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Abstract
Model checkers frequently fail to completely verify a concurrent program, even if partial-order reduction is applied. The
verification engineer is left in doubt whether the program is safe and the effort toward verifying the program is wasted. We
present a technique that uses the results of such incomplete verification attempts to construct a (fair) scheduler that allows
the safe execution of the partially verified concurrent program. This scheduler restricts the execution to schedules that have
been proven safe (and prevents executions that were found to be erroneous). We evaluate the performance of our technique
and show how it can be improved using partial-order reduction. While constraining the scheduler results in a considerable
performance penalty in general, we show that in some cases our approach—somewhat surprisingly—even leads to faster
executions.

Keywords Software verification · Model checking · Concurrency · Nondeterministic scheduling

1 Introduction

Automated verification of concurrent programs is inherently
difficult because of exponentially large state spaces [41].
State space reductions such as partial-order reduction (POR)
[10,16,17] allow a model checker to focus on a subset of all
reachable states, while the verification result is valid for all
reachable states. However, even reduced state spaces may be
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intractably large [17] and corresponding programs infeasible
to (automatically) verify, requiring manual intervention.

We propose a novel model checking approach for safety
verification of potentially nonterminating programs with
a bounded number of threads, nondeterministic schedul-
ing, and shared memory. Our approach iteratively generates
incomplete verification results (IVRs) to prove the safety
of a program under a (semi-)deterministic scheduler. Our
contribution is the novel generation and use of IVRs based
on existing model checking algorithms, where we use lazy
abstractionwith interpolants [42] to instantiate our approach.
The scheduling constraints induced by an IVR can be
enforced by iteratively relaxed scheduling [29], a technique
to enforce fine-grained orderings of concurrent memory
events. When the scheduling constraints of an IVR are
enforced, all executions (for all possible inputs) are safe,
even if the underlying (operating system) scheduler is non-
deterministic. Therefore, the program can be executed safely
before a complete verification result is available. Executions
can still exploit concurrency, and the number of mem-
ory accesses that are executed concurrently may even be
increased. As the model checking problem is eased, addi-
tional programs become tractable. Furthermore, IVRs can
be used to safely execute unsafe programs which are safe
under at least one scheduler. For example, instead of pro-
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1 initially:
2 empty buffer of size N
3 count = 0
4 mutex = 0
5

6 thread T1:
7 while true:
8 produce()
9

10 thread T2:
11 while true:
12 consume()

13 produce:
14 lock(mutex)
15 if count < N:
16 put item
17 count += 1
18 else:
19 error (overflow)
20 unlock(mutex)
21

22 consume:
23 lock(mutex)
24 if count > 0:
25 remove item
26 count −= 1
27 else:
28 error (underflow)
29 unlock(mutex)

Fig. 1 An erroneous version of the producer–consumer problem

gramming synchronization explicitly, our model checking
algorithm can be used to synthesize synchronization so that
all executions are safe.

We use the producer–consumer example from Fig. 1 to
explain our approach. The verifier analyzes an initial sched-
ule, e.g., where threads T1 and T2 produce and consume in
turns, and emits an IVR R1, guaranteeing safe executions
under this schedule. With its second IVR, the verifier might
verify the correctness of producing two items in a row and
the scheduling constraints can be relaxed accordingly. When
the verifier hits an unsafe execution (the producer causes an
overflow or the consumer causes an underflow), it emits an
unsafe IVR for debugging. If the verifier accomplishes to
analyze all possible executions of the program, it will report
the final result partially safe, as the program can be used
safely under all inputs but unsafe executions exist. Had there
been no unsafe or safe IVRs, the final result would be safe
or unsafe, respectively.

This paper shows how to instantiate our approach by
answering the following questions: 1. Which state space
abstractions are suitable for iterative model checking? The
abstraction should be able to represent nonterminating exe-
cutions and facilitate the extraction of schedules. 2. How to
formalize and represent suitable IVRs? IVRs should be as
small as possible in order to allow short iterations, while
they must be large enough to guarantee fully functional exe-
cutions under all possible program inputs.More precisely, for
every possible program input, an IVR must cover a program
execution. 3. What are suitable model checking algorithms
that can be adapted to produce IVRs? A suitable algorithm
should easily allow to select schedules for exploration.

Beyond the contributions of a previous version of this
paper [31], this extended version contains proofs of our for-
mal statements, a more detailed description of constructing
ARTs with the monolithic Impact algorithm for concur-
rent programs and our iterative extension, a more detailed
description of the implementation for our evaluation, addi-

tional experimental performance measurements, additional
illustration of our case studies, and a more detailed discus-
sion of section schedules and their optimization.

2 Incomplete verification results

2.1 Basic definitions

A program P comprises a set S of states (including a distinct
initial state) and a finite set T of threads. Each state s ∈ S
maps program counters and variables to values. We use 1s
to denote the program location of a state s, which comprises
a local location lT (s) for each thread T ∈ T . W.l.o.g. we
assume the existence of a single error location that is only
reachable if the program P is not safe.

A state formula φ is a predicate over the program vari-
ables encoding all states s in which φ(s) evaluates to true. A
transition relation R relates states s and their successor states
s′. Each tread T is partitioned into local transitions Rl,l′ such
that l = lT (s) and l′ = lT (s′) for all s, s′ satisfying Rl,l′(s, s′)
and Rl,l′ leaves the program locations and variables of other
threads unchanged. We use Guard(R) to denote a predicate
encoding ∃s′ . R(s, s′), e.g., Guard(R13,14) is (count < N)

for the transition from location 15 to 16 in Fig. 1.
We say that Rl,l′ (or T , respectively) is active at loca-

tion l and enabled in a state s iff 1s = l and s satisfies
Guard(R). We write enabled(s) for the set of enabled transi-
tions at s. Multiple transitions of a thread T at a location can
be active, but we allow only one transition R to be enabled at
a given state. If R exists, we write enabledT (s) := {R} and
enabledT (s) := ∅ otherwise.

If there exist states s for which no transition of a thread
T is enabled (e.g., in line 14 in Fig. 1), T may block. We
assume that such locations lT (s) are (conservatively) marked
by may-block(lT (s)).

An execution is a sequence s0, T1, s1, . . . , where s0 is the
initial state and the states si and si+1 in every adjacent triple
(si , Ti , si+1) are related by the transition relation of Ti . An
execution that does not reach the error location is safe. A
deadlock is a state s in which no transitions are enabled.
W.l.o.g. we assume that all finite executions correspond
to deadlocks and are undesirable; intentionally terminating
executions can bemodeled using terminal locationswith self-
loops.

An execution τ is (strongly) fair if every thread Ti enabled
infinitely often in τ is also scheduled infinitely often [4].
We assume that fairness is desirable and enforce it by our
algorithm presented in Sect. 3. Other notions of fairness,
such as weak fairness, can be enforced analogously to our
use of strong fairness.

Nondeterminism can arise both through scheduling and
nondeterministic transitions. A scheduler can resolve the for-
mer kind of nondeterminism.
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Definition 1 (scheduler) A Scheduler ζ : (S × T )∗ × S →
T of a program P is a function that takes an execution prefix
s0, T1, . . . , Tn, sn and selects a thread that is enabled at sn ,
if such a thread exists. A scheduler ζ is deadlock-free (fair,
respectively) if all executions possible under ζ are deadlock-
free (fair).

A scheduler for the program of Fig. 1, for instance, must
select T1 rather than T2 for the prefix sinit, T1, s1, T1, s2, T1,
s3, T2, s4, T2, s5, since at that point the lock is held by T1 and
enabledT2(s5) = ∅.

Nondeterministic transitions are the second source of non-
determinism. If Rl,l′ of thread T allows multiple successor
states for a state s, we presume the existence of input sym-
bols X such that each ι ∈ X determines a unique successor
state s′ by selecting an Rι

l,l′ ⊆ Rl,l′ with Rι
l,l′(s, s

′).

Definition 2 (input) An Input is a function χ : (S×T )∗ →
X , which chooses an input symbol depending on the current
execution prefix.

In conjunction, an input and a scheduler render a pro-
gram completely deterministic: The input χ and scheduler ζ

select a transition in each step such that each adjacent triple
(si , Ti+1, si+1) is uniquely determined.

For partial-order reduction (POR), we assume that a sym-
metric independence relation ‖ on transitions of different
threads is given, which induces an equivalence relation on
executions. Two transitions R1 and R2 are only independent
if they are from distinct threads, they are commutative at
states where both R1 and R2 are enabled, and executing R1

does neither enable nor disable R2. If R1 and R2 are not
independent, we write R1 ∦ R2.

