
Noname manuscript No.
(will be inserted by the editor)

A Unified View of Parameterized Verification of Abstract
Models of Broadcast Communication

Giorgio Delzanno

the date of receipt and acceptance should be inserted later

Abstract We give a unified view of different param-

eterized models of concurrent and distributed systems

with broadcast communication based on transition sys-

tems. Based on the resulting formal models, we discuss

related verification methods and tools based on abstrac-

tions and symbolic state exploration.

1 Introduction

Specifications of concurrent and distributed system are

often formulated for a finite but arbitrary number of

processes. Typical examples are consistency protocols,

e.g., cache coherence protocols used in hardware or in

distributed systems, solutions to the critical section prob-

lem, and distributed algorithms. In this context Pa-

rameterized Verification (PV) is a research field aimed

at designing automated or semi-automated verification

methods for systems composed of families of replicated

components. Formal specification languages for concur-

rent systems, e.g. Petri nets, provide constructs to rep-

resent configurations in which either the number of com-

ponents is not fixed a priori or it can change dynami-

cally. Lifting verification problems from finite-state to

parameterized systems often leads to undecidable deci-

sion problems or to problems with high complexity. For

instance, it has been shown that model checking for

parameterized system is undecidable [21]. Undecidabil-

ity holds even for apparently simple classes of systems

like Boolean programs with shared variables [94]. The

above mentioned general undecidability results make

the problem challenging for automated reasoning tech-

niques. In this context restricted classes of systems and

properties have been considered in order to identify

DIBRIS, Università di Genova, Italy
E-mail: Giorgio.Delzanno@unige.it

complete methods or effective procedure with low com-

plexity.

In this paper we will focus on a class of formal mod-

els for concurrent and distributed systems in which syn-

chronization is achieved by using broadcast communi-

cation, a less standard communication primitive than

rendez-vous or point-to-point communication. Rendez-

vous communication involves a fixed a priori number

of agents (e.g. a sender and a receiver in point-to-point

communication). Properties of rendez-vous communi-

cation have been investigated deeply in the field of au-

tomated verification, see e.g. [72]. Interactions in mod-

els with broadcast communication are usually defined

by allowing a finite but arbitrary number of agents to

react to a given message or signal. This type of com-

munication is particularly useful to define protocols for

replicated systems, e.g. cache coherence protocols, al-

gorithms with global conditions, e.g., simultaneous re-

sets of local variables, and communication in an open

environment like an Ad Hoc or Wireless network. Algo-

rithmic verification of models with broadcast commu-

nication started receiving more attention after the in-

troduction of the Broadcast Protocols of Emerson and

Namjoshi [57]. Several interesting properties have been

obtained in this setting by transferring results coming

from the theory of Petri nets and of Well-structured

Transition Systems [66,16]. Furthermore, the interpre-

tation of broadcast communication in terms of whole

place operations in Petri nets have inspired several ex-

tensions of the original model obtained, e.g., by adding

time, data, communication links, message buffers, and

communication groups. In the paper we will give a uni-

form presentation of models of increasing complexity

by using transition systems to formally specify their se-

mantics. For each of the proposed model we will study

the impact of the above mentioned features on decid-



2 Giorgio Delzanno

ability and complexity of verification problems formu-

lated for arbitrary number of processes.

Plan of the paper

In Section 2 we present preliminary notions (e.g. Petri

nets and Vector Addition Systems with State (VASS),

Well-structured Transition Systems (WSTS)) that are

used for describing computability and complexity of

verification problems of the different models described

in the rest of the paper. In Section 3 we introduce a

basic model for broadcast communication called Broad-

cast Protocols that extends Petri nets with whole place

operations. In Section 4 we extend Broadcast Protocols

in order to model processes that carry data. In Section

5 we introduce models of distributed systems in which

the network is modeled in an explicit way using graphs

with a combination of different features like clocks and

data. For all above mentioned models, we present de-

cidability and undecidability results for verification of

safety and, in some cases, liveness properties. In Sec-

tion 6 we describe some existing tools that can be used

for parameterized verification. Finally, in Section 7 we

address conclusions and future work.

2 Basic Models and Parameterized Verification

Methods

Let A be a finite set. We use A` to denote the class

of multisets with elements in A. A multiset m can be

viewed as a map from A to N s.t. mpaq ¥ 0 denotes

the number of occurrences of a in m. We use here �

to denote multiset inclusion, i.e., m1 � m2 if m1paq ¤

m2paq for any a P A, ` to denote multiset union, i.e.,

pm1 ` m2qpaq � m1paq � m2paq for any a P A, and

a to denote multiset difference, i.e., for any a P A

pm1 am2qpaq � m1paq �m2paq if m1paq ¥ m2paq, � 0

otherwise.

A quasi ordering xS,¤y is a reflexive and transi-

tive ordering. Given a quasi ordering xS,¤y, an upward

closed set of states is a subset U � S such that for any

s P U , if s ¤ s1 then s1 P U . Given a set B � S, we say

that B generates the upward closed set B Ò defined as

ts | s1 P B, s1 ¤ su. A well quasi ordering (wqo) xS,¤y

is a quasi ordering such that for every infinite sequence

of elements s1s2 . . . there exist i   j such that si ¤ sj .

A wqo has the finite basis property, i.e., every upward

closed set U � S is generated by a finite set B. Exam-

ples of wqo’s are listed below.

– Finite sets equipped with equality.

– Natural numbers equipped with the less than or

equal ordering.

– Tuples of natural numbers equipped with the point-

wise ¤ ordering, i.e., xa1, . . . , any ¤ xb1, . . . , bny if

ai ¤ bi for i : 1, . . . , n (Dickson’s Lemma [53]).

– Tuples of natural numbers extended with ω equipped

with the point-wise¤ ordering. Here we assume that

a ¤ ω for any a P N , i.e., ω represents the set of

natural numbers.

– Multisets over a finite alphabet equipped with mul-

tiset inclusion.

– Words over a finite alphabet equipped with the sub-

word ordering.

– Sets, multisets, and tuples of elements taken from a

wqo xS,¤y equipped with an embedding (Higman’s

Lemma [75]). An embedding is an injection h from

m1 to m2 s.t. for any a P m1 if hpaq � b P m2 then

a ¤ b.

– Words with elements in a wqo xS,¤y equipped with

an injective and monotone embedding.

Dickson’s lemma is a central result for defining deci-

sion procedures of Petri nets. The above mentioned

properties of wqo’s can be used to build new wqo’s.

For instance, Higman’s lemma can be used to prove

that words of multisets of elements taken from a finite

set equipped with a monotone and injecting embedding

form a wqo. This kind of ordering has been applied to

obtain decidability results for timed extensions of Petri

nets [15].

Consider now the ordering xPf pSq,¤y built over fi-

nite sets with elements in S as follows. For sets A,B P

Pf pSq, A � B if for every b P B there exists a P A

s.t. a ¤ b. As shown by the counterexample based on

Rado’s structure [2], the ordering � is not always a

wqo. However, in [16] it has been proved that for an

increasing chain A1 � A2 � A3 . . . of sets in Pf pSq,

there exist i, j s.t. Ai � Aj . This property is particu-

larly useful to prove termination of fixpoint algorithms

in which intermediate results are maintained in memory

and compared via a wqo (for eliminating redundancies

and detect fixpoints).

Let S be a possibly infinite set of configurations. A

transition system is a tuple xS,Ñ, s0y such that Ñ �

S�S is the transition relation, and s0 is the initial state.

We use s1 Ñ s2 to denote a pair xs1, s2y P Ñ. A com-

putation is a sequence of states s0s1s2 . . . s.t. si Ñ si�1

for i ¥ 0. The set of successors of a set of configura-

tions A is defined as postpAq � tt | s Ñ t, s P Au.

The whole set of successor states of a set of configura-

tions A is defined as post�pAq �
�
i¥0 post

ipAq, where

post0pAq � A, and posti�1pAq � postppostipAqq for

i ¥ 0. The Reachability Set of a transition system is

usually defined as post�pIq, where I contains the initial

state s0, or, more in a general a set of initial states. The

nodes of the reachability graph are labeled with config-



A Unified View of Parameterized Verification of Abstract Models of Broadcast Communication 3

urations of the reachability set. Edges correspond to the

relation Ñ.

The set of predecessor states of a set of configuration

A is defined as prepAq � ts | sÑ t, t P Au. The whole

set of predecessor states of a set of configurations A is

defined as pre�pAq �
�
i¥0 pre

ipAq, where pre0pAq �

A, and prei�1pAq � preppreipAqq for i ¥ 0.

Transition systems are used to define the opera-

tional semantics of models of computations like pro-

grams, concurrent and reactive systems, etc. In this pa-

per we will use the notation Ñ to denote the transition

relations of different types of models and Ñ� to denote

the reflexive and transitive closure of Ñ.

A transition system is said to be monotone with

respect to an ordering xS,¤y on configurations if for

any state s1, s2, s3 if s1 Ñ s2 and s1 ¤ s3, then there

exists s4 s.t.s2 ¤ s4 and s3 Ñ s4. Monotonicity is an

important property to obtain decidability results for

infinite-state transition systems.

Let xS,Ñ, s0y be a transition system. Given s0 and

s1, the Reachability Problem consists in deciding whether

s0 Ñ
� s1.

Given states s0 and s1, the Coverability Problem

consists in deciding whether there exists a state s2 s.t.

s1 ¤ s2 and s0 Ñ
� s2. Coverability is strictly related to

the verification of safety properties. If bad states can be

represented via an upward closed set generated by state

s1 then a decision procedure for Coverability can be

used to detect possible error traces or to prove absence

of errors.

More general verification problems on transition sys-

tems can be formulated using temporal logic like LTL

(linear temporal logic). In this setting formulas are built

on top of classical connectives enriched with temporal

operators like X (next), F (eventually) and G (always)

interpreted over paths of the reachability graph of a

transition system.

2.1 Vector Addition Systems (VAS)

Vector addition systems (VAS) are infinite-state transi-

tion systems in which configurations are tuples of fixed

size of natural numbers. We use u � xu1, . . . , uny to

denote a tuple and u ¤ v to denote the point-wise or-

dering of tuples. A transition is defined by a guard and

an action. Let x � xx1, . . . , xny be a tuple of variables

that denote the current value of the counters, and let

x1 � xx11, . . . , x
1
ny be a tuple of variables that denote

the value of the counters in the next state. Guards are

conjunctions of comparisons of the form xi ¥ ci where

xi P x and ci is a natural number. Actions are defined

by using affine transformations of the form x1 � x� δ,

where δ � xd1, . . . , dny is a n-vector of integer con-

stants. A transition with guard x ¥ c, and action x1 �

x�δ is enabled in the state u if c ¤ u. The application

of the transition is then u Ñ u� δ.

The Reachability Problem for VAS is known to be

decidable in EXPSPACE [87,90]. The original proof

is not applicable in practice. A recent reformulation

of Leroux [85,86] yields new insights into Presburger

definable over- and under-approximations of the prob-

lem. The Coverability Problem can be decided via for-

ward exploration with accelerations, an algorithm due

to Karp and Miller [80]. Before illustrating how the

Karp-Miller construction works, let us first observe that

the reachability set of a VAS may be infinite. A finite

over-approximation of the reachability set can be ob-

tained by applying accelerations during the construc-

tion of the reachability graph. The acceleration is ap-

plied along every path of the reachability graph. Con-

sider a state u � xu1, . . . , uny with predecessor states

vi � xvi1, . . . , v
i
ny along a given path. For some i, if

vi ¤ u, then we replace with ω all components uj of

u s.t. vij   uj . Coverability can be checker by compar-

ing the target configurations t with the extended states

in the resulting graph. If one of the extended states is

larger than t, coverability holds for t. Termination of

the resulting algorithm is ensured by the wqo property

of tuples of natural numbers extended with ω that en-

sures that there cannot be paths containing an infinite

sequence of incomparable extended states. The cover-

ability graph can be applied to verify liveness properties

by first searching for strongly connected components

and then for vectors that are covered by the vector that

must be visited infinitely often (Repeated Coverability).

VASS are systems equipped with a control state

ranging from a finite set and a vector of counters rang-

ing over natural numbers. VASS can be reduced to VAS

by encoding control states as special values of an addi-

tional counter.

