML sequence diagrams. Lifelines are associated to
systems, while blocks along the lifelines are associated to
the functionalities of the system. The arrows among dif-
ferent blocks indicate message communication or service
requests. In case of message communication, the arrow is
dashed. In case of service requests the arrow is solid. We
argue that the proposed notation can be regarded as a



A. Ferrari et al.: Engineering Novel CBTC Solutions 9

ATP Onboard ATP Wayside ATS
I MA ATS
. . User Interface
Train chcatl'on Train Movement ¢
Determination Location Authority
7y Determination Train Location »| Train Identification
and Tracking
4
Safe Train | o M Route Interlocking T
Separation Controller -«—Route Train Routing
v
|:| System blocks |:| Functionality blocks IXL
—Message® Messagearrows ——p Usage arrows Controllable

Fig. 7: Architecture example for a CBTC system

high-level sequence diagram notation. Indeed, it is sim-
pler than UML sequence diagrams, but it has the proper
level of abstraction for the system definition phase, while
UML sequence diagrams are more suitable for the soft-
ware design phase. Furthermore, fuctionalities are dis-
played along the lifelines of the systems: this is normally
not possible with UML sequence diagrams.

Figure 8 reports a scenario for a train that moves
from a station to another according to a route defined
by the ATS.

In the operational center, the ATS sends the Route
information to the wayside ATP. The wayside ATP re-
quests the IXL to move the switches in the proper po-
sition, and to lock the resources (the setRoute service
request). Once the route has been locked by the IXL
(LockEvent), the wayside ATP sends the Movement Au-
thority to the onboard ATP for a first train (ATP Onbo-
ard (T1)) and to the ATS, which displays the MA. The
onboard ATP allows the train departure, so the driver
can start the train movement. While moving, the on-
board system updates its position and sends the Train
Location information to the wayside ATP. This system
uses such information to compute new MAs for the cur-
rent and preceding trains (represented by ATP Onboard
(T2)). Furthermore, the wayside ATP forwards the Train
Location information to the ATS for identification and
tracking.

It is worth noting that, in this representation, we
have added the setroute service request and the Lock-
Event message, which were not defined in the block dia-
gram. The explicit request, and the corresponding re-
sponse, are an example of refinement enabled by the
usage of scenarios: the relationship among the Route
Interlocking Controller functionality and the IXL
Controllable system has been clarified by means of the
sequence diagram.

5.8 Requirements Definition

The information provided throughout the process are
used to define the requirements of the final product. In
particular, the requirements of one of the standards are
used as a reference for the definition of the actual prod-
uct requirements. In our case, we take the IEEE 1474.1-
2004 standard as a reference.

The requirements are tailored according to the func-
tionalities extracted from the standards, and evaluating
the product architecture and the scenarios. For example,
consider the following requirement referred to the ATP
system:

6.1.11 — Route Interlocking. A CBTC system shall provide
route interlocking functions equivalent to conventional interlock-
ing practice to prevent train collisions and derailments. [...]
Where an auxiliary wayside system is specified by the authority
having jurisdiction, interlocking functions may be provided by sep-

arate interlocking equipment [...].

In our example product, the interlocking is an auxiliary
wayside system, external to the ATP. Therefore the De-
rived (D) requirement for our product is:

6.1.11(D) — Route Interlocking. Interlocking functions shall

be provided by separate interlocking equipment [...].

Additional requirements on the actual behaviour can be
derived from the architecture and the example scenario,
as in the following;:

6.1.11(D —1) — Route Interlocking Controller. When a route
is requested from the ATS, The ATP system shall require route
setting (setRoute) to the interlocking to lock the interlocking re-

sources. |...]

The behaviour expected from this requirement is clar-
ified by the scenario, which is also attached to the re-
quirement in the final specification. At this stage, we



10 A. Ferrari et al.: Engineering Novel CBTC Solutions

ATS ATP IXL ATP ATP
Wayside Controllable Onboard (T1) Onboard (T2)
T T T T
I | |
[romromt - s e |t ;
| Interlocking |
| Controller LockEvent| |
| r | |
| | | |
1 | |
ATS MA _| Movement Authority Movement Auihmity_> Safe Train
|

Determination
I

| |

|

User Interface

—| Train Location

T
[
[
[
|
|
|
[
[
[
Separation |
[
[
[
|
|
|
[
|
|
|

- — ===
Train <« — | Determination
Ide:t]ilﬁcaku:on Train | |
an racki i I
: =8 | Location Movement Authority |  Movement Authority | SafeTrain
| Determination ] Separation
| | I
I | Movement Authority| SafeTrain
| ———t——— = — = s :
I | | eparation
|

Fig. 8: Example sequence diagram: a train moves from one station to another

did not find general patterns for passing from the stan-
dard requirements to the product requirements. Indeed,
the definition of the requirements is a manual process,
where each requirement of the standard is reviewed and
properly extended/reduced according to the results of
the previous phases.

Consider now a vendor that wishes to accomplish also
the IEC 62290 standard with his product. The product
is already defined according to IEEE 1474.1-2004 fol-
lowing the presented approach. In this case, we argue
that the compliance with the IEC 62290 standard can be
demonstrated by reasoning at functional level. Indeed,
the functions identified in the domain analysis phase in-
tegrate the content of both standards, and traceability
with the original functional requirements of IEC 62290
is therefore made easier.

6 System Requirements Definition

The development of railway and metro signalling plat-
forms in Europe shall comply with the CENELEC stan-
dards [12,11,10]. These are a set of norms and methods
to be used while implementing a product having a de-
termined safety-critical nature. If a company wishes to
achieve a CENELEC certification for its CBTC product,
the development of the product shall follow the guide-
lines and the prescriptions of the norms. In principle,
the company can decide to treat the CBTC product as
a single system, and provide certification for the system
as a whole. Nevertheless, once the company has to sell
a product variant, the certification process shall be en-
tirely performed also for the variant, paying undesirable
costs in terms of budget and time.

Therefore, it is useful to develop each sub-system as
an independent unit, and follow the CENELEC regu-

lations for the development of such sub-system. Once
each sub-system has got certification evidence according
to the regulations, the certification of the whole CBTC
product is made easier, since it can be focused solely on
the integration aspects. Furthermore, if the customer re-
quires only a specific sub-system (e.g., the ATP or the
ATS system) to renew a part of its installation, the sub-
system can be purchased without additional certification
costs. The first documents typically edited for the devel-
opment of a system in a CENELEC-compliant process
are the Preliminary System Specification (PSS) and the
System Requirements Specification (SYS-RS). The for-
mer is a document that summarizes the interfaces of
the system, and the functionalities that are expected
from the system. The latter is a document that pre-
cisely specifies the expected system behaviour, as well as
the safety, performance, architectural and environmen-
tal constraints. Both documents are normally written in
natural language.

In our approach we suggest to derive the PSS di-
rectly from the detailed architecture. Moreover, we apply
scenario-based requirements elicitation [47], aided with
rapid prototyping [29] to produce the SYS-RS document.
Moreover, our method expects the SYS-SRS document
to be produced in a constrained natural language.