2.2 Requirements on incomplete verification results

Our goal is to ease the verification task by producing incom-
plete verification results (IVRs) which prove the program
safety under reduced nondeterminism, i.e., only for a cer-
tain scheduler. We only allow “legitimate” restrictions of the
scheduler that do not introduce deadlocks or exclude threads.
Inputs must not be restricted, since this might reduce func-
tionality and result in unhandled inputs.

Hence, we define an IVR to be a function Rthat maps
execution prefixes to sets of threads, representing scheduling
constraints. An IVR for the program fromFig. 1, for instance,
may output {T1} in states with an empty buffer, meaning
that only thread T1 may be scheduled here, and {T2} other-
wise, so that an item is produced if and only if the buffer is
empty. A scheduler ζR enforces (the scheduling constraints
of) an IVR Rif ζR(τ ) ∈ R(τ ) for all execution prefixes τ .
IVRRpermits all executions possible under a scheduler that
enforces R.

ART: IVR:

A is safe ⇒ RA is safe
⇑

⇑ RA is realizable
⇑

A is deadlock-free ⇒ RA is deadlock-free
⇑ ⇑

A admits fairness ⇒ RA admits fairness
⇑ ⇑

A is fair ⇒ RA is fair

Fig. 2 Overview on the relationship between properties of IVRs and
ARTs. ⇒ and ⇑ denote logical implication

The remainder of this subsection discusses the require-
ments on useful IVRs. We define safe, realizable, deadlock-
free, fairness-admitting, and fair IVRs. In the following
subsection, we instantiate IVRs with abstract reachability
trees (ARTs). Figure 2 gives an overview on the logical rela-
tionship between properties of ARTs (left) and IVRs (right).

Safety. An IVRRcan either expose a bug in a program or
guarantee that all permitted executions are safe. Here, we are
only concerned with the latter case. An IVR Ris safe if all
executions permitted by Rare safe. An unsafe IVR permits
an unsafe execution and is called a counterexample.

Completeness. To reduce the work for the model checker,
a safe IVRRshould ideally have to prove the correctness of
as few executions as possible. At the same time, it should
cover sufficiently many executions so that the program can
be used without functional restrictions. For instance, the IVR
R(τ ) := ∅, for all τ , is safe but not useful, as it does not
permit any execution. Consequently,Rshould permit at least
one enabled transition, in all nondeadlock states, which is
done by realizable IVRs: An IVR Ris realizable if at least
one scheduler that enforces Rexists. Furthermore, an IVR
should never introduce a deadlock: An IVR Ris deadlock-
free if all schedulers that enforce Rare deadlock-free.

Fairness. In general, we deem only fair executions desir-
able. The IVR R(τ ) := {T1}, for instance, is deadlock-free
for the program of Fig. 1 but useless, as no item is consumed.
A deadlock-free IVR admits fairness if there exists a fair
scheduler enforcing R(i.e., a fair execution of the program
is possible).

If a scheduler permits both fair and unfair executions, it
might be difficult to guarantee fairness at runtime. In such
cases, a fair IVR can be used: A deadlock-free IVRRis fair
if all schedulers enforcingRare fair.

2.3 Abstract reachability trees as incomplete
verification results

In this subsection, we instantiate the notion of IVRs using
abstract reachability trees (ARTs), which underlie a range
of software model checking tools [9,21,23,28] and have
recently been used for concurrent programs [42]. Due to
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the explicit representation of scheduling choices from the
beginning of an execution up to an (abstract) state, ARTs are
well-suited to represent IVRs. Model checking algorithms
based on ARTs perform a pathwise exploration of program
executions and represent the current state of the exploration
using a tree in which each node v corresponds to a set of
states at a program location l(v). These states, represented by
a predicate φ(v), (safely) over-approximate the states reach-
able via the program path from the root of the ART (ε) to
v. Edges expanded at v correspond to transitions starting at
l(v). A node w may cover v (written v � w) if the states at
w include all states at v (φ(v) ⇒ φ(w)); in this cases, v is
covered (covered(v)) and its successors need not be further
explored. (Intuitively, executions reaching v are continued
from w.) Formally, an ART is defined as follows:

Definition 3 (abstract reachability tree [28,42]) An abstract
reachability tree (ART) is a tupleA = (V, ε,−→,�), where
(V,−→) is a finite tree with root ε ∈ V and �⊆ V × V is
a covering relation. Nodes v are labeled with global control
locations and state formulas, written 1v and φ(v), respec-
tively. Edges (v,w) ∈−→ are labeled with a thread and a

transition, written v
T ,R−−→ w.

Intuitively, anARTA iswell-labeled [28] ifA ’s−→-edges
represent the transitions of the program and edges v � w

indicate that all states modeled by node v are also modeled
by node w. Formally, A is well-labeled if for every edge

v
T ,Rl,l′−−−−→ w in A we have that (i) φ(ε) represents the initial

state, (ii) φ(v)(s) ∧ Rl,l′(s, s′) ⇒ φ(w)(s′) and lT (v) = l

and lT (w) = l′, and (iii) for every v,w with v � w, φ(v) ⇒
φ(w) and ¬covered(w).

An incomplete ART Ap-c for the producer–consumer
problem of Fig. 1 is shown in Fig. 3. Nodes show the state
formulas, and edges are labeled with the thread and state-
ment corresponding to the transition. The dashed edge is a
�-edge.

ART-induced schedulers. A well-labeled ART A directly
corresponds to an IVR RA that simulates an execution
by traversing A . We define RA as follows: Let τ =
s0, T1, s1, . . . , sn be an execution prefix. If A contains no
path that corresponds to τ , RA leaves the schedules for this
execution unconstrained. Otherwise, let vn be the last node
of the path in A that corresponds to τ . RA permits exactly
those threads that are expanded at vn (or at w if vn is cov-
ered by some node w). Execution prefixes are matched with
(� ∪ −→)-paths, which is, in particular, necessary to build
infinite executions. For example, the execution prefix

τ = s0, T1, s1, . . . , T1,
︸ ︷︷ ︸

T1 scheduled 6 times

s6, T2, s7, . . . , T2,
︸ ︷︷ ︸

T2 scheduled 6 times

s0

mutex = 0 ∧ count = 0

mutex = 0 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 1

mutex = 0 ∧ count = 1

false

mutex = 0 ∧ count = 1

mutex = 1 ∧ count = 1

mutex = 1 ∧ count = 1

mutex = 1 ∧ count = 1

mutex = 1 ∧ count = 0

mutex = 0 ∧ count = 0

. .
.

v1

v2

v6

v12

. .
.

T1: produce()

T1: lock(mutex)

T1: if (count<N)

T1: put item

T1: count+=1

T1: unlock(mutex)

T1: else

T2: consume()T1: produce()

T2: lock(mutex)

T2: if count> 0

T2: remove item

T2: count -= 1

T2: unlock(mutex)

T2: else

Fig. 3 An (incomplete) ART for the program of Fig. 1

corresponds to the path inAp-c from ε over v1, . . . , v12 back
to ε. As only T1 is expanded at ε, RA p-c allows only {T1}
after τ .

Safety. An ART is safe if whenever lT (v) is the error
location then φ(v) = false. As only safe executions may
correspond to a path in a safe ART (cf. Theorem 3.3 of [42]),
RA is a safe IVR.

Completeness. In order to derive a deadlock-free IVR from
a well-labeled ART A , we have to fully expand at least
one thread T at each node v that represents reachable states
(where T is fully expanded at v if v has an outgoing edge for
every active transition of T at lT (v)). However, there may
exist reachable states s represented by φ(v) for which no
transition of T is enabled (i.e., enabledT (s) = ∅). If T is the
only thread expanded at v, RA is not realizable. This situa-
tion can arise for locations l at which T may block (marked
with may-block(lT )).

Consequently, whenevermay-block(lT (v)) in a deadlock-
free ARTA , we require that φ(v) is strong enough to entail
that the transition R of T expanded at v (or at the node cover-
ing v, respectively) is enabled (i.e., φ(v) ⇒ Guard(R)). For
instance, φ(v1) in the ART shown above proves the enabled-
ness of T1 at v1, as φ(v1) ⇒ mutex = 0 and lock(mutex) is
enabled if mutex = 0.

Lemma 1 If an ART A is deadlock-free, RA is a deadlock-
free IVR.
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Proof Let RA be the IVR of a deadlock-free ART A . First,
we construct a scheduler that enforcesRA , which proves that
RA is realizable. Second, we show that all schedulers that
enforce RA are deadlock-free, which concludes the proof
that RA is deadlock-free.