2.2 VAS for Counting Abstractions

In [72] German and Sistla provide an interesting exam-

ple of applications of VAS to reason on families of con-

current systems. In this setting individual processes are

finite-state automata with special synchronization la-

bels, namely ` and `. A global state is a tuple xq1, . . . , qmy

of states of individual processes such that qi is taken

from a finite set of states Q for i : 1, . . . ,m. Local transi-

tions have the effect of updating the state of an individ-

ual process. In a local step, a successor γ1 � xq11, . . . , q
1
ny

of a configuration γ � xq1, . . . , qny is obtained by select-

ing a process i, applying a local transition qi Ñ q1i, and,



4 Giorgio Delzanno

finally, by requiring that q1j � qj for j � i. Rendez-

vous transitions simultaneously update the local states

of a pair of processes. Specifically, a rendez-vous step is

obtained by selecting two process i, j, by applying the

transitions qi Ñ q1i and qj Ñ q1j , and by requiring that

q1k � qk for k � i, j.

In [72] German and Sistla applied the so called count-

ing abstraction in order to reduce parameterized verifi-

cation problems for LTL formulas to verification prob-

lems for VASS. The counting abstraction consists in

abstracting global states using a finite set of counters,

one for each state of an individual process. Counters

are used to keep track of state updates of individual

processes. They keep track of the number of processes

in each state at every step of a computation. A control

state is used to model controller processes. By using the

general results on VASS, it is possible to reduce LTL

verification for propositions associated to the controller

to (Repeated) Coverability.

2.3 Petri nets

A Petri net is a tuple xP, T, F,M0y where P is a finite

set of places, T is a finite set of transitions and F is a set

of arcs, i.e., F � pP �T qYpT �P q and M0 is the initial

marking. A marking is a multiset M : P Ñ N . When

Mppq � k, we say that place p contains k tokens. A

marking represents the current configuration of a Petri

net. Transitions describe possible updates of the cur-

rent configuration of a Petri net. The set of places with

outgoing edges pointing to t is denoted 
t. The set of

places with incoming edges from transition t is denoted

t
. Transitions can be generalized in order to label arcs
with multiplicity, i.e., 
t and t
 become multisets on P .

We say that t is enabled at marking M if 
t �M , i.e.,

for each place of P , M has at least as many tokens as 
t.

If t is enabled in M , the firing of t yields a new marking

M 1 defined as M 1 � pM a 
tq ` t
. Namely, the tokens

in 
t are removed from M and those in t
 are added to

the resulting multiset.

A marking can also be viewed as an abstract rep-

resentation of a global configuration of a concurrent

system in which we only maintain the number of pro-

cesses in a finite set of possible states (the set of places).

Petri net markings can be viewed as vectors of natural

numbers. Petri net transitions can then be interpreted

as transitions of VAS. Decidability of VAS reachabil-

ity can naturally be transferred to Petri nets. Recently,

it has been proved that the reachability problem for

Petri nets remains decidable for Petri nets with one in-

hibitor arc, i.e., a guard that checks whether a place is

empty [95]. A similar result holds for VAS with one zero

test [28]. Petri nets with two inhibitor arcs are Turing

equivalent. Coverability is still decidable in Petri nets

with reset and transfer arcs [55]. Reset arcs remove all

tokens from a give place. Transfer arcs move all to-

kens from one place to another. When modeled in a

VAS, reset arcs are equalities of the form x1 � 0 for a

given counter x. Transfer arcs are equalities of the form

x1 � x� y, y1 � 0 for counters x, y.

The use of Petri nets for modeling synchronization

primitives in high level programming languages has been

proposed e.g. in [22]. In this setting a Boolean abstrac-

tion is extracted from a concurrent program without

recursion but with synchronization primitives like locks

and monitors. In this abstraction global and local vari-

ables are restricted so as to range over finite domains

only. A counting abstraction is then applied in order

to use counters to maintain the number of threads in

a given program location during the execution of the

original program.

2.4 Well-structured Transition Systems

Well structured transitions systems (wsts) [16,66] are

transition systems in which it is possible to automati-

cally verify the Coverability problem. More specifically,

a transition system is well structured if: (1) it is mono-

tone w.r.t. a wqo ¤ on configurations, (2) given a basis

B of an upward closed set of configurations U , it is pos-

sible to algorithmically compute a basis B1 of the set

of predecessor states prepUq of U , (3) it is possible to

algorithmically check whether s0 belongs or not to an

upward closed set of configurations.

In [16,66] it has been proved that Coverability is

decidable for wsts’s. The algorithm that decides cover-

ability is based on a backward reachability analysis in

which minimal elements of upward closed sets of states

are used to symbolically represent infinite sets of states.

Let Φ be a set of finite bases of upward closed sets. We

use ΦÒ to denote the upward closure of elements in Φ.

We define the sequence Φ0Φ1 . . . as follows:

– Φ0 � ts1u

– Φi�1 � Φi Y sprepΦiq for i ¥ 0

where, in general, sprepΦq computes a set of minimal

elements that represent prepΦi Òq.

As shown in [16], since ¤ is a wqo, then the chain

necessarily stabilizes, i.e., there exists k s.t. Φk�1 rep-

resents the same set of configurations as Φk (i.e. Φk is

a least fixpoint). When a fixpoint has been detected,

it remains to check whether the initial states belong to

Φk Ò.



A Unified View of Parameterized Verification of Abstract Models of Broadcast Communication 5

2.5 Petri nets as Wsts

The theory of wsts provides alternative ways to define

decision procedures for VAS (and Petri nets). Instead

of using forward exploration with accelerations as in

the Karp-Miller construction, we can apply the above

mentioned backward algorithm starting from the target

vector v (marking) viewed as a generator for the infinite

set of vectors tu | v ¤ uu. Predecessor can be computed

symbolically by applying the transitions backwards on

the generator v and then conjoining the results with

the guard of the transition. Symbolic representations of

upward closed sets via linear constraints or dedicated

data structures have been considered, e.g., in [40,44].

The EPR theory of arrays used in SMT solvers can

also be used to symbolically represent upward closed

set of configurations of parameterized systems [73].

Heuristics to reduce the number of minimal ele-

ments used to represent upward closed sets of vectors

have been considered in [78]. The algorithm is based

on non-deterministic guesses of new minimal elements

(smaller than those present in the current analysis) that

are removed in backtracking in case their selection leads

to incorrect results. A general forward exploration al-

gorithm for well structured transition systems has been

considered in the Expand, Enlarge and Check frame-

work [70]. The algorithm is based on an abstraction re-

finement schema in which the abstract domain is made

more and more refined with the help of limit elements

(a generalization of ω) until reaching a covering graph

that is sufficiently precise to prove the absence of states

covered by a given target. A sequence of under and over-

approximations is used either to detect error traces or

to prove correctness of the considered model. Complete-

ness of the algorithm is non constructive, i.e., it is not

possible to compute a priori the number of refinement

steps needed for termination.

In [36] the authors introduce Petri nets with dis-

crete parameters as a way to reason about families of

concurrent systems. Instantiations of parameters give

rise to standard Petri nets. Decision problems such as

the existence of instantiations that can verify a given

property or the synthesis of nets that can satisfy a para-

metric condition are considered in the paper. A general

undecidability result is given for the considered decision

problems. Syntactic fragments are identified in order to

obtain decidability of properties like coverability with

discrete parameters.

An alternative way to prove properties of Petri net

models and, more generally of parameterized systems,

consists in using abstractions and simulation relations

in order to reduce verification problems to finite-state

verification. These methods typically provide cut-off the-

orems for verification of temporal properties with quan-

tification over process indexes. Abstractions and finite

model theorems have been studied, e.g., in [33,93,34,

20,56,58,91] and used as parts of more complex anal-

ysis, e.g., in combination of model checking tools. Ap-

proaches based on program transformations and con-

straints have been considered, e.g., in [68]. In the rest

of the paper we will focus our attention on parameter-

ized models for systems with broadcast communication

mechanisms.

3 Broadcast Protocols

In [57] Emerson and Namjoshi introduced a formal model

of concurrent systems with broadcast communication

called Broadcast Protocols. The model is based on an

extension of German and Sistla’s communicating au-

tomata. Specifically, a Broadcast Protocol is a tuple

P � xQ,Σ,R,Q0y, where Q is a finite set of control

states, Σ is a finite alphabet,

R � Q� pt!!a, ??a, !a, ?a | a P Σu Y tτuq �Q

is the transition relation, and Q0 � Q is a set of ini-

tial control states. The label !a (resp. ?a) represents a

rendez-vous between two processes on message a P Σ

(a zero-capacity channel). The label !!a (resp. ??a) rep-

resents the capability of broadcasting (resp. receiving)

a message a P Σ. Given a process P � xQ,Σ,R,Q0y, a

configuration with n processes is a tuple γ � xq0, . . . , qny

of control states such that qi is the current state of

the i-the process for i : 1, . . . , n. We use Γ (resp. Γ0)

to denote the set of configurations (resp. initial con-

figurations) associated to P. Note that even if Q0 is

finite, there are infinitely many possible initial con-

figurations. For q P Q and a P Σ, we define the set

Rapqq � tq1 P Q | xq, ??a, q1y P Ru which contains the

states that can be reached from the state q when receiv-

ing the message a. We assume that Rapqq is non empty

for every a and q, i.e., nodes always react to broad-

cast messages. Given a process P � xQ,Σ,R,Q0y, a

Broadcast Protocol is defined by the transition system

xΓ,Ñ, Γ0y where the transition relation Ñ � Γ � Γ is

such that: for γ, γ1 P Γ with γ � xq0, . . . , qny, we have

γ Ñ γ1 iff γ1 � xq10, . . . , q
1
ny and one of the following

condition holds

– Di s.t. xqi, !!a, q
1
iy P R and q1j P Rapqjq for every j � i.

– Di � j s.t. xqi, !a, q
1
iy, xqj , ?a, q

1
jy P R and q1l � ql for

every l � i, j.

– Di s.t. xqi, τ, q
1
iy P R and q1j � qj for every j � i.

For a Broadcast Protocol P, the Coverability problem

(control state reachability) consists in checking whether



6 Giorgio Delzanno

there exists n ¥ 0 and an initial configuration γ �

xq0, . . . , q0y with n processes that can reach in one or

more steps a configuration containing a certain state q.

By passing through a generalization of VASS, in [57]

the authors define a forward procedure with acceler-

ation that generalizes the Karp-Miller construction to

Broadcast Protocols. In this setting we need transitions

defined by the following equations

x1 �M � x� δ

where M is a matrix in which each column has a single

1, a property called unimodularity. The forward proce-

dure operates by computing the effect of iterating the

applications of transitions by extrapolating the limit

operation of the resulting set of states. The procedure

however is not guaranteed to terminate.

A decision procedure for Broadcast Protocols has

been proposed by Esparza, Finkel and Mayr in [59].

The property is based on the observation that Broad-

cast Protocols form a wsts with respect to marking in-

clusion (i.e. point-wise ordering over vectors or natu-

ral numbers). Coverability for Broadcast Protocols can

then be decided using a symbolic backward exploration

algorithm that is an instance of the general algorithm

for wsts [59]. As for Petri nets, constraints over integer

variables can be used to symbolically explore the behav-

ior of a protocol with an arbitrary number of processes.

This property together with relaxations from integer to

real arithmetic can be used to apply efficient constraint

solvers for designing backward reachability engines [40,

38].

Broadcast Protocols have been used to model cache

coherence protocols [38] (e.g. to model invalidation sig-

nals) and to model synchronization primitives (e.g. no-

tifyAll in Java) for Boolean abstractions of concurrent

programs [43].

3.1 Affine Well-structured Nets

An affine well-structured net (AWN) N [65] is given by

a set of n places and a set of transitions. Each transi-

tion t is equipped with two n-vectors, Ft and Ht, and

an n�n-matrix Gt. A transition t can be fired whenever

Ft ¤M . The effect of firing of transition t is defined by

the equation M 1 � pGt � pM �Ftqq�Ht. The matrix Gt
can be used to define whole place operations like reset

and transfer arcs. For instance, if the i-th column of

Gt is null, then the effect of Gt is to reset the contents

of the i-th place. Actually, affine transformations can

be applied to define effects obtained as linear combina-

tions of the current number of tokens in the net. For

instance, for a Petri net with n places, if the ith-place

contain ki tokens, then we can add cjki tokens in the

j-th place or any linear combination obtained by com-

bining k1, . . . , kn using fixed constants c1, . . . , cn. AWN

is a wsts model w.r.t. point-wise ordering of tuples of

natural numbers. Therefore, coverability is still decid-

able in this model. AWN subsume models like VASS,

Petri nets, Petri nets with reset and transfer arcs. Fur-

thermore, AWN is strictly more expressive than Petri

nets. Indeed, it has been proved that coverability is

Ackermann-hard for Petri nets with reset or transfer

arcs [100].