6.1 PSS Definition

The approach for the definition of the PSS is as follows.
First, we select from the product architecture the sub-
system to be developed. We choose, for example, the
ATS Simple introduced in Sect. 3.2 and employed in the
example of Sect. 5. The information provided by the de-
tailed architecture diagram for the ATS is the same in-
formation required by the PSS document. The message



A. Ferrari et al.: Engineering Novel CBTC Solutions 11

ID Type Data From | To

E.01 | WLAN Train Location ATP ATS
E.02 | WLAN Route ATS ATP
E.03 | TD MA ATS Operator

Table 1: Excerpt of the interfaces of the ATS sub-system

arrows are the interfaces, while the functionality blocks
are the expected functionalities. Therefore, the defini-
tion of such a document comes straightforwardly from
the detailed architecture diagram.

In Table 1, we give an excerpt of the PSS of the ATS
sub-system concerning the interfaces with the other sub-
systems or actors.

We notice that the table includes also the type of in-
terface. Indeed, design decisions concerning the types of
interfaces and the types of the devices shall be provided
in the current phase. In particular, we see that the Move-
ment Authority (MA) is displayed to the user through
the Train Describer (TD), which is a screen that dis-
plays the metro layout and the information concerning
the position and the MAs of the trains (an example TD
can is reported in Fig. 10).

While the functionalities are extracted from the de-
tailed architecture diagram, the natural language details
concerning such functionalities can be directly extracted
from the Domain Analysis Phase (see Sect. 3.1). How-
ever, in some cases, the details provided might not be
sufficient to precisely specify the functionalites of the
system. Moreover, the PSS document shall take into
account the design decisions taken. For example, the
ATS User Interface extracted from the standards does
not give details concerning the devices for the visual-
ization of the information concerning the metro status.
In these cases, sub-functionality partitioning is required.
Below, we give an excerpt of PSS of the ATS concern-
ing the partitioning of the ATS User Interface (in our
PSS document, functionality F4), with focus on the sub-
functionality F4.1 related to the already mentioned Train
Describer.

F4: ATS User Interface (IEEE 6.3.2) This function
implements the visualization of all the information that
are required for the monitoring and the management of
the CBTC system. [...]

— F4.1. Management of the Train Describer: This func-
tion provides real-time information concerning the
status of the metro network. It is a view of the sys-
tem containing:

— a scaled representation of the metro layout;

— the position of the trains in real-time. Each train
is identified by a unique number;

— information concerning the busy routes and the
free routes, highlighted in different colors;

— information concerning the Movement Authority
(MA) of each train.

— F4.2. Management of the Train Graph [...]

— F4.3. Provide interface to the operation control cen-
tre HMI (IEC 6.2.2.5.1)) [...]

— F4.4. Provide interface to the decentralized HMI (IEC
6.2.2.5.2) [..]

We notice that, for those functionalities that have
been extracted from the CBTC standards, the reference
to the original standard is reported in the PSS. For the
additional functionalities required by the design deci-
sions, and therefore not strictly related to the standards,
the reference cannot be provided. Nevertheless, we have
experienced that the number of such functionalities is
quite limited. Furthermore, in most of the cases, these
additional functionalities are sub-functionalities of those
expressed in the standards, as in the presented example.

6.2 SYS-RS Definition

The System Requirements Specification (SYS-RS) is the
main reference document, which is used in the subse-
quent process phases for both the development and the
system verification. Requirements in the SYS-RS docu-
ment are normally partitioned into technological, inter-
face, functional, performance, RAM - Reliability, Avail-
ability, Maintainability - and safety requirements. Here,
we focus on the definition of interface and functional re-
quirements. Requirements are normally written in natu-
ral language, and, following the CENELEC norms, they
shall be complete, clear, precise, unequivocal, feasible,
verifiable, testable and maintainable [11]. Here, we fo-
cus on the first five attributes.

In our approach, we employ a scenario-based iterative
approach aided with prototyping for requirements defini-
tion. Such an approach enforces requirements complete-
ness and feasibility. Furthermore, requirements are writ-
ten in a constrained natural language. This choice en-
forces the production of clear and precise requirements.
Requirements are also analysed through the QuARS tool
for natural language ambiguity detection [18], in order
to produce unequivocal requirements.

Figure 9 illustrates the approach. First, functionali-
ties are selected from the PSS. For each functionality, we
elicit one or more behavioural scenarios in the form of
natural language stories. From each scenario we derive
requirements in a constrained natural language. Such re-
quirements are analysed by means of the QuARS tool.
Once all the functionalities have been evaluated and the
scenarios have been written, the requirements are im-
plemented in an executable prototype. The executable
prototype is used to derive new possible scenarios, and
therefore new requirements. The approach iterates until
no additional scenario is foreseen.

Scenario Definition The approach is as follows. First,
we derive natural language scenarios starting from the
functionality listed in the PSS document. Scenarios are



12 A. Ferrari et al.: Engineering Novel CBTC Solutions

Functionality

Scenario
Definition

Prototype
Definition

Requirements

Definition CNL

QuARS
Analysis

Fig. 9: Approach for the definition of the SYS-RS

ID: 001 TITLE: Visualization of the Movement
Authority

SOURCE: F4.1 Management of the Train Describer

1. The ATS receives a message from the ATP

2. The ATS unpacks the message and recognizes that
it is a message of type Movement Authority - MA

3. The ATS realizes that the MA contained in the
message is associated to the train numbered T

4. The ATS visualizes the length of the MA through
the user panel in the point of the railway yard where
the train numbered T is currently placed

Table 2: Example scenario derived from the functionality
F4.1 Management of the Train Describer

written in the form of bullet-list stories. This approach
enables the elicitation of possible system usages, while
we employ natural language - and not, e.g., sequence di-
agrams - in order to involve the largest amount of stake-
holders in the scenario definition. Indeed, we argue that
a restricted UML language, such as the one presented in
Sect. 5.2, is normally understandable by all the stake-
holders, but cannot be profitably used by all of them
to design scenarios during the requirements elicitation
phase. With natural language scenarios, we can ask the
largest amount of stakeholders to write the scenarios and
explore possible system’s usage.

The format of the scenario shall follow a few simple
rules. Each scenario shall have an identifier, a title in
natural language, a source functionality, and a list of
actions that describe the scenario. In Table 2, we report
one of the scenarios that have been derived from the
functionality F4.1. Management of the Train Describer.

Requirements Definition From each scenario, we derive
a set of natural language requirements in a constrained

natural language. Several types of constrained natural
languages (CNL) have been proposed in the literature
(see [43,30] for some examples, and [7] for a list of do-
main specific CNLs). However, all such languages had
limited use in practice, since they often appear as too
complex to handle, and too complex to be read.

In our approach, we use a constrained natural lan-
guage that is inspired to the language succesfully em-
ployed in the MODCONTROL project [9]. The format
is based upon four simple formats that shall be employed
to write requirements. The formats are reported below:

FORMAT1. The system [shall|should] be able to
< capability >.

This format is employed in case of requirements that
involve mandatory (shall) or optional (should) function-
alities, which are unconditional and independent from
the actions of the operators. Requirements of this type
are normally associated to interface functions, internal
procedures, or procedures that manage internal data struc-
tures.

FORMAT?2. The system [shall|should] allow the
< operator > to < action >.

This format is employed in case of requirements that
involve mandatory (shall) or optional (should) function-
alities, which are unconditional and dependent from the
actions of the operators. A requirement of this type is
“The system shall allow the supervising operator to select
the train to stop at the next station”.

FORMATS3. The system [shall|should] < action >,
[when|after|before|if] < condition >
{, [when|after|before|if] < condition >}.