For arbitrary execution prefixes of the form τ = s0, T1, s1,
. . . , sn , let T ′(τ ) = RA (τ ) ∩ {T ∈ T : enabledT (sn) �=
∅}. Let ζ : (S × T )∗ × S → T be an arbitrary function
such that ∀τ. ζ(τ ) ⊆ T ′(τ ) whenever T ′(τ ) is not empty.
(A description of how ζ can be constructed is given by the
definition of RA .) By construction, ζ enforces RA if ζ is a
scheduler. We show that ζ is a scheduler by contradiction.
Assume that ζ is not a scheduler. Then, there exists an exe-
cution prefix τ = s0, T1, s1, . . . , sn such that ζ(τ ) = T ,
enabledT (sn) = ∅ and enabled(sn) �= ∅.

case τ does not correspond to a path inA : By the definition
of RA , RA (τ ) = T . By assumption enabled(sn) �= ∅,
T ′ is not empty. By the construction of ζ , T ∈ T ′.
Contradiction to enabledT (sn) = ∅.

case τ corresponds to a path π = v0, T1, R1, v1, . . . , vn in
A : By the construction of RA , T is expanded at vn .

case may-block(lT (vn)): By the definition of may block, T
has exactly one transition R active at lT (vn). As A is
deadlock-free, φ(vn) ⇒ Guard(R). By the assumption
that τ corresponds to a path π , sn � φ(vn). Hence,
φ(vn) � Guard(R) and R ∈ enabled(sn). Contradiction
to enabled(sn) = ∅.

case not may-block(lT (vn)): By the definition of may block,
enabledT (sn) �= ∅. Contradiction to enabledT (sn) = ∅.

It remains to show that all schedulers that enforceRA are
deadlock-free. Let ζ be an arbitrary scheduler that enforces
RA .Assume that ζ is not deadlock-free. Then, there exists an
execution τ = s0, T1, s1, . . . , sn that is possible under ζ such
that sn is a deadlock, i.e., ∀T ∈ T . enabledT (sn) = ∅ and
∃T ∈ T . ∃Rl,l′ . lT (sn) = l. As τ is an execution permitted
by RA , τ corresponds to a path π = v0, T1, R1, v1, . . . , vn
in A . Let T = ζ(τ ). By choice of ζ , T is expanded at vn .
With the same argument as above, in casemay-block(lT (vn)),
we have φ(vn) ⇒ Guard(R) for some transition Rl,l′ with
lT (vn) = lT (sn) = l and a contradiction to enabled(sn) = ∅
and in case notmay-block(lT (vn)), we have enabledT (sn) �=
∅ and a contradiction to enabledT (sn) = ∅. ��

Fairness. IVRs derived from deadlock-free ARTs do not
necessarily admit fairness if the underlying ART contains
cycles (across � and −→ edges) that represent unfair exe-
cutions. In order to make sure a deadlock-free ART admits
fairness, we implement a scheduler that allowsA to schedule
each thread infinitely often (whenever it is enabled infinitely
often) by requiring that every (� ∪ −→)-cycle is “fair,”
defined as follows.

Definition 4 (ART admitting fairness) A deadlock-free ART
A = (V, ε,−→,�) admits fairness if every (� ∪ −→)-cycle
contains, for every thread T that is enabled at a node of the
cycle, a node v such that T is expanded at v.

Before we proof the fairness of IVRs induced by fair
ARTs, we state the following auxiliary proposition.

Proposition 1 (completely visited cycles) Let G = (V,−→)

be a directed, finite graph. For all infinite paths π ∈ V ω

through G and for all nodes v ∈ V that occur infinitely often
in π , there exists a cycle π ′ in G such that π ′ contains v and
all nodes of π ′ are visited infinitely often by π .

Lemma 2 If an ART A admits fairness, RA is an IVR that
admits fairness.

Proof We need to show that there exists a fair scheduler ζ

that enforces an arbitrary ART A that admits fairness. After
constructing ζ , we show that ζ is fair by contradiction.

Let τ = s0, T1, s1, . . . , sn be an execution prefix and let π
be a path such that τ corresponds to π = v0, T1, . . . , vn . By
γ (T ), we denote the number of occurrences of T inπ . LetT ′
be the set of threads that is both enabled at sn and permitted
by A , i.e., T ′ = RA (τ ) ∩ {T : enabledT (sn) �= ∅}. We
let ζ schedule an arbitrary thread T ∈ T ′ such that no other
thread in T ′ occurs less often in π , i.e., ζ(τ ) = T ∈ T ′
such that ∀T ′ ∈ T ′. γ (T ) ≤ γ (T ′). By Lemma 1 and as
A admits fairness, ζ is indeed a scheduler (T ′ is only empty
when enabled(sn) is empty).

It remains to show that ζ is fair, i.e., that every execution
scheduled by ζ is fair. Let τ be an execution that is scheduled
by ζ (τ is of the form τ = sinit, ζ(sinit), s1, . . .). If τ is finite,
it is trivially fair. Otherwise, assume that τ is not fair. Then,
there exists a thread T that is infinitely often enabled in τ but
does not occur in τ after some prefix of τ . Let π be a path in
A such that τ corresponds to pi . Let vT be a node at which T
is enabled and that occurs infinitely often in π . AsA is finite
and by Proposition 1, there exists a cycle that contains vT
such that π visits all nodes in this cycle infinitely often. As

A admits fairness, there exists v
T ,a−−→A v′ such that v is in

this cycle and a ∈ enabled(s) for all states s that correspond
to v. As T is not scheduled in τ after some finite number
i of steps, there exist one or more other threads T ′ �= T

with v
T ′−→A w for some w �= v′ which are scheduled at

v for all steps k > i . Let t be the set of those threads T ′.
By the construction of the scheduler, γ (T ′) ≤ γ (T ) for all
T ′ ∈ t . After only finitely many steps l, γ (T ) < γ (T ′) for
all T ′ ∈ t (e.g., take l to be the product of the maximum path
length from v to v and the number

∑

T ′∈t 1+ γ (T ) − γ (T ′)
of required visits of v). Hence, there exists a prefix of π of

length l ′ ≥ l in which v
T−→A v′ is the last step, i.e., T has

been scheduled. Contradiction to the assumption that T is
not scheduled after i steps in π . ��
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T1: lock()

T1: unlock()

T2: lock()

T2: unlock()

produce
1
item

co
ns
um

e
1
it
em

Fig. 4 A (� ∪ −→)-cycle (� is shown by a dashed line)

Note that the expansion of a thread T at a node in a cycle
does not guarantee that the transition is part of the cycle. A
slightmodification of the fairness condition forARTs leads to
a sufficient condition for ARTs as fair IVRs, as the following
definition and lemma show. The difference in the fairness
condition is that all enabled threads are expandedwithin each
(� ∪ −→)-cycle c, which we denote by fair(c). The (� ∪ −→
)-cycle shown in Fig. 4, for instance, is fair.

Definition 5 (fair ART )Adeadlock-freeARTA =(V, ε,−→,

�) is fair if fair(c) holds for every (� ∪ −→)-cycle c.

Lemma 3 (fairness) For all fair ARTs A , RA is a fair IVR.

Proof Let A be a fair ART. By Lemma 1 and as A is
deadlock-free, there exists a scheduler ζ that enforces A .
It remains to show that ζ is fair, which we prove by contra-
diction. Suppose that an unfair execution τ is possible under
ζ . There exists a thread T that is enabled infinitely often in
τ but does not occur in τ after a finite prefix. Let π be a path
through A such that τ corresponds to π . As VA is finite,
there exists a node v that occurs infinitely often in π and at
which T is enabled. AsA is finite and by Proposition 1, v is
part of a cycle of which all nodes occur infinitely often in π .
By fairness, one edge in this cycle is labeled with T . By the
definition of ARTs ((VA ,−→A ) is a tree), this edge occurs
infinitely often in π . Contradiction.

Given an ART A that admits fairness, one can generate a
fair ARTA ′ such thatRA permits all executions permitted
by RA ′ .

3 Iterative model checking

A suitable algorithm for our framework must generate fair
IVRs. We use model checking based on ARTs (cf. Sect. 2.3),
which allows us to check infinite executions and explicitly
represent scheduling. Nevertheless, other program analysis
techniques such as symbolic execution are also suitable to

generate IVRs. In particular, our algorithm (Alg. 1) consti-
tutes an iterative extension of the Impact algorithm [28] for
concurrent programs [42]. We chose Impact as a base for
our algorithm because it has an available implementation
for multithreaded programs, which we use to evaluate our
approach in Sect. 5.

Impact generates an ART by pathwise unwinding the
transitions of a program. Once an error location is reached
at a node v, Impact checks whether the path π from the
ART’s root to v corresponds to a feasible execution. If this
is the case, a property violation is reported; otherwise, the
node labeling is strengthened via interpolation. Thereby, a
well-labeled ART is maintained. Once the ART is complete,
its node labeling provides a safety proof for the program.