4 Broadcast Protocols with Data

In [30,37,39] we introduced a data-sensitive model of

concurrent and distributed systems, called Multi Set

Rewriting with Constraint (MSR(C), to extend the Broad-

cast Protocols of [57,59] in order to model data stored in

individual processes. Indeed, the model combines multi-

set rewriting over atomic formulas with constraints and

global operations expressed using a special kind of reac-

tion rules. Formally, a MSR(C) specification is defined

as follows. A constraint system C is defined by formulas

with free variables in V , an interpretation domain D,

and a satisfiability relation |ù for formulas in C inter-

preted over D. We use D |ùσ ϕ to denote satisfiability

of ϕ via a substitution σ : V arpϕq Ñ D, where V arpϕq

is the set of free variables in ϕ.

For a fixed set of predicates P , an atomic formula

with variables has the form ppx1, . . . , xnq where p P P

and x1, . . . , xn P V . A rewriting rule has the form M ;

M 1 : ϕ, where M and M 1 are multiset of atomic formu-

las with variables over P and V , and ϕ is a constraint

formula over variables in V arpM ` M 1q occurring in

M `M 1. We use M � A1, . . . , An to denote a multiset

of atoms.

MSR(Id) is the instance obtained by considering the

constraint system Id defined as follows. Constraint for-

mulas are either conjunctions ϕ1, ϕ2 or atomic formulas

of the form x � y and x   y for variables x, y P V .

The interpretation domain is defined over an infinite

and ordered set of identifiers equipped with equality,

namely xId,�, y. For substitution σ : V Ñ Id, x � y

is interpreted as σpxq � σpyq, x   y is interpreted as

σpxq   σpyq, and ϕ1, ϕ2 is interpreted as σpϕ1q^σpϕ2q.

A constraint ϕ is satisfied by a substitution σ if σpϕq

evaluates to true. A ground instance Mσ ; M 1σ of a

rule M ; M 1 : ϕ is defined by taking a substitution

σ : V arpM `M 1q Ñ Id such that σpϕq is satisfied in

the interpretation Id.

As an example, consider the rule

ppx, yq, qpxq; ppx, yq, qpxq, qpuq : x   u



A Unified View of Parameterized Verification of Abstract Models of Broadcast Communication 7

The intuition is that processes ppa, bq and qpcq synchro-

nize when a � c and generate a new instance qpdq with

c   d. By associating natural numbers to identifiers,

pp1, 2q, qp1q Ñ pp1, 2q, qp1q, qp4q and pp3, 10q, qp3q Ñ

pp3, 10q, qp3q, qp8q are two instances of the considered

rule. We use InstpRq to indicate the infinite set of in-

stances of a set R of rules.

A configuration is a multiset N of atoms of the form

ppd1, . . . , dnq with di P Id for i : 1, . . . , n. For a set R of

rules and a configuration N , a rewriting step is defined

by the relation Ñ s.t. N � pM `Qq Ñ pM 1 `Qq � N 1

for pM ;M 1q P InstpRq. A computation is a sequence

of configurations N1 . . . Nm . . . s.t. Ni Ñ Ni�1 for i ¥ 0.

Broadcast communication with data can be mod-

eled in a direct way by adding a set of reaction rules

to MSR(C) transitions [30]. Reactions play the role of

receptions in Broadcast Protocols and are defined via

rewriting rules of the form p1puq á p2pu
1q with con-

straints defined on variables of both action and reaction

rules. For instance, the rule

p1pxq; p2pxq

rq1pyq á q2pyq, q1pzq á q3pzqs : y ¡ x, x ¡ z

specifies that when a process in state p1 with data x

moves to p2, all processes in state q1 with data larger

than x move to q2, whereas all processes in state q1 with

data smaller than x move to state q3.

Coverability here is defined in terms of control state

reachability, i.e., decide whether it is possible to reach

a configurations that contains a given predicate sym-

bol. This problem is decidable for specification in which

predicates have at most arity one. The problem can

be formulated as a more standard coverability prob-

lem by an adequate ordering of configurations that we

will define after introducing variations of the model like

CMRS.

Constrained Multiset Rewriting Systems (CMRS)

[1] are an instance of multiset rewriting with constraints

defined on top of a class of constraints over integers

called gap-order constraints. Gap-order constraints have

been introduced by Revesz [96] as an extension of Dat-

alog. They are defined by conjunctions of formulas that

are either equalities of the form x � y or inequalities of

the form x�c ¤ y where c is a natural number and x, y

are variables over integer numbers. These constrains are

less powerful than difference constraints (they are not

closed under negation).

In [1] we have applied the theory of wsts to show

that coverability is decidable for monadic CMRS. To

define an ordering on configurations, we can proceed as

follows. We first cluster predicates that have the same

piece of data. A cluster is a multiset of predicate sym-

bols. The resulting multisets can be ordered according

to the relative order of data (we can consider all possible

linearizations to deal with partial ordering induced by

the guards). We then require the existence of a mono-

tone injection between data occurring in two different

markings so that the associated multiset of symbols are

one included in the other. In other words markings can

be viewed as words of multisets of symbols in P and the

above mentioned ordering is a word embedding built on

top of multiset inclusion. From Higman’s lemma, the re-

sulting ordering is a wqo. CMRS are monotone with re-

spect to this ordering and predecessors of upward closed

sets can be computed symbolically. The complexity of

coverability for CMRS is non elementary, since CMRS

subsumes reset and transfer nets.

Complexity results for verification of systems com-

posed by a finite number of counters with transitions

defined by gap-order constraints have been considered

in [32]. CMRS differs from the models in [96,32] in

that transitions are not restricted to a fixed number

of counters. Furthermore, since constraints allow the

use of inequalities, it is possible to model fresh name

generation. For instance, starting from the configura-

tion containing pp0q, the rule ppxq ; ppzq, rpzq : z ¡

x, when repeatedly applied, injects an arbitrary num-

ber of atoms of the form ppvq with increasing values

as arguments. For instance, we have computations like

pp0q Ñ pp1q, rp1q Ñ pp3q, rp3q, rp1q . . .. Applications of

the resulting model inclused specification and analysis

of (time-sensitive) cryptographic protocols for multiple

sessions [31,41] and distributed protocols for mutual

exclusion [8].

4.1 νNets

In [97,98] Velardo and De Frutos-Escrig introduced an-

other model with data called ν-PN. ν-PN are an exten-

sion of Petri nets in which tokens are pure names that

can only be compared for equality. To formally define

the model, we consider a set Id of names, a set Var of

variables and a subset of special variables Υ � Var used

for fresh name creation. A labelled ν-Petri Net (ν-PN)

is a tuple N � pP, T, F, λq, where P and T are finite

disjoint sets that represent places and transitions, re-

spectively, λ : T Ñ Σε is the labelling of transitions,

and

F : pP � T q Y pT � P q Ñ Var`

is such that for every t P T , preptq X Υ � H and

postptqzΥ � preptq, where preptq �
�
pPP supppF pp, tqq

and postptq �
�
pPP supppF pt, pqq where supppSq is the

set of names occurring in S. We also take Varptq �

preptqY postptq. The mapping F labels every pair pp, tq

and pt, pq by a multiset of variables. These variables



8 Giorgio Delzanno

specify how tokens move from preconditions to post-

conditions. Variables in Υ can only be instantiated to

names that do not occur in the current marking. These

special variables only appear in post-arcs.

As an example if variable x occurs as a label of

pp, tq, pr, tq and pt, qq then a token, with value d, can

be removed resp. from place p and r and moved to

place q without changing value. A similar transition

can be expressed in MSR(Id) via a single rule of the

form ppxq, rpxq ; qpxq : true. In the same example

if variable y P Υ labels pt, pq, then a token with fresh

value is added to place p. A similar transition can be

expressed in MSR(Id) via a single rule of the form

ppxq, rpxq,maxpzq ; qpxq, ppyq,maxpyq : y ¡ z assum-

ing that max always stores the highest value seen so

far.

A marking of a ν-PN N � pP, T, F, λq is a mapping

M : P Ñ Id`. We take IdpMq �
�
pPP supppMppqq, the

set of names in M . Thus, a marking M assigns to each

place a multiset of names. Given a transition t P T ,

a mode of t is a mapping σ : Varptq Ñ Id such that

σpν1q � σpν2q for each different ν1, ν2 P Υ . A transition

t is enabled with mode σ for a marking M if for all p P

P , σpF pp, tqq � Mppq and σpνq R IdpMq for all ν P Υ .

Then t can be fired with mode σ, reaching the marking

M 1 given by M 1ppq � pMppq � σpF pp, tqqq � σpF pt, pqq

for all p P P . νNets turn out to be wsts with respect to

an ordering similar to the wqo used for CMRS. Since

data are not ordered we can relax the conditions on

the embedding between data of different configurations

and remove the monotonicity requirement. Coverabil-

ity w.r.t. the above mentioned ordering is decidable in

νNets [97].

4.1.1 Data Nets

Data nets are a generalization of CMRS and νNets in

which tokens are colored with data taken from a infinite

domain D equipped with a linear ordering  . A data

net marking s is a multiset of tokens that carry data in

D. We use spdqppq to denote the number of tokens with

data d in place p. An example of data net marking is

as follows:

s �

�
�

v1 v2 v3
p q p q p q

2 1 0 1 1 2

�



where spv1qppq has two tokens, etc. Data nets transi-

tions extend those of Petri nets by allowing deletion

and addition of tokens with data. In addition they al-

low whole-place operations, e.g., transfer of all tokens

with data in some region from one place to another re-

gion and place. For our purposes, it will be enough to

Ft �

�
�

R0 S1 R1

p q p q p q
0 0 1 0 0 0

�



Ht �

�
�

R0 S1 R1

p q p q p q

0 0 0 1 0 0

�



Gt �

�
�����������

R0 S1 R1

p q p q p q

R0
p 0 0 1 0 0 0
q 0 1 0 0 0 0

S1
p 0 0 1 0 0 0
q 0 0 0 1 0 0

R1
p 0 0 0 0 1 0
q 0 0 1 0 0 0

�
����������


Fig. 1 A data net transition t with arity 1.

consider transitions with arity αt � 1 defined below.

For a non-deterministically chosen value d, a transition

of arity 1 operates on the partitioning R0, S1, R1 of the

values contained in the current marking s.t. S1 is the

multiset of tokens with data � d, R0 is the multiset

of tokens with data   d, and R1 is the multiset of to-

kens with data ¡ d. A transition is defined by three

matrices Ft, Gt, and Ht as in Fig. 1. First, for each

place p P P , FtpS1, pq specifies how many tokens with

data d have to be removed from place p. The transition

is enabled iff there are enough tokens to remove from

each place. Gt specifies transfers from one place to an-

other that have to be executed after application of Ft.

If GtpRi, p, Ri, pq � 0 (reset), and GtpRi, p, S1, qq � 1

(transfer), then all tokens in place p with data in Ri
are transferred to place q by updating their data into

d (the only value in S1). GtpRi, p, Ri, qq � 1 specifies a

transfer from place p to place q within the same region
(data remain unchanged), and GtpS1, p, S1, qq � 1 has

a similar effect on S1. Finally, for each place p P P ,

HtpS1, pq specifies how many tokens with data d have

to be added to place p. Consider the data net marking

s �

�
�

e1 e2 e3 e4
p q p q p q p q

2 1 2 1 2 3 2 2

�



and the rule t with arity 1 defined in Fig. 1. We non-

deterministically associate e3 to S1. Then, transition t

first removes one token with value e3 from place p. This

produces the intermediate marking

s1 �

�
�

e1 e2 e3 e4
p q p q p q p q

2 1 1 1 2 3 2 2

�



We now apply the transfer operations, i.e, we reset re-

gion R0 and place p and region R1 and place q and and

move all those tokens to region S1 and place p. This



A Unified View of Parameterized Verification of Abstract Models of Broadcast Communication 9

gives the intermediate configuration:

s2 �

�
�

e1 e2 e3 e4
p q p q p q p q

0 1 0 1 7 3 2 0

�



Finally, we apply the addition step that yields the suc-

cessor configuration:

s1 �

�
�

e1 e2 e3 e4
p q p q p q p q

0 1 0 1 7 4 2 0

�



The formal semantics of firings of data net transitions

is given in [84]. We use sÑt s
1 to indicate the firing of

a transition t from marking s to marking s1 and with

Ñ the union of the relations Ñt for each transition t.