This format is employed in case of requirements that
involve mandatory (shall) or optional (should) system
actions that depend on one or more conditions. All con-
ditions are considered in a logical AND relationship. If
we want to express logical OR among conditions, it is
recommended to add a new requirement.

FORMAT4. [FORMAT1|FORMAT2|FORMAT3],
< procedure >.

The format is a combination of one of the previ-
ous formats with a procedure. This format is employed
in case of requirements that involve functionalities that
have an associated procedure, or that are performed
through a well-defined interface device. The format shall
be used when it is useful to explain how the system is
expected to perform a certain action.

The fields < capability >, < action >, < condition >
and < procedure > are free-form sentences, with the
only constraint of containing one verb maximum.

Below, we report the requirements that have been
derived from the scenario of the previous paragraph, to-
gether with the format of the requirement (FORM-N =
FORMAT N).

1. The system shall be able to receive messages from
the ATP system (FORM-1);



A. Ferrari et al.: Engineering Novel CBTC Solutions 13

2. The system shall parse the message, when the system
receives a message (FORM-3);

3. The system shall identify the type of the message,
after the system has parsed the message (FORM-3);

4. The system shall identify the fields of the message,
after the system has identified the type of the mes-
sage (FORM-3);

5. The system shall display the length of the Movement
Authority (MA) of a train T, when the system re-
ceives a message of type MA with field TRAIN_ID =
T (FORM-3);

6. The system shall display the length of the MA of a
train T, through the Train Describer (FORM-4);

7. The system shall display the length of the MA asso-
ciated to a train T, in the point of the railway yard
where the train T is currently placed (FORM-4);

In this example, we do not have requirements of FOR-
MAT 2, since the Train Describer does not allow inter-
action with the operator.

After the definition of the requirements, these are
partitioned into functional and interface requirements.
For example, requirement 1, 6 and 7 will be part of the
interface requirements. All the other requirements can
be considered functional requirements.

We argue that the proposed constrained natural lan-
guage has several advantages in the considered domain.
It is easy to use, since the formats can be easily remem-
bered. It is sufficiently strict to highlight the relevant
capabilities, actions, conditions and procedures. There-
fore, it enables the production of precise requirements.
Furthermore, it naturally produces short sentences, since
only one verb is admitted in the free-form fields, and this
enables the production of clear requirements.

Requirements shall be unequivocal, according to the
CENELEC norms. In order to enforce this quality at-
tribute, we employ the QuARS tool for requirements
analysis. The tool detects potential natural language
ambiguities in the requirements by searching for typ-
ically ambiguous expressions. For example, the terms
“clear”, “easy”, “adequate” indicate vagueness, the ex-
pression “as < adjective > as possible” indicate subjec-
tivity, and demonstrative adjectives (“this”, “that”) or
personal pronouns (“it”, “they”) often reveal the pres-
ence of an implicit - and therefore possibly ambiguous -
subject in the sentence. Requirements such as “The sys-
tem shall handle incoming messages as rapidly as possi-
ble” or “The system shall display the position of a train,
if it is active” (is “it” referred to the train or to the
system?), are identified as ambiguous by QuARS. Such
requirements shall be rephrased, modified, or removed
after the QuARS analysis. To have a complete view of
all the types of ambiguities that the tool identifies, please
refer to [18]. The current capabilities of QUARS - as well
as the capability of similar tools, such as Requirements
Assistant® - do not go beyond the so-called lexical and

5 http://www.requirementsassistant.nl

syntactic ambiguities. Works are currently ongoing to
discover semantic and pragmatic ambiguities [25].

We have experienced that the proposed language is
sufficiently flexible to allow the expression of all the
interface and functional requirements required by our
context. The other types of requirements (i.e., techno-
logical, performance, RAM, safety), normally included
in the SYS-RS, may require different formats - they of-
ten include numerical constraints - and other derivation
strategies (e.g., quantitative models of the system).

Furthermore, we argue that the presented CNL is
a starting point towards a formal representation of the
requirements. For example, requirements 2 can be rep-
resented with the following SOCL formula [20]:

AG([reveived_msg($m)](AX {parse_msg_begin(%m) }true)).

The formula states that, whenever a message m is re-
ceived ([reveived_msg($m)]), the parsing procedure for
the message m shall start at the next (operator X) sys-
tem execution step. We notice that the formula includes
a parameter (i.e., the message m). Currently, the only
tool that supports the SOCL logic with parametric for-
mulas is UMC [49], which is also available on-line®. Other
experiences have been presented in the literature that
aims at transforming natural language requirements into
formal specifications (e.g., [37,21]). We argue that the
definition of a CNL such as the one presented, can be
a proper intermediate step to achieve this goal. Indeed,
having a reduced amount of formats can help identifying
those fragments that can be transformed into logic for-
mulas - and verified through model checking - and those
that do not have a corresponding logic representation -
and need to be verified through model/code inspection
or testing.

Prototyping The scenarios can be regarded as a starting
point for requirements elicitation, but they are not suf-
ficient to enforce the completeness of the requirements,
required by the norms. Several possible system usage
and features might be missing. Therefore, in order to en-
force requirements completeness, the requirements that
are derived from the scenarios are implemented in a pro-
totype. The prototype might be implemented either in
a programming language, or with formal/semi-formal
modelling. The relevant aspect is that the prototype
shall be executable. Interaction with the prototype helps
deriving new possible usage scenarios to elicit new re-
quirements. The prototype enables the identification of
scenarios that can hardly be foreseen if one focuses solely
on one functionality, as we do when we derive the first
set of scenarios. Indeed, exercising the prototype high-
lights issues related to the interaction among function-
alities. Moreover, the prototype helps discovering issues
that are related to the implementation, and that shall
be considered in the requirements.

6 http://fmt.isti.cnr.it/umc/V4.1/umc.html



14 A. Ferrari et al.: Engineering Novel CBTC Solutions

For example, consider the requirements of the previ-
ous paragraph. The prototype implements such require-
ments, as well as all the other requirements derived from
the other scenarios. To have an executable prototype
that is capable of executing the scenario, we implement
the following components:

— a stub function that emulates the communication
part of the ATP, and sends the message to the ATS
prototype;

— a communication interface that receives the ATP mes-
sages;

— a graphical user interface that represents the Train
Describer (in Fig. 10, we show the interface of the
TD of our prototype).

We execute the original scenario on the prototype, to
assess that the provided requirements are sufficient to
perform the scenario. Furthermore, we apply some vari-
ations to the scenario, exercising the prototype with dif-
ferent, manually defined, input data. For example, we
start sending more than one message with the same con-
tent, and we see that a policy is required to handle dupli-
cate messages. Then, we try to send two messages associ-
ated to the same train T, where the MA are inconsistent
(i.e., they are positioned into different parts of the lay-
out). A policy is required to handle also this situation,
since, by default, the graphical user interface of the pro-
totype will show the same MA in different parts of the
railway yard. We write down natural language scenarios
for these cases, and we derive additional requirements.
The additional requirements, in this case, are:

— The system shall discard the message received from
the ATP, when the system receives a duplicate mes-
sage (FORM-2);

— The system shall be able to detect inconsistent MAs
(FORM-1);

Furthermore, we require to change requirement 5 of the
example as follows:

— The system shall display the length of the Movement
Authority (MA) of a train T, when the system re-
ceives a message of type MA with field TRAIN_ID
= T, if the system did not detect inconsistent MAs
(FORM-3).