To build an ART as in the producer–consumer example
of Fig. 3, Impact starts by constructing the root node ε with
φ(ε) = true and 1ε = (8, 12), where we indicate locations
by line numbers in Fig. 1. Initially, mutex = 0, count = 0, and
the buffer size is bounded by an arbitrary constant N > 0.
Thread T1 is expanded by adding a node v1 withφ(v1) = true
and 1v1 = (14, 12). From v1, thread T1 is expanded repeat-
edly until node v6 with φ(v6) = true and 1v6 = (8, 12) is
produced. At this point, all statements of the produce() proce-
dure have been expanded once. As v6 has the same global
location as ε and φ(v6) ⇒ φ(ε), a covering v6 � ε can be
inserted. However, when the else branch of thread T1 at node
v1 is expanded, a node verror labeled with the error location
is added. In order to check the feasibility of the error path
ε −→ v1 −→ v2 −→ verror, Impact tries to find a sequence
interpolant for:

count = 0 ∧ mutex = 0,

mutex
′ = 1,

count ≥ N

As we assume that the buffer is never of size 0, i.e., N > 0,
∧U is unsatisfiable and a possible sequence interpolant is:

I0 ≡ true

I1 ≡ count = 0 ∧ mutex = 0

I2 ≡ count = 0 ∧ mutex
′ = 1

I3 ≡ false

with:

I0 ∧ count = 0 ∧ mutex = 0 ⇒ I1

I1 ∧ mutex
′ = 1 ⇒ I2

I2 ∧ count ≥ N ⇒ I3

Hence, verror can be labeled with false, so that the ART
remains safe, and the preceding labels can be updated to
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Algorithm 1: Iterative Impact for concurrent programs: main procedure (based on [42])
input : Program with threads T

intermediate outputs: fair ARTs A1 ⊆ A2 ⊆ . . . ⊆ An and unsafe ARTs

output : safe, partially safe, or unsafe

Data: A = (V, ε, −→, �) := ({ε}, ε,∅, ∅), W := {ε}, I := {}

1 Function Main()

2 while true do

3 status := Iteration()

4 if status = no progress then

5 break

6 else if status = counterexample then

7 yield A as an unsafe IVR

8 else

9 A ′ := Remove_Error_Paths(A )

10 yield A ′ as a safe IVR
11 if A is safe then

12 return safe

13 else if Remove_Error_Paths(A ) admits fairness then

14 return partially-safe

15 else

16 return unsafe

17 Function Iteration()

18 W := New_Schedule_Start()

19 if W = ∅ then

20 return no progress

21 while W �= ∅ do

22 select and remove v from W

23 Close(v)

24 if v not covered then

25 status := Refine (v)

26 if status = counterexample then

27 return counterexample

28 status := Check_Enabledness(v)

29 if status = no progress then

30 return no progress

31 Expand (v)

32 return progress

33 Function Check_Enabledness(v)

34 π := v0
T1,R1−−−−→ v1 . . .

Tn ,Rn−−−−→ vn path from ε to v

35 if not may-block(lv_n-1)T_n then

36 return progress

37 if R1 ∧ . . . ∧ Rn−1 ∧ ¬Guard(Rn ) is unsat then

38 φ(v) := φ(v) ∧ Guard(Rn )

39 else

40 return Backtrack(v)

41 Function Close(v)

42 for all uncovered nodes w that have been created before v do

43 if l(w) = l(v) ∧ (φ(v) ⇒ φ(w)) ∧∀c ∈ CA (v, w). fair(c) then

44 �:=� ∪{(v,w)}
45 �:=� \{(x, y) : v � y}
46 for T with v

T−→ v′ and not w
T−→ w′ do

47 add (v, T ) to I

48 Function Backtrack(v)

49 π := v0
T1,R1−−−−→ v1 . . .

Tn ,Rn−−−−→ vn path from ε to v

50 i := n − 1

51 while i ≥ 0 do

52 if ∃T , v′
i . vi

T−→ v′
i /∈ A ∧(Skip(vi , T) = false) then

53 add vi
T−→ v′

i to A

54 W := W ∪ {v′
i }

55 prune
Ti+2,Ri+2−−−−−−−−→ vi+3 . . . . . .

Tn ,Rn−−−−→ vn from A

56 φ(vi+1) := f alse

57 return progress

58 i := i − 1

59 return no progress

60 Function Expand(v)

61 T := Schedule_Thread (v)

62 Expand_Thread (T , v)

φ(ε) = φ(v1) = count = 0 ∧ mutex = 0 and φ(v2) = count =
0∧mutex = 1. Due to the relabeling, the covering v6 � ε has
to be removed and v6 has to be expanded.

When T2 has been expanded six times beginning at v6,
a node v12 is added with 1v12 = (8, 12). Impact applies a
heuristic that attempts to introduce coverings eagerly, which
results in a label φ(v12) = mutex = 0 ∧ count = 0 and a cov-
ering v12 � ε can be added. With this covering, the current
ART is fair and can be used as an IVR. In contrast, Impact
for concurrent programswould then continue to explore addi-
tional interleavings by expanding, e.g., T2 at ε. A complete
ART is found when both error paths and all interleavings of
produce() and consume() that respect the available buffer size N

are explored. Impact for concurrent programs does not ter-
minate until such a complete ART is found and would not
terminate at all if the buffer size is unbounded. Our algo-

rithm, however, is able to yield an fair IVR each time a new
interleaving has been explored.

In each iteration, our extended algorithm yields an IVR
which is either unsafe (a counterexample) or fair (can be
used as scheduling constraints). If the algorithm terminates,
it outputs “safe”, “partially safe,” or “unsafe,” depending on
whether the program is safe under all, some, or no sched-
ulers. Procedure Main() repeatedly calls Iteration() (line 3),
which, intuitively, corresponds to an execution of the original
algorithm of [42] under a deterministic scheduler. Iteration()
(potentially) extends theARTA . If no progress ismade (A is
unchanged), the algorithm terminates (lines 12, 14, and 16).
Otherwise, an intermediate output is yielded: either A as an
intermediate output (line 7) or A with all previously found
counterexamples removed, i.e., the largest fair ART that is a
subgraph of A , denoted by Remove_Error_Paths().
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Iteration() maintains a work list W of nodes v to be
explored via Close(v), which tries to find (as in [42]) a node
that covers v. In addition to the covering check of [42], we
check fairness,whereCA (v,w)denotes all cycles thatwould
be closed by adding the edge v � w (line 43). If such a node
w is found, any thread T that is expanded at v but not at
w (line 46) must not be skipped at w by POR. Instead of
expanding T instantaneously at w (as in [42]), which would
explore another schedule, T is added to the set I so that it can
be explored in a subsequent iteration. If no covering node for
v is found, v is refined, which returns counterexample if v has
a feasible error path (line 25). Otherwise (line 28), Check_-
Enabledness() performs a deadlock check by testing whether
the last transition that leads to v is enabled in all states repre-
sented by the predecessor node. If not, deadlock freedom is
not guaranteed and Backtrack() tries to find a substitute node
where exploration can continue.

The deterministic scheduler of Iteration() is controlled by
New_Schedule_Start() and Schedule_Thread(). The former
selects a set of initial nodes for the exploration (line 18); the
latter decideswhich thread to expandat a givennode (line 61).
We use a simple heuristic that selects the first (in breadth-
first order) node which is not yet fully expanded and use
a round-robin scheduler for Schedule_Thread that switches
to the next thread once a back jump occurs (e.g., the end
of a loop body is reached). Additionally, Schedule_Thread
returns only threads that are necessary to expand at the given
node after POR (cf. Skip() [42]). More elaborate heuristics
are conceivable but out of the scope of this paper.

The correctness of Alg. 1 w.r.t. safety follows from the
correctness of [28] and [42]. Additionally, Alg. 1 is also fair:

Lemma 4 (Fairness of Alg. 1) Any safe ARTA generated by
Alg. 1 is fair.

Proof By contradiction. Assume that Alg. 1 returns a safe
ARTA = (VA , ε,−→A ,�) that is not fair. By definition 5,
A contains a (� ∪ −→A )-cycle c that does not satisfy fair(c).
As (VA ,−→A ) is a tree, the cycle contains a � edge. How-
ever,Alg. 1 checks, in line 43,whether the candidate covering
would produce an unfair cycle. A� edge is only added if the
resulting cycle is fair. Contradiction.

4 Partial-order reduction

A naive enforcement of the context switches at the relevant
nodes of a safe IVRRA would result in a strictly sequential
execution of the transitions, foiling any benefits of concur-
rency. To enable parallel executions, we introduce program
schedules that relax the scheduling constraints by means of
partial-order reduction (POR). Note that this application of
POR concerns the enforcement of scheduling constraints and
occurs in addition to POR applied by our model checking

algorithm when constructing an ART (cf. Sect. 3). Never-
theless, dependency information that is used for POR during
model checking can be reused so that redundant computa-
tions are avoided.

