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Abstract Since state-rich formalism Circus is a combina-
tion of Z, CSP, refinement calculus and Dijkstra’s guarded
commands, its model checking is intrinsically more com-
plicated and difficult than that of individual state-based lan-
guages or process algebras. Current solutions translate exe-
cutable constructs of Circus programs to Java with JCSP, or
translate them to CSP processes. Data aspects of Circus pro-
grams are expressed in the Java programming language or as
CSP processes. Both of them have disadvantages. This work
presents a new approach to model-checking Circus by link-
ing it to CSP ‖ B, then we utilise ProB to model-check and
animate the CSP ‖ B program. The most significant advan-
tage of this approach is the direct mapping of the state part in
Circus to Z and finally to B, which maintains the high-level
abstraction of data specification. In addition, introduction of
deadlock, invariant violation checking, LTL formula check-
ing and animation is another key advantage. We present our
approach, a link definition for a subset of Circus constructs,
as well as a popular case study (reactive buffer) to show the
practical usability of our work. We conclude with a discus-
sion of related work, advantages and potential limitations of
our approach, and future work.
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1 Introduction

In the last two decades, the advent of model checking [14], a
technique used for the verification of a finite-state system by
automatically and exhaustively checking whether the model
meets a given specification, has been getting ever increas-
ing interest from both industry and academia. Verification
of systems specified using formal methods by model check-
ing is one among these. Comparing to theorem proving, an-
other technique for formal verification, the advantages of
model checking, including an automated checking proce-
dure, counterexamples for debugging, and the capability of
temporal logic properties checking, make it very important
for a formalism to support both model checking and theorem
proving in a complementary way.

Traditional research in formal methods often focuses on
two schools: state-based, model-oriented specification lan-
guages such as Z [47], B [5] and VDM [26]; and behaviour-
oriented process algebras such as CSP [25, 43], CCS [32]
and ACP [8]. But in recent decades, there is an increasing re-
search interest in specification languages that integrate both
state and behavioural aspects. Early solutions aim to com-
bine them together, such as CSP-OZ [18], ZCCS [23], Z
and CSP [34, 44], and CSP ‖ B [46]. Fischer gave a sum-
mary of combination solutions of Z and process algebras
[19]. However, state-rich formalism Circus [49] is not a sim-
ple combination of Z and CSP. It is a combination of Z,
CSP, refinement calculus [33] and Dijkstra’s guarded com-
mands [16]. Therefore, its model checking is intrinsically
more complicated and difficult than that of individual Z and
CSP. The complexity of model checking Circus is increased
due to two main factors. The first one is state space explo-
sion challenge. Basically, the state of a system specified by
Circus is the state of its processes. However, for each pro-
cess it may contain state and behaviour, and consequently
its state is a combination of both variable state and action
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state. In addition, the process’s variable and action states
are dynamically constructed and destroyed along with in-
vocation and destroy of the process. It possibly has infinite
number of distinct states as well. Because of this hierarchi-
cal structure of Circus and possible infinite states, how to
represent and search its state space including infinite state
space and infinite data type efficiently is really a challenge.
Another factor is Circus’s very rich notations from Z, CSP
and guarded commands. Along with its powerful expres-
siveness and high-level abstraction, all make the develop-
ment of its model checker—to parse and typecheck Circus
programs, check deadlock and livelock, check refinement
in terms of Circus action refinement and data refinement,
and CSP failure-divergence refinement—difficult. In addi-
tion, the relationship between state and behaviour in early
solutions is always orthogonal during development. There-
fore, they can use the existing tools for each school sepa-
rately. However, for Circus its syntax is a free mixture of
CSP and Z. As a result it cannot use current Z and CSP tools
directly.

Our proposed approach to model-check Circus in this
paper is to link Circus to CSP ‖B that integrates state and be-
haviour through synchronization of operations. On the one
hand, the state part in Circus is transformed to the B ma-
chine. On the other hand, the behavioural part is converted to
CSP. The resultant CSP and B specifications maintain high-
level abstraction of the initial Circus specification because
they are specification languages rather than programming
languages. Accordingly, it is more direct and powerful to
specify the state part in B than in CSP. Furthermore, the final
CSP ‖B can be model-checked by ProB [3], a model checker
and animator for multiple languages. Apart from these, with
ProB we introduce LTL and CTL [14] property checking,
automatic and manual animations, and refinement checking
into Circus specification.

Our contribution is to define a formal link from Circus to
CSP ‖B. With this link, we take the model checking into Cir-
cus by model-checking CSP ‖B using ProB. Additionally, to
establish the link between them, we studied the transforma-
tion from Z in ISO Standard [4] dialect to Z in ZRM [47]
and finally to B, and the transformation of Circus expres-
sions from ISO Standard Z to CSP as well. The soundness of
the link from Circus to the intermediate CSP and Z in ZRM
is proved based on their semantics in Hoare and He’s Unify-
ing Theories of Programming (UTP) [24]. We also studied
the correctness of the link from Z in ZRM to B though it re-
lies on the implementation of ProB. Furthermore, because of
the expressiveness and high-level abstraction of Circus, it is
impossible to define an inverse link from CSP ‖ B to Circus
and achieve exactly the same Circus constructs as the orig-
inal constructs. Hence, our link is one direction only from
Circus to CSP ‖ B and can not form Galois connections [24].

The rest of the paper is structured as follows. We give
a brief introduction of Circus and CSP ‖ B in Sect. 2. Then
in Sect. 3, the link function, its decomposition and overall
strategies are described. Afterwards, Sect. 4 presents a sub-
set of rules for each link function. A case study of a buffer is
undertaken in Sect. 5 to illustrate how our approach works.
Finally, in Sect. 6, we discuss related work, our work’s pros
and cons, and future work.

2 Background

2.1 Circus

The BNF syntax of Circus is shown in Figure 1. A Cir-
cus program consists of a sequence of paragraphs: Z para-
graph, channel declaration, channel set definition or a pro-
cess definition. A category, that is decorated with an addi-
tional star, such as CircusPar∗, denotes a possibly empty
list of CircusPar, while a category decorated with an ad-
ditional plus, such as N+, denotes a non-empty list of Z
identifiers N. Par, SchemaExp, Exp, Pred and Decl rep-
resent Z paragraphs, schema expressions, expressions, pred-
icates and declarations defined in the reference manual [47]
respectively.

A Circus paragraph can be a Z paragraph, a channel dec-
laration, a channel set declaration, or a process declaration.
A channel declaration is very similar to that in CSP except a
schema channel declaration which merely groups the chan-
nel declarations into the schema. And a channel set decla-
ration relates a name to a set of channels. Additionally a
process can be defined in the process declaration as a para-
metrised process (Decl • ProcDef ), an indexed process , an
explicitly defined process (begin · · · state · · · • A end), or a
compound process which is defined in terms of CSP opera-
tors or the indexed operator (bic). In particular, the indexed
process (IP =̂ i : T � P) is new to Circus . For its instantia-
tion IPbec, it behaves like P, but for each channel c in P, it
is changed to c i.e. In addition, a process renaming opera-
tor (P[cold := cnew ]) substitutes the channels in cnew for the
channels in cold in the process P.

An explicitly defined process is composed of a state sc-
hema, which declares a set of state components in the pro-
cess, multiple schemas and action declarations (possibly none
of them), a main action, which defines the behaviour of this
process. An action can be a schema expression ((SchExp)),
a command, an action defined in terms of CSP. And a com-
mand can be an assignment (:=), an alternation (if · · ·fi), a
guarded command ((g)N A), a variable block (varDecl •
A), a parametrisation by value (val), by result (res) and by
value-result (vres), a specification statement (:[ ]), an as-
sumption ({}), or a coercion ([ ]). Particularly, for CSP ac-
tions, the parallel composition (A1 J ns1 | cs | ns2 K A2 where
ns1 and ns2 are the state partitions of the actions A1 and A2
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Program ::= CircusPar∗

CircusPar ::= Par | channel CDecl | chanset N == CSExp | ProcDecl
CDecl ::= SimpleCDecl | SimpleCDecl;CDecl
SimpleCDecl ::= N+ | N+ : Exp | [N+]N+ : Exp | SchemaExp
ProcDecl ::= process N =̂ ProcDef | process [N+]N+ =̂ ProcDef
ProcDef ::= Decl•ProcDef | Decl�ProcDef | Proc
Proc ::= begin PPar∗ state N =̂ SchemaExp PPar∗ •Action end

| Proc ;Proc | Proc 2 Proc | Proc u Proc | Proc JCSExp K Proc
| Proc ||| Proc | Proc\CSExp | (Decl•ProcDef)(Exp+) | N(Exp+) | N
| (Decl�ProcDef)bExp+c | NbExp+c | Proc[N+ := N+] | N[Exp+]
| ;Decl•Proc | 2Decl•Proc | uDecl•Proc

| JCSExp KDecl•Proc | |||Decl•Proc
PPar ::= Par | N =̂ ParAction | nameset N == NSExp
ParAction ::= Action | Decl•ParAction

Action ::= (SchemaExp) | Command | N | CSPAction | Action[N+ := Exp+]
CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action

| Action ;Action | Action 2 Action | Action u Action
| Action JNSExp | CSExp | NSExp KAction
| Action ||[NSExp | NSExp ]||Action
| Action\CSExp | ParAction(Exp+) | µ N•Action
| ;Decl•Action | 2Decl•Action | uDecl•Action

| JCSExp KDecl • JNSExp KAction | |||Decl• ||[NSExp ]||Action
Comm ::= N CParameter∗ | N [Exp+] CParameter∗

CParameter ::= ?N | ?N:Pred | !Exp | .Exp
Command ::= N+ := Exp+ | if GActions fi | var Decl•Action

| N+ : [Pred,Pred] | {Pred} | [Pred]
| val Decl•Action | res Decl•Action | vres Decl•Action

GActions ::= Pred → Action | Pred → Action 2 GActions

Fig. 1: Syntax of Circus

separately) and the interleaving (A1 ||[ ns1 | ns2 ]||A2) in Cir-
cus are slightly different. Both A1 and A2 have a copy of all
variables in scope and may change the value of these vari-
ables. But only the changes made to the variables in ns1 and
ns2 have an effect in the final state of the parallel compo-
sition and the interleaving. Furthermore, state components
and local variables in an action can be renamed by a renam-
ing operator (A[vold := vnew ]).

A simple buffer [12] specification in Circus is illustrated
in Figure 2. The size of the buffer is bounded by maxbuff , a
global constant declared in the axiomatic paragraph. After-
wards, two typed channenls input and output are declared to
allow only natural number on their communications. Then
an explicitly defined process named Buffer is defined. This
process has two state variables buff and size. And the ini-
tial state of the process is an empty buffer where buff is an
empty sequence and size is equal to 0. In addition to the
state schema and the initial schema, there are two schemas
InputCmd and OutputCmd defined as well. They are invoked
by their corresponding schema expressions (InputCmd) and

(OutputCmd) in the actions Input and Output respectively.
The behaviour of Buffer is specified by its main action: it is
initialized to the initial state; after that, it provides input (in
case the buffer is not full) and output (in case the buffer is

section BufferSpec parents circus toolkit
| maxbuff : N1
channel input,output : N
process Buffer =̂ begin

state State == [buff : seq N ; size : 0 . .maxbuff |
size = #buff ≤ maxbuff ]

Init == [(State)′ | buff ′ = 〈〉 ∧ size′ = 0 ]
InputCmd == [∆State ; x? : N | size < maxbuff ∧

buff ′ = buff 〈̂x?〉 ∧ size′ = size+1 ]
OutputCmd == [∆State | size > 0 ∧ buff ′ = tailbuff ∧

size′ = size−1 ]

Input =̂ (size < maxbuff)N input?x→ (InputCmd)
Output =̂ (size > 0)Noutput!(head buff )→ (OutputCmd)
• (Init) ; (µX • (Input 2 Output) ;X

)
end

Fig. 2: The Specification of Buffer

not empty) events to its environment continuously. Accord-
ingly, it buffers the input message in its end and increases
its size by one, or outputs its head and decreases its size by
one.