The concepts of duplicate message and inconsistent
MA are defined in the definition section of the SYS-RS,
expressed in free-textual form:

— duplicate message: a message that has all the fields
equal to the previous message.

— inconsistent MAs: an MA is inconsistent with the
previous MA, if they are associated to the same train
T, if the former starts at M meters, the latter starts
at L meters, and L — M > .

T is the tolerance, which is a configuration parameter
for the system.

cBTCc  [¢ |
Standards |
/ Product /
A .
Requirements
+ A
Functionality | I
| I
| I
| |
pss |- _ _ _— J I
A |
I
] I
Scenarios |
I
I
I
SYSRS bb———— — — —

Fig. 11: Traceability links among artifacts in the system
definition phase (solid line=explicit link, dashed line=
manual link)

The new requirements are implemented in the pro-
totype. Now, the prototype can be exercised again with
new scenarios - which are made possible by the extension
of the prototype - and new requirements might be issued.
In our context, one may require a more fine-grained func-
tion that takes into accout the train speed to identify
inconsistent MAs.

The choice of stopping the iteration of scenarios-
requirements-implementation is up to the team. In our
experience, two to three iterations are sufficient to achieve
a degree of completeness of the requirements that can be
acceptable for the team.

Furthermore, since all the requirements are imple-
mented in the prototype, the approach naturally enables
the production of feasible requirements, as required by
the norms.

We argue that a proper way to organize the scenarios
shall also be foreseen, in order to guide their navigation,
and reason about the interaction among them. We are
currently working in this direction.

6.3 Traceability

The CENELEC norms ask for traceability among devel-
opment artifacts. Moreover, we are here interested also
in providing traceability links with respect to the CBTC
standards.

Figure 11 depicts the traceability links enforced by
our approach. The Functionalities extracted from the



A. Ferrari et al.: Engineering Novel CBTC Solutions 15

Via Accademia - Parco della Vittoria

Via Accademia Piazza Universita Via Verdi

e e e e e
o o o o
e e e

- o

Viale Monterosa

) e
>

Vicolo Cort:
colo torto Vicolo Stretto

o o

e

*—

Viale dei Giardini

Via Roma

Piazza Dante

Via Marco Polo

o B

e

Parco della Vittoria

Fig. 10: Interface of the Train Describer of the implemented prototype. The red segment (first segment on the top-
left corner) represents the part of the track that is currently occupied by a train. The white segments (second four
segments on the top-left corner) represent the Movement Authority associated to the train.

standards are traced back to the source standard. The
PSS document is built upon these functionalities and has
a direct traceability link to them. The scenarios are de-
rived from the functionalities of the PSS, and the source
field of each scenario provides the traceability link. Each
requirement in the SYS-RS is derived from the scenar-
ios, and therefore each requirement can be traced to the
PSS through the scenarios. Traceability links are also re-
viewed to assess that the additional information added
in the SYS-RS - e.g., an additional interface -, is also
reported in the PSS. Since many of the steps of the pre-
sented process are manual, the validation of the trace-
ability links is important to assess the mutual consis-
tence and quality of the different artifacts.

The link between the Product Requirements and the
PSS/SYS-RS is not explicit, and traceability among the
artifacts shall be manually performed. However, manual
tracing is supported by the link between the Function-
alities and the CBTC Standards. Furthermore, manual
tracing can help discovering aspects of the CBTC stan-
dards - from which the Product Requirements are de-
rived - that have been overseen in the definition of the
PSS/SYS-RS. Such manual activity can be regarded as
a validation of the compliance of the system documents
w.r.t. the CBTC standards.

7 Current Experience

The approach presented in this paper has been defined
and experimented in the context of the Trace-IT project,
focused on the definition of innovative solutions for intel-
ligent transport systems. The examples reported in the
paper are adapted from the deliverables of the project.
The project involves two research groups coming from
academia (4 people from ISTI-CNR, and 3 people from
the University of Florence), and one group coming from
a medium-sized railway signalling company (2 people).

The research groups from academia cover the role of
technology experts, thanks to the previous experience on
product line modelling, and on requirements definition
and analysis. The company covers the role of domain ex-
pert. The research groups have implemented the process
described in the paper, while the company has moni-
tored the activities and has given recommendations and
guidelines concerning the domain-related aspects.

The approach has been implemented as follows. The
research groups have first analysed the CBTC standards,
deriving 67 functionalities (47 from the IEEE standard
and 20 from the IEC standard). Table 3 summarizes the
number of functionalities associated to each sub-system.

Then, the documents of the vendors have been evalu-
ated and a global feature model was derived, as described
in Sect. 4. A product instance has been chosen from the



16 A. Ferrari et al.: Engineering Novel CBTC Solutions

[ Source | ATP W. [ ATP O. | ATS | ATO|
IEEE 15 10 18 4
IEC 2 7 10 1
Total 17 17 28 5

Table 3: Number of functionalities of the standards as-
sociated to each sub-system (ATP W. = ATP Wayside,
ATP O. = ATP Onboard).

ATO ¢ ATS
Router
1 '
IXL
Pure
ATP ¢ ATP Wayside
Onboard Simple

Fig. 12: Architecture of the chosen product instance

diagram. It was taken into account that the company al-
ready developed both a CENELEC compliant ATP sys-
tem, and a CENELEC compliant IXL system (in its IXL
pure form). The architecture of the product instance is
depicted in Figure 12.

The CBTC system is as follows. The ATS Router has
a communication link with the IXL Pure, and requests
routes to such system. The IXL is connected to the ATP
Simple, since the latter creates MA based on the infor-
mation concerning the status of the routes that comes
from the IXL Pure. We notice that the chosen architec-
ture includes also an ATO system. The ATS Router has
a communication link with this system, that is used to
send missions (i.e., speed profiles and station stops) to
the ATO system. The ATP Onboard is connected to the
ATO system. Indeed, the ATO can be regarded as a vir-
tual train driver that shall be controlled by the ATP.

We notice that, regardless of the presence of the ATO
system, the presented architecture is completely new
with respect to the architectures of the competitors. In-
deed, none of the other architectures has a control link
between the IXL and the ATP Wayside system. There-
fore, we have practically seen that the presented ap-
proach actually enables the definition of new product
architectures that were not available in the market.

System requirements have been defined for the CBTC
system according to the approach described in Sect. 5.
For confidentiality reasons, the examples reported in this
section of the paper do not refer to the actual system re-

quirements for the CBTC product used in the project.
However, we argue that such examples are sufficient to
clarify the approach. After the definition of the CBTC
product requirements, the two research groups operated
independently for the development of the CENELEC
documents of the ATO (University of Florence group)
and for the CENELEC documents of the ATS (ISTI-
CNR group). Before the definition of the PSS and the
SYS-RS documents, the two groups participated to the
definition of the communication protocol between the
ATS and the ATO. A communication protocol was re-
quired in order to have a clear interface among the sys-
tems, to let the two groups work independently.

The ATO group decided to implement a prototype
with a semi-formal approach, using IBM Rhapsody” as
development platform, but without implementing the it-
erative process described in the current paper, and with-
out applying the constrained natural language proposed.
Instead the group decided first to write down the require-
ments in a free-form natural language, and, afterwards,
to produce a semi-formal executable model.