The goal is to permit the parallel execution of indepen-
dent transitions (in different threads) whose order does not
affect the outcome of the execution represented by A (i.e.,
the resulting traces areMazurkiewicz-equivalent). Using tra-
ditional POR to construct such scheduling constraints poses
two challenges: 1. Executions may be infinite, but we need a
finite representation of scheduling constraints. 2. The control
flow of an execution may be unpredictable, i.e., it is a priori
unclear which scheduling constraints will apply. We solve
issue 1 by partitioning ARTs into sections and associate a
finite schedule with every section. To address issue 2, we
require that sections do not contain branchings (control flow
and nondeterministic transitions).

Consider the program and corresponding ART in Fig. 5a.
The if statement of T1 is modeled as a separate read transition
followed by a branching at node v3. We define three section
paths:

π1 := ε −→ v1 −→ v2 −→ v3 −→ v4

π2 := v4 −→ v5 −→ v7 −→ ε

π3 := v4 −→ v6 −→ ε

After π1 has been executed, a scheduler can distinguish the
cases y = 0 and y �= 0 and schedule π2 or π3 accordingly.

Formally, a section path v1
R1−→ · · · Rn−→ vn+1 corresponds

to a branching-free path in an ART whose first transition
may be guarded. A section path follows −→A edges, skip-
ping covering edges �. The section schedule of a section
path describes the Mazurkiewicz equivalence class of the
contained transitions and is defined as the smallest partial
order σ = (Vσ ,−→σ ) such that Vσ = {e1, . . . , en} and
−→σ ⊇ {(ei , e j ) : i < j ∧ Ri ∦ R j }, where ei , 1 ≤ i ≤ n is
the occurrence of transition Ri at position i .

The section schedule σ(π1) of π1 is depicted in Fig. 5b.
It consists of four events e1 � T1 : x:=1, e2 � T1 : read z,
e3 � T2 : y:=0, and e4 � T2 : x:=0. An arrow e → e′ indicates
that σ(π1) requires e to occur before e′. Events of the same
thread are ordered according to the program order of the
respective thread. Events e1 and e3 are from different threads
and write to the same variable; hence, they are dependent and
the section schedule needs to specify an ordering: e1 must
occur before e3. Accordingly, the complete section schedule
is ({e1, e2, e3, e4}, {(e1, e2), (e3, e4), (e1, e3)}).

By the following lemma, an execution from a state cor-
responding to the first node of a section and scheduled
according to the respective section schedule will always lead
to a state corresponding to the last node of the section. For
instance, the following execution fragments both lead from

123



Extracting safe thread schedules from incomplete model checking results 573

the initial state to a state represented by v4 (s4, s′
4 � φ(v4)),

as e1 and e3 are independent and can be swapped:

sinit, T1, s1, T2, s2, T1, s3, T2, s4 � e1, e3, e2, e4

sinit, T2, s
′
1, T1, s

′
2, T1, s

′
3, T2, s

′
4 � e3, e1, e2, e4

Lemma 5 (Correctness of section schedules) Let τ be a lin-
ear extension of a section schedule σ(π) of a section path π

in a deadlock-free ARTA . τ is equivalent to a linear exten-
sion of σ(π) that corresponds to π .

Proof Let π be a section path, σ(π) its section schedule, and
τ a linear extension of σ(π). As σ(π) is a partial order, all
linear extensions of σ(π) are equivalent [17], in particular
the linear extension of σ(π) that corresponds to π .

A program schedule � comprises several section sched-
ules. � is a labeled graph (V�,−→�). Each node v ∈ V�

is the start of a section path π in A . Each edge is labeled
with the section schedule of π and the guard Guard(R) of
the first transition R in π . AsA is deadlock-free, there exists
a thread T which is fully expanded at v in A and we require
that � likewise has outgoing edges at v labeled with T for
each transition of T at v. Figure 5c shows a program schedule
for our example program.

A scheduler can enforce the scheduling constraints of a
program schedule by picking a section schedule that matches
the current execution prefix and scheduling an event whose
predecessors (according to the section schedule) have already
been executed. Hence, all independent events in a section can
be executed concurrentlywithout synchronization.All events
of a section schedule have to appear before the first event of
the next section schedule, so that the states reached between
sections correspond to nodes of the program schedule. For
example, the event T1 : y := 1 from section π2 must not
occur in between events T1 : read z and T2 : y := 0 from
section π1.

A program schedule of an ART A that admits fairness
permits exactly those executions that correspond to a path
in A (modulo Mazurkiewicz equivalence). In particular, as

Mazurkiewicz equivalence preserves safety properties [17],
only safe executions are permitted.

Lemma 6 (Correctness of program schedules) Let A be an
ART that admits fairness and � a program schedule for A .
All program executions that adhere to the scheduling con-
straints of� are equivalent to an execution that corresponds
to a path in A .

Proof Let A be an ART that admits fairness, � a program
schedule for A , and τ an execution that adheres to the
scheduling constraints of �. We show that all finite prefixes
τ ′ of τ are equivalent to an execution prefix that corresponds
to a path from ε in A .

Induction on the length of τ ′.

case τ ′ is empty: τ ′ corresponds to the empty path in A .

inductive case: Let πτ ′ = v0
σ0(π0)−−−→� . . . vn

σn(πn)−−−→� vn+1

be the path in � that τ ′ corresponds to. Let τ ′ = x1x2 be
partitioned so that x1 corresponds to the prefix v0 . . . vn in
that path. Such a partition exists, as an event must occur
after all events from the previous section schedule and
before all events from the following section schedule.
By induction hypothesis, there exists an execution x≈

1 that
is equivalent to x1 that corresponds to the pathπ0 . . . πn−1

inA . By Lemma 5, there exists a linear extension x≈
2 of

σn(πn) that is equivalent to x2, which corresponds to πn

inA . Thus, x≈
1 x≈

2 is equivalent to τ ′ and corresponds to
π0 . . . πn .

5 Evaluation

In five case studies, we evaluate our iterative model checking
algorithm and scheduling based on IVRs.We use the Impara
model checker [42], as it is the only available implementa-
tion of model checking for nonterminating, multi-threaded
programs based on a forward analysis on ARTs we have
found. Impara uses lazy abstraction with interpolants based

1 Variables:
2 int x, y, z
3 Thread T1:
4 while true:
5 x := 1
6 if z = 0:
7 y := 1
8 Thread T2:
9 while true:

10 y := 0
11 x := 0

v1

v2

v3

v4

v5 v6

v7

T1: x:=1

T1: read z

T2: y:=0

T2: x:=0

T1: if z=0 T1: else

T1: y:=1

T1:

e1 x := 1

e2 read z

T2:

e3 y := 0

e4 x := 0 v3

σ1, true

σ2, z = 0 σ3, z = 0

(a) (b) (c)

Fig. 5 a A Program with a fair ART b The section schedule for the section path π1 from ε to v4 c A corresponding program schedule
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on weakest preconditions. We extend the tool by implement-
ing our algorithm presented in Sect. 3. Impara accepts C
programs as inputs; however, some language features are
not supported and we have rewritten programs accordingly.1

We refer to the (noniterative) Impara tool as Impara-C
(for complete verification) and to our extension of Impara
with iterative model checking as Impara-IMC. In addition
to our modifications of Impara, we implement a custom
(user space) scheduler to evaluate the enforcement of pro-
gram schedules for infinite executions. The software used
to conduct our experiments, including our modifications of
Impara, our custom scheduler, and benchmarks, is available
for reproduction [32].

5.1 Implementation

In the first step, we automatically translate ARTs constructed
by Impara-IMC to program schedules encoded as vector
clocks. To omit sections in the generated program schedule
that would never be executed and thereby reduce the size
of the program schedule, we discard all paths in the ART
that lead only to nodes labeled with false. As we use only
deadlock-free ARTs, an alternative, feasible path, always
exists. A given ART is traversed from the root. Recursively,
we build section paths by traversing the graph until a branch-
ing node is reached. At the branching node, a fully expanded
thread Tis chosen. The next sections are started at all child
nodes of the branching node that are reached by a transi-
tion of T. For each section, the section schedule is generated
based on the dependency information of memory accesses.
Section schedules are represented by vector clocks. Addi-
tionally, each section schedule contains a link to all possible
successor sections, i.e., those sections that start at a direct
successor node of the current section. If there exist nodes v,
wsuch that all possible (interleaved) paths between vandware
equivalent and section paths, a single section path between
vand wwith relaxed scheduling constraints is sufficient. In
this case, no dependencies between memory events need to
be enforced. However, we use only the first IVR in our exper-
iments (produced in a single iteration of Algorithm 1); hence,
we do not evaluate this case.

Firstly, all section schedules for the given ART are gener-
ated by enumerating them, including link information about
successor sections, and marking the initial section.