The Coverability problem is defined on top of the

following ordering between markings. Let Datapsq be

the set of data values that occur in a marking s. Then,

s1 ¨ s2 iff there exists an injective function h :

Dataps1q ÞÑ Dataps2q such that (i) h is monotone and

(ii) s1pdqppq ¤ s2phpdqqppq for each d P Dataps1q and

p P P . For instance, we have that

s �

�
�

v1 v2 v3
p q p q p q

2 1 0 1 1 2

�



¨

s1 �

�
�

u1 u2 u3 u4
p q p q p q p q

3 2 1 2 0 1 2 4

�



via the injection h that maps v1 to u1, v2 to u2 and v3 to

u4. For markings s0 and s1, the data nets coverability
problem consists in checking if there exists a marking

s2 s.t. s0 Ñ
� s2 and s1 ¨ s2. Data nets turn out to be

wsts. Therefore, coverability is decidable for Data nets

[84].

4.2 Expressiveness

In [6,45] we studied the relative expressive power of

infinite-state models like Petri nets, Broadcast Proto-

cols, AWN, νNets, MSR(Id)/CMRS, and Data Nets.

An adequate measure to compare the expressive power

of all these models is based on the use of languages asso-

ciated to computations. More specifically, assume that

each transition has a label taken from a finite alphabet

Σ. Furthermore, assume that the label of the transition

is used as a label of the corresponding transitions be-

tween (global) states. A computation then generates a

word over Σ�. The language associated to a model de-

pends on the conditions used to accept a word. Since the

goal is to compare the expressive power of wsts mod-

els, we consider accepting conditions defined as in the

coverability problem. Given a labelled transition sys-

tem S � pS,Σ,Ñ, s0, sf q with a quasi-ordering ¤, we

define the covering language:

LpSq � tw P Σ� | s0
w
Ñs, sf ¤ su

The covering language is strictly related to the cover-

ability. It captures the language generated by compu-

tations that lead to a state that is larger than a fixed

target state sf . Given a model M , we use LpMq to

denote the class of languages defined by instances in

M . For instance, for the class of finite automata FA,

LpFAq is the set of regular languages. By comparing the

class of generated languages, we can study the relative

expressive power of different types of wsts. From the

results presented in [64,71,6,45], we have the following

strict hierarchy between the wsts models described in

the previous sections:

LpFAq � LpPNq � LpAWNq �

� LpνNetsq � LpDNq

where FA, PN , DN stand for finite automata, Petri

nets, and Data nets respectively. The strict inclusion

Lpν�Netsq � LpDNq has been proved using an appli-

cation of ordinal theory [29] as a measure of the state

space that has to be explored to solve coverability in the

corresponding models. The method used in [29] based

on order reflection is a generalization of the strict inclu-

sion between Lossy Channel Systems and CMRS proved

in [6].

Furthermore, in [6] it has been shown that

LpDNq � LpCMRSq � LpMSRpIdqq

The latter result is quite surprising. It shows that, when

considering languages accepted with coverability, broad-

cast communication increase the expressive power of

Petri nets, whereas whole place operations (a gener-

alization of broadcast communication) do not increase

the power of Petri nets with ordered data, i.e., Data

Nets are equivalent to MSR(Id) and CMRS. The intu-

ition behind the latter result is that by using ordered

data it is possible to simulate a broadcast operation

via a sequence of stages identified by increasing values.

Broadcast is encoded then as a sequence of individual

transfers of tokens from one stage to the next one. This

transfer can lose some of the token. However this is

not a problem when considering coverability problems.

Indeed it can be shown that coverability in a lossy ver-

sion of a wsts model is equivalent to coverability in the

non-lossy version.



10 Giorgio Delzanno

We remark thatAWN are a generalization of Broad-

cast Protocols, BP for short, but from the analysis in

[64], we also have that

LpPNq � LpBP q

Finer grained comparisons between AWN, νNets and

(fragments of) Data nets are presented in [29]. More

general models of Petri nets with data are presented in

[89].

4.3 Other Models and Verification Methods

Parameterized concurrent programs communicating via

a shared memory have been considered, e.g., in [22]

as abstract models of multithreaded programs. In [60]

Esparza, Ganty and Majumdar study the complexity

of systems containing a leader process and arbitrarily

many anonymous and identical contributors. Commu-

nication is defined via atomic operations on a shared

register. In [8,52] the authors presented approximated

procedures for concurrent systems combining broad-

cast communication and universally quantified condi-

tions. The key ingredient is the application of Mono-

tonic Abstraction [18] an abstraction that transforms

pre-conditions into post-conditions in order to enforce

monotonicity. Similar approximations have been con-

sidered in symbolic backward engines based on SMT

solvers [19]. SMT and SAT solvers can also been applied

to solve coverability for Petri nets [61], and for well-

structured transition systems [81]. Techniques for au-

tomatically constructing counting arguments, by syn-

thesizing counter predicates, for programs with infinite

control have been developed in [62,63].

5 Distributed Broadcast Protocols

In this section we focus our attention on graph-based

models with broadcast communication, an extension of

Broadcast Protocols.

In [48] we introduced an extension of Broadcast Pro-

tocols, called Ad Hoc Networks (AHN), in which pro-

cesses are distributed on a graph. To formalize this idea,

let us first define a Q-graph as a labeled undirected

graph γ � xV,E, Ly, where V is a finite set of nodes,

E � V � V ztxv, vy | v P V u is a finite set of edges, and

L is a labeling function from V to a set of labels Q. We

use Lpγq to represent all the labels present in γ. The

nodes belonging to an edge are called the endpoints of

the edge. A process is a tuple P � xQ,Σ,R,Q0y, where

Q is a finite set of control states, Σ is a finite alphabet,

R � Q�pt!!a, ??a | a P ΣuYtτuq�Q is the transition re-

lation, and Q0 � Q is a set of initial control states. The

label !!a (resp. ??a) represents the capability of broad-

casting (resp. receiving) a message a P Σ. As for Broad-

cast Protocols, we define Rapqq � tq1 P Q | xq, ??a, q1y P

Ru as the set of states that can be reached from the

state q when receiving the message a and assume that

Rapqq is non empty for every a and q. We also consider

local transitions of the form xq, τ, q1y. We do no con-

sider here rendez-vous communication. Given a process

P � xQ,Σ,R,Q0y, a configuration is a Q-graph and an

initial configuration is a Q0-graph. We use Γ (resp. Γ0)

to denote the set of configurations (resp. initial config-

urations) associated to P. Note that even if Q0 is finite,

there are infinitely many possible initial configurations

(the number of Q0-graphs). Communication is achieved

via selective broadcast, which means that a broadcast

message is received by the nodes which are adjacent to

the sender. Non-determinism in reception is modeled

by means of graph reconfigurations. We next formal-

ize this intuition. Given a process P � xQ,Σ,R,Q0y,

an AHN is defined by the transition system xΓ,Ñ, Γ0y

where the transition relation Ñ � Γ � Γ is such that:

for γ, γ1 P Γ with γ � xV,E,Ly, we have γ Ñ γ1 iff

γ1 � xV,E,L1y and one of the following condition holds

– Dv P V s.t. xLpvq, !!a, L1pvqy P R and L1puq P RapLpuqq

for every xu, vy P E, and Lpwq � L1pwq for any other

node w.

– Dv P V s.t. xLpvq, τ, L1pvqy P R, and Lpwq � L1pwq

for any other node w.

The model is inspired by graph-based models of dis-

tributed systems presented in [76,99,102,103].

Dynamic network reconfigurations can be modeled

by adding transitions in which the set of edges is non-

deterministically changed. Hence, we extend the tran-

sition relation in order to include the following case:

γ, γ1 P Γ with γ � xV,E,Ly, we have γ Ñ γ1 if γ1 �

xV,E1, Ly for some E1 � V � V ztxv, vy | v P V u.

Parameterized verification problems for our model

can be defined by considering the following type of

reachability queries. Given a process P, a transition sys-

tem xΓ,Ñ, Γ0y, and a control state q, the coverability

problem consists in checking whether or not there exists

γ0 P Γ0 and γ1 P Γ s.t. γ0 Ñ
� γ1 and q P Lpγ1q. We re-

mark that the initial configuration is not fixed a priori.

In fact, the only constraint that we put on the initial

configuration is that the nodes have labels taken from

Q0 without any information on their number or connec-

tion links. Similar problems can be studied for the vari-

ations of the basic model with the following features:

node crashes, asynchronous communication, messages

with data fields and nodes with local memory.

According to our semantics, the number of nodes

stays constant in each execution starting from the same



A Unified View of Parameterized Verification of Abstract Models of Broadcast Communication 11

initial configuration. As a consequence, when fixing the

initial configuration γ0, we obtain finitely many pos-

sible reachable configurations. Checking the parame-

terized version of the reachability problem is generally

much more difficult. The problem easily gets undecid-

able since for parametric initial configurations we have

to deal with an infinite family of transition systems (one

for each initial graph). Despite of it, we can still find

interesting restrictions to the model or to the set of

considered configurations for which coverability is de-

cidable.

5.1 Synchronous Broadcast

For this model, we have proved in [48] that coverabil-

ity is undecidable without dynamic reconfiguration, i.e.,

when the topology never changes during execution. The

proof is based on a discovery protocol implemented by

running the same process on each node of the net-

work (whose shape is unknown). The discovery protocol

controls interferences by forcing states receiving more

copies of the same message into special dead states.

This strategy can then be used to navigate into un-

known networks and to select one by one nodes that

belong to a subgraph with a given shape. A simple

shape like a list of fixed but arbitrary length is enough

to run a simulation of a Two Counter machine (the list

models the maximal aggregate value of the counters).

Interestingly, the problem becomes decidable when con-

sidering non-deterministic reconfiguration steps. Non-

deterministic reconfiguration steps destroy the influ-

ence of the topology on the behavior of individual nodes.

The results can then be proved via a reduction to cov-

erability for Petri nets. A broadcast is simulated via a

rendez vous with an arbitrary subset of nodes in the

network. It is interesting to remark that, as in other

models like channel systems, see, e.g., [14], the loss of

information has the effect of simplifying the verifica-

tion task (the state space becomes more regular) while

it complicates the design of protocols (programming in

the model is harder).

To emphasize this point, in [47] we have shown that,

in presence of non-deterministic reconfigurations, the

decision procedure for coverability has polynomial time

complexity in the size of the input protocol. The proof

is based on a labeling algorithm that exploits mono-

tonicity properties of the semantics with reconfigura-

tions steps. The algorithm can be viewed as a satura-

tion process that marks as visited every state that can

be generated by via synchronization step starting from

any number of copies of already visited states. The al-

gorithm requires at worst as many step as the number

of control states in the protocol. More complex para-

metric reachability properties in which the target con-

figurations are generated by constraints on the number

of occurrences of control states can still be decided but

with increasing complexity. For instance, the problem

becomes exponential when target states are described

by conjunctions of interval constrains defined over oc-

currences of states [47].

5.2 Restricted Topologies

In [48,49] we have introduced a restricted form of cov-

erability in which configurations are required to belong

to a fixed subclass of graphs (e.g. stars, fully connected

graphs, etc.). A quite interesting example of non triv-

ial class consists of all undirected graphs in which the

length of simple paths is bounded by the same constant

k (k-bounded path graphs). For k ¥ 1, we still have an

infinite set of graphs (e.g. k � 2 contains all stars with

diameter two). Notice that fully connected graphs are

not bounded path.