The ATS group followed the process described in
Sect. 6, and implemented the prototype using the C++
language upon the .NET® platform with Microsoft Vi-
sual Studio. The choice of following two different ap-
proaches was driven by the need to assess the validity
of the proposed approach w.r.t. a similar environment
where the approach was not applied.

The prototype was developed following the guidelines
of the SCRUM development framework [42]. According
to the framework, the group performed daily meetings
(10 minutes each meeting), where a subset of the require-
ments was selected and implemented in the prototype.

The ATS group produced 47 scenarios and a SYS-RS
composed of 182 requirements and 27 definitions. Two
iterations of the approach have been performed to pro-
duce the current specification. The part related to the
train scheduling functionality, which is part of the ATS,
is currently not considered in the specification, since the
group decided to perform a separate study for the opti-
mization of the train scheduling.

The current ATO specification includes 51 require-
ments. Both the ATO and the ATS specifications have
been evaluated with the QuARS tool for requirements
analysis. The defect rate of the ATS requirements re-
sulted 9% at the first iteration of the approach, and was
reduced to 0% in the second iteration. The defect rate of
the ATO requirements was 5%. In both cases, the main
reasons of the defects was the presence of vague expres-
sions, such as “appropriate”, “imminent” and “shortly
before”.

7 http://www-03.ibm.com/software/products/us/en/
ratirhapfami/
8 http://www.microsoft.com/net



A. Ferrari et al.: Engineering Novel CBTC Solutions 17

7.1 Lessons Learnt

Below, we list some lessons that have been learnt during
the current experience.

Effort Required During the Domain Analysis Phase The
domain analysis phase has been the most time consum-
ing activity, since the documents of the vendors use dif-
ferent terminology. Guessing common and variant fea-
tures required a large amount of human inspection. The
standards gave support in giving a common language for
interpreting the documents and also for the definition
of the global feature diagram. Nevertheless, we argue
that the domain analysis would benefit from the usage
of automated approaches for the identification of com-
mon and variant features. We are currently experiment-
ing with a natural language processing approach based
on contrastive analysis for the identification of domain-
specific terms and the identification of commonality and
variability candidates. The current results with the ap-
proach, presented in [27], are rather promising. With the
automated method we have been able to find 19 com-
monality candidates, and 6 out of 19 have been consid-
ered as common features. Furthermore, we have found
372 variability candidates, and 174 out of 372 have been
considered variant features. We argue that the approach
would have greatly helped in guiding the inspection of
the publicly available documents of the vendors.

FEzxpressiveness of the Feature Diagram The global fea-
ture diagram has been found to be a powerful tool also
to guide the understanding of the brochures of new ven-
dors. Indeed, the CBTC provided by GE Transportation
was not evaluated in the initial domain analysis phase,
since brochures for such a product were not available
yet. Therefore, we have discovered that the feature dia-
gram is not solely a mean to produce new products, but
provides also a reference framework to understand prod-
ucts coming from new competitors, as well as a common
language to interpret such products.

Semi-Formal vs Informal An aspect that has been highly
appreciated by our industrial partner is the choice of
the modelling languages. The feature model by itself
provides an abstract view of the product family that
is easily understood by the stakeholders [13]. On the
other hand, the block diagram notation and the sequence
diagrams defined allow focusing on the essential con-
cepts, even employing a limited number of operators.
The project participants had previous industrial experi-
ences with SysML and Simulink/Stateflow [23,24]. Nev-
ertheless, they have observed that such languages were
too complex to be useful in this analysis phase.
Concerning the definition of the system requirements,
the usage of the C++ prototype resulted more effective
than the semi-formal Rhapsody in enabling the com-
munication with the industrial partner. Indeed, we ar-
gue that — during the requirements elicitation phase —

it is relevant to have a prototype that is easy to use,
and rather close to the expected system. A semi-formal
model is probably a better choice when the requirements
have been clearly defined, and when the final target is
code generation rather than requirements elicitation.

Number of Requirements We have seen that the number
of requirements produced with the presented approach
is more than three times larger than the number of re-
quirements produced without employing the approach
(182 ws 51 requirements). Therefore, we can argue that
the scenario-based strategy greatly helps in eliciting re-
quirements. Since we did not implement the system yet,
we cannot actually demonstrate that the completeness of
the ATS requirements is higher w.r.t. the completeness
of the ATO requirements. However, we can reasonably
say that a higher number of requirements — expressed
with the same level of detail — will cover a larger num-
ber of functions in the system-to-be.

Constrained Natural Language The requirements of the
ATO were not written in a CNL. Nevertheless, when
we analysed them with QuARS, we saw that the num-
ber of defects was lower, if compared with the defects
found in the ATS requirements (written in CNL). There-
fore, we can argue that the presented CNL does not re-
duce the number of ambiguous expressions. Instead, fur-
ther appropriate analysis — such as the one performed
with QuARS — is required. Nevertheless, the require-
ments produced with CNL appeared much clearer and
precise, compared to the ones produced without con-
straints. Therefore, the CNL will be employed also in
the subsequent phases of the project.

The adoption of the CNL for the definition of the
system requirements was not straightforward. Though
the proposed language is quite simple, it is still a con-
strained language, and it was initially perceived as a
useless hamper to the creativity required during require-
ments elicitation. However, after one week of practicing,
the team acquired confidence with the language, and we
have been able to experience its benefits. For example,
the team was more keen to write definitions before writ-
ing the requirements. Since the language is constrained
and inherently produces short sentences, definitions are
indirectly encouraged: once a definition is given for a
term, one can use the term easily within the CNL. The
usage of definitions further reduces the ambiguity of the
requirements.

Requirements Quality When we first defined our appro-
ach, we did not focus on the production of werifiable
and maintainable requirements. Nevertheless, we noticed
that these two quality attributes indirectly occurred in
the produced requirements. Indeed, QuARS helps iden-
tifying and reducing the number of vague terms. We
have seen that vague terms are the main source of de-
fects in our specifications. We argue that the absence



18 A. Ferrari et al.: Engineering Novel CBTC Solutions

of vague terms enables the production of requirements
that can be functionally and - most of all - quantitatively
verifiable. Furthermore, maintainability of the require-
ments is eased by the scenario-based approach followed.
Requirements are maintainable when the corresponding
document is well-structured [52]. The structure of the re-
quirements document and the order of the requirements
is guided by the scenarios: requirements are normally in
the same section of the document when they are derived
from the same scenario. We have seen that, when modi-
fications to the requirements are needed, they normally
correspond to modifications to the existing scenarios or
to new scenarios to handle. Therefore, it is easy to iden-
tify those requirements that have to be changed, or the
part of the requirements document where it is prefer-
able to place the new requirements. To further improve
the structural quality of the specification, we plan to ap-
ply approaches based on sequential clustering that are
currently under development [26].

8 Related Works

There is a large literature concerning the development
methods of train control systems, including CBTC. Be-
low some works are listed that represent the most rele-
vant examples related to our work.

The MODCONTROL [9] project aimed to define a
set of generic requirements for a new generation of Train
Control and Monitoring Systems (TCMS). There are two
common aspects with our work. The first is the usage of
different knowledge sources to define the requirements.
Indeed, in MODCONTROL, the requirements have been
collected from specifications of existing systems, stan-
dards or draft specifications from other EU projects.
The second is that the requirements are submitted to
an analysis process through the QuARS tool in order to
detect potential natural language ambiguities. Neverthe-
less, modelling and product family engineering, which
are core elements of our approach, were not practiced
within the MODCONTROL project.