Secondly, we instrument the source code of benchmark
programs manually with callbacks to our user space sched-
uler and code for time measurement. The user space sched-

1 For example, Pthread mutexes, some uses of the address-of operator,
and reuse of the same function by several threads are not supported.
We solve these issues by rewriting our benchmark programs so that
Impara handles them correctly and their semantics is not changed. We
will publish our modifications to Impara, including two bug fixes.

uler is implemented in C++11 and uses the C++ standard
library for atomicmemory operations. Program schedules are
included as header files. Every access to a nonthread-local,
global variable (shared variable) is replaced by a C++ pre-
processor macro that calls the user space scheduler, executes
the original statement, and calls the user space scheduler to
notify that the statement has been executed. In our selection
of benchmark programs, we had to instrument assignments
and if–then–else statements. In the case of control flow
branchings that depend on a shared variable, i.e., an if–then–
else statement where the branching expression depends on a
shared variable, additional callbacks are necessary to notify
the scheduler of the taken control flow path.

To ensure that memory accesses enclosed by callbacks are
indeed executed after the preceding callback and before the
succeeding callback, memory fences are used.

The result of steps one and two is a multithreaded pro-
gram that executes concurrent memory accesses according to
a given program schedule. Threads are executed concurrently
and only forced to execute sequentiallywhere required by the
program schedule. Each time a thread Tenters the callback
preceding a memory access, Tlooks up the current section
schedule and program counters of the other threads. If the
vector clock of the section schedule, at the position of the
current event of T, shows an event of an other thread that has
to occur first, Twaits until this event has been executed. If no
more events are required to occur before the current event
of Tby the section schedule, Texecutes the current memory
access and, in the succeeding callback, updates its program
counter so that the other threads are notified that Thas exe-
cuted another event.

In case all events of the current section have already been
executed, Tchooses the successor section associated with its
current event. Waiting for all threads to completely execute
the current section before switching to a successor section
ensures that the program, at the end of each section, reaches
a state that is represented by a node in the program schedule
(and therefore, in the ART generated by the model checker).
In case Thas no successor section associated with its current
event, Twaits for an other thread to choose the next section.
In case the last node of the current section is a branching
node, only the thread with a control flow branching chooses
the next section. In case Thas a control flow branching at the
end of the last section, Tchooses the successor section based
on the taken control flow branch.

Thirdly,we instrument the benchmark programswith code
for time measurement. Each thread executes in an indefinite
loop. Each time a thread has accomplished useful work in the
current loop iteration, e.g., producing or consuming an item,
writing a block or inode, or executing the critical section, it
increments its performance counter. The main thread sleeps
for 2 s, the time-out duration, and subsequently prints the sum
of the performance counters of all threads and terminates the
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program. Such a single run of a benchmark program is exe-
cuted five times, and we report the respective median value
of performance counter sums. All experiments have been
executed on a four-core Intel Core i5-6500 CPU at 3.2GHz.

While we manually instrumented the benchmark source
code, an automated instrumentation is well conceivable.
Main tasks of such an automated instrumentation are to iden-
tify shared variables and all points in the program, where
dependent expressions are accessed. Relevant shared vari-
ables can be either overapproximated so that all shared or
global variables are included or found by a static dependency
analysis. Even if the variables to be instrumented are overap-
proximated, the expected additional execution time overhead
is small, as our experiments show:Acallback to our scheduler
is fast if the current thread does not have to wait for other
threads before executing the next variable access. Expres-
sions that depend on a shared variable can likewise be found
by a static dependency analysis. The automated instrumen-
tation may of course be implemented on the level on the
intermediate representation of a compiler and does not have
to be conducted on the source code level.

5.2 Infeasible complete verification

Even for a moderate number of threads, complete verifica-
tion, i.e., verification of a program under all possible sched-
ules and inputs, may be infeasible. In particular, Impara-C
times out (after 72h) on a corrected variant of the producer–
consumer problem (Fig. 13) with four producers and four
consumers. Impara-IMC produces the first IVR R1 after
4:29:53h. A simplification ofR1 is depicted in Fig. 6; it cov-
ers all executions in which the threads appear to execute their
loop bodies atomically in the order T1, T2, . . . , T8. While the
main bottleneck for Impara-C is state explosion and finding
many coverings for different schedules, we observe that the
main issue to produce R1 is to find a single covering that
comprises all threads, i.e., to find a fair cycle. The essential
predicates that lead to a fair cycle are:

count > 0, count + 1 > 0, count + 2 > 0, count + 3 > 0,
count �= 1000, count �= 999, count �= 998, count �= 997

The subsequent IVRs R2, . . . ,R8 are found much faster
than the first IVR, after 19:31, 12:3, 6:13, 28:0, 9:25, 8:27,
and 8:40min. We stop the model checker after eight IVRs.
According to our implementation of New_Schedule_Start()
in Alg. 1, IVR Ri permits, in addition to all executions per-
mitted byRi−1, those executions in which the threads appear
in the order Ti , T1, . . . , Ti−1, Ti+1, . . . , T8. Hence,R8 gives
the scheduler more freedom than R1, which may result in a
better execution performance, e.g., because a producerwhich
has its item available earlier does not have to wait for all pre-
vious producers.

Fig. 6 First IVR for the
producer–consumer problem
(simplified)

1

2

3

4

5

6

7

8

9

T1 produce

T2 produce

T3 produce

T4 produce

T5 consume

T6 consume

T7 consume

T8 consume

1 Thread T1:
2 while true:
3 lock(mutex1)
4 lock(mutex2)
5 execute critical section()
6 unlock(mutex2)
7 unlock(mutex1)

8 Thread T2:
9 while true:

10 lock(mutex2)
11 lock(mutex1)
12 execute critical section()
13 unlock(mutex2)
14 unlock(mutex1)

Fig. 7 A program with a deadlock

T1:

lock(mutex1)

lock(mutex2)

execute critical section()

unlock(mutex2)

unlock(mutex1)

T2:

lock(mutex2)

lock(mutex1)

execute critical section()

unlock(mutex2)

unlock(mutex1)

Fig. 8 Section schedule for the program of Fig. 7

5.3 Deadlocks

A common issue with multithreaded programs is deadlocks,
which may occur when multiple mutexes are acquired in a
wrong order, as in the program in Fig. 7, in which two threads
use two mutexes to protect their critical sections. A deadlock
is reached, e.g., when T2 acquires mutex2 directly after T1 has
acquired mutex1. A monolithic verification approach would
try to verify one or more executions and, as soon as a dead-
lock is found, report the execution that leads to the deadlock
as a counterexample. With manual intervention, this coun-
terexample can be inspected in order to identify and fix the
bug.
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1 Threads
2 T1: while true: produce()
3 T2: while true: produce()
4 T3: while true: consume()
5 T4: while true: consume()

6 produce:
7 if buffer is not full():
8 lock()
9 assert buffer is not full()

10 add item()
11 unlock()

12 consume:
13 if buffer is not empty():
14 lock()
15 assert buffer is not empty()
16 remove item()
17 unlock()

1

2

3

4

5

T1 produce

T2 produce

T3 consume

T4 consume

(a) (b)

Fig. 9 a Producer–consumer problem with a race condition. b First IVR (simplified)

1 Variables:
2 int block
3 boolean busy
4 boolean inode
5 mutex m inode
6 mutex m busy
7 Initially: inode = busy

8 Thread T1:
9 while true:

10 lock(m inode)
11 if not inode:
12 lock(m busy)
13 busy := true
14 unlock(m busy)
15 inode := true
16 block := 1
17 unlock(m inode)

18 Thread T2:
19 while true:
20 lock(m busy)
21 if not busy:
22 block := 0
23 unlock (m busy)

24 Thread T3:
25 while true:
26 lock(m inode)
27 lock(m busy)
28 inode := false
29 busy := false
30 unlock(m inode)
31 unlock(m busy)

Fig. 10 File system benchmark

In contrast, Impara-IMC logs both safe and unsafe IVRs.
The first IVR found in this example covers all executions
in which Threads 1 and 2 execute their loop bodies in turns,
with Thread 1 beginning. The corresponding program sched-
ule consists of a single section schedule depicted in Fig. 8.
As expected, executing the program with enforcing the first
program schedule never leads to a deadlock. Executing the
uninstrumented program (without scheduling constraints)
leads to a deadlock after only a few hundred loop iterations.
Hence, IMC enables to safely use the program deadlock-free
and without manual intervention.

5.4 Race conditions through erroneous
synchronization

The program in Fig. 9a shows a variant of the producer–
consumer problem with two producers and two consumers
which uses erroneous synchronization: Both the produce and
consume procedures check the amount of free space without
acquiring the mutex first. For example, a buffer underflow
occurs if the buffer contains only one item and the two
consumers concurrently find that the buffer is not empty;
although the buffer becomes empty after the first consumer
has removed the last item, the second consumer tries to
remove another item.