Additionally, since Circus is a combination of several
different languages that have different semantics, there ari-
ses an issue about how to unify its semantics into one. For
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example, CSP-OZ introduces the failures-divergences mo-
del [43] into Object-Z [11] classes and then integrates CSP
processes with Object-Z classes based on the same failures-
divergences semantics. But CSP ‖ B treats a B machine as
a CSP process, and gives CSP traces, stable failures and
failures-divergences semantics to B machines [46]. Circus
needs to combine not only Z and CSP, but also the guarded
command language and the refinement calculus. Circus for-
malises its model in UTP because UTP is a common frame-
work for the unification of programs from different para-
digms. Denotational semantics [37, 38, 49] and operational
semantics [22, 51, 52] of Circus have been given.

2.2 Unifying Theories of Programming

UTP is a unified framework to form theoretical basis for de-
scribing and specifying computer languages across different
paradigms such as imperative, functional, declarative, non-
deterministic, concurrent, reactive and high-order. A theory
in UTP is described from three parts: alphabet, a set of vari-
able names for the theory to be studied; signature, rules of
primitive statements of the theory and how to combine them
together to get more complex program; and healthiness con-
ditions, a set of mathematically provable laws or equations
to characterise the theory.

The alphabetised relational calculus [13] is the most ba-
sic theory in UTP. A relation is defined as a predicate with
undecorated variables (v) and decorated variables (v′) as its
alphabet. v denotes the observation made initially and v′

denotes the observation made at the intermediate or final
state. The behaviour of a design is described from initial
observation and final observation by relating precondition
P to postcondition Q as (P`Q) [24, 50]. It is defined as
(P`Q =̂ okay∧P⇒ okay′ ∧Q) where okay records the pro-
gram has started and okay′ that it has terminated.

But a reactive process cannot be characterised from the
final observation alone because it interacts with its environ-
ments (other programs and users). It must take intermediate
states into account. Therefore, three extra variables and their
dashed counterparts are introduced: tr and tr′, the sequences
of the events occurred; ref and ref ′, the sets of events that
may be refused; wait and wait′, the boolean variables that
denote whether the process has terminated (true) or is in
an intermediate state (false). Cavalcanti and Woodcock [13]
lift the theory of reactive processes to CSP processes. “CSP
processes are reactive; moreover they are R-image of de-
signs” [13, Figure 1, p.257]. The reactive processes are ex-
pressed as the reactive design (R(P`Q)).

2.3 Combination of CSP and B

CSP ‖ B [9] is a combination of CSP and B aiming to intro-
duce behavioural specification into state-based B machines.
The B method characterises abstract state, operations with
respect to their enabling conditions, and their effect on the
abstract state, while CSP specifies overall system behaviour.
But different from Circus, the CSP specification and B ma-
chine in CSP ‖ B are always orthogonal. They are individu-
ally complete specifications and can be checked separately.

Semantically the combination of CSP and B works in
terms of CSP. The B machine, which has operations Ops
({Op1, . . . ,Opn}) and variables Vars ({v1, . . . ,vm}), is rega-
rded as a process Bproc (1). The operation Opi is enabled if its
precondition holds or enabled(Opi) is true. CSP may have
all or part of events from the events Ops ({Op1, . . . ,Opn})
that have the same name as operations Ops in B. CSP and
B processes are composed together by a generalised parallel
composition in CSP, as shown in (2). B and CSP synchro-
nise on events Ops in CSP and operations Ops in B. If an
event Opi in Ops is allowed by the CSP specification and
at the same time the operation Opi in B is enabled as well,
then they can make progress. After that, the state Vars of
the B machine, which are specified in the predicate of oper-
ation Opi, are updated. Otherwise, if Opi is not allowed at
the same time as Opi is enabled, neither of them can make
progress. In addition, for events only in CSP and not having
corresponding operations in B, they engage independently.
Conversely, for operations only specified in B and not in
CSP, they are prevented from executing. If none of opera-
tions required by CSP specification are enabled or the CSP
process is blocked, then the CSP ‖ B program is deadlocked.
Consequently no state can be changed and no event can be
engaged.

Bproc =̂ µ X •

 (Op1→ X)<I enabled(Op1)>I STOP
2 . . .

2 (Opn→ X)<I enabled(Opn)>I STOP


(1)

CSP ‖ B =̂ (CSP ‖
Ops

Bproc) \ {|Ops|} (2)

2.4 ProB

ProB is a model checker and animator developed by the
University of Düsseldorf originally for the B language. It
has been extended to support a variety of formal specifica-
tion languages, such as Z, CSP, Event-B [6], TLA+ [27],
Promela and CSP ‖ B. Particularly, the dialect of Z sup-
ported is ZRM [47] and the syntax of CSP is written in
CSPM [45]. The main functions of ProB include temporal
logic and refinement model checking, deadlock and invari-
ant violation checking with counterexamples available, au-
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tomatic and manual animations, visualisation of state spaces
and test-case generation. Its kernel is written in SICStus Pro-
log [10]. Most importantly, its source code is open and li-
censed under EPL v1.0 [17].

3 Link Definitions

3.1 Overall Link Function

A function ϒ (pronounced “upsilon”) is defined to map a
Circus program to a CSP ‖ B program.

Circus
ϒ

===⇒ CSP ‖ B

The overall strategies of ϒ are defined.

– Fundamentally, the state part of Circus is linked to a B
machine and the behavioural part to a CSP specification.
Some constructs such as command actions, which spec-
ify both state and behaviour, are mapped to constructs in
both B and CSP.

– The definitions, such as type definitions, abbreviation
and axiomatic definitions, are mapped to the counter-
parts in B and possibly in CSP if they are referred to
in the behavioural part of Circus.

– State components in Circus are mapped to variables in B.
However, since state components are encapsulated in ex-
plicitly defined processes, they are merged to form vari-
ables in B when mapped.

– Operational schemas within an explicitly defined pro-
cess, which includes the state schema in its declaration
and is not included by other schemas, are mapped to op-
erations in B. However, these operations are restricted to
manipulate variables that are mapped from state compo-
nents of the same processes in Circus , and never change
variables that are mapped from state components of dif-
ferent processes.

– Channel declarations are mapped to channel declarati-
ons in CSP.

– The main action of an explicitly defined process is map-
ped to a same name process in CSP.

– Compound processes are linked to the same name pro-
cesses in CSP.

3.2 ϒ Function Decomposition

Because a Circus program is linked to a CSP ‖ B program
with a complete B machine and a CSP specification, we de-
compose the ϒ function into two functions: Ω (pronounced
“omega”) function and Φ (pronounced “phi”) function. The
Ω function is responsible for the translation of the state part
in Circus to B, while the Φ function is for that of the be-
havioural part to CSP.

However, Circus itself is not a simple combination of
the CSP and Z languages but a free mixture of CSP and Z
with additional guarded commands. An exact example is the
assignment command that may specify both state and be-
haviour. For instance, this action (3) inputs a value x over
c channel, then the assignment command updates the state
variable s to x plus the local variable l. In this action, state
and behaviour are mixed together. As a result, Ω and Φ

functions cannot apply to the original Circus program di-
rectly.

c?x→ s := x+ l (3)

Thus, another function, named Rwrt, is defined. It aims
to rewrite a Circus program to separate the state and be-
havioural parts into Z and CSP. The action (3) is rewritten
to an action and a schema (4) according to the Rwrt Rule 7
which is defined latter. Finally, Ω and Φ can be easily ap-
plied to this rewritten Circus program.

c?x→ (AssOp) (4)

where AssOp == [∆P StPar ; l? : Tl? ; x? : Tc | s′ = x?+ l? ]

The relation of ϒ function decomposition is displayed
in Figure 3. In a rewritten Circus program, state and be-
haviour are separate. No construct will specify both state
and behaviour at the same time. The interaction between
them highly depends on schema expressions. The original
schemas and schema expressions in Z and behaviour re-
spectively are still kept in the rewritten program. In addi-
tion, it is worth noting that additional operational schemas
are added in Z, and any direct state components accessed
and updated in Circus actions will rely on schema expres-
sions. Furthermore, for other constructs such as commands,
they are rewritten to additional schemas and their schema
expressions as well. Finally we state that the rewritten Cir-
cus program has the same structure as the original program,
which means state components of each process are still en-
capsulated in its own process.

3.2.1 Ω Function Decomposition

For the Ω function, our strategy is to reuse the currently
available solution [41] in ProB to translate Z in ZRM to B.
Considering this strategy, we map the state part of the Cir-
cus program to ISO Standard Z first because Circus itself is
written in ISO Standard Z, then to Z in ZRM, and finally
from ZRM to B by ProB. Accordingly, the Ω function is de-
composed as well: the Ω1 function translates the state part in
Z in a rewritten Circus specification to a complete specifica-
tion in ISO Standard Z by merging all state components and
schemas from all processes; the Ω2 function syntactically
transforms Z in ISO Standard Z to that in ZRM; the Ω3 func-
tion, translation function from ZRM to B, is implemented in
ProB and stated in Daniel Plagge et al.’s work [41].
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Fig. 3: Translation Function (ϒ ) Decomposition

3.3 Link Strategies

In addition to the overall strategies and link functions, some
other strategies are defined.

– Every rule defined for ϒ is sound unless stated other-
wise. The soundness of the map is based on UTP seman-
tics. If the corresponding linked constructs in CSP ‖ B
have the same semantics as the original constructs in Cir-
cus, then the link is sound.
– From the design perspective, a design P1`Q1 is equal

to another design P2`Q2 if, and only if, (P1 = P2)∧
(P1 ⇒ (Q1 = Q2)). If both designs have the same
alphabets (ok, v, and their dashed counterparts), the
same preconditions that imply the equal postcondi-
tion, we say they are semantically equal.

– From the reactive process (R(P`Q)) perspective, if
both reactive processes have the same alphabets (ok,
wait, tr, ref , v, and their dashed counterparts), the
same preconditions that imply the equal postcondi-
tion and the same other observation variables, we say
two reactive processes are semantically equal.

– For state-based specification languages such as Z and
B, their semantics are specified in the designs of UTP.
But for CSP and the behavioural part of Circus, their
semantics are specified in the reactive theory of UTP.

– State components of Circus are maintained in a Z spec-
ification and finally a B machine. Thus we require they
are updated only in the B machine but can be accessed
in both B and CSP programs. The CSP specification will
not maintain states. If a process in the CSP specification
needs to get the value of variables in B, it shall retrieve
them through a communication between CSP and B.

4 Link Rules

4.1 Identifiers

In ISO Z Standard, an identifier is a DECORWORD that is com-
posed of WORD and STROKE [4, 8.4]. Stokes (’, !, and ?)
are very important part in Z specification. They may denote
dashed variables, input variables and output variables within
a schema. In addition, they may form the schema decoration
and binding construction expressions as well. A word can
be a keyword, operator or name. In addition to letter, digital
and underscore (_), a name may have other special symbols
such as subscript and superscript.