The work performed by LS Industrial Systems [53]
concerns the software development of a CBTC system by
means of a process based on model-driven development
principles. In particular, the UML language is used to
model the CBTC software, and source code for the model
is derived through the IBM Rhapsody tool. Unlike our
case, where requirements are represented in textual form
and derived from the analysis of existing systems and
standards, the authors use a UML notation (Use Cases)
to represent the customer requirements, and do not give
details concerning the domain analysis phase and the
issues related to the compliance to CBTC standards,
which are addressed by our work.

In Rampelli and Virivinti [40], the authors attempt
to identify design problems of a CBTC system with re-
spect to factors related to reliability and security, and

propose a solution. Their way to solve these problems
is to identify the possible architectural design patterns
to be applied to CBTC. The advantage of using this
technique is that the architectures thus obtained can be
reused in a wide range of systems. However, also in this
case, no details are given concerning the compliance of
the produced artifacts with respect to the existing prod-
uct standards.

Wang and Liu [51] present an approach for devel-
oping a CBTC system based on a 3-levels hierarchical
modelling of the system. The three levels are the func-
tional model, the behavioural model of the train, and
the model of all control actions. To illustrate this ap-
proach, authors use SCADE applied to a case study of a
specific CBTC subsystem. The SCADE suite helps the
author to capture complex specifications with a graph-
ical notation. Nevertheless, the presented case-study is
quite limited and more focused on low-level aspects com-
pared to our work where the emphasis is on high-level
requirements and product/process-standard adherence.

Essamé and Dollé [17] present the application of the
B method in the METEOR project led by Siemens Trans-
portation Systems. According to the authors, the use of
the B method to realize the vital software system for
the automatic control of the train, called METEOR, is
cost-effective if considered in relation with the entire de-
velopment process of the CBTC system, which includes
the validation of the specification and the product certi-
fication. The B method allows the authors to achieve an
unambiguos high level software formal specification with
a code that maintains the properties of the specification.
This allows the validation team to focus its efforts on the
specification rather than on code.

Yuan et al. [54] illustrate a modelling approach and
verification of the System Requirement Specifications
(SYS-RS) of a train control system based on the Speci-
fication and Description Language (SDL). The applica-
tion of this approach has allowed the authors to iden-
tify possible ambiguities and incompatible descriptions
in the requirements. Both our work and that of Yuan et
al. include formalisms to express requirements of a train
control system. Nevertheless, while we use a constrained
natural language, Yuan et al. use the SDL format to ex-
press the requirements. SDL is used by the authors be-
cause it is intuitive thanks to its simple conceptual basis
(communicating extended finite state machines) and to
its graphical representation; there are also tools that al-
low complete code generation directly from SDL descrip-
tions. In our experience, formal models such as those
presented in this paper, can be defined only when the
modeller has acquired a proper confidence with the type
of system that shall be modelled. We argue that a proper
confidence with the system can be reached through pro-
totyping and natural language requirements. Therefore,
our approach can be regarded as an intermediate step
to achieve the goal of associating a formal model to the
SYS-RS requirements.



A. Ferrari et al.: Engineering Novel CBTC Solutions 19

L. Jansen et al. [33] illustrate a modelling approach
of the European Train Control System (ETCS) based
on Coloured Petri Nets (CPN) and the Design / CPN
tools. The proposed approach has been developed within
a research project for Deutsche Bahn AG and aims to
model the ETCS system according to an hierarchical
multi-level decomposition. Specifically, three aspects of
ETCS are considered and integrated: components, sce-
narios and functions. The formal model obtained by Jan-
sen et al. will be used to check the completeness of the
system specifications and to extract test cases. The com-
puted models are then simulated by the Design/CPN
tool and each simulation is performed on a sequence of
scenarios with function calls.

Tang et al. [48] present a scenario-based approach us-
ing UML sequence diagrams and model checking to ver-
ify the modeling and specification of the Chinese train
control system level 3 (CTCS-3). Sequence Diagrams
provide a dynamic view of the system behavior which
can be difficult to extract from static diagrams or speci-
fications and Model Checking provides a certain level of
confidence on verification of system properties.

F. Bitsch [5] introduces a process model for the de-
velopment of system requirements specifications for rail-
way systems. The goal of this process model is to achieve
a system specification, which is unambiguous and easy
to understand for all the parties involved. The modeling
language used is the Unified Modeling Language (UML).
The authors demonstrate how different techniques of risk
analysis can be supported by a system model in UML.
The choice of Bitsch on UML derives from its compact-
ness, its intuitive understandability and from the fact
that is becoming a standard in system and software mod-
eling.

J.Bohn et al. [6] illustrate the overall methodology
for developing train system applications based on pow-
erful extensions of the Statemate modeling tool from I-
Logix Inc (currently distributed by IBM?). The exten-
sion includes Live Sequence Charts, Model Checking and
Automatic Generation of Test Vectors from the State-
mate specification model and Scenarios. The approach
illustrated is based on the model checker integrated into
Statemate. This is a formal method that allows authors
to formally establish the correctness between system re-
quirements and system specifications.

While the previous works are mainly concerned with
modelling, the works reported below are focused on the
usage of Constrained Natural Languages (CNLs).

C. Denger et al. [16] show an approach for reducing
the problem of imprecision in natural language require-
ments specifications for embedded systems with the use
of natural language patterns, with a metamodel for de-
scribing all possible requirements statements, which al-
low specifying requirements sentences in a less ambigu-

9 http://www-03.ibm.com/software/products/it/it/
ratistat/

ous, more complete, and more accurate way. Authors do
not give details concerning the use of a tool for require-
ments analysis.

S. Boyd et al. [8] introduce the concept of replace-
ability as a way of identifying the lexical redundancy
within a sample of requirements, that are written using a
CNL. Their approach uses Natural Language Processing
(NLP) techniques for optimally constraining the lexicon
of a CNL and for increasing readability, expressiveness
and unambiguity of CNL.

Agung Fatwanto [22] illustrates a new method for
specifying software requirements using a CNL. The pre-
sented method comprises two aspects: the articulating
medium (using CNL) and the structure for specifying
software requirements. The refinement phase is done by
analyzing and refining the scenario without the use of
tools for requirements analysis. A limitation of this me-
thod is that, in a scenario-like structure, only the func-
tional requirements can be represented.

The presented papers can be divided into three main
groups. The first three works [9,53,40] mainly concern
the usage of semi-formal methods or structured approa-
ches. The last three works [16,8,22,48] concern the us-
age of CNL techniques for requirements specification.
The other works [51,17,54,33,5,6] are focused on for-
mal methods. Our work does not strictly employ formal
techniques but uses CNL techniques to define require-
ments specifications, and semi-formal approaches to de-
fine a global CBTC model. Our work can be therefore at-
tached to the first and to the second group. Besides other
process-related differences, the current paper mainly dif-
fers from all the other works for the emphasis given to
the product line aspects of the CBTC development. The
main novelty is indeed the domain analysis performed,
and the process adopted to define requirements for a
novel CBTC system. We argue that this approach en-
ables the development of a modular, competitive, and
standards-compliant CBTC system.