For synchronous broadcast communication without

reconfiguration, parameterized verification is still decid-

able for bounded path graphs. The results follows from

a non trivial application of the theory of well-structured

transition systems [5,66]. Our model is well-structured

on the class of bounded path graphs with respect to the

induced subgraph relation. Let us define the ordering

starting from the usual subgraph relation. Given two

graphs G � xV,E,Ly and G1 � xV 1, E1, L1y, G is in the

subgraph relation with G1, written G �s G
1, whenever

there exists an injection f : V Ñ V 1 such that, for every

v, v1 P V , if xv, v1y P E, then xfpvq, fpv1qy P E1.

The induced subgraph ordering has the following

stronger requirements. Given two graphs G � xV,E, Ly

and G1 � xV 1, E1, L1y, G is in the induced subgraph re-

lation with G1, written G �i G
1, whenever there exists

an injection f : V Ñ V 1 such that, for every v, v1 P V ,

xv, v1y P E if and only if xfpvq, fpv1qy P E1. The two

orderings are not equivalent. As an example, a path

with three nodes is a subgraph, but not an induced

subgraph, of a ring of the same order. Subgraph and

induced subgraph are well-quasi ordering for bounded

path graphs a result due to Ding [54]. Broadcast com-

munication is monotone with respect to induced sub-

graph but not with respect to subgraph. These proper-

ties can be used to obtain a well-structured transition

systems for our extended notion of broadcast protocols

over the set of bounded path configurations. The algo-

rithm in [48] operates on finite representations of infi-

nite set of configurations. The decidability result can

be extended to a slightly more general class of graphs

that includes both stars and cliques [49]. The bounded



12 Giorgio Delzanno

path restriction is used in [49] on graphs obtained af-

ter collapsing cliques into single nodes. More precisely,

the maximal clique graph KG associated to a graph

G � pV,E,Lq is the bipartite graph xX,W,E1, L1y in

which X � V , W � 2V is the set of maximal cliques of

G, for v P V,w P X, xv, wy P E1 iff v P w; L1pvq � Lpvq

for v P V , and L1pwq � 
 for w P W . We reformu-

late the bounded path condition on the maximal clique

graph associated to a configuration (i.e. the length of

the simple paths of KG is at most n). For n ¥ 1, the

class BPNn consists of the set of configurations whose

associate maximal clique graph has n-bounded paths

(i.e. the length of the simple paths of KG is at most n).

The ordering we are interested in is defined on maxi-

mal clique graphs as follows. Assume G1 � xV1, E1, L1y

with KG1
� xX1,W1, E

1
1, L

1
1y, and G2 � xV2, E2, L2y

with KG2
� xX2,W2, E

1
2, L

1
2y with G1 and G2 both

connected graphs. Then, G1 �m G2 iff there exist an

injection f : X1 Ñ X2 and g : W1 ÑW2, such that

1. for every v P X1, and C PW1, v P C iff fpvq P gpCq;

2. for every v1, v2 P X1, and C P W2, if fpv1q �C
fpv2q, then there exists C 1 P W1 s.t. fpv1q �C1

fpv2q;

3. for every v P X1, Lpvq � Lpfpvqq;

4. for every C PW1, LpCq � LpgpCqq.

It holds that G1 �m G2 iff G1 �i G2 (G1 is an induced

subgraph of G2). Furthermore, the resulting ordering is

still a wqo and the transition relation Ñ is still mono-

tone.

5.3 Faults and Conflicts

In [50] we have studied the impact of node and com-

munication failures on the coverability problem for our

model of ad hoc network protocols. We started our

analysis by introducing node failures via an intermit-

tent semantics in which a node can be (de)activated at

any time. Coverability is decidable under the intermit-

tent semantics. Decidability derives from the assump-

tion that nodes cannot take decisions that depend on

the current activation state (e.g. change state when the

node is turned on). We then consider two restricted

types of node failure, i.e., node crash (a node can only

be deactivated) and node restart (when it is activated,

it restarts in a special restart state). Coverability be-

comes undecidable in these two semantics. We consid-

ered then different types of communication failures. We

first consider a semantics in which a broadcast is not

guaranteed to reach all neighbors of the emitter nodes

(message loss). Coverability is again decidable in this

case. We then introduce a semantics for selective broad-

cast specifically designed to capture possible conflicts

during a transmission. A transmission of a broadcast

message is split into two different phases: a starting and

an ending phase. During the starting phase, receivers

connected to the emitter move to a transient state.

While being in the transient state, a reception from

another node generates a conflict. In the ending phase

an emitter always moves to the next state whereas con-

nected receivers move to their next state only when no

conflicts have been detected. In our model we also allow

several emitters to simultaneously start a transmission.

Decidability holds only when receivers ignore corrupted

messages by remaining in their original state. Moreover,

in all cases the above mentioned models in which cov-

erability is decidable the decision procedure can be de-

fined via polynomial time reachability algorithm similar

to that used in the case of reconfigurations.

5.4 Time

In [10] we have considered a timed version of AHN in

which each node has a finite number of dense/discrete

clocks. Time elapsing transitions increase all clocks at

the same rate. The resulting model extends the Timed

Networks model of [17] with an underlying connection

graph. When constraining communication via a com-

plex connection graph, the decidability frontier becomes

much more complex. For nodes equipped with a single

clock, coverability is already undecidable for graphs in

which nodes are connected so as to form stars with di-

ameter five. The undecidability result can be extended

to the more general class of graphs with bounded simple

path (for some bound N ¥ 5 on the length of paths).

We remark that in the untimed case coverability is de-

cidable for bounded path topologies and stars. Cover-

ability is undecidable for fully connected topologies in

which each timed automaton has at least two clocks.

Decidability holds for special topologies like stars with

diameter three and fully connected graphs if nodes have

at most one clock. For discrete time coverability is de-

cidable for nodes with finitely many clocks for fully con-

nected topologies and graphs with bounded path.

5.5 Asynchronous Broadcast

In [51] we have enriched the model in order to consider

asynchronous communication implemented via mailboxes

attached to individual nodes and consider different poli-

cies for handling mailboxes (unordered and fifo) and the

potential loss of messages. In this model nodes have an

additional local data structure that models the mail-

box. Interestingly, even if the model is apparently richer

than the synchronous one, coverability is still decidable



A Unified View of Parameterized Verification of Abstract Models of Broadcast Communication 13

in some case. More specifically, we consider a mail-

box structure M � xM, del?, add, del, 5y, where M is

a denumerable set of elements denoting possible mail-

box contents; addpa,mq denotes the mailbox obtained

by adding a to m, del?pa,mq is true if a can be re-

moved from m; delpa,mq denotes the mailbox obtained

by removing a from m when possible, undefined oth-

erwise. Finally, 5 P M denotes the empty mailbox. We

call an element a of m visible when del?pa,mq � true.

Their specific semantics and corresponding properties

changes with the type of mailbox considered. A protocol

is defined by a process P � xQ,Σ,R, q0y as in the AHN

model with the same notation for broadcast messages.

Configurations are undirected Q�M-graphs. A Q�M-

graph γ is a tuple xV,E, Ly, where V is a finite set of

nodes, E � V � V is a finite set of edges, and L : V Ñ

Q�M is a labeling function. C0 is the set of undirected

graphs in which every node has the same label xq0, 5y

that denotes the initial state of individual processes.

Given the labeling L and the node v s.t. Lpvq � xq,my,

we define Lspvq � q (state component of Lpvq) and

Lbpvq � m (buffer component of Lpvq). Furthermore,

for γ P C, we use Lspγq to denote the union of the set

of control states of nodes in γ (Lspγq �
�
vPV Lspvq

for γ � xV,E, Ly). For M � xM, del?, add, del, 5y, an

Asynchronous Broadcast Network (ABN) is defined by

the transition system TpP,Mq � xC,Ñ,C0y, where Ñ�

C� C is the transition relation defined next.

For γ � xV,E, Ly and γ1 � xV,E,L1y, γ Ñ γ1 holds

iff one of the following conditions on L and L1 holds:

– (local) there exists v P V such that pLspvq, τ, L
1
spvqq P

R, Lbpvq � L1bpvq, and Lpuq � L1puq for each u P

V ztvu.

– (broadcast) there exists v P V and a P Σ such that

pLspvq, !!a, L
1
spvqq P R, Lbpvq � L1bpvq and for every

u P V ztvu

– if xu, vy P E then L1bpuq � addpa, Lbpuqq and

Lspuq � L1spuq,

– otherwise Lpuq � L1puq;

– (receive) there exists v P V and a P Σ such that

pLspvq, ??a, L1spvqq P R, del?pa, Lbpvqq is satisfied,

L1bpvq � delpa, Lbpvqq, and Lpuq � L1puq for each

u P V ztvu.

Coverability for ABN is defined as in the case of AHN,

i.e., we search for an initial configuration that via a

finite number of steps can reach a configuration that

exposes a given control state q P Q. Decidability of cov-

erability is strictly related to the policy used to handle

mailboxes.

Multiset The mailbox structure Bag is defined as fol-

lows: M is the denumerable set of bags overΣ, addpa,mq �

ras `m (where ras is the singleton bag containing a),

del?pa,mq � true iff mpaq ¡ 0, delpa,mq � m a ras,

and 5 PM is the empty bag rs.

When local buffers are treated as bags of messages

the coverability problem is decidable. The proof is based

on two steps. We can first show that, for the purpose of

deciding coverability, we can restrict to fully connected

topologies only. We can then use a reduction to the

PTime-complete algorithm of [47].

FIFO The mailbox structure FIFO is defined as fol-

lows: M is defined as Σ�; addpa,mq � m � a (concate-

nation of a and m); del?pa,mq � true iff m � a � m1;

delpa,mq is the bag m1 whenever m � a �m1, undefined

otherwise; finally, 5 P M is the empty string ε. When

mailboxes are ordered buffers, we obtain undecidability

already in the case of fully connected topologies. The

coverability problem becomes decidable when introduc-

ing non-deterministic message losses. In an extended

model in which a node can test if its mailbox is empty,

we obtain undecidability with unordered bags and both

arbitrary or fully-connected topologies.

5.6 Distributed Broadcast Protocols with Data

In [46] we considered a further refinement step by intro-

ducing local registers and data fields in message pay-

loads. We model a distributed network using a graph

in which the behavior of each node is described via an

automaton with operations over a finite set of registers.

A node can transmit part of its current data to adja-

cent nodes using broadcast messages. A message carries

both a type and a finite tuple of data. Receivers can ei-
ther test, store, or ignore the data contained inside a

message. We assume that broadcasts and receptions are

executed without delays (i.e. we simultaneously update

the state of sender and receiver nodes).

Our analysis shows that, even in presence of register

automata, dynamic reconfiguration can still render the

coverability problem easier to solve. More precisely, in

fully connected topologies coverability is undecidable

for nodes with two registers and messages with one

field. Coverability remains undecidable with dynamic

network reconfigurations if nodes have two registers but

messages have two fields. Decidability holds for k ¥ 1

registers and a single data field per message for arbi-

trary topologies and dynamic network reconfiguration.

The decision algorithm is based on a saturation pro-

cedure that operates on a graph-based symbolic repre-

sentation of sets of configurations in which the data are

abstracted away. This is inspired by similar techniques

used in the case of classical register automata [79]. The

problem is PSpace-complete in this case. Finally, for



14 Giorgio Delzanno

fully connected topologies but without dynamic recon-

figuration, coverability for nodes with a single register

and messages with a single field is decidable with non

elementary complexity. The decidability proof exploits

the theory of well-structured transition systems [16,66].

The non-elementary lower bound follows from a reduc-

tion from coverability in reset nets [101].

5.7 Probabilistic Distributed Broadcast Protocols

Networks of probabilistic automata have been studied

in [25,26,27]. The first probabilistic version of the AHN

model is considered in [25]. Each node is described by

a probabilistic single-clock automaton with broadcast

communication. Parameterized verification is defined

by requiring that at least one process in an error state

is reached almost-surely under all scheduling policies.

For static configurations the problem is undecidable as

in the model without probabilities. Decidability how-

ever holds for dynamic reconfiguration of the network.

In [26,27] the authors further refine their analysis by

considering the existence of deterministic strategies and

local strategies in which all nodes behave in the same

way to reach a given state almost surely.