However, the pattern of an identifier or name in CSPM
and B, [a-zA-Z][a-z A-Z0-9_] [15,20], is limited. It be-
gins with an alphabetic character ([a-zA-Z]) and are fol-
lowed by any number of alphanumeric characters or under-
scores. Particularly, for CSPM , it can be optionally followed
by prime characters (’).

Therefore, we restrict the pattern used in Circus for a
name the same as that in CSPM and B. But for strokes,
they are necessary and specially treated when translating to
CSPM and B.

4.2 Circus Rewriting Function - Rwrt

The Rwrt function is defined to rewrite Circus constructs to
facilitate the application of the Φ function and the Ω func-
tion in the later stage.

Rwrt Rule 1 (Parametrised Process) For the parametrised
process, it is expanded to a number of explicitly defined pro-
cesses, provided that T in (5) is finite and has n elements: x1,
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. . . , xn. The number of explicitly defined processes is equal
to the cardinality of T.

Rwrt (process PP =̂ x : T • P)

=

Rwrt (process PP x1 =̂ P[x1/x])
. . .

Rwrt (process PP xn =̂ P[xn/x])

 (5)

where the substitution notation P[x1/x] denotes the expres-
sion x1 consistently substituted for free occurrences of the
variable x in P.

Rwrt Rule 2 (Indexed Process) An indexed process (6) is
rewritten to a parametrised process with all its channels re-
named at first, then it is expanded to a number of explicitly
defined processes by the parametrised process rule (5).

Rwrt (process IP =̂ i : T � P)

= Rwrt (process IP =̂ i : T • P[c := c i.i])

=

Rwrt (process IP i1 =̂ (P[c := c i.i])[i1/i])
. . .

Rwrt (process IP in =̂ (P[c := c i.i])[in/i])


=

Rwrt (process IP i1 =̂ P[c := c i.i1])
. . .

Rwrt (process IP in =̂ P[c := c i.in])

 (6)

where P[c := c i.i] denotes the renaming of each channel c
in P to c i.i.

Rwrt Rule 3 (Renaming Operator) The renaming operator
P[cold := cnew] renames the channel cold in P to the channel
cnew.

Rwrt (P[cold := cnew]) = (FRen(P,{(cold,cnew)})) (7)

where FRen(P,{x,y}) is a renaming function that replaces
occurrences of the term x in P to the term y.

Rwrt Rule 4 (Indexed Process with Renaming) In Circus,
the indexed process notation is commonly used with the re-
naming operator together to define more expressive processes.
Therefore,

Rwrt ((process IP =̂ i : T � P) [c i := d])

= Rwrt ((process IP =̂ i : T • P[c := c i.i]) [c i := d])
[Rwrt Rule 2]

=


Rwrt

(
process IP i1 =̂
((P[c := c i.i]) [i1/i]) [c i := d]

)
. . .

Rwrt

(
process IP in =̂
((P[c := c i.i]) [in/i]) [c i := d]

)


[Rwrt Rule 1]

=


Rwrt

(
process IP i1 =̂

(P[c := c i.i1]) [c i := d]

)
. . .

Rwrt

(
process IP in =̂

(P[c := c i.in]) [c i := d]

)


[Substitution]

=

Rwrt (process IP i1 =̂ P[c := d.i1])
. . .

Rwrt (process IP in =̂ P[c := d.in])

 [Rwrt Rule 3]

For explicitly defined processes, the Rwrt function is to
separate the state part and the behavioural part as well as re-
naming of state components, schema paragraphs and action
paragraphs. Consequently, all interactions between state and
behaviour are through schema expressions only.

Rwrt Rule 5 (Additional State Components Retrieve Sc-
hemas) The rule for state components retrieve schemas is
shown in Figure 4, where B function denotes the body of
the action. For each state component in an explicitly defined
process, one schema is added to retrieve the value of this
state component. The name of the output variable in this sc-
hema is composed of the state component name and !. And
its type is the same as the type of the state component.

Rwrt Rule 6 (Renaming of State Components, Schemas,
Actions and their Refereneces) The rule for renaming is
shown in Figure 5. State components, schema paragraphs,
action paragraphs, and each reference to them within an ex-
plicitly defined process are renamed by prefixing the pro-
cess’s name. The only exception is that the reference to state
components in action is not changed.

Rwrt Rule 7 (Action Rewriting) The rule for action rewrit-
ing is illustrated in Figure 6, where P assOp (8) is a schema
added in the process of this assignment. The definitions of
Rpre and Rpost functions are given in Definition 1. To rewrite
the external choice, a Rmrg function is provided to merge the
rewriting prefixes of both actions and it is defined in Defini-
tion 2. Note that it is not syntactically correct in Circus be-
cause schema expression actions cannot be a channel event
in communication. But when schema expression actions are
translated to events in CSP, it is valid in the final CSP ‖ B.

P assOp == [∆P StPar ; l? : Tl? ; l! : Tl! |
P s′ = (es[l?/l]) ∧ l! = (el[l?/l]) ] (8)

Definition 1 (Rpre and Rpost) Rewriting an action to get the
value of state components in its first construct, Rwrt(A), is
composed of Rpre(A) and Rpost(A) which denotes the pre-
fix (state components retrieve schema expressions) and the
remaining respectively: Rwrt(A) = Rpre(A)→ Rpost(A). For
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Rwrt


process P =̂ begin

stateStPar == [s1 : T1 ; · · ·sn : Tn | p ]
Pars == [ · · · ]
APars =̂ B(APars)
• A

end



=



process P =̂ begin
stateStPar == [s1 : T1 ; · · ·sn : Tn | p ]
Pars == [ · · · ]
Op s1 == [ΞStPar ; s1! : T1 | s1! = s1 ]
· · ·
Op sn == [ΞStPar ; sn! : Tn | sn! = sn ]
APars =̂ B(APars)
• A

end


Fig. 4: Additional Schemas for State Components Retrieve

example,

Rpre(Skip) = Rpost(Skip) = Skip
Rpre(Stop) = Rpost(Stop) = Stop
Rpre(c!si! . . .!sj→ A) = (OP si)→ ··· → (OP sj)
Rpost(c!si! . . .!sj→ A) = c!si! . . .!sj→ Rwrt(A)
Rpre(g) = (OP si)→ ·· · → (OP sj)
Rpost(g) = g

provided the condition g evaluates state components si,. . . ,sj,
and OP si is the schema name for state component si.

Definition 2 (Rmrg) A Rmrg (Rpre(A1),Rpre(A2)) function is
defined to merge the rewriting prefixes of A1 and A2 into one
final prefix. Basically, it is equal to Rpre(A1)→ Rpre(A2) if
each state component retrieve schema expression in Rpre(A2),
(OP si), is different from any in Rpre(A1). However, for any
state component retrieve schema expression in Rpre(A2), if it
is the same as that in Rpre(A1), it is removed from Rpre(A2)

before combination. For example,

Rmrg

(
(OP x),(OP y)

)
= (OP x)→ (OP y)

Rmrg

(
(OP x),(OP y)→ (OP x)

)
= (OP x)→ (OP y)

4.3 Circus state part to B - Ω

4.3.1 Circus state part to ISO Standard Z - Ω1

The function Ω1 translates the state part in a rewritten Cir-
cus program to a Z specification in ISO Standard Z. Because
the state part of Circus is also written in ISO Standard Z, for
most constructs they are just a direct map without changes.
However, a rewritten Circus program still has the same struc-
ture as the original program—all state components and sche-
mas are encapsulated within the processes—but the state and

Rwrt



process P =̂ begin
stateStPar == [s1 : T1 ; · · ·sn : Tn | p ]
Pars == [ · · · ]
Op s1 == [ΞStPar ; s1! : T1 | s1! = s1 ]
· · ·
Op sn == [ΞStPar ; sn! : Tn | sn! = sn ]
APars =̂ B(APars)
• A

end



=



process P =̂ begin
stateP StPar == [P s1 : T1 ; · · ·P sn : Tn | p ]
P Pars == [ · · · ]
P Op s1 == [ΞP StPar ; s1! : T1 | s1! = P s1 ]
· · ·
P Op sn == [ΞP StPar ; sn! : Tn | sn! = P sn ]
P APars =̂ B(P APars)
• Rwrt(A)

end


Fig. 5: Renaming

Rwrt (Skip) = Skip
Rwrt (Stop) = Stop

Rwrt

(
(SExp)

)
= (SExp)

Rwrt (c!si!...!sj→ A) = (Op si)→ ··· → (Op sj)→
c!si! . . .!sj→ Rwrt (A)

Rwrt

(
(g)NA

)
= Rpre(g)→ Rpre(A)→

(
(g)NRpost (A)

)
Rwrt (A1 ;A2) = Rwrt (A1) ;Rwrt (A2)
Rwrt (A1 2 A2) = Rmrg (Rpre(A1),Rpre(A2))→

(Rpost (A1)2 Rpost (A2))
Rwrt (A1 u A2) = Rmrg (Rpre(A1),Rpre(A2))→

(Rwrt (A1) u Rwrt (A2))
Rwrt (A1 Jns1 | cs | ns2 KA2) = Rmrg (Rpre(A1),Rpre(A2))→

(Rpost (A1) Jns1 | cs | ns2 KRpost (A2))
Rwrt (A1 ||[ns1 | ns2 ]||A2) = Rmrg (Rpre(A1),Rpre(A2))→

(Rpost (A1) ||[ns1 | ns2 ]||Rpost (A2))

Rwrt

(
A\ cs

)
= Rpre (A)→

(
Rpost (A)\ cs

)
Rwrt

(
µX • A(X)

)
= µX • Rwrt (A(X)) and (Rwrt (X) = X)

Rwrt (A) = Rwrt (B(A))

Rwrt (s, l := es,el) = (P assOp)
Rwrt (varx : T • A) = Rpre (A)→ (varx : T • Rpost (A))

Fig. 6: Action Rewriting

schemas in a ISO Standard Z specification are flat. There-
fore, we need to merge all state components and schemas
into one global and flat specification in ISO Standard Z.

Ω1 Rule 1 (States and Schemas Merge) If there are more
than one explicitly defined process, their states and oper-
ations are merged in the resultant Z specification. Assume
there are n explicitly defined processes, named P1,P2, . . . ,Pn,
in a Circus specification. Their states and schemas are merged
as shown in Figure 7. The state schema is a conjunction
of state schemas from all processes, as well as the Init sc-
hema. All other schemas from each process will be trans-
lated to corresponding schemas with their own declaration
and predicate. Additionally they shall keep state components
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Ω1(Rewritten Circus Program)

=Ω1





process P1 =̂ begin
stateP1 StPar == [P1 s1 : T11 ; · · ·

P1 sm1 : T1m1 | ps1 ]
P1 Init == [(P1 StPar)′ | pi1 ]
P1 Pars == [decl1 | p1 ]
• A

end


· · ·

process Pn =̂ begin
statePn StPar == [Pn s1 : Tn1 ; · · ·

Pn smn : Tnmn | psn ]
Pn Init == [(Pn StPar)′ | pin ]
Pn Pars == [decln | pn ]
• A

end





=



P1 StPar == [P1 s1 : T11 ; · · ·P1 sm1 : T1m1 | ps1 ]
. . .
Pn StPar == [Pn s1 : Tn1 ; · · ·Pn smn : Tnmn | psn ]
State == P1 StPar ∧ ·· · ∧ Pn StPar
Init == [(State)′ | pi1 ∧ ·· · ∧ pin ]
P1 Pars == [P1 Pars.decl1 ; ΞP2 StPar ; . . . ;

ΞPn StPar | P1 Pars.p1]
. . .
Pn Pars == [Pn Pars.decln ; ΞP1 StPar ; . . . ;

ΞPn−1 StPar | Pn Pars.pn]



Fig. 7: Ω1 Function

from other processes unchanged by including Ξ of all other
state paragraphs into their declaration.