Semi-Formal vs Formal The choice of using a semi-
formal approach instead of strictly using formal meth-
ods, as done in most of the articles cited, is due to three
main factors: the size of the project, the presence of in-
dustrial partners, and the current development phase.
These factors have led us to consider that a semi-formal
approach is lighter, more scalable, and more understand-
able by every stakeholder compared to formal methods.
Furthermore, in the current development phase, require-
ments for the CBTC components were not completely
clear, and an intermediate step involving prototyping
was required to elicit the requirements. Nevertheless, we
argue that the proposed approach is a structured basis
for the introduction of formal approaches. Indeed, for-
mal strategies can be applied in the product line phase,
to verify the validity of the selected products by using
tools such as SPLOT [36]. Moreover, the CNL patterns
defined can be regarded as a starting point for the trans-



20 A. Ferrari et al.: Engineering Novel CBTC Solutions

lation of the requirements into a formal logic, such as the
parametric SOCL logic [20]. Finally, the current SYS-RS
for the ATS component, can be used to define a for-
mal model of the system - for example using the UMC
language [49] - to be verified against the requirements.
Given these observations, we argue that the presented
method can be regarded as a fundamental, structured
framework for the introduction of a formal layer to sup-
port the future development of CBTC systems. We are
currently working along this direction.

9 Conclusion

In this paper, results are presented concerning the defi-
nition of a global model for CBTC systems. The model is
derived from existing CBTC implementations and from
the guidelines of international standards, and is repre-
sented in the form of a feature model. A methodology
has been outlined to derive product requirements from
the global model. Furthermore, an approach has been
presented to derive system requirements in the CEN-
ELEC context for the individual systems that compose
the CBTC product. Review of each artifact and vali-
dation of each phase is also performed in practice, as
required by the CENELEC process. Nevertheless, the
presented approach mainly focuses on the system def-
inition part of the CENELEC process, and validation
aspects are only partially discussed in this paper. We
leave this discussion to future publications. Another rel-
evant aspect is the possibility to adapt the current ap-
proach to the development of ERTMS/ETCS systems!?.
Challenges related to this adaptation mainly concern the
larger amount of standard documents and implementa-
tions associated to these systems. Therefore, we argue
that the product-line engineering part of our approach,
which highly helps in organizing relevant concepts, can
be a proper support to give a reference framework for
ERTMS/ETCS systems.

The overall method has been considered higly valu-
able by our industrial partner, who acted as external
supervisors for the presented work. The most promising
commercial aspect is the value given to (1) the consid-
eration of the competitor’s choices, and (2) to the ad-
herence to the standards (both CBTC and CENELEC
ones). Though a migration strategy from a CBTC stan-
dard to the other is not fully defined yet, we expect the
transition to be simplified by the consideration of all the
available standards during the functionality identifica-
tion phase.

Concerning the compliance to the CENELEC stan-
dards for the system requirements definition phase, we
are currently working along two directions. The first di-
rection is defining a set of natural language patterns

10" Please refer to http://www.uic.org for a complete list of ref-
erences concerning ERTMS/ETCS systems

to be employed for the definition of technological, per-
formance, safety and RAM requirements. To this end,
we plan to analyse the structure of such type of re-
quirements, by considering example requirements of our
industrial partner. Furthermore, the approach shall be
tuned to produce testable requirements, a quality at-
tribute required by the CENELEC norms. Testable re-
quirements are produced when solely system input and
output are involved in the requirements. We argue that
a precise definition of the system interfaces and commu-
nication protocols is required to achieve this goal, and
activities are currently ongoing towards this direction
with the support of the developed prototype.

Other activities are also planned to enhance the qual-
ity of the NL requirements through automated tools. We
are currently working on defining automated strategies
to identify conflicting requirements, equivalent require-
ments, and provide properly structured requirements doc-
uments [26]. Furthermore, means to manage requirements
evolution (e.g., automated version control) are also fore-
seen.

Acknowledgements

The authors would like to thank Filippo Salotti and
Letizia Bellini from ECM s.p.a. (http://www.ecmre.
com/en/index.xhtml) for playing the role of domain ex-
perts during the research activity presented in this pa-
per. This work was partially supported by the PAR FAS
2007-2013 (TRACE-IT) project.

References

1. TEC 62290-1: Railway applications: Urban guided trans-
port management and command/control systems. Part
1: System principles and fundamental concepts. 2007.

2. TEC 62290-2: Railway applications: Urban guided trans-
port management and command/control systems. Part
2: Functional requirements specification. 2011.

3. Ansaldo STS. CBTC Brochure. http://goo.gl/3Kmb0,
2011.

4. D. S. Batory. Feature models, grammars, and proposi-
tional formulas. In Proc. of SPLC, pages 7-20, 2005.

5. Friedemann Bitsch. Process model for the development
of system requirements specifications for railway sys-
tems. Workshop on Software specification of safety rele-
vant transportation control tasks, 2002.

6. J. Bohn, W. Damm, H. Wittke, J. Klose, and A. Moik.
Modeling and validating train system applications using
statemate and live sequence charts. In Proceedings of the
Conference on Integrated Design and Process Technol-
ogy (IDPT2002), Society for Design and Process Science
(2002), 2002.

7. S. Boyd, D. Zowghi, and A. Farroukh. Measuring the
expressiveness of a constrained natural language: an em-
pirical study. In Requirements Engineering, 2005. Pro-
ceedings. 13th IEEE International Conference on, pages
339-349, 2005.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Ferrari et al.: Engineering Novel CBTC Solutions 21

Stephen Boyd, Didar Zowghi, and Vincenzo Gervasi.
Optimal-constraint lexicons for requirements specifica-
tions. In Proceedings of the 13th international working
conference on Requirements engineering: foundation for
software quality, REFSQ’07, pages 203-217, Berlin, Hei-
delberg, 2007. Springer-Verlag.

Antonio Bucchiarone, Stefania Gnesi, Alessandro Fan-
techi, and Gianluca Trentanni. An experience in using
a tool for evaluating a large set of natural language re-
quirements. In Sung Y. Shin, Sascha Ossowski, Michael
Schumacher, Mathew J. Palakal, and Chih-Cheng Hung,
editors, SAC, pages 281-286. ACM, 2010.

CENELEC. EN 50129, Railway applications - Commu-
nications, signalling and processing systems - Safety re-
lated electronic systems for signalling, 2003.
CENELEC. EN 50128, Railway applications - Commu-
nications, signalling and processing systems - Software
for railway control and protection systems, 2011.
CENELEC. EN 50126, Railway applications - the spec-
ification and demonstration of Reliability, Availability,
Maintainability and Safety (RAMS) - part 1: Generic
RAMS process, 2012.

G. Chastek, P. Donohoe, K. C. Kang, and S. Thiel. Prod-
uct Line Analysis: A Practical Introduction. Techni-
cal Report CMU/SEI-2001-TR-~001, Software Engineer-
ing Institute, Carnegie Mellon University, 2001.

Paul C. Clements and Linda Northrop. Software product
lines: practices and patterns. Addison-Wesley Longman,
Inc., Boston, MA, USA, 2001.

K. Czarnecki and U.W. Eisenecker. Generative pro-
gramming: methods, tools, and applications. ACM
Press/Addison-Wesley, New York, NY, USA, 2000.
Christian Denger, Daniel M. Berry, and Erik Kamsties.
Higher quality requirements specifications through nat-
ural language patterns. In In Proc. of the IEEE Int.
Conf. on Software Sci. Tech. and Eng, pages 80-91.
IEEE Computer Society, 2003.