5.8 Directed Acyclic Topologies

A model of broadcast communication with topologies

represented as acyclic directed graphs has been pre-

sented in [4]. In this setting broadcast communication

is unidirectional since edges are directed. Coverability is

defined with respect to subgraph ordering for directed

graphs. The authors first show that coverability remains

undecidable for directed acyclic graphs. The reduction

is based on an encoding of the emptiness test for the

transitive closure of a (regular) transducer relation, i.e.,

given two regular languages L and L1 and a transducer

relation R, decide whether RipLq X L1 � for some i. The

idea is similar to the encoding of counters used for AHN.

An initial node non-deterministically decides to get the

role of the automaton that accepts L. It then sends a

notification to all successors and then non determinis-

tically selects a word in L and broadcasts each of its

symbols to all successors. A node that receives a notifi-

cation gets the role of a copy of a transducer T accept-

ing relation R and then start translating the incoming

word w in Rpwq broadcasting each symbols to the suc-

cessors. This can be repeated for an sequence of arbi-

trary length of nodes until reaching a nodes that non-

deterministically gets the role of the automaton recog-

nizing L1. The resulting construction forms a pipeline in

which each node sends a letter to one successor. Inter-

ferences can be controlled by sending nodes that receive

more than one notification to an error state. Since the

graph is a directed and acyclic, the only interference

are due to two or more conflicting incoming messages.

The authors then show that coverability for topol-

ogy restricted to DAGs of bounded height is decidable

with broadcast communication. The theory of wsts can-

not be applied directly since the subgraph relation is

not a wqo for DAGs of bounded height. However, given

the particular type of systems considered here, in each

node there is an automata than sends broadcast mes-

sages to successor nodes, it is possible to apply some

transformation from DAGs of bounded height to Trees

of bounded heights and then apply wsts theory on a

new ordering defined on the resulting structures. The

key point is that of encoding a DAG into an inverted

tree by traversing a DAG backwards and splitting nodes

to obtain a tree structure. Splitting nodes maintaining

the same control state does not change the behavior of

the model. If a node is split in two copies with the same

state, then the two copies can send the same sequence of

messages to successor nodes. The transformation may

produce a forest. However each tree in the forest can

be considered in isolation. Wsts theory is then applied

to inverted trees and a new wqo ordering applied to

show that coverability is decidable on inverted trees of

bounded height. A generalization of the model in [4]

has been introduced in [3]. In this setting links are im-

plicitly defined by using identifiers (stored in local reg-

isters) as channel names. Dynamic modifications of the

topology are controlled via updates to local registers.

Coverability is undecidable in the resulting model even

for bounded path topologies. Further restrictions, with

effects similar to non deterministic reconfigurations of

topologies, are needed in order to obtain decidability

results for the model.

5.9 Other Graph-based Models

In [13] we apply graph-based transformations to model

intermediate evaluations of non-atomic mutual exclu-

sion protocols with universally quantified conditions.

Parameterized verification is undecidable in the result-

ing model. Semi-decision procedures can be defined by

resorting to upward closed abstractions during back-

ward search (monotonic abstraction as in [8,52]). In [42]

we studied decidability of reachability and coverability

for a graph-based specification used to model biolog-

ical systems called kappa-calculus [35]. Among other

results, we proved undecidability for coverability for

graph rewrite systems that can only increase the size of

a configuration. Reachability problems for graph-based



A Unified View of Parameterized Verification of Abstract Models of Broadcast Communication 15

representations of protocols have also been considered

in [9] where symbolic representations combining a spe-

cial graph ordering and constraint-based representation

of relations between local data of different nodes have

been used to verify parameterized consistency proto-

cols.

To generalize some of the ideas studied in [42,9,52,

48,49], in [24] we have studied reachability and cover-

ability (i.e., reachability of graphs containing specific

patterns) for Graph Transformation Systems (GTS).

Specifically, by transferring in the GTS setting the re-

sults in [48], in [24] we have shown that coverability is

decidable for GTS for graph with bounded path graphs

ordered via subgraph inclusion. The latter result follows

from the theory of well-structured transition systems.

6 Tools for Parameterized Verification

Verification procedures for parameterized systems are

often based on abstractions and heuristics in order to

go beyond the limitations imposed by the undecidabil-

ity or complexity results discussed in the previous sec-

tions. Tools like TRex, FAST, and LASH are devised

for the larger class of counter systems (VAS, Petri nets,

etc). Procedures like MCMT, MSR(C), and MAP are

general purpose methods based on declarative specifi-

cation languages like first order logic or constraint logic

programming. Specialized engines like PFS, UNDIP,

and BOOM exploit the structure of the model (e.g. au-

tomata/programs that specifies a single process/node)

to obtain abstraction and heuristics for a global anal-

ysis. In the rest of the section we will briefly describe

some of the existing prototypes that can handle mod-

els of parameterized systems that are close in spirit to

Broadcast Protocols or their extensions.

– FAST [23,113] is a tool for forward analysis of counter

systems defined via affine relations with parameters

(i.e. it can handle VAS, Petri nets with reset and

transfer arcs, etc). FAST is based on accelerations

defined via Presburger formulas.

– TRex [112] is based on Parametric Difference Bound

Matrices, an extension of Bounded Difference Matri-

ces with external constraints to handle parameters,

and accelerations defined on top of them.

– LASH [114] is a tool that can perform symbolic

reachability analysis using automata as a symbolic

representation of Presburger arithmetics, in other

words automata accept the language that corresponds

to encodings of vectors that satisfy a given formula.

Automata can be used to define combination and

transformation of constraints in a purely algorith-

mic way.

– MIST[105] is a tool based on abstraction refinement

based on the Expand, Enlarge and Check approach

[116] that exploits efficient representations of up-

ward closed sets of states based on Interval Sharing

Trees, an extension of the Covering Sharing Trees

defined in [44].

– MSR(C) [109] is a tool based on Constraint Logic

Programming that implements forward and back-

ward symbolic reasoning for multiset rewriting with

constraints. The analysis is based on the use of min-

imal representation (based on predicates with con-

straints) to represent infinite sets of configurations.

– MAP [67] is a tool based on transformations of con-

straint logic programs that can be applied to infinite-

state systems with linear configurations and rela-

tions over data variables.

– MCMT [106] is a symbolic backward reachability

engine based on SMT solvers that can handle pa-

rameterized systems with linear configurations. The

MCMT tool is based on the EPR fragment of first

order logic with arrays and applies different types of

heuristics including invariant generation to reduce

the state space.

– PFS [110] and UNDIP [111] are tool specifically de-

vised to handle parameterized systems. They are

both based on symbolic backward search but they

target different types of systems. PFS deals with

families of finite-state automata with global con-

ditions whereas UNDIP can handle models of dis-

tributed systems with data [8,7,52]. The tools are

based on monotonic abstractions, i.e., an abstrac-

tion that computes an over-approximation of the

reachability set based on upward closed set of states.

– AUGUR 2 [82] is a tool devised for the analysis

of Graph Transformation Systems using approxi-

mated unfoldings based on Petri nets. The approx-

imated systems can then be verified using regular

expressions, first order logic and coverability check-

ing techniques. AUGUR 2 does not handle global

operations like those needed for modeling broadcast

communication.

– UNCOVER [104,115] is a tool that performs a sym-

bolic backward reachability analysis for GTS with

universally quantified conditions. The tool exploits

a generalization of monotonic abstraction to quan-

tifications over graph patterns as a heuristic to ma-

nipulate infinite sets of configurations using minimal

constraints (given in form of graphs) only. UNCON-

VER can be viewed as the counterpart of UNDIP

and PFS for systems in which configurations have a

graph structure.

– PETRUCHIO [92] is a tool that extracts a Petri

net representation from specifications of dynamic



16 Giorgio Delzanno

networks based π-calculus. The tool discovers frag-

ments of dynamic processes from more complex rep-

resentations and translate them into Petri net places

regulated by transitions that can be used then to ex-

plore the infinite state space of the original model.

Termination is given for specifications that have a fi-

nite basis of fragments (i.e. they can be represented

by a Petri net with finitely many places). A forward

exploration procedure based on the Karp-Miller cov-

ering graph is used to reason on the behavior of

the fragments extracted from the high level speci-

fication. Similar ideas have been applied to obtain

decidability results for the analysis of fragments of

(different types of) process algebra.

– Boom [108] is a tool that applies symbolic algo-

rithms, see, e.g., [78,83,88,77], to verify counter ab-

stractions of multithreaded programs. The algorithms

behind the tool go beyond backward search. Indeed

they combine several types of heuristics like those

based on dynamic generation and refinement of over-

approximations (defined in terms of upward closed

set of states).

– PCW [107] is a tool that applies ordered counter ab-

straction [69], a refinement of monotonic abstraction

with CEGAR, for the verification of parameterized

systems. In this setting over-approximations are re-

fined by using stronger and stronger orderings that

can be used to define upward closed sets that ”for-

bid” specific patterns (e.g. they forbid sets of points

defined by a given equation).

Finally, we mention other existing methods that have

experimental implementations that can handle interest-

ing classes of concurrent and distributed systems. View

Abstraction applies finite-state abstractions for verifi-

cation of parameterized systems with global conditions

and that has refinement produce that is complete for

well structured transition systems [11,12]. The tool au-

tomatically detects cut-off points by performing a sort

of iterative deepening on the abstract domain chosen

for the considered systems (e.g. configurations with up

to K processes). A prototype model checker for param-

eterized fault tolerant systems based on abstractions

is described in [74]. Specifications are given here with

an extension of Promela with parameters. An abstract

domain based on intervals is used in order to apply

counting abstractions on the original model.

7 Conclusions and Future Directions

In this paper we have given an overview of formal spec-

ification frameworks and verification techniques that

can be applied to model concurrent and distributed sys-

tems with broadcast communication. The paper collects

work done by the author in collaboration with several

researchers as well as related results obtained on formal

models of broadcast communication. The focus of the

paper is on verification algorithms mainly from prob-

lems formulated over an infinite-state space. The pre-

sentation of the different models is given in a uniform

way by using transition systems as a common language

to describe their semantics. Communication in fully

connected topologies or graph topologies can be used to

express different classes of systems like multithreaded

programs, cache coherence protocols and distributed al-

gorithms. Most of the decidability results described in

the paper have no practical counterpart in terms of ver-

ification tools or decision procedures. Finding classes of

systems for which the considered model can be applied

is an interesting direction for this kind of research. In

view of the high complexity of the considered decision

procedures, termination guarantees are often only of

theoretical interest. The application of the verification

procedures based on general frameworks like wsts to

models that are not in decidable fragments can be an

interesting direction for transferring the results to prac-

tical examples.

Acknowlegments The paper is based on previous work

done in collaboration with the following researchers: P.

A. Abdulla, M. F. Atig, N. Ben Henda, N. Bertrand,

M. Bozzano, C. Di Giusto, J. Esparza, M. Gabbrielli, B.

Koenig, P. Ganty, C. Laneve, A. Podelski, J.-F. Raskin,

A. Rezine, O. Rezine, F. Rosa Velardo, A. Sangnier, J.

Stuckrath, R. Traverso, G. Zavattaro, and L. Van Be-

gin.

References

1. P. Abdulla and G. Delzanno. Constrained multiset
rewriting. In AVIS 06, 2006.

2. P. A. Abdulla. Well (and better) quasi-ordered transi-
tion systems. Bulletin of Symbolic Logic, 16(4):457–515,
2010.

3. P. A. Abdulla, M. F. Atig, A. Kara, and O. Rezine.
Verification of dynamic register automata. In 34th In-

ternational Conference on Foundation of Software Tech-
nology and Theoretical Computer Science, FSTTCS 2014,

December 15-17, 2014, New Delhi, India, pages 653–665,
2014.

4. P. A. Abdulla, M. F. Atig, and O. Rezine. Verification of
directed acyclic ad hoc networks. In FMOODS/FORTE,
pages 193–208, 2013.

5. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay.
General decidability theorems for infinite-state systems.
In Proceedings, 11th Annual IEEE Symposium on Logic

in Computer Science, New Brunswick, New Jersey, USA,
July 27-30, 1996, pages 313–321, 1996.

6. P. A. Abdulla, G. Delzanno, and L. Van Begin. A classi-
fication of the expressive power of well-structured tran-
sition systems. Inf. Comput., 209(3):248–279, 2011.



A Unified View of Parameterized Verification of Abstract Models of Broadcast Communication 17

7. P. A. Abdulla, G. Delzanno, N. Ben Henda, and
A. Rezine. Monotonic abstraction: on efficient verifi-
cation of parameterized systems. Int. J. Found. Comput.