4.3.2 ISO Standard Z to ZRM - Ω2

The function Ω2 takes the constructs in ISO Standard Z as
input and outputs the corresponding constructs in ZRM. It
is only syntactical transformation. Only the transformation
rules used in this paper are shown.

Ω2 Rule 1 (Schema Decoration)

Ω2(S ′) = S′ Ω2((S)′) = S′

Ω2 Rule 2 (Horizontal Schema) In ISO standard Z, == is
used for horizontal schema but =̂ in ZRM. Thus,

Ω2(==) = =̂

4.3.3 ZRM to B machine - Ω3

Our Ω3 function, which translates from Z in ZRM to B ma-
chine, uses the implementation of ProZ [41] in ProB. Since
ProB is the model checking tool for CSP ‖ B specification,
our solution is to translate Circus to Z in ZRM and CSP
specifications, then supply them to ProB. Eventually, ProB
translates Z to B by ProZ and model-checks it as CSP ‖ B
specification.

Furthermore, because only a considerable subset of Z is
implemented in ProB and others [41] shown below are not
supported, our solution is accordingly restricted.

– Generic definitions cannot be supported. Therefore, ge-
nericity in Circus is not supported.

– Reflexive-transitive closure construct is not supported.

4.4 Circus behaviour to CSP and Z - Φ

The function Φ transforms the behavioural part of a Circus
specification to CSP and possibly Z.

Φ Rule 1 (Types, Expressions and Operators) The trans-
lation rules for only a very small number of types and ex-
pressions are shown below.

– Φ(N) = Nat where Nat = {0..MAXINT} and MAXINT
is a constant declared in the beginning of CSP specifica-
tion.

– Φ(n . .m) = {n..m}.
– Φ(T1×T2) = Φ(T1).Φ(T2) if Cartesian product is used

in the channel expression.
– Φ(T1×T2) = cross(Φ(T1),Φ(T2)) if Cartesian product

is used in other places.
– Φ(seq T) = fseq(Φ(T)) because Seq function in CSPM

is an infinite set of finite sequence, it cannot be the type
of channel in CSP of ProB. Otherwise, it results in the
infinite enumeration error. Our solution is to treat seq T
as a partial function Z 7 7→T but with extra restriction of
maximum number of elements in its domain. Therefore,
fseq function is defined in Figure 8. MAXINS denotes
the maximum number of instances for model checking
and it is put in the beginning of CSP specification like
MAXINT.

* The cardinality of fseq(s) is equal to

MAXINS

∑
n=0

(card(s))n

and if the size of s is 4 and MAXINS is 5, then the
size of fseq(s) is 1365.

* MAXINS is set by users but what is its optimum value
highly depends on the programs to be checked and
the computer that ProB runs on. On a powerful com-
puter, it can be set to a higher value but still main-
tain reasonable model checking resources (memory,
CPU and time) consumption.

– Abbreviation definition (AbbrDef == Expr) is linked to
(nametype AbbrDef = Φ(Expr)) in CSP.

Φ Rule 2 (Axiomatic Definition) An axiomatic definition

x : T

p
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MAXINS = 3

-- Cartesian Product

cross(X, Y) = {(x,y) | x <- X, y <- Y}

-- relation

rel(X, Y) = Set(cross(X, Y))

-- partial function

pfun(X, Y) = { s | s<-rel(X,Y), empty({x1 | (x1,y1)

<-s, (x2,y2)<-s, x1 == x2 and y1 != y2})}

squash(s) = let

pick({x}) = x

below(b) = card({ x | (x,y)<-s, x <= b })

pairs = { (y, below(x)) | (x,y)<-s }

select(i) = pick({ y | (y,n)<-pairs, i==n })

within < select(i) | i <- <1..card(s)> >

fseq(s) = {squash(ss) | ss <- pfun({1..MAXINS}, s) }

Fig. 8: fseq function

is translated to x = c, where c is an instance from the set {x
| x<-T, p} and shall be assigned manually before model
checking. Notes: c shall match the value of constant x in Z.

Φ Rule 3 (Channel Declaration) The link of the channel
declaration in Circus to that in CSP is direct and straight-
forward.

Φ (channel chn name) = channel chn name

Φ (channel chn name : T) = channel chn name: Φ (T)

Φ Rule 4 (Channel Set)

Φ({| |}) = {||}
Φ({|c1,c2, · · · ,cn |}) = {|c1,c2, · · · ,cn|}
Φ Rule 5 (Channel Set Declaration)

Φ(channelsetN == {| |}) = (N = {||})
Φ(channelsetN == {|c1,c2, · · · ,cn |}) =

(N = {|c1,c2, · · · ,cn|})

4.4.1 Actions

The rules for a subset of Circus actions are shown below.

Φ Rule 6 (Basic Actions) The link of the basic actions in
Circus to those in CSP is direct and straightforward.

Φ (Stop) = STOP

Φ (Skip) = SKIP

Φ (Chaos) = div

Φ Rule 7 (Prefixing) The link of the prefixing in Circus to
that in CSP is direct and straightforward.

Φ (c→ A) = c→Φ (A)
Φ (c.e→ A) = c.Φ (e)→Φ (A)
Φ (c!e→ A) = c!Φ (e)→Φ (A)
Φ (c?x→ A(x)) = c?x→Φ (A(x))
Φ (c?x : p→ A(x)) = c?x : {y | y <- Φ (Tc) ,Φ (p)}→

Φ (A(x))

Φ Rule 8 (Schema Expression as Action) A schema ex-
pression as action (SExp) is linked to an external choice
of the same name event SExp with input and output vari-
ables, and another event SExp f which precondition is the
negation of precondition of SExp. Therefore, if the precon-
dition of SExp holds, it engages SExp event; otherwise, it
engages SExp f event and consequently diverges as div. Fi-
nally, these events are hidden from communication by adding
both events to HIDE CSPB. That makes it semantically equal
to schema expression as action in Circus.

Φ

(
(SExp)

)

=


channel SExp:Φ (Ti) .Φ (To)

channel SExp f:Φ (Ti)

HIDE CSPB={|SExp,SExp f |}
(SExp!ins?outs→ SKIP 2 SExp f !ins→ div)
SExp f = [ΞStPar ; ins? : Ti | ¬preSExp]

provided SExp is a schema in Z with input variables ins? and
output variables outs!; SExp f is an additional schema in Z;
particularly, its predicate is the negation of the precondition
of SExp.

Φ Rule 9 (Simplified Schema Expression as Action) If
the precondition of SExp always holds such as state compo-
nent retrieve schema expressions and assignments, the rule 8
is simplified because it is not possible to make its precondi-
tion be evaluated to false.

Φ

(
(SExp)

)

=


channel SExp:Φ (Ti) .Φ (To)

HIDE CSPB={|SExp|}{
(SExp!ins?outs→ SKIP) if (SExp) as process
(SExp!ins?outs) if (SExp) as communication

Φ Rule 10 (Miscellaneous Actions)

Φ
(
(g)NA

)
= Φ(g) & Φ(A)

Φ (A1 ; A2) = Φ (A1) ; Φ (A2)

Φ (A1 u A2) = Φ (A1) uΦ (A2)

Φ
(
A\ cs

)
= Φ (A) \ cs

Φ (µX • A(X)) = let X = Φ (A(x))within X

Φ Rule 11 (External Choice) External choice of actions in
Circus is only resolved by external events of the process or
termination. Internal events of the process, such as schema
expression as action and assignment, would not resolve it.
Thus we restrict the actions that can occur in external choice
construct to AA.

Φ (AA1 2 AA2) = Φ (AA1)2 Φ (AA2)

where AA can be one of actions below.

– Basic actions: Skip, Stop, or Chaos
– Prefixed actions: c?x? . . .!e! · · · → A
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– Guarded commands: (g)NAA

Furthermore, provided both actions are guarded commands
and their conditions (g1 and g2) are mutually exclusive, that
is, g1 = ¬g2, then their guarded actions are not restricted.

Φ
(
(g1)NA1 2 (g2)NA2

)
= Φ

(
(g1)NA1

)
2 Φ

(
(g2)NA2

)
Φ Rule 12 (Iterated Operator)

Φ

(
;x : T • A(x)

)
= ;x:Φ(T) •Φ (A(x))

Φ

(
2x : T • AA(x)

)
=2x:Φ(T)

•Φ (AA(x))

Φ

(
ux : T • A(x)

)
=ux:Φ(T)

•Φ (A(x))

Φ Rule 13 (Parallel Composition and Interleaving) Vari-
ables in parallel composition are partitioned to ns1 and ns2.
Both actions can access the initial value of all variables
from ns1 and ns2, but they can only modify variables in their
own partition ns1 and ns2 respectively. Our solution is to
declare temporary variables tpv1 and tpv2 which are initial-
ized to the initial value of all variables in scope pv1 and pv2
for A1 and A2. Instead of updating pv1 and pv2, we update
tpv1 and tpv2. Eventually, only variables in ns1 and ns2 are
updated to the value of corresponding variables in tpv1 and
tpv2, and others are discarded.

Φ(A1 Jns1 | cs | ns2 KA2) =

Φ

var tpv1 •
 tpv1 := pv1;

(A1[tpv1/pv1]);
ns1 := tpns1


‖
cs

Φ

var tpv2 •
 tpv2 := pv2;

(A2[tpv2/pv2]);
ns2 := tpns2




Φ(A1 ||[ns1 | ns2 ]||A2) =

Φ

var tpv1 •
 tpv1 := pv1;

(A1[tpv1/pv1]);
ns1 := tpns1


|||

Φ

var tpv2 •
 tpv2 := pv2;

(A2[tpv2/pv2]);
ns2 := tpns2




Φ Rule 14 (Parallel Composition and Interleaving (Dis-
joint Variables in Scope))

Φ (A1 Jns1 | cs | ns2 KA2) = Φ (A1) ‖
cs

Φ (A2)

Φ (A1 ||[ns1 | ns2 ]||A2) = Φ (A1) |||Φ (A2)

provided

ns1 = α (A1) = scpV (A1)

ns2 = α (A2) = scpV (A2)

where scpV is a function to get a set of all variables in scope
in an action.

Φ Rule 15 (Variable Block) A variable block is linked to
replicated internal choice in CSP which declares a set of lo-
cal variables x and their initial value is arbitrary chosen. We
use the memory model [35] (Definition 5) in CSP to main-
tain local variables. The linked process in CSP is put in par-
allel with replicated parallel of a set of memory cell pro-
cesses. For each variable in x, there is a unique memory cell
(MemCell process) that is distinguished by i.

Φ (varx : T • A) =ux:Φ(T)
• FMem (Φ (A) ,{x})

Definition 3 (MemCell Process) A MemCell process defined
below is the mechanism in CSP to store the value of a local
variable. For each local variable, it shall have a MemCell
process. Therefore, the process is distinguished by number i
which is a unique number for each variable. MemCell pro-
cess is initialized by seti at first, and after that it will con-
tinuously provide update and retrieve of the variable by seti
and geti channels respectively. Additionally, it is capable of
terminating successfully through end event.