Didier Essamé and Daniel Dolé. B in Large-Scale
Projects: The Canarsie Line CBTC Experience. In Com-
puter Science, volume 4355/2006, pages 252-254. 2006.
F Fabbrini, M Fusani, S Gnesi, and G Lami. The linguis-
tic approach to the natural language requirements qual-
ity: benefit of the use of an automatic tool. In Software
Engineering Workshop, 2001. Proceedings. 26th Annual
NASA Goddard, pages 97-105. IEEE, 2001.

A. Fantechi and S. Gnesi. Formal modeling for product
families engineering. In Proc. of SPLC, pages 193—-202,
2008.

Alessandro Fantechi, Stefania Gnesi, Alessandro La-
padula, Franco Mazzanti, Rosario Pugliese, and
Francesco Tiezzi. A logical verification methodology for
service-oriented computing. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM), 21(3):16,
2012.

Alessandro Fantechi, Stefania Gnesi, Gioia Ristori,
Michele Carenini, Massimo Vanocchi, and Paolo Mores-
chini. Assisting requirement formalization by means of
natural language translation. Formal Methods in System
Design, 4(3):243-263, 1994.

A. Fatwanto. Specifying translatable software require-
ments using constrained natural language. In Com-
puter Science Education (ICCSE), 2012 7th Interna-
tional Conference on, pages 1047-1052, 2012.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Alessio Ferrari, Alessandro Fantechi, Stefania Gnesi, and
Gianluca Magnani. Model-based development and for-
mal methods in the railway industry. IEEE Software,
30(3):28-34, 2013.

Alessio Ferrari, Alessandro Fantechi, Gianluca Magnani,
Daniele Grasso, and Matteo Tempestini. The metrd rio
case study. Sci. Comput. Program., 78(7):828-842, 2013.
Alessio Ferrari and Stefania Gnesi. Using collective intel-
ligence to detect pragmatic ambiguities. In Requirements
Engineering Conference (RE), 2012 20th IEEFE Interna-
tional, pages 191-200. IEEE, 2012.

Alessio Ferrari, Stefania Gnesi, and Gabriele Tolomei.
Using clustering to improve the structure of natural lan-
guage requirements documents. In Joerg Doerr and
Andreas L. Opdahl, editors, Requirements Engineering:
Foundation for Software Quality, volume 7830 of Lecture
Notes in Computer Science, pages 34—49. Springer Berlin
Heidelberg, 2013.

Alessio Ferrari, Giorgio Oronzo Spagnolo, and Felice
dell’Orletta. Mining commonalities and variabilities from
natural language documents. In Tomoji Kishi, Stan Jarz-
abek, and Stefania Gnesi, editors, SPLC, pages 116-120.
ACM, 2013.

GE Transportation.
http://goo.gl/KshrR, 2012.
Hassan Gomaa. The impact of rapid prototyping on spec-
ifying user requirements. SIGSOFT Softw. Eng. Notes,
8(2):17-27, April 1983.

Claire Grover, Alexander Holt, Ewan Klein, and Marc
Moens. Designing a controlled language for interactive
model checking. In Proceedings of the Third International
Workshop on Controlled Language Applications, pages
29-30, 2000.

Institute of Electrical and Electronics Engineers. IEEE
Standard for Communications Based Train Control
(CBTC) Performance and Functional Requirements.
IEEE Std 1474.1-2004 (Revision of IEEE Std 1474.1-
1999), 2004.

Invensys Rail. SIRIUS Brochure. http://goo.gl/YFUIL,
2009.

L. Jansen, M. Meyer Zu Horste, and E. Schnieder. Tech-
nical issues in modelling the European Train Control
System (ETCS) using Coloured Petri Nets and the De-
sign/CPN tools, 1998.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical report, Carnegie-
Mellon University Software Engineering Institute, 1990.
Ed Kuun. Open Standards for CBTC and CBTC Ra-
dio Based Communications. In APTA Rail Rail Transit
Conference Proceedings, 2004.

Marcilio Mendonca, Moises Branco, and Donald Cowan.
Splot: software product lines online tools. In Proceed-
ings of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and
applications, pages 761-762. ACM, 2009.

Rani Nelken and Nissim Francez. Automatic translation
of natural language system specifications into temporal
logic. In Computer Aided Verification, pages 360-371.
Springer, 1996.

Robert D. Pascoe and Thomas N. Eichorn. What is
Communication-Based Train Control? IEEE Vehicular
Technology Magazine, 2009.

Tempo CBTC Solution.



22

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

A. Ferrari et al.: Engineering Novel CBTC Solutions

Klaus Pohl, Giinter Bockle, and Frank J. van der Linden.
Software Product Line Engineering: Foundations, Prin-
ciples and Techniques. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

S. Rampelli and S. D. Virivinti. Architectural De-
sign Pattern Representation For Communications-Based
Train Control System (CBTCS). International Journal
of Engineering Research and Technology (IJERT), 2012.
F. Roos-Frantz. Automated Analysis of Software Product
Lines with Orthogonal Variability Models: Extending the
FaMa Ecosystem. PhD thesis, University of Seville, 2012.
Ken Schwaber. Agile project management with Scrum.
Microsoft Press, 2004.

Rolf Schwitter. English as a formal specification lan-
guage. In DEXA Workshops, pages 228-232. IEEE Com-
puter Society, 2002.

Siemens Transportation Systems. Trainguard MT
CBTC. http://goo.gl/Xi0h0, 2006. The Moving Block
Communications Based Train Control Solution.
Signalling Solutions Limited. URBALIS Communication
Based Train Control (CBTC) Delivery Performance and
Flexibility. http://goo.gl/G3hEe, 2009.

Jeffrey S. Stover. CITYFLO 650 System Overview.
http://goo.gl/e26SZ, 2006.

Alistair Sutcliffe. Scenario-based requirements engineer-
ing. In Proceedings of the 11th IEEE International Con-
ference on Requirements Engineering, RE 03, pages 320—
329, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

W. Tang, B. Ning, T. Xu, and L. Zhao. Scenario-based
modeling and verification for ctcs-3 system requirement
specification. In Computer Engineering and Technology
(ICCET), 2010 2nd International Conference on, vol-
ume 1, pages V1-400-V1-403, 2010.

Maurice H ter Beek, Alessandro Fantechi, Stefania Gnesi,
and Franco Mazzanti. A state/event-based model-
checking approach for the analysis of abstract sys-
tem properties. Science of Computer Programming,
76(2):119-135, 2011.

Thales  Transportation. Seltrac ~ Brochure.
http://goo.gl/OjhvK, 2009.

Haifeng Wang and Shuo Liu. Modeling Communications
Based Train Control system: A case study. In Proc. of
ICIMA, pages 453—-456, 2010.

William M. Wilson, Linda H. Rosenberg, and
Lawrence E. Hyatt. Automated analysis of requirement
specifications. In Proc. of ICSE ’97, pages 161-171,
New York, NY, USA, 1997. ACM.

C.S. Yang, J.S. Lim, J.K. Um, J.M. Han, Y. Bang, H.H.
Kim, Y.H. Yun, C.J. Kim, and G. Cho, Y. Developing
CBTC Software Using Model-Driven Development Ap-
proach. In Proc. of WCRR, 2008.

L. Yuan, T. Tang, and K. Li. Modelling and Verification
of the System Requirement Specification of Train Control
System Using SDL. In Proc. of ISADS, pages 81-85,
2011.