Thefirst IVR foundby Impara-IMC is depicted simplified
in Fig. 9b. The simplification merges all individual edges of
a procedure into a single edge, which is possible as Impara-
IMC does not apply context switches inside of procedures
during the first iteration. Since both procedures appear to be
executed atomically, no assertion violation is found during
the first iteration. We ran the program with a program sched-

ule corresponding to the first IVR. As expected, we have not
observed any assertion violations.

5.5 Declarative synchronization

Figure 10 shows an extension of a benchmark used in [15],
which is a simplified extract of the multithreaded Frangi-
pani file system. The program uses a time-varying mutex:
Depending on the current value of the busy bit, a disk block is
protected by m_busy or m_inode. We want to evaluate whether
we can use Impara-IMC to generate safe program sched-
ules even if all mutexes are (intentionally) removed from the
program.

For this purpose, we use a variant of the file system
benchmark where all mutexes are removed and synchroniza-
tion constraints are declared as assume statements, shown in
Fig. 11. It is sufficient to assure for T1 that the block is written
only if it is allocated, i.e., both inode and busy are true. For T2,
it is sufficient to assure that the block is only reset if it is not
busy, i.e., busy = false. Finally, for T3, it is necessary to assure
that the block is deallocated only if it is already deallocated
or fully allocated, i.e., inode = busy.

Running Impara-IMCon the file systembenchmarkwith-
out mutexes yields a first program schedule that schedules
T1, T2, T3 repeatedly in this order, according to our simple
heuristic for an initial IVR. However, although all execu-
tions permitted by this schedule are fair, the if condition of
T2 always evaluates to false and T2 never performs useful
work. To obtain amore useful schedule, we inform themodel
checker that the (omitted) else branch of Thread T2 is not
useful. We encode this information by inserting else: assume

false. After simplifying the code, we obtain T ′
2 as depicted

in Fig. 12. For the updated code, Impara-IMC yields a first

123



Extracting safe thread schedules from incomplete model checking results 577

Fig. 11 File system benchmark
with synchronization constraints
in assume statements

1 Thread T1:
2 while true:
3 if not inode:
4 busy := true
5 inode := true
6 atomic−begin
7 assume inode and busy
8 block := 1
9 atomic−end

10 Thread T2:
11 while true:
12 if not busy:
13 atomic−begin
14 assume not busy
15 block := 0
16 atomic−end

17 Thread T3:
18 while true:
19 atomic−begin
20 assume inode = busy
21 inode := false
22 busy := false
23 atomic−end

Fig. 12 Thread T ′
2: the

if-statement is omitted
1 Thread T2:
2 while true:
3 atomic−begin
4 assume not busy
5 block := 0
6 atomic−end

1 initially:
2 empty buffer of size 1000
3 count = 0
4 mutex = 0
5

6 thread T1...4:
7 while true:
8 lock()
9 if count != 1000:

10 int return value = produce()
11 assert(return value != OVERFLOW);
12 unlock()
13

14 thread T5...8:
15 while true:
16 lock()
17 if top > 0:
18 return value = consume();
19 assert(return value != UNDERFLOW);
20 unlock()

Fig. 13 A correct program for the producer–consumer problem with
four producers and four consumers

scheduler that schedules T3 before T2 before T1, so that all
threads perform useful work.

5.6 Performance

Table 1 shows the performance impact of enforcing IVRs on
several correct programs. Each program is model-checked
once until the first IVR (Impara-IMC) and once completely
(Impara-C). As a baseline, the program is runwithout sched-
ule enforcement (unconstrained). The first IVR is enforced
without (Opt0), and with optimizations (Opt1, Opt2). Opt1
applies PORand omits operations on synchronization objects
(mutexes, barriers).2 Opt2 uses, in addition to Opt1, longer
section schedules (by replicating a section eight times) and
stronger partial-order reduction that identifies independent
accesses to distinct indices of an array. Additionally, for the
producer–consumer benchmark, we apply a compiler-like
optimization, removing and reordering events to reduce the

2 As enforcing an IVR is redundant to synchronization over existing
mutexes and barriers, omitting them is safe.

number of constraints.3 Both Opt1 and Opt2 enable the con-
current execution of more memory accesses, e.g., because
the beginning of a critical section can already be executed
before a thread arrives at a constrained access that has towait.
The schedules for each benchmark (Opt0–Opt2) are obtained
from the first IVR. As all benchmarks use unbounded loops,
we measure the execution time performance by counting
useful (i.e., with a successful concurrent access such as a
produced item) loop iterations and terminating the execution
after 2 s.

At the example of a section schedule of the producer–
consumer benchmark with two threads, Fig. 14a, b illustrates
the difference between optimizations. Figure 14a shows a
section schedule for Opt0. All shared memory events are
executed strictly sequentially, as it is the case with uncon-
strained executions: Only the thread holding the lock is
allowed to access shared memory. Opt1 removes the lock
operations while maintaining the same ordering of events.
Opt2, cf. Fig.14b, relaxes the original ordering, subsumes
eight loop executions of both threads, and eliminates the
redundant read event of count.

In Fig. 14b, when the consumer executes the scheduler
callback before its first event (read count), it looks up the
constraint e12 → e21 and waits for the producer to finish
event e12. When the producer in the callback after e12 has
notified that e12 has been executed, the consumer continues
and executes e21. Similarly, the producer is permitted to exe-
cute e14 before e23 has been executed. Thus, the constrained
execution under the optimized schedule permits “more” con-
currency (i.e., more events to be executed concurrently) than
the unconstrained execution with locks.

For instance, the consumer is allowed to read the counter
already after the producer has written it and does not have to
wait for the producer to also write an item to the buffer.

We use the producer–consumer implementation (with
correct synchronization and buffer size 1000) from SV-
COMP [5] (stack_safe), modified with an unbounded loop
and with one, two, and four producers and consumers. The
double lock benchmark is a corrected version (lock opera-
tions in T2 reversed) of the deadlock benchmark (Sect. 5.3),
where the critical section is simulated by sleeping for 1 ms;

3 Opt2 follows a general algorithm; however, we do not automate our
implementation of Opt2, as it would be a large effort to implement
compiler optimizations. Our implementation of Opt1 is automated.
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T1 (producer):

if (count < N)

local count = count

buf[local count + 1] = item

count = local count + 1

e11 lock

e12 read count

e13 read count

e14 write buf

e15 write count

e16 unlock

T2 (consumer):

if (count > 0)

local count = count

count = local count − 1

item = buf[local count − 1]

e21 lock

e22 read count

e23 read count

e24 write count

e25 read buf

e26 unlock

T1 (producer):

local count = count

count = local count + 1

buf[local count + 1] = item

local count = count

count = local count + 1

buf[local count + 1] = item

e11 read count

e12 write count

e13 write buf

e14 read count

e15 write count

e16 write buf

T1 (producer):

local count = count

count = local count + 1

buf[local count + 1] = item

local count = count

count = local count + 1

buf[local count + 1] = item

e21 read count

e22 write count

e23 write buf

e24 read count

e25 write count

e26 write buf

(a)

(b)

Fig. 14 a Section schedule for the producer–consumer benchmark (Opt0). b Section schedule for the producer–consumer benchmark (Opt2)

the uncorrected version reached a deadlock after only 172
loop iterations. The file system benchmark from SV-COMP
(time_var_mutex_safe) is extended with a third thread and
again with unbounded loops as in Sect. 5.5. The barrier
benchmark uses two barriers to implement ring communi-
cation between threads.

As themodel checking columns of Table 1 show, Impara-
IMC finds the first IVR often much faster than or at least as
fast as it takes Impara-C for complete model checking; it
can produce an IVR even for our largest benchmarks, where
Impara-C times out. For a buffer size of 5, Impara-C can
verify the producer–consumer benchmark even with eight
threads but again, Impara-IMC is considerably faster in
finding the first IVR. Subsequent IVRs were generated con-
siderably faster than the first IVR, which might be caused by
caching of facts in the model checker.

The verification time for the producer–consumer bench-
mark of both Impara-C and Impara-IMC appears to grow
exponentially with the number of threads. This growth is not
a limitation of our approach but a property of the application
of lazy abstraction with interpolants in Impara. Potentially,
Impara can be improved by including symmetry reduction,

which would reduce the verification time for both Impara-C
and Impara-IMC but is outside of the scope of this work.

Somewhat surprisingly, some benchmarks are slower
when executed unconstrained than under Opt2. We conjec-
ture that this is caused by more memory accesses being
executed in parallel under Opt2, as all other effects of Opt2
only improve handling by our user space scheduler and
do not affect unconstrained executions. It is, however, not
directly possible to measure the effect of parallelizing mem-
ory accesses: In order to re-sequentialize memory accesses
under Opt2, synchronization (e.g., over a mutex) would have
to be added, which produces additional overhead.