MemCelli = seti?x→MCelli(x)
MCelli(x) = seti?y→MCelli(y)

2 geti!x→MCelli(x)
2 end→ SKIP

Definition 4 (FVar function) FVar(P,v) function makes ev-
ery access to each local variable l from the set v in CSP pro-
cess P by geti?l, and every update to l by seti!l. For example,

FVar(c?x!y!z→ P,{x,y,z}) = geti?y→ getj?z→
c?x!y!z→ setk!x→ FVar(P,{x,y,z})

FVar(c?x!y!z→ P,{y}) = geti?y→ c?x!y!z→
FVar(P,{y})

FVar(P,{}) = P

Definition 5 (FMem) The function FMem gives a memory mo-
del for CSP process P to store and retrieve local variables,
which are shown in a set v with m elements: l1, · · · , lm.

FMem (P,v) =
(set1!l1→ ·· · → setm!lm→ SKIP;

FVar (P,v) ; end→ SKIP)

‖
vs

 ‖
{|end|}

{MemCelli | i ∈ {1..m}}


 \ vs

where vs = {|set1,get1,set2,get2, · · · ,setm,getm,end|}

Φ Rule 16 (Action Renaming) The variable vold is renamed
to the vnew by the action renaming.

Φ (A[vold := vnew]) = Φ (A[vnew/vold)
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Φ Rule 17 (Action Invocation) An action reference is the
body of the action.

Φ (A) = Φ (B(A)) provided A =̂ B(A)

Φ Rule 18 (Parametrised Action) A parametrised action
invocation is the body of the parametrised action with the
parameters x substituted by the expressions e.

Φ (A(e)) = Φ (B(A) [e/x]) provided A =̂ x : T • B(A)

4.4.2 Processes

Φ Rule 19 (Explicitly Defined Process) For an explicitly
defined process, its main action is linked to a CSP process.
Its state schema and operational schemas are linked to Z
and finally B by the Ω function in Sect. 4.3.

Φ



process P =̂ begin
stateStPar == [decl | pred ]
Pars == [ · · · ]
APars =̂ B(APars)
• A

end

 = (P = Φ(A))

Φ Rule 20 (Process Invocation) A process invocation is the
process itself.

Φ(P) = P

Φ Rule 21 (Compound Process) For a compound process
defined in terms of CSP operators, it is simply an operator
expansion.

Φ (P ; Q) = Φ (P) ; Φ (Q)

Φ (P 2 Q) = Φ (P)2 Φ (Q)

Φ (P u Q) = Φ (P) uΦ (Q)

Φ(P J cs KQ) = Φ (P) ‖
cs

Φ (Q)

Φ(P ||| Q) = Φ (P) |||Φ (Q)

Φ
(
P\ cs

)
= Φ (P) \ cs

Φ Rule 22 (Iterated Process) For a process defined in terms
of an iterated operator in CSP, it is simply an operator ex-
pansion.

Φ(;x : T • P(x)) = ;x:Φ(T) •Φ(P(x))
Φ(2x : T • P(x)) =2x:Φ(T)

•Φ(P(x))

Φ(ux : T • P(x)) =ux:Φ(T)
•Φ(P(x))

Φ(JCS K x : T • P(x)) =‖
CS x:Φ(T)

•Φ(P(x))

Φ(|||x : T • P(x)) = |||x:Φ(T)
•Φ(P(x))

Φ Rule 23 (Parametrised Process Invocation) For the pa-
rametrised process invocation, it is simply linked to its cor-
responding explicitly defined process after rewriting.

Φ (PP(const)) = PP const
Φ (PP(x)) = (x == Φ(x1)) & PP x1

2 (x == Φ(x2)) & PP x2
· · ·
2 (x == Φ(xn)) & PP xn

where const denotes a constant.

Φ Rule 24 (Indexed Process Invocation) For the indexed
process invocation, it is simply linked to its corresponding
explicitly defined process after rewriting.

Φ (IPbconstc) = IP const
Φ (IPbxc) = (x == Φ(x1)) & IP x1

2 (x == Φ(x2)) & IP x2
· · ·
2 (x == Φ(xn)) & IP xn

5 Case Study: Reactive Buffer

This section shows how the specification of a buffer and its
implementation, a distributed reactive buffer, from the pa-
per [12] can be linked to CSP ‖ B by the links defined. Even-
tually, we model-check them by ProB. Particularly, the im-
plementation is checked to be both a trace refinement and a
failure refinement of the specification.

5.1 Buffer Specification

The specification of BufferSpec in Circus is shown in Fig-
ure 2.

5.1.1 Rewriting by Rwrt

According to our link definitions in Sect. 3, a Circus pro-
gram such as BufferSpec is linked to a CSP ‖ B program by
the function ϒ .

Firstly, it is transformed by the Rwrt function to get a
rewritten program RewrittenBufferSpec. We add two sche-
mas named Op buff and Op size to retrieve state compo-
nents buff and size respectively by the Rwrt Rule 5. Then we
rename state components, schemas, actions and their refer-
ences by prefixing Buffer by the Rwrt Rule 6. The only ex-
ception is the references to state components size and buff in
the action. Finally we rewrite the main action of the process
Buffer by the Rwrt Rule 7. After that, we get the rewritten
program as shown in Figure 9.
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section BufferSpec parents circus toolkit
| maxbuff : N1
channel input,output : N
process Buffer =̂ begin

state Buffer State == [Buffer buff : seq N ; Buffer size : 0 . .maxbuff | Buffer size = #Buffer buff ≤ maxbuff ]
Buffer Init == [(Buffer State)′ | Buffer buff ′ = 〈〉 ∧ Buffer size′ = 0 ]
Buffer InputCmd == [∆Buffer State ; x? : N | Buffer size < maxbuff ∧ Buffer buff ′ = Buffer buff 〈̂x?〉 ∧ Buffer size′ = Buffer size+1 ]
Buffer OutputCmd == [∆Buffer State | Buffer size > 0 ∧ Buffer buff ′ = tailBuffer buff ∧ Buffer size′ = Buffer size−1 ]
Buffer Op buff == [ΞBuffer State ; buff ! : seq N | buff ! = Buffer buff ]
Buffer Op size == [ΞBuffer State ; size! : 0 . .maxbuff | size! = Buffer size ]

• (Buffer Init) ;µX •
(Buffer Op size)→ (Buffer Op buff)→

 (size < maxbuff)N input?x→ (Buffer InputCmd)
2

(size > 0)Noutput!(head buff )→ (Buffer OutputCmd)


 ;X

end

Fig. 9: Rewritten specification of Buffer

5.1.2 The Behavioural Part

Then the behavioural part of the rewritten program is trans-
lated by the Φ function (Φ (RewrittenBufferSpec)) to get a
CSP specification illustrated in Figure 10. The rules of the
Φ function that are applied sequentially are the channel dec-
laration Φ Rule 3, the explicitly defined process Φ Rule 19,
the type and expression Φ Rule 1, the sequential compo-
sition Φ Rule 10, the simplified schema expression as ac-
tion Φ Rule 9, the basic action Φ Rule 3, the prefixing Φ

Rule 7, the external choice Φ Rule 11, the guarded com-
mand Φ Rule 10, and the schema expression as action Φ

Rule 8.

5.1.3 The State Part

Note that the behavioural translation of the schema expres-
sions Buffer InputCmd and Buffer OutputCmd in Figure 10
produces two additional schemas—Buffer InputCmd f and
Buffer OutputCmd f —according to the schema expression
as action Φ Rule 8, and they are added in the rewritten pro-
gram RewrittenBufferSpec before the translation of the state
part to get RewrittenBufferSpec1.

Eventually the state part of RewrittenBufferSpec1 is linked
by Ω function to get a Z specification in Figure 11, where
the Ω3 function is applied in the later stage within ProB.

5.2 Distributed Reactive Buffer

The distributed cached-head ring buffer [12], an implemen-
tation of the buffer in Sect. 5.2, is a result of final develop-
ment of refinement strategies. It is composed of the process
Controller [12, Fig. 4], the process RingCell [12, Sect. 7.6],
the indexed ring cell process IRCell [12, Sect. 7.6], and the
process Ring [12, Sect. 7.6]. Finally the process Buffer [12,
Sect. 7.4] is a parallel composition of the process Ring and

maxbuff = c
channel input,output : Nat
channel Buffer Init
channel Buffer Op size : {0..maxbuff}
channel Buffer Op buff : Seq(Nat)
channel Buffer InputCmd : Nat
channel Buffer InputCmd f : Nat
channel Buffer OutputCmd
channel Buffer OutputCmd f
HIDE CSPB = {|Buffer Init,Buffer Op size,Buffer Op buff ,

Buffer InputCmd,Buffer InputCmd f ,Buffer OutputCmd,
Buffer OutputCmd f |}

Buffer = Buffer Init→ SKIP ; let X =



Buffer Op size?size→ Buffer Op buff ?buff →

(size < maxbuff ) & input?x→Buffer InputCmd!x→ SKIP
2

Buffer InputCmd f !x→ div


2

(size > 0) & output!(head(buff ))→Buffer OutputCmd→ SKIP
2

Buffer OutputCmd f → div






; X


within X

Fig. 10: The Behavioural Part Translation

the process Controller. Obviously, this program shall have
the definition of maxbuff and maxring, and the declaration
of channels. In addition, we name this distributed cached-
head ring buffer as DisBuffer, and define additional abbrevi-
ation RingIndex. These definitions and declarations are shown
in Figure 12. Note that the original RingCell has no initial-
isation schema and we explicitly add a schema named Init,
that has the predicate true. The Init is the first event in the
main action of the RingCell.
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Ω (RewrittenBufferSpec1)

=Ω3

Ω2

Ω1


. . .
process Buffer =̂ begin
. . .
Buffer InputCmd f == [ΞBuffer State ; x? : N | ¬preBuffer InputCmd ]
Buffer OutputCmd f == [ΞBuffer State | ¬preBuffer OutputCmd ]

end







=Ω3


Ω2



section BufferSpec parents circus toolkit
| maxbuff : N1
Buffer State == [Buffer buff : seq N ; Buffer size : 0 . .maxbuff | Buffer size = #Buffer buff ≤ maxbuff ]
Init == [(Buffer State)′ | Buffer buff ′ = 〈〉 ∧ Buffer size′ = 0 ]
Buffer InputCmd == [∆Buffer State ; x? : N | Buffer size < maxbuff ∧ Buffer buff ′ = Buffer buff 〈̂x?〉 ∧

Buffer size′ = Buffer size+1 ]
Buffer InputCmd f == [ΞBuffer State ; x? : N | ¬preBuffer InputCmd ]
Buffer OutputCmd == [∆Buffer State | Buffer size > 0 ∧ Buffer buff ′ = tailBuffer buff ∧ Buffer size′ = Buffer size−1 ]
Buffer OutputCmd f == [ΞBuffer State | ¬preBuffer OutputCmd ]
Buffer Op buff == [ΞBuffer State ; buff ! : seq N | buff ! = Buffer buff ]
Buffer Op size == [ΞBuffer State ; size! : 0 . .maxbuff | size! = Buffer size ]




[Ω1 Rule 1]

=Ω3



| maxbuff : N1
Buffer State =̂ [Buffer buff : seq N ; Buffer size : 0 . .maxbuff | Buffer size = #Buffer buff ≤ maxbuff ]
Init =̂ [Buffer State′ | Buffer buff ′ = 〈〉 ∧ Buffer size′ = 0 ]
Buffer InputCmd =̂ [∆Buffer State ; x? : N | Buffer size < maxbuff ∧ Buffer buff ′ = Buffer buff 〈̂x?〉 ∧

Buffer size′ = Buffer size+1 ]
Buffer InputCmd f =̂ [ΞBuffer State ; x? : N | ¬preBuffer InputCmd ]
Buffer OutputCmd =̂ [∆Buffer State | Buffer size > 0 ∧ Buffer buff ′ = tailBuffer buff ∧ Buffer size′ = Buffer size−1 ]
Buffer OutputCmd f =̂ [ΞBuffer State | ¬preBuffer OutputCmd ]
Buffer Op buff =̂ [ΞBuffer State ; buff ! : seq N | buff ! = Buffer buff ]
Buffer Op size =̂ [ΞBuffer State ; size! : 0 . .maxbuff | size! = Buffer size ]


[Ω2 Rule 4.3.2]

Fig. 11: The State Part Translation

section DisBufferSpecparents circus toolkit

maxbuff : N1
maxring : N1

maxring = maxbuff −1

RingIndex == 1 . .maxring

channel input,output : N
channel read,write : (RingIndex)×N
channel rd,wrt : N
channel rd i,wrt i : (RingIndex)×N

Fig. 12: The preamble of DisBufferSpec

5.2.1 Rewriting by Rwrt

Firstly, the process IRCell is rewritten by the Rwrt Rule. Par-
ticularly, the set RingIndex shall be determined before rewrit-
ing the IRCell. We assume maxring is equal to 3 and thus

RingIndex = 1 . .3.