Sci., 20(5):779–801, 2009.
8. P. A. Abdulla, G. Delzanno, and A. Rezine. Approx-

imated parameterized verification of infinite-state pro-
cesses with global conditions. Formal Methods in System

Design, 34(2):126–156, 2009.
9. P. A. Abdulla, G. Delzanno, and A. Rezine. Auto-

matic verification of directory-based consistency proto-
cols with graph constraints. Int. J. Found. Comput. Sci.,
22(4), 2011.

10. P. A. Abdulla, G. Delzanno, O. Rezine, A. Sangnier, and
R. Traverso. On the verification of timed ad hoc net-
works. In Formal Modeling and Analysis of Timed Systems
- 9th International Conference, FORMATS 2011, Aalborg,

Denmark, September 21-23, 2011. Proceedings, pages 256–
270, 2011.

11. P. A. Abdulla, F. Haziza, and L. Hoĺık. All for the price
of few. In Verification, Model Checking, and Abstract In-
terpretation, 14th International Conference, VMCAI 2013,

Rome, Italy, January 20-22, 2013. Proceedings, pages 476–
495, 2013.

12. P. A. Abdulla, F. Haziza, and L. Hoĺık. Block me if
you can! - context-sensitive parameterized verification.
In Static Analysis - 21st International Symposium, SAS

2014, Munich, Germany, September 11-13, 2014. Proceed-

ings, pages 1–17, 2014.
13. P. A. Abdulla, N. Ben Henda, G. Delzanno, and

A. Rezine. Handling parameterized systems with non-
atomic global conditions. In VMCAI’08, volume 4905 of
LNCS, pages 22–36. Springer, 2008.

14. P. A. Abdulla and B. Jonsson. Undecidable verification
problems for programs with unreliable channels. Inf.

Comput., 130(1):71–90, 1996.
15. P. A. Abdulla and B. Jonsson. Verifying networks of

timed processes (extended abstract). In Tools and Al-
gorithms for Construction and Analysis of Systems, 4th

International Conference, TACAS ’98, Held as Part of the
European Joint Conferences on the Theory and Practice of

Software, ETAPS’98, Lisbon, Portugal, March 28 - April

4, 1998, Proceedings, pages 298–312, 1998.
16. P. A. Abdulla and B. Jonsson. Ensuring completeness of

symbolic verification methods for infinite-state systems.
Theor. Comput. Sci., 256(1-2):145–167, 2001.

17. P. A. Abdulla and A. Nylén. Better is better than well:
On efficient verification of infinite-state systems. In 15th

Annual IEEE Symposium on Logic in Computer Science,

Santa Barbara, California, USA, June 26-29, 2000, pages
132–140, 2000.

18. P.A. Abdulla, G. Delzanno, and A. Rezine. Monotonic
abstraction in action. In Theoretical Aspects of Comput-

ing - ICTAC 2008, 5th International Colloquium, Istanbul,
Turkey, September 1-3, 2008. Proceedings, pages 50–65,
2008.

19. F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P.
Rossi. Automated support for the design and validation
of fault tolerant parameterized systems: a case study.
ECEASST, 35, 2010.

20. B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith.
Parameterized model checking of rendezvous systems.
In CONCUR 2014 - Concurrency Theory - 25th Interna-

tional Conference, CONCUR 2014, Rome, Italy, Septem-
ber 2-5, 2014. Proceedings, pages 109–124, 2014.

21. K. R. Apt and D. Kozen. Limits for automatic verifi-
cation of finite-state concurrent systems. Inf. Process.
Lett., pages 307–309, 1986.

22. T. Ball, S. Chaki, and S. K. Rajamani. Parameterized
verification of multithreaded software libraries. In Tools

and Algorithms for the Construction and Analysis of Sys-

tems, (TACAS 2001), pages 158–173, 2001.
23. Sébastien Bardin, Alain Finkel, Jérôme Leroux, and

Laure Petrucci. FAST: acceleration from theory to prac-
tice. STTT, 10(5):401–424, 2008.

24. N. Bertrand, G. Delzanno, B. König, A. Sangnier, and
J. Stückrath. On the decidability status of reachabil-
ity and coverability in graph transformation systems.
In 23rd International Conference on Rewriting Techniques

and Applications (RTA’12) , RTA 2012, May 28 - June 2,
2012, Nagoya, Japan, pages 101–116, 2012.

25. N. Bertrand and P. Fournier. Parameterized verifica-
tion of many identical probabilistic timed processes. In
IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science, FSTTCS

2013, December 12-14, 2013, Guwahati, India, pages 501–
513, 2013.

26. N. Bertrand, P. Fournier, and A. Sangnier. Playing with
probabilities in reconfigurable broadcast networks. In
Foundations of Software Science and Computation Struc-
tures - 17th International Conference, FOSSACS 2014,

Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2014, Grenoble, France,
April 5-13, 2014, Proceedings, pages 134–148, 2014.

27. N. Bertrand, P. Fournier, and A. Sangnier. Distributed
local strategies in broadcast networks. In 26th Inter-

national Conference on Concurrency Theory, CONCUR
2015, Madrid, Spain, September 1.4, 2015, pages 44–57,
2015.

28. R. Bonnet. The reachability problem for vector addition
system with one zero-test. In Mathematical Foundations

of Computer Science 2011 - 36th International Symposium,

MFCS 2011, Warsaw, Poland, August 22-26, 2011. Pro-
ceedings, pages 145–157, 2011.

29. R. Bonnet, A. Finkel, S. Haddad, and F. Rosa-Velardo.
Ordinal theory for expressiveness of well-structured
transition systems. Inf. Comput., 224:1–22, 2013.

30. M. Bozzano and G. Delzanno. Beyond parameterized
verification. In Tools and Algorithms for the Construction

and Analysis of Systems, 8th International Conference,

TACAS 2002, Held as Part of the Joint European Confer-
ence on Theory and Practice of Software, ETAPS 2002,

Grenoble, France, April 8-12, 2002, Proceedings, pages
221–235, 2002.

31. M. Bozzano and G. Delzanno. Automatic verification of
secrecy properties for linear logic specifications of cryp-
tographic protocols. J. Symb. Comput., 38(5):1375–1415,
2004.

32. L. Bozzelli and S. Pinchinat. Verification of gap-order
constraint abstractions of counter systems. Theor. Com-

put. Sci., 523:1–36, 2014.
33. M. C. Browne, E. M. Clarke, and Orna Grumberg. Rea-

soning about networks with many identical finite state
processes. Inf. Comput., 81(1):13–31, 1989.

34. E. M. Clarke, M. Talupur, and H. Veith. Environment
abstraction for parameterized verification. In Verifi-
cation, Model Checking, and Abstract Interpretation, 7th

International Conference, VMCAI 2006, Charleston, SC,

USA, January 8-10, 2006, Proceedings, pages 126–141,
2006.

35. V. Danos and C. Laneve. Formal molecular biology.
Theor. Comput. Sci., 325(1):69–110, 2004.

36. N. David, C. Jard, D. Lime, and O. H. Roux. Discrete
parameters in Petri nets. In Application and Theory of



18 Giorgio Delzanno

Petri Nets and Concurrency - 36th International Confer-
ence, PETRI NETS 2015, Brussels, Belgium, June 21-26,

2015, Proceedings, pages 137–156, 2015.
37. G. Delzanno. An overview of msr(c): A clp-based frame-

work for the symbolic verification of parameterized con-
current systems. Electr. Notes Theor. Comput. Sci.,
76:65–82, 2002.

38. G. Delzanno. Constraint-based verification of param-
eterized cache coherence protocols. Formal Methods in

System Design, 23(3):257–301, 2003.
39. G. Delzanno. Constraint-based automatic verification

of abstract models of multithreaded programs. TPLP,
7(1-2):67–91, 2007.

40. G. Delzanno, J. Esparza, and A. Podelski. Constraint-
based analysis of broadcast protocols. In CSL’99, vol-
ume 1683 of LNCS, pages 50–66. Springer, 1999.

41. G. Delzanno and P. Ganty. Automatic verification of
time sensitive cryptographic protocols. In Tools and Al-

gorithms for the Construction and Analysis of Systems,
10th International Conference, TACAS 2004, Held as Part

of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2004, Barcelona, Spain, March 29 -
April 2, 2004, Proceedings, pages 342–356, 2004.

42. G. Delzanno, C. Di Giusto, M. Gabbrielli, C. Lan-
eve, and G. Zavattaro. The kappa-lattice: Decidabil-
ity boundaries for qualitative analysis in biological lan-
guages. In CMSB, pages 158–172, 2009.

43. G. Delzanno, J.-F. Raskin, and L. Van Begin. Towards
the automated verification of multithreaded java pro-
grams. In Tools and Algorithms for the Construction and

Analysis of Systems, 8th International Conference, TACAS

2002, Held as Part of the Joint European Conference on
Theory and Practice of Software, ETAPS 2002, Greno-

ble, France, April 8-12, 2002, Proceedings, pages 173–187,
2002.

44. G. Delzanno, J.-F. Raskin, and L. Van Begin. Covering
sharing trees: a compact data structure for parameter-
ized verification. STTT, 5(2-3):268–297, 2004.

45. G. Delzanno and F. Rosa-Velardo. On the coverability
and reachability languages of monotonic extensions of
petri nets. Theor. Comput. Sci., 467:12–29, 2013.

46. G. Delzanno, A. Sangnier, and R. Traverso. Param-
eterized verification of broadcast networks of register
automata. In RP, pages 109–121, 2013.

47. G. Delzanno, A. Sangnier, R. Traverso, and G. Zavat-
taro. On the complexity of parameterized reachability
in reconfigurable broadcast networks. In IARCS An-

nual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2012, Decem-

ber 15-17, 2012, Hyderabad, India, pages 289–300, 2012.
48. G. Delzanno, A. Sangnier, and G. Zavattaro. Param-

eterized verification of ad hoc networks. In CONCUR

2010 - Concurrency Theory, 21th International Confer-
ence, CONCUR 2010, Paris, France, August 31-September

3, 2010. Proceedings, pages 313–327, 2010.
49. G. Delzanno, A. Sangnier, and G. Zavattaro. On the

power of cliques in the parameterized verification of ad
hoc networks. In Foundations of Software Science and
Computational Structures - 14th International Conference,

FOSSACS 2011, Held as Part of the Joint European Con-

ferences on Theory and Practice of Software, ETAPS 2011,
Saarbrücken, Germany, March 26-April 3, 2011. Proceed-

ings, pages 441–455, 2011.
50. G. Delzanno, A. Sangnier, and G. Zavattaro. Verifica-

tion of ad hoc networks with node and communication
failures. In FORTE/FMOODS’12, volume 7273 of LNCS,
pages 235–250. Springer, 2012.

51. G. Delzanno and R. Traverso. Decidability and com-
plexity results for verification of asynchronous broadcast
networks. In LATA, pages 238–249, 2013.

52. Giorgio Delzanno and Ahmed Rezine. A lightweight
regular model checking approach for parameterized sys-
tems. STTT, 14(2):207–222, 2012.

53. L. E. Dickson. Finiteness of the odd perfect and prim-
itive abundant numbers with n distinct prime factors.
American Journal of Mathematics, 35(4):413–422, 1913.

54. G. Ding. Subgraphs and well quasi ordering. J. of Graph

Theory, 16(5):489 – 502, 1992.
55. C. Dufourd, A. Finkel, and P. Schnoebelen. Reset nets

between decidability and undecidability. In Automata,

Languages and Programming, 25th International Collo-

quium, ICALP’98, Aalborg, Denmark, July 13-17, 1998,
Proceedings, pages 103–115, 1998.

56. E. A. Emerson and V. Kahlon. Exact and efficient veri-
fication of parameterized cache coherence protocols. In
Correct Hardware Design and Verification Methods, 12th
IFIP WG 10.5 Advanced Research Working Conference,

CHARME 2003, L’Aquila, Italy, October 21-24, 2003, Pro-

ceedings, pages 247–262, 2003.
57. E. A. Emerson and K. S. Namjoshi. On model check-

ing for non-deterministic infinite-state systems. In Thir-
teenth Annual IEEE Symposium on Logic in Computer Sci-

ence, Indianapolis, Indiana, USA, June 21-24, 1998, pages
70–80, 1998.