In all cases but one, Opt2 is considerably faster than Opt1,
which is considerably faster than Opt0. The highest over-
head is observed for the file system benchmark, where Opt2
is about 3.5 times slower than the unconstrained execution.
We conjecture that the high overhead here stems from an
unequal distribution of loop iterations among threads, when
executed unconstrained: The loop body of T2 was executed
nearly 100 times more frequently than T1, while it is shorter
and probably faster. Opt0–Opt2 execute all threads nearly
balanced. In addition to the Pthread barriers used in the bar-
rier benchmark, we tried a variant with busy waiting barriers,
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Table 1 Experimental results (TO: time-out, rounded to full seconds) performance is measured in number of useful (e.g., with a successful
concurrent access such as a produced item) loop iterations within a time limit of 2 s

Benchmark Model checking Performance (higher is better)

Time 1st IVR Impara-C Opt0 Opt1 Opt2 Unconstrained

prod.-cons. 1p 1c 1000b 2 m 0 s To (72h) 4,864,489 7,466,093 11,370,258 8,199,202

prod.-cons. 2p 2c 1000b 23 m 47 s To (72h) 3,400,187 5,959,041 8,428,598 11,643,208

prod.-cons. 4p 4c 1000b 4 h 29 m 53 s To (72h) 1,327,063 2,576,695 3,676,876 7,210,796

prod.-cons. 1p 1c 5b 2 s 2 m 28 s 4,945,116 7,075,596 12,372,817 7,915,465

prod.-cons. 2p 2c 5b 18 s 1 m 16 s 3,194,019 5,514,429 9,271,859 6,933,172

prod.-cons. 4p 4c 5b 2 m 41 s 9 m 44 s 1,345,991 2,465,108 3,392,111 3 240 136

Double lock 1 ms 0 s 0 s 1845 1834 3217 1797

File system 0 s 0 s 3667 4,877,035 6,705,672 23,822,129

Barrier 1 s 4 m 14 s 1,238,720 8,285,228 14,586,849 1,077,907

In each row, the best model checking result and performance result are in bold

where the unconstrained execution showed a performance of
13 567 135, which is still slower than Opt2.

Comparing the results for the producer–consumer bench-
mark with a buffer size of 1000 to those for a buffer size of 5,
we observe that there is no considerable effect on Opt0–Opt2
but on most of the unconstrained executions. This observa-
tion is comprehensible, as the first IVR does not make use of
more than at most four cells in the buffer (in case of four
producers). The performance of unconstrained executions
decreases with a smaller buffer as the chance that the buffer
is full and a producer has to wait is higher. For all three con-
figurations with a buffer size of 5, Opt2 shows the highest
execution time performance.

Even in repeated executions of the experiment, the uncon-
strained variant of double lock showed only “starving”
executions in the sense that the second thread was never able
to acquire the mutexes before the time-out of 2 s. Hence,
the constrained executions improve on the operating system
scheduler in terms of a balanced execution of all threads.

In order to compare to the enforcement of input-covering
schedules [7] (explained in Sect. 6), wemeasure the overhead
of our scheduler implementation on the pfscan benchmark
used there. Pfscan is a parallel implementation of grep and
uses 1 producer and 2 consumer threads to distribute tasks,
consisting of reading and searching a file for a given query.
As input, we use eight files with 100MB of random content
each. We evaluate four different schedules,4 which show an
overhead between 3% and 10% (with Opt2). Hence, IVRs
can performmuch better than input-covering schedules (60%
overhead reported in [7]).

Table 2 contains our experimental results for the pfscan
benchmark. We use two worker threads in addition to the

4 As Impara cannot handle several features used by pfscan (such as
condition variables, structs, and standard output), wemanually generate
initial IVRs.

Table 2 Experimental performance results for pfscan

Schedule Execution time (s)

Constrained Unconstrained Relative

S1 3.34 3.25 1.03

S2 3.34 3.25 1.03

S3 3.6 3.25 1.10

S4 3.57 3.25 1.10

main thread. The benchmark is executed with scheduling
constraints of several program schedules S1–4 (column two)
and unconstrained (column three). Execution times are given
in seconds. The fourth column gives the relative execution
time (overhead). In all constrained configurations, operations
on synchronization objects have been omitted (Opt1). S1, S2,
and S3 are program schedules as they can be produced during
the first iteration of our model checking algorithm. Program
schedule S4 allows any interleaving of critical sections so that
all executions of the unconstrained program are matched. S1
and S2 contain sections that comprise both worker threads,
while S3 and S4 contain only single-threaded sections. S1
and S2 differ in the ordering of the worker threads.

S3 causes an overhead of 10% with respect to the uncon-
strained execution. Although S4 allows any interleaving of
critical sections, there remains an overhead of 10% caused
by looking up section schedules during the execution. S1 and
S2 show only a small overhead of 3%.We conjecture that the
lower number of section schedule look-ups (compared to S3
and S4) is responsible for the considerably lower overhead.

6 Related work

Unbounded model checking [18,20,35,42] is a technique
to verify the correctness of potentially nonterminating pro-
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grams. In our setting, we deploy algorithms that use abstract
reachability trees (ARTs) [21,28,42] to represent the already
explored state space and schedules, and perform this explo-
ration in a forward manner. Instead of discarding an ART
after an unsuccessful attempt to verify a program, we use the
ART to extract safe schedules.

Conditional model checking [8] reuses arbitrary interme-
diate verification results. In contrast to our approach, they are
not guaranteed to prove the safety of a program that is func-
tional under all inputs and does not enforce the preconditions
(e.g., scheduling constraints) of the intermediate result.

Context bounding [34,38,39] eases the model checking
problem by bounding the number of context switches. It is
limited to finite executions and, unlike our approach, does
not enforce schedules at runtime.

Automated fence insertion [1,2,13,24,26] transforms a
program that is safe under sequential consistency to a pro-
gram that is also safe under weaker memory models. While
the amount of nondeterminism in the ordering of events
is reduced, nondeterminism due to scheduling cannot be
influenced. Synchronization synthesis [19] inserts synchro-
nization primitives in order to prevent incorrect executions,
but may introduce deadlocks.

Deterministic multi-threading (DMT) [3,6,7,11,12,27,33,
37] reduces nondeterminism due to scheduling in multi-
threaded programs. Schedules are chosen dynamically,
depending on the explicit input, and cannot be enforced by
a model checker. Nevertheless, there are combinations with
model checking [11] and instances which schedule based on
previously recorded executions [12].

We are aware of only one DMT approach that sup-
ports symbolic inputs [7]. Similar to our sections, bounded
epochs describe infinite schedules as permutations of finite
schedules. Via symbolic execution, an input-covering set of
schedules is generated, which contains a schedule for each
permutation of bounded epochs. As all permutations need to
be analyzed (even if they are infeasible), state space explo-
sion through concurrency is only partially avoided; indeed,
the experimental evaluation shows that the analysis is infea-
sible even for five threads when the program has many such
permutations. In contrast, we do not require race-freedom,
use model checking, sections may contain multiple threads,
omit infeasible schedules, and allow a safe execution from
the first schedule on, i.e., an IVR can be considerably smaller
than an input-covering set of schedules.

Issues of how to efficiently enforce fine-grained schedules
for multithreaded programs are discussed in [30]. For finite
executions, the impact of scheduling constraints on execution
time performance is investigated, however without generat-
ing scheduling constraints via model checking.

Deterministic concurrency requires a program to be deter-
ministic regardless of scheduling. In [40], a deterministic
variant of a concurrent program is synthesized based on con-

straints on conflicts learned by abstract interpretation. In
contrast to DMT, symbolic inputs are supported; however,
no verification of general safety properties is done and the
degree of nondeterminism is not adjustable, in contrast to
IVRs.

Sequentialized programs [14,22,25,35,36,39] emulate the
semantics of a multithreaded program, allowing tools for
sequential programs to be used. The amount of possible
schedules is either not reduced at all or similar to context
bounding.

7 Conclusion

Wepresent a formal framework for using IVRs to extract safe
schedules. We state why it is legitimate to constrain schedul-
ing (in contrast to inputs) and formulate general requirements
on model checkers in our framework. We instantiate our
framework with the Impact model checking algorithm and
find in our evaluation that it can be used to 1. model check
programs that are intractable for monolithic model checkers,
2. safely execute a program, given an IVR, even if there exist
unsafe executions, 3. synthesize synchronization via assume
statements, and 4. guarantee fair executions. A drawback of
enforcing IVRs is a potential execution time overhead; how-
ever, in several cases, constrained executions turned out to
be even faster than unconstrained executions.
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