Rwrt

process IRCell =̂
( i : RingIndex� RingCell)
[rd i,wrt i := read,write]



=


Rwrt

(
process IRCell 1 =̂

(RingCell[rd,wrt := read.1,write.1])

)
Rwrt

(
process IRCell 2 =̂

(RingCell[rd,wrt := read.2,write.2])

)
Rwrt

(
process IRCell 3 =̂

(RingCell[rd,wrt := read.3,write.3])

)


[Renaming Operator Rwrt Rule 4]

The IRCell is expanded to three explicitly defined processes
IRCell 1, IRCell 2, and IRCell 3. They are the same to the
RingCell except that the channels rd and wrt in the RingCell
are renamed.

Along with the Controller and RingCell, now we have
five explicitly defined processes. According to the Rwrt rule
in Figure 4, five additional schemas for the Controller and
one for the RingCell are added within them to access each
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. . .
process Controller =̂ begin

. . .
Op size == [ΞControllerState ; size! : 0 . .maxbuff |

size! = size ]
Op ringsize == [ΞControllerState ; ringsize! : 0 . .maxring |

ringsize! = ringsize ]
Op cache == [ΞControllerState ; cache! : N |

cache! = cache ]
Op top == [ΞControllerState ; top! : RingIndex | top! = top ]
Op bot == [ΞControllerState ; bot! : RingIndex | bot! = bot ]
. . .

end
process RingCell =̂ begin

. . .
Op v == [ΞCellState ; v! : N | v! = v ]
. . .

end
process IRCell 1 =̂ begin

. . .
Op v == [ΞCellState ; v! : N | v! = v ]
. . .

end
. . .
process IRCell 3 =̂ begin

. . .
Op v == [ΞCellState ; v! : N | v! = v ]
. . .

end

Fig. 13: Additional Schemas for State Retrieve

state component. For IRCell 1, IRCell 2, and IRCell 3, they
are similar. That is shown in Figure 13.

Then we rename state components, schemas, actions and
their references of the Contoller and RingCell by prefixing
Controller and RingCell respectively by the Rwrt Rule in
Figure 5. The renamed Controller and RingCell are shown
in Figure 14 and Figure 15 separately. It is also the similar
case for IRCell 1, IRCell 2, and IRCell 3.

In the end, the main action of the Controller and the
RingCell is rewritten by the Rwrt Rule in Figure 6. To be-
gin with, the main action of the Controller is rewritten.

Rwrt


(Controller ControllerInit) ; µX •Controller InputController

2

Controller OutputController

 ; X



=


Rwrt

(
(Controller ControllerInit)

)
;

Rwrt

µX •
Controller InputController

2

Controller OutputController

 ; X




[Sequential Composition]

process Controller =̂ begin
state Controller ControllerState == [

Controller size : 0 . .maxbuff ;
Controller ringsize : 0 . .maxring;
Controller cache : N;
Controller top,Controller bot : RingIndex |
Controller ringsize mod maxring =

(Controller top−Controller bot)mod maxring ∧
Controller ringsize = max{0,Controller size−1} ]

Controller Op size == [ΞController ControllerState;
size! : 0 . .maxbuff | size! = Controller size ]

Controller Op ringsize == [ΞController ControllerState;
ringsize! : 0 . .maxring | ringsize! = Controller ringsize ]

Controller Op cache == [ΞController ControllerState;
cache! : N | cache! = Controller cache ]

Controller Op top == [ΞController ControllerState;
top! : RingIndex | top! = Controller top ]

Controller Op bot == [ΞController ControllerState;
bot! : RingIndex | bot! = Controller bot ]

Controller ControllerInit == [(Controller ControllerState)′ |
Controller top′ = 1 ∧ Controller bot′ = 1
∧ Controller size′ = 0 ]

Controller CacheInput == [∆Controller ControllerState;
x? : N | Controller size = 0 ∧ Controller size′ = 1 ∧
Controller cache′ = x? ∧ Controller bot′ = Controller bot
∧ Controller top′ = Controller top ]

Controller StoreInputController == [
∆Controller ControllerState | 0 < Controller size ∧
Controller size < maxbuff ∧
Controller size′ = Controller size+1 ∧
Controller cache′ = Controller cache ∧
Controller bot′ = Controller bot ∧
Controller top′ = (Controller top mod maxring)+1 ]

Controller InputController =̂ (size < maxbuff)N input?x→
(size = 0)N(Controller CacheInput)
2

(size > 0)Nwrite.top!x→
(Controller StoreInputController)


Controller NoNewCache == [∆Controller ControllerState |

Controller size = 1 ∧ Controller size′ = 0 ∧
Controller cache′ = Controller cache ∧
Controller bot′ = Controller bot ∧
Controller top′ = Controller top ]

Controller StoreNewCacheController == [
∆Controller ControllerState ; x? : N | Controller size > 1
∧ Controller size′ = Controller size−1 ∧
Controller cache′ = x? ∧
Controller bot′ = (Controller bot mod maxring)+1 ∧
Controller top′ = Controller top ]

Controller OutputController =̂ (size > 0)Noutput!(cache)

→


(size > 1)N read.bot?x→

(Controller StoreNewCacheController)
2

(size = 1)N(Controller NoNewCache)


• (Controller ControllerInit) ;µX •Controller InputController

2

Controller OutputController

 ;X

end

Fig. 14: Renaming of Controller
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process RingCell =̂ begin
state RingCell CellState == [RingCell v : N | true ]
RingCell Op v == [ΞRingCell CellState ; v! : N |

v! = RingCell v ]
RingCell Init == [(RingCell CellState)′ | true ]
RingCell CellWrite == [∆RingCell CellState ; x? : N |

RingCell v′ = x? ]
RingCell Read =̂ rd!v→ Skip
RingCell Write =̂ wrt?x→ (RingCell CellWrite)

• (RingCell Init) ;µX •
RingCell Read

2

RingCell Write

 ;X

end

Fig. 15: Renaming of RingCell

=


(Controller ControllerInit) ; µX •

Rwrt

Controller InputController
2

Controller OutputController

 ; X




[Schema Expression and Recursion]

=

· · ·Rwrt

Controller InputController
2

Controller OutputController

 ; Rwrt (X)


[Sequential Composition]

=


· · ·Rmrg

(
Rpre (Controller InputController) ,
Rpre (Controller OutputController)

)
→Rpost (Controller InputController)

2

Rpost (Controller OutputController)

 ; X


[External Choice and Action Invocation]

=


· · ·Rmrg

(Controller OP size),
(Controller Op size)→
(Controller Op cache)

→
( (size < maxbuff )N input?x→ ···

)
2(
(size > 0)Noutput!(cache)→ ···

)
 ; X


[Equation (9) and (12)]

=


· · ·(Controller Op size)→ (Controller Op cache)
→( (size < maxbuff )N input?x→ ···

)
2(
(size > 0)Noutput!(cache)→ ···

)
 ; X


[Definition 2 of Rmrg]

Among them, the action Controller InputController is
rewritten to

Rwrt (Controller InputController)

= Rwrt


(size < maxbuff )N input?x→
(size = 0)N(Controller CacheInput)
2

(size > 0)Nwrite.top!x→
(Controller StoreInputController)




[Action Invocation]

=

(
Rpre (size < maxbuff )→ Rpre

(
input?x→ (· · ·)

)
→ (size < maxbuff )NRpost

(
input?x→ (· · ·)

) )
[Guarded Command]

=

(
(Controller OP size)→ (size < maxbuff )N
Rpost (input?x→ (· · ·))

)
[Definition 1 of Rpre and Rpost]

=


(Controller OP size)→ (size < maxbuff )N input?x

→ Rwrt


(size = 0)N(Controller CacheInput)
2

(size > 0)Nwrite.top!x→
(Controller StoreInputController)


[Prefixing]

=



· · ·

Rmrg

Rpre

(
(size = 0)N(· · ·)

)
,

Rpre

(
(size > 0)Nwrite.top!x→ (· · ·)

)
→


Rpost

(
(size = 0)N(· · ·)

)
2

Rpost

(
(size > 0)Nwrite.top!x→ (· · ·)

)


[External Choice]

=



· · ·

Rmrg

(Controller OP size),
(Controller OP size)→
(Controller OP top)



→


(size = 0)N(Controller CacheInput)
2

(size > 0)Nwrite.top!x→
(Controller StoreInputController)


[Equation (10) and (11)]

=



(Controller OP size)→ (size < maxbuff )N
input?x→ (Controller OP size)→
(Controller OP top)→
(size = 0)N(Controller CacheInput)
2

(size > 0)Nwrite.top!x→
(Controller StoreInputController)




[Definition 2 of Rmrg]

(9)
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where

Rwrt

(
(size = 0)N(Controller CacheInput)

)
=

(
(Controller OP size)→ (size = 0)N
Rpost

(
(Controller CacheInput)

) )
[Guarded Command and Definition 1 of Rpre and Rpost]

=

(
(Controller OP size)→ (size = 0)N
(Controller CacheInput)

)
[Schema Expression]

(10)

and

Rwrt

(
(size > 0)Nwrite.top!x→

(Controller StoreInputController)

)

=

(
(Controller OP size)→ Rpre (write.top!x→ ···)
(size > 0)NRpost

(
write.top!x→ (· · ·)

) )
[Guarded Command and Definition 1 of Rpre and Rpost]

=

(Controller OP size)→ (Controller OP top)
→ (size > 0)N
write.top!x→ (Controller StoreInputController)


[Prefixing and Schema Expression]

(11)

Analogous to the rewriting of Controller InputController,
Controller OutputController is rewritten to

Rwrt (Controller OutputController)

=



(Controller Op size)→ (Controller Op cache)→
(size > 0)Noutput!(cache)→ (Controller Op size)

→ (Controller Op bot)

→


(size > 1)N read.bot?x→
(Controller StoreNewCacheController)

2

(size = 1)N(Controller NoNewCache)


(12)

In addition, it is the similar case for the rewriting of the
main action of the RingCell, IRCell 1, IRCell 2 and IRCell 3
as well. Eventually, their main actions after rewriting are il-
lustrated in Figure 16.

5.2.2 The Behavioural Part

The behavioural part of the rewritten program is translated
by the Φ function to get a CSP specification.

process Controller =̂ begin
. . .