58. E. Allen Emerson and V. Kahlon. Parameterized
model checking of ring-based message passing systems.
In Computer Science Logic, 18th International Work-

shop, CSL 2004, 13th Annual Conference of the EACSL,
Karpacz, Poland, September 20-24, 2004, Proceedings,
pages 325–339, 2004.

59. J. Esparza, A. Finkel, and R. Mayr. On the verifica-
tion of broadcast protocols. In 14th Annual IEEE Sym-
posium on Logic in Computer Science, Trento, Italy, July

2-5, 1999, pages 352–359, 1999.
60. J. Esparza, P. Ganty, and R. Majumdar. Parameter-

ized verification of asynchronous shared-memory sys-
tems. In Computer Aided Verification - 25th International

Conference, CAV 2013, Saint Petersburg, Russia, July 13-

19, 2013. Proceedings, pages 124–140, 2013.
61. J. Esparza, R. Ledesma-Garza, R. Majumdar, P. Meyer,

and F. Niksic. An smt-based approach to coverability
analysis. In Computer Aided Verification - 26th Interna-

tional Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,

2014. Proceedings, pages 603–619, 2014.
62. A. Farzan, Z. Kincaid, and A. Podelski. Proofs that

count. In The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,

POPL ’14, San Diego, CA, USA, January 20-21, 2014,
pages 151–164, 2014.

63. A. Farzan, Z. Kincaid, and A. Podelski. Proof spaces for
unbounded parallelism. In Proceedings of the 42nd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015, pages 407–420, 2015.

64. A. Finkel, G. Geeraerts, J.-F. Raskin, and L. Van Begin.
On the omega-language expressive power of extended
Petri nets. Electr. Notes Theor. Comput. Sci., 128(2):87–
101, 2005.

65. A. Finkel, P. McKenzie, and C. Picaronny. A well-
structured framework for analysing petri net extensions.
Inf. Comput., 195(1-2):1–29, 2004.

66. A. Finkel and P. Schnoebelen. Well-structured transi-
tion systems everywhere! Theor. Comput. Sci., 256(1-
2):63–92, 2001.



A Unified View of Parameterized Verification of Abstract Models of Broadcast Communication 19

67. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni.
Improving reachability analysis of infinite state systems
by specialization. Fundam. Inform., 119(3-4):281–300,
2012.

68. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni.
Generalization strategies for the verification of infinite
state systems. TPLP, 13(2):175–199, 2013.

69. P. Ganty and A. Rezine. Ordered counter-abstraction
- refinable subword relations for parameterized verifi-
cation. In Language and Automata Theory and Applica-

tions - 8th International Conference, LATA 2014, Madrid,

Spain, March 10-14, 2014. Proceedings, pages 396–408,
2014.

70. G. Geeraerts, J.-F. Raskin, and L. Van Begin. Expand,
enlarge and check: New algorithms for the coverability
problem of WSTS. J. Comput. Syst. Sci., 72(1):180–203,
2006.

71. G. Geeraerts, J.-F. Raskin, and L. Van Begin. Well-
structured languages. Acta Inf., 44(3-4):249–288, 2007.

72. S. M. German and A. P. Sistla. Reasoning about systems
with many processes. J. ACM, 39(3):675–735, 1992.

73. S. Ghilardi and S. Ranise. Backward reachability of
array-based systems by SMT solving: Termination and
invariant synthesis. Logical Methods in Computer Science,
6(4), 2010.

74. A. Gmeiner, I. Konnov, U. Schmid, H. Veith, and
J. Widder. Tutorial on parameterized model checking of
fault-tolerant distributed algorithms. In Formal Meth-
ods for Executable Software Models - 14th International

School on Formal Methods for the Design of Computer,

Communication, and Software Systems, SFM 2014, Berti-
noro, Italy, June 16-20, 2014, Advanced Lectures, pages
122–171, 2014.

75. G. Higman. Ordering by divisibility in abstract alge-
bras. Proceedings of the London Mathematical Society, 3(2
(7)):326–336, 1952.

76. S. Joshi and B. König. Applying the graph minor the-
orem to the verification of graph transformation sys-
tems. In CAV’08, volume 5123 of LNCS, pages 214–226.
Springer, 2008.

77. A. Kaiser, D. Kroening, and T. Wahl. Lost in ab-
straction: Monotonicity in multi-threaded programs. In
CONCUR 2014 - Concurrency Theory - 25th International

Conference, CONCUR 2014, Rome, Italy, September 2-5,
2014. Proceedings, pages 141–155, 2014.

78. A. Kaiser, D. Kroening, and Thomas Wahl. A widening
approach to multithreaded program verification. ACM

Trans. Program. Lang. Syst., 36(4):14, 2014.
79. M. Kaminski and N. Francez. Finite-memory automata.

Theor. Comput. Sci., 134(2):329–363, 1994.
80. R. M. Karp and R. E. Miller. Parallel program

schemata. J. Comput. Syst. Sci., 3(2):147–195, 1969.
81. J. Kloos, R. Majumdar, F. Niksic, and R. Piskac. Incre-

mental, inductive coverability. In Computer Aided Veri-

fication - 25th International Conference, CAV 2013, Saint

Petersburg, Russia, July 13-19, 2013. Proceedings, pages
158–173, 2013.

82. B. König and V. Kozioura. Augur 2 - A new version of
a tool for the analysis of graph transformation systems.
Electr. Notes Theor. Comput. Sci., 211:201–210, 2008.

83. D. Kroening. Automated verification of concurrent soft-
ware. In Reachability Problems - 7th International Work-

shop, RP 2013, Uppsala, Sweden, September 24-26, 2013

Proceedings, pages 19–20, 2013.
84. R. Lazic, T. Newcomb, J. Ouaknine, A. W. Roscoe, and

J. Worrell. Nets with tokens which carry data. Fundam.
Inform., 88(3):251–274, 2008.

85. J. Leroux. The general vector addition system reachabil-
ity problem by presburger inductive invariants. Logical

Methods in Computer Science, 6(3), 2010.
86. J. Leroux. Vector addition systems reachability prob-

lem (A simpler solution). In Turing-100 - The Alan Tur-

ing Centenary, Manchester, UK, June 22-25, 2012, pages
214–228, 2012.

87. R. Lipton. The reachability problem requires exponen-
tial space, 1975.

88. P. Liu and T. Wahl. Infinite-state backward explo-
ration of boolean broadcast programs. In Formal Meth-
ods in Computer-Aided Design, FMCAD 2014, Lausanne,

Switzerland, October 21-24, 2014, pages 155–162, 2014.
89. M. Martos-Salgado and F. Rosa-Velardo. Expressive-

ness of dynamic networks of timed Petri nets. In Lan-

guage and Automata Theory and Applications - 8th Inter-
national Conference, LATA 2014, Madrid, Spain, March

10-14, 2014. Proceedings, pages 516–527, 2014.
90. E. W. Mayr. An algorithm for the general Petri net

reachability problem. SIAM J. Comput., 13(3):441–460,
1984.

91. K. L. McMillan. Parameterized verification of the
FLASH cache coherence protocol by compositional
model checking. In Correct Hardware Design and Veri-

fication Methods, 11th IFIP WG 10.5 Advanced Research

Working Conference, CHARME 2001, Livingston, Scot-
land, UK, September 4-7, 2001, Proceedings, pages 179–
195, 2001.

92. R. Meyer and T. Strazny. Petruchio: From dynamic
networks to nets. In Computer Aided Verification, 22nd

International Conference, CAV 2010, Edinburgh, UK, July
15-19, 2010. Proceedings, pages 175–179, 2010.

93. A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0,
1, infty)-counter abstraction. In Computer Aided Verifi-

cation, 14th International Conference, CAV 2002,Copen-

hagen, Denmark, July 27-31, 2002, Proceedings, pages
107–122, 2002.

94. G. Ramalingam. Context-sensitive synchronization-
sensitive analysis is undecidable. ACM Trans. Program.

Lang. Syst., 22(2):416–430, 2000.
95. K. Reinhardt. Reachability in Petri nets with inhibitor

arcs. Electr. Notes Theor. Comput. Sci., 223:239–264,
2008.

96. P. Z. Revesz. A closed-form evaluation for datalog
queries with integer (gap)-order constraints. Theor.

Comput. Sci., 116(1):117–149, 1993.
97. F. Rosa-Velardo and D. de Frutos-Escrig. Decidability

results for restricted models of Petri nets with name
creation and replication. In Applications and Theory of

Petri Nets (PETRI NETS 2009), pages 63–82, 2009.
98. F. Rosa-Velardo and D. de Frutos-Escrig. Decidabil-

ity and complexity of Petri nets with unordered data.
Theor. Comput. Sci., 412(34):4439–4451, 2011.

99. M. Saksena, O. Wibling, and B. Jonsson. Graph gram-
mar modeling and verification of ad hoc routing proto-
cols. In TACAS, pages 18–32, 2008.

100. P. Schnoebelen. Revisiting ackermann-hardness for
lossy counter machines and reset Petri nets. In Mathe-

matical Foundations of Computer Science 2010, 35th Inter-
national Symposium, MFCS 2010, Brno, Czech Republic,
August 23-27, 2010. Proceedings, pages 616–628, 2010.

101. P. Schnoebelen. Revisiting ackermann-hardness for
lossy counter machines and reset Petri nets. In Mathe-

matical Foundations of Computer Science 2010, 35th Inter-
national Symposium, MFCS 2010, Brno, Czech Republic,
August 23-27, 2010. Proceedings, pages 616–628, 2010.



20 Giorgio Delzanno

102. A. Singh, C. R. Ramakrishnan, and S. A. Smolka.
Query-based model checking of ad hoc network proto-
cols. In CONCUR, pages 603–619, 2009.

103. A. Singh, C. R. Ramakrishnan, and S. A. Smolka. A
process calculus for mobile ad hoc networks. Sci. Com-

put. Program., 75(6):440–469, 2010.
104. J. Stückrath. Uncover: Using coverability analysis for

verifying graph transformation systems. In Graph Trans-

formation - 8th International Conference, ICGT 2015,
Held as Part of STAF 2015, L’Aquila, Italy, July 21-23,

2015. Proceedings, pages 266–274, 2015.
105. https://github.com/pierreganty/mist.
106. http://users.mat.unimi.it/users/ghilardi/mcmt/.
107. http://www.ahmedrezine.com/tools/.
108. http://www.ccs.neu.edu/home/wahl/Research/

boom-and-cutoffs.html.
109. http://www.disi.unige.it/person/DelzannoG/MSR/.
110. http://www.it.uu.se/research/docs/fm/apv/tools/

pfs/.
111. http://www.it.uu.se/research/docs/fm/apv/tools/

undip/.
112. http://www.liafa.jussieu.fr/~sighirea/trex/.
113. http://www.lsv.ens-cachan.fr/Software/fast/.
114. http://www.montefiore.ulg.ac.be/~boigelot/research/

lash/.
115. http://www.ti.inf.uni-due.de/de/research/tools/

uncover/.
116. http://www.ulb.ac.be/di/verif/ggeeraer/eec/.

https://github.com/pierreganty/mist
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://www.ahmedrezine.com/tools/
http://www.ccs.neu.edu/home/wahl/Research/boom-and-cutoffs.html
http://www.ccs.neu.edu/home/wahl/Research/boom-and-cutoffs.html
http://www.disi.unige.it/person/DelzannoG/MSR/
http://www.it.uu.se/research/docs/fm/apv/tools/pfs/
http://www.it.uu.se/research/docs/fm/apv/tools/pfs/
http://www.it.uu.se/research/docs/fm/apv/tools/undip/
http://www.it.uu.se/research/docs/fm/apv/tools/undip/
http://www.liafa.jussieu.fr/~sighirea/trex/
http://www.lsv.ens-cachan.fr/Software/fast/
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://www.ti.inf.uni-due.de/de/research/tools/uncover/
http://www.ti.inf.uni-due.de/de/research/tools/uncover/
http://www.ulb.ac.be/di/verif/ggeeraer/eec/

	Introduction
	Basic Models and Parameterized Verification Methods
	Broadcast Protocols
	Broadcast Protocols with Data
	Distributed Broadcast Protocols
	Tools for Parameterized Verification
	Conclusions and Future Directions