• (Controller ControllerInit) ;µX • (Controller Op size)
→ (Controller Op cache)→

(size < maxbuff)N input?x→ (Controller Op size)
→ (Controller Op top)

→


(size = 0)N(Controller CacheInput)
2

(size > 0)Nwrite.top!x→
(Controller StoreInputController)


2

(size > 0)Noutput!(cache)→ (Controller Op size)
→ (Controller Op bot)

→


(size > 1)N read.bot?x→
(Controller StoreNewCacheController)

2

(size = 1)N(Controller NoNewCache)





;X

end
process RingCell =̂ begin

. . .

• (RingCell Init) ;µX • (RingCell Op v)→ rd!v→ Skip
2

wrt?x→ (RingCell CellWrite)

 ;X

end
process IRCell 1 =̂ begin

. . .

• (IRCell 1 Init) ;µX • (IRCell 1 Op v)→ read.1!v→ Skip
2

write.1?x→ (IRCell 1 CellWrite)

 ;X

end
process IRCell 2 =̂ begin

. . .

• (IRCell 2 Init) ;µX • (IRCell 2 Op v)→ read.2!v→ Skip
2

write.2?x→ (IRCell 2 CellWrite)

 ;X

end
process IRCell 3 =̂ begin

. . .

• (IRCell 3 Init) ;µX • (IRCell 3 Op v)→ read.3!v→ Skip
2

write.3?x→ (IRCell 3 CellWrite)

 ;X

end

Fig. 16: Rewrite of the main actions
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First of all, the axiomatic definition of the maxbuff and
the maxring is translated to

maxbuff = c

maxring = c−1

by the Φ Rule 2, where c is a constant that is manually as-
signed before the model checking. For example, c = 3.

The abbreviation definition RingIndex is transformed to

nametype RingIndex = {1..maxring}

by the Φ Rule 1.
The channel declarations are transformed to

channel input,output : Nat

channel read,write : RingIndex.Nat

channel rd,wrt : Nat

channel rd i,wrt i : RingIndex.Nat

by the Φ Rule 3 and their expressions are transformed by
the Φ Rule 1.

The behaviour of the Controller process is specified by
its main action ma(Controller) in Figure 16.

Φ (process Controller =̂ . . .) =

Controller = Φ (ma(Controller)) [Φ Rule 19]

Then its main action is translated. Here, the additional chan-
nel declarations and events added in HIDE CSPB are omit-
ted. In addition, when a schema expression is linked by Φ

Rule 8, an additional schema is added in the state part. For
example, Φ

(
(Controller CacheInput)

)
generates the sc-

hema Controller CacheInput f . This is omitted here as well.

Φ (ma(Controller))

= Φ

(
(Controller ControllerInit)

)
; Φ (µX • . . .)

[Sequential Composition Φ Rule 10]

= Controller ControllerInit→ SKIP ; Φ (µX • . . .)
[Schema Expression Φ Rule 9, Basic Actions Φ Rule 6]

= · · · let X = Φ

(Controller Op size)→
(Controller Op cache)→
·· ·

 within X

[Recursion Φ Rule 10]

= · · ·

Controller Op size?size→
Controller Op cache?cache→
Φ (· · ·2 · · ·)


[Schema Expression Φ Rule 9, Prefixing Φ Rule 7]

= · · ·Φ
(
(size < maxbuff )N · · ·

)
2 Φ

(
(size > 0)N · · ·

)
[External Choice Φ Rule 11]

= · · ·((size < maxbuff ) & Φ (input?x→ ···)2 · · ·)
[Guarded Command Φ Rule 10]

= · · ·
(

input?x→ Controller Op size?size→
Controller Op top?top→Φ (· · ·)

)
2 · · ·

[Prefixing Φ Rule 7, Schema Expression Φ Rule 9]

=



· · ·
(size == 0) & Φ

(
(Controller CacheInput)

)
2

(size > 0) & write.top!x→
Φ

(
(Controller StoreInputController)

)


2 · · ·
[Guarded Command Φ Rule 10, Expression, Prefixing]

=



· · ·

· · ·

Controller CacheInput!x→ SKIP
2

Controller CacheInput f !x→ div


2

· · ·

Controller StoreInputController→ SKIP
2

Controller StoreInputController f → div


2 · · ·

[Schema Expression Φ Rule 8]

= · · ·2 Φ
(
(size > 0)N · · ·

)
[Similar to previous steps]

The behaviour of the RingCell process is given by its
main action ma(RingCell) in Figure 16. Its translation is
similar to that of the Controller process.

Φ (ma(RingCell))

= · · ·

=



RingCell Init→ SKIP ; let X =

RingCell Op v?v→

rd!v→ SKIP
2

wrt?x→RingCell CellWrite!x→ SKIP
2

RingCell CellWrite f !x→ div




;X


within X

[Φ Rules]

The behaviour of IRCell 1, IRCell 2 and IRCell 3 is their
main actions as well. Only the translation of IRCell 1 is dis-
played below.

Φ (ma(IRCell 1))
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= · · ·

=



IRCell 1 Init→ SKIP ; let X =

IRCell 1 Op v?v→

read.1!v→ SKIP
2

write.1?x→ IRCell 1 CellWrite!x→ SKIP
2

IRCell 1 CellWrite f !x→ div




;X


within X

[Φ Rules]

The Ring process is the interleaving of the indexed IRCell
processes. It is link to

Φ

(
Ring =̂ (||| i : RingIndex • IRCellbic)

)
=
(

Ring = |||i:RingIndex
•Φ (IRCellbic)

)
[Iterated Interleave Φ Rule 22]

=

Ring = |||i:RingIndex
•

 (i == 1) & IRCell 1
2 (i == 2) & IRCell 2
2 (i == 3) & IRCell 3


[Indexed Process Invocation Φ Rule 24]

.
The Buffer process is translated to the Buffer process in

CSP below.

Φ

(
process Buffer =̂
(Controller J{|read,write |} KRing)\{|read,write |}

)

=

Buffer =

Φ

(
Controller ‖

{|read,write|}
Ring

)
\ {|read,write|}


[Process hide Φ Rule 21, Channel Set Φ Rule 4]

=

Buffer =(
Controller ‖

{|read,write|}
Ring

)
\ {|read,write|}


[Parallel Φ Rule 21, Process Invocation Φ Rule 20]

The Buffer process is the main process of the DisBufferSpec
program. Thus when translated to CSP, the MAIN process is
the Buffer.

MAIN = Buffer

5.2.3 The State Part

After the rewriting in Sect. 5.2.1 and the behaviour transla-
tion in Sect. 5.2.2, we have five explicitly defined processes:
Controller, RingCell, IRCell 1, IRCell 2, and IRCell 3.

For the Controller, additional schemas are added by the
schema expression as action Φ Rule 8 during the link of the
behaviour to CSP.

– Controller CacheInput f
– Controller StoreInputController f
– Controller NoNewCache f
– Controller StoreNewCacheController f

For the RingCell, IRCell 1, IRCell 2, and IRCell 3, one
additional schema is added for each process. They are Ring
Cell CellWrite f , IRCell 1 CellWrite f , IRCell 2 CellWrite
f , and IRCell 3 CellWrite f separately.

The state part of the program is linked to a B machine
by the Ω function that is composed of the Ω1, the Ω2 and
the Ω3. The Ω3 is applied within ProB and so it is skipped
here.

To begin with, the axiomatic definition and the abbrevi-
ation RingIndex are moved to the Z program directly.

Then the states and schemas from five explicitly defined
processes are merged by the Ω1 Rule 1. After that, the Ω2
function is simply applied. Finally the state part is linked to
a Z program.

The state schemas are merged as shown.

Controller ControllerState =̂ [

Controller size : 0 . .maxbuff ;

Controller ringsize : 0 . .maxring;

Controller cache : N;

Controller top,Controller bot : RingIndex |
Controller ringsize mod maxring =

(Controller top−Controller bot)mod maxring ∧
Controller ringsize = max{0,Controller size−1}

]

RingCell CellState =̂ [RingCell v : N | true ]

IRCell 1 CellState =̂ [RingCell 1 v : N | true ]

IRCell 2 CellState =̂ [RingCell 2 v : N | true ]

IRCell 3 CellState =̂ [RingCell 3 v : N | true ]

State =̂ Controller ControllerState ∧
RingCell CellState ∧ IRCell 1 CellState ∧
IRCell 2 CellState ∧ IRCell 3 CellState

The initialisation schemas are merged.

Init =̂ [State′ | Controller top′ = 1 ∧
Controller bot′ = 1 ∧ Controller size′ = 0 ∧ true ]

(13)
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All other schemas are merged as well. However for a sc-
hema from one process, it shall include the state schemas
from other processes in its declaration part by Ξ notation to
make sure no change is made to the state components from
others. For example, the Controller Op size schema from
the Controller becomes

Controller Op size =̂ [ΞController ControllerState;

ΞRingCell CellState ; ΞRingCell 1 CellState;

ΞRingCell 2 CellState ; ΞRingCell 3 CellState;

size! : 0 . .maxbuff | size! = Controller size ]

, Controller CacheInput becomes

Controller CacheInput =̂ [∆Controller ControllerState;

ΞRingCell CellState ; ΞRingCell 1 CellState;

ΞRingCell 2 CellState ; ΞRingCell 3 CellState;

x? : N | Controller size = 0 ∧
Controller size′ = 1 ∧ Controller cache′ = x? ∧
Controller bot′ = Controller bot ∧
Controller top′ = Controller top ]

, and Controller CacheInput f is transformed to

Controller CacheInput f =̂ [

ΞController ControllerState;

ΞRingCell CellState ; ΞRingCell 1 CellState;

ΞRingCell 2 CellState ; ΞRingCell 3 CellState;

x? : N | ¬preController CacheInput ]

The translation of other schemas are very similar and thus
skipped.

5.3 Model Checking By ProB

Now we have got the final CSP program (Figure 10) and
the Z program (Figure 11) for the buffer specification, and
the CSP program (Sect. 5.2.2) and the Z program (Sect.
5.2.3) for the distributed buffer. Both of them can be model-
checked by ProB. But before performing model checking,
the value of the constants MAXINT , MAXINS and maxbuff
shall be considered at first.

5.3.1 Maximum Instances MAXINS and Maximum Size
of Buffer maxbuff

For the buffer specification, the type of buffer is seqN. When
linked to CSP ‖ B, we use fseq (Figure 8) that introduces the
bound constant MAXINS. Finally the size of the set of finite
sequences by fseq highly relies on the value of MAXINS as
well as the data set s. The defined fseq computes the result

relied on several intermediate functions (squash, pfun, rel
and cross) which are defined in the functional language as
well. The consumption of resources during resolution is still
high. If the size of s is big and MAXINT is large, ProB will
take longer time to compute all possible finite sequences.
For an instance, on the system having 2GB RAM and 2.5
GHz CPU, and running Ubuntu 12.04, it takes approximately
thirty minutes for ProB to load the CSP program when the
size of s is 4 (MAXINT is set to 3) and MAXINS is 5. How-
ever if the size of s is reduced to 2, we can increase MAXINS
to 9 to make ProB load the CSP program still in a shorter
time. Alternatively, instead of using the functional language
to resolve fseq, we can compute all finite sequences in ad-
vance by another language, let’s say Perl, then include them
explicitly into a set and replace fseq in CSP programs by
this set. For example, if s is {0,1} and MAXINT is 2, then we
can get this set as {〈〉,〈0〉,〈1〉,〈0,0〉,〈0,1〉,〈1,0〉,〈1,1〉}. By
this way, it can reduce the program load time tremendously.
But the loss of flexibility is a side effect because we have to
compute this set in advance and externally (out of ProB).

For the buffer specification the value of maxbuff shall be
less than or equal to MAXINS.

5.3.2 Data Independence and MAXINT

The type of data (T) in both the buffer specification and the
buffer implementation is N. According to the definition of
data independence [28, Sect. 2.7] and [43, Sect. 15.3.2], both
the linked buffer programs in CSP ‖ B are data-independent
because they input values of N along their input channels,
store them in a sequence or a set of ring cells, and then out-
put values in order along their output channels without any
computations. And they do not perform any explicit and im-
plicit equality tests over T , therefore they satisfy NoEqT
[28, 42]. In addition, the Buffer process in the linked buffer
specification (Figure 10) satisfies Norm [28, 42]. Accord-
ing to Theorem 17.2 [42], the threshold of the size of T
such that the implementation is a refinement of the speci-
fication in terms of traces, failures and failures-divergences
is 2. There is a similar conclusion in the book [42, p.397]
that the threshold of an N-bounded buffer for any N is 2. So
for the refinement check, we can set MAXINT to 1 as there
are two elements {0,1} and set maxbuff to 3. Actually, we
also checked the refinement when MAXINT is increased to
3.

5.3.3 Model Checking of Buffer Specification

When model-checking this case by ProB, we notice ProB
kernel treats seq T as set(couple(integer,T)) in Z and B.
But it fails to match the sequence type in CSP. Therefore,
it generates an incompatible type error. We change the im-
plementation of predicate type_ok and is_csp_set_type
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Table 1: Model Checking Performance Comparison (Buffer
Specification)

MAXINT MAXINS maxbuff Time (ms) Memory (MB)
3 3 1 122 38
3 3 2 538 38
3 3 3 2,152 39
3 4 4 28,022 40
3 5 5 443,306 78
1 9 9 16,802 68

in specfile.pl of ProB kernel source code to make set(
couple(integer,T)) match the sequence type in CSP.

Additionally, div, the most divergent process, is not avail-
able in CSPM as well as ProB. We define a process DIV as
div→ STOP, where div is a special event, in CSP for div.
Though DIV is not a divergent process, we can check dead-
lock of combination of CSP and Z specifications to achieve
divergence checking. We use the deadlock checking to find
this kind of divergence because it is a more direct check-
ing in ProB. In case that a deadlock is found, we check the
counterexample to see if the last event is div or not. If the
last event is div, it means the original Circus specification
can lead to divergence. Alternatively, LTL formula check-
ing can be used to check deadlock as well. For example, the
LTL formula (not F e(div)), which denotes the statement
that finally div event is enabled, is not true. When it comes
to this case, if we remove guarded conditions in Input or
Output action in Figure 2, the specification diverges because
the precondition of InputCmd and OutputCmd may not hold.
In the final CSP specification in Figure 10, the correspond-
ing boolean guard is removed as well. Using ProB, we can
easily find the deadlock and the last event is div, therefore it
finds divergence.

Deadlock and Invariant Violation Checking Finally, we can
model-check the combination of CSP and Z specifications
and there is no deadlock found. A comparison of the mo-
del checking performance for different configuration of con-
stants is shown in Table 1. This experiment was undertaken
on ProB Linux version, which is modified based on ProB
1.5.0-Beta, on Ubuntu.

Deadlock and Divergence Checking by CSP Assertions ProB
is capable of deadlock and divergence checking through CSP
assertions as well. By adding the following three asserts to
the CSP program (Figure 10), we checked the deadlock free
and divergence free of the Buffer process with the combina-
tion of constants in Table 1 successfully.

assert Buffer :[ deadlock [F] ]

assert Buffer :[ deadlock [FD] ]

assert Buffer :[ livelock free ]

5.3.4 Model Checking of Distributed Reactive Buffer

One issue we found is about the well-definedness of the
modulo operation in Z when it is translated to the counter-
part in B. In Z, the modulo operation is defined on the inte-
ger dividend and the non-zero integer divisor [47]. However
it is defined on the natural number dividend and the non-
zero natural number divisor in B machine. Therefore, when
model-checking this case by ProB that translates the mod-
ulo to the modulo operation in B, it triggers an error about
the well-definedness of the modulo because the dividend of
the modulo in Z is possibly less than 0. Thus, we modi-
fied the implementation of the modulo operation in ProB
to use the modulo operation mod in SICStus Prolog. Be-
cause the modulo operation in Z uses truncation towards
minus infinity [47] and in Prolog it is the integer remain-
der after floored division [2], they use the same definition of
modulo—floored division [29]. Hence, the well-definedness
of mod in Z is retained.

In addition, ProB uses the build-in command time in Tcl
to measure the elapsed time for the model checking task. It
can count up to 4,294,967,295 microseconds, approximately
72 minutes, for a task in a 32-bit machine, otherwise it will
cause the overflow. For the model checking of this case with
the maxbuff larger than 3, it requires longer time and causes
the overflow. Therefore, the output result about the time is
not useful. We record the timestamp before the task execu-
tion and the timestamp after the completion of the task by
clock milliseconds in Tcl, then calculate the difference
between two timestamps. This is the model checking time.

Deadlock and Invariant Violation Checking There is no dead-
lock or divergence found. A comparison of the model check-
ing performance is shown in Table 2. Note that due to the
state space exploration and resource limitation, we are not
able to model check this case if maxbuff is larger than 3 and
MAXINT is 3 because ProB runs out of memory on Linux
with 3 GB memory. We can set the MAXINT to 1 to reduce
the state space. The result is shown in the third row. Fur-
ther methods like more specific initialisation can be used to
tremendously decrease the size of the state space. For an in-
stance, if we substitute (13) by the initialisation schema (14),
the model checking result is displayed in the fourth row.

Init =̂[State′ | Controller top′ = 1 ∧ Controller bot′ = 1

∧ Controller size′ = 0 ∧ Controller ringsize′ = 0

∧ Controller cache′ = 0 ∧ RingCell v′ = 0

∧ IRCell 1 v′ = 0 ∧ IRCell 2 v′ = 0

∧ IRCell 3 v′ = 0 ∧ IRCell 4 v′ = 0 ] (14)

Deadlock and Divergence Checking by CSP Assertions By
adding the following three asserts to the CSP program (Sect.
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Table 2: Model Checking Performance Comparison (Buffer
Implementation)

MAXINT maxbuff maxring Time (ms) Memory (MB)
3 2 1 38,039 53
3 3 2 2,582,944 837
1 4 3 951,593 913
1 4 3 236,532 318 a

a This row is the result with substituted initialisation schema.

5.2.2), we checked the deadlock free and divergence free
of the Buffer process with the combination of constants in
Table 2 successfully.

assert Buffer :[ deadlock [F] ]

assert Buffer :[ deadlock [FD] ]

assert Buffer :[ livelock free ]

5.3.5 Refinement Checking

In addition, ProB can check if an implementation in CSP ‖ B
is a trace refinement of a specification in CSP ‖B [30]. When
checking the trace refinement, an issue we got in ProB for
our case, after inspecting source code, is that ProB refine-
ment checker compares the traces of both the specification
and the implementation according to their transitions in the
same state space. That works for the refinement of two pro-
cesses in the same CSP program for the CSP model, or the
refinement of two processes in the same CSP program for
the CSP ‖ B model. But for our case, the specification and
the implementation have the different Z programs and it is
impossible to put their CSP programs into one CSP file.
Thus we modified the refinement_checker.pl of ProB
to search the traces by the transitions from their own sep-
arate state space. After model-checking the buffer specifi-
cation, we save its state space for later refinement check
to a file. Then we load the buffer implementation to ProB,
and select “trace refinement check” function, open the saved
state space file for the specification. Finally ProB will show
the result: the implementation is a trace refinement of the
specification; or if not a trace refinement, a counter example
is provided.

We checked the trace refinement between the buffer spec-
ification and the buffer implementation, and finally got the
result the distributed reactive buffer is a trace refinement
of the buffer specification for MAXINT and maxbuff equal
to 3 and 3 separately. Furthermore, ProB has an option to
check failures. We checked the failure refinement between
the specification and the implementation as well, and finally
found the distributed reactive buffer is also a failure refine-
ment of the buffer specification with the same constants. The
refinement checking performance is shown in Table 3. Ac-
cording to Sect. 5.3.2, we can conclude the buffer imple-
mentation is a failure refinement of the buffer specification.

Table 3: Refinement Check Performance

Model MAXINT maxbuff maxring Time (ms)
Traces 1 3 2 109,180

Failures 1 3 2 122,440
Traces 3 3 2 342,440

Failures 3 3 2 355,320

However, if maxbuff between the specification and the
implementation is not equal, ProB gives an error with a coun-
terexample provided.

6 Conclusions and Future Work

Related work Model checking and animation are regarded
as a very important tool support for the application of for-
malisms in both academia and industry. There are three ex-
isting solutions for implementing or model-checking Circus
programs. The first solution is JCircus [21, 36, 40] which
translates a concrete Circus program to a Java program with
JCSP [48]. After that, linking Circus to CSP [7] aims to
translate Circus to CSPM then use FDR2 [1] to model-check
CSP specification. The last one is mapping Circus processes
and refinement to CSP processes and refinement [31,39] that
transforms stateful Circus to stateless Circus first by intro-
ducing the memory model, and then converts stateless Cir-
cus to CSP. The first is not a model checking solution but
implementation instead, and it is restricted to executable Cir-
cus programs because Java is an imperative programming
language and not a high-level specification language. There-
fore, before supplying the Circus program to JCircus, it has
to be refined to a concrete program. For the second solu-
tion, it is not clear how to connect the data part to the be-
havioural part of a Circus program. The third solution trans-
forms both state and behavioural parts to CSP specification,
which means all states are maintained in CSP. It is restricted
to divergence-free Circus. Furthermore, it is not convenient
and capable in CSP to maintain very complex states, and
rather difficult to understand the final CSP specification if it
contains a lot of state operations.

Our work Comparatively, our work links Circus to CSP ‖ B
to express the behavioural and state parts, which maintains
the high-level abstraction. And using B to specify the state
part is more straightforward and easier than using CSP. The
capability of linking most of constructs in Circus to CSP ‖ B
is another advantage because Circus itself consists of a large
amount of syntactic constructs. Additionally, the capabilities
of deadlock checking, LTL formula checking, refinement
checking, automatic and manual animations are very impor-
tant as well. Last but not least, we achieve the divergence
checking of original Circus program by deadlock checking
of CSP ‖ B.
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However, this work has some limitations as well. Gener-
ics in Circus are not supported; for CSP ‖ B, its state is com-
posed of the state from B and the state of the process from
CSP, and is expressed as a pair [9], thus its state space is
more complex for exploration; limited actions can occur in
both sides of external choice (Φ Rule 11) due to the seman-
tics of external choice [37]; the rule of parallel composition
of actions (Φ Rule 13) achieves semantical equality but is
difficult to implement because we need to keep a copy of
temporary variables in CSP for both state variables in B and
local variables, which makes the state maintained in CSP
temporarily before merge and is against our strategy that
state and behaviour are separated in B and CSP; how to trace
CSP ‖ B back to Circus is an issue.

Future work By now, we have defined the translation rules
for a large subset of constructs in Circus , given the sound-
ness, and developed a simple translator which can deal with
very limited rules. We will continue to study a more com-
plicated case, extend the translator to support approximately
all rules defined. Most significantly, we need to minimize the
limitations. For instance, we may modify the operational se-
mantics of CSP ‖B in ProB to make external choice resolved
only by external events and termination but not communica-
tion between CSP and B, which makes all actions can occur
in external choice. In addition, for link of axiomatic defini-
tion to CSP (Φ Rule 2), we will modify the implementation
of ProB to make it instantiated to the same value as in Z.
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