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Abstract
Model synchronization, i.e., the task of restoring consistency between two interrelated models after a model change, is a
challenging task. Triple graph grammars (TGGs) specify model consistency by means of rules that describe how to create
consistent pairs of models. These rules can be used to automatically derive further rules, which describe how to propagate
changes from one model to the other or how to change one model in such a way that propagation is guaranteed to be
possible. Restricting model synchronization to these derived rules, however, may lead to unnecessary deletion and recreation
of model elements during change propagation. This is inefficient and may cause unnecessary information loss, i.e., when
deleted elements contain information that is not represented in the second model, this information cannot be recovered easily.
Short-cut rules have recently been developed to avoid unnecessary information loss by reusing existing model elements.
In this paper, we show how to automatically derive (short-cut) repair rules from short-cut rules to propagate changes such
that information loss is avoided and model synchronization is accelerated. The key ingredients of our rule-based model
synchronization process are these repair rules and an incremental pattern matcher informing about suitable applications
of them. We prove the termination and the correctness of this synchronization process and discuss its completeness. As a
proof of concept, we have implemented this synchronization process in eMoflon, a state-of-the-art model transformation tool
with inherent support of bidirectionality. Our evaluation shows that repair processes based on (short-cut) repair rules have
considerably decreased information loss and improved performance compared to former model synchronization processes
based on TGGs.

Keywords Bidirectional transformation · Model synchronization · Triple graph grammar · Incremental pattern matching ·
Change propagation

1 Introduction

The close collaboration of multiple disciplines such as elec-
trical engineering, mechanical engineering, and software
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engineering in system design often leads to discipline-
spanning systemmodels [27]. Keeping models synchronized
by checking and preserving their consistency can be a
challenging problem which is not only subject to ongoing
research but also of practical interest for industrial appli-
cations. Model-based engineering has become an important
technique to cope with the increasing complexity of mod-
ern software systems. Various bidirectional transformation
(bx) approaches [3,14] for models have been suggested to
deal with model (view) synchronization and consistency.
Across these different approaches the following are impor-
tant research topics [13,15,26,31–33,47]: incrementality, i.e.,
achieving runtime/complexity dependent on the size of the
model change, not on the model size, and least change, i.e.,
keeping the resulting model as similar as possible to the orig-
inal one while restoring consistency. In this work, we extend
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synchronization approaches based on triple graph grammars
by specific repair rules to increase incrementality and effi-
ciency and to decrease the amount of change that occurs
during synchronization. We show how to avoid unnecessary
information loss in model synchronization for scenarios in
which one model is changed at a time. Throughout this paper
we stick to this scenario of model synchronization.

The more general case of concurrent model synchroniza-
tion where both models have been altered is left to future
work.

Triple Graph Grammars (TGGs) [51] are a declara-
tive, rule-basedbidirectional transformation approach,which
allows synchronizing models of two different views (usually
called the source and target domain in the TGG-related lit-
erature). The purpose of a TGG is to define a consistency
relationship between pairs of models in a rule-based manner
by defining traces between their elements. Given a TGG, its
rules can be automatically operationalized into source and
forward rules. While the source rules are used to build up
models of the source domain, forward rules translate them
to the target domain and thereby establish traces between
corresponding model elements. Analogously, target models
can be propagated to the source domain by using target and
backward rules that can be automatically deduced as well.
To avoid redundancy in our presentation, we stick to forward
propagation throughout this paper.

In [51], a simple batch-oriented synchronization process
was presented, which just re-translates the whole source
model after each change using forward rules. Several incre-
mental synchronization processes based on TGGs have been
presented in the literature thereafter. A process is considered
to be incremental if the target model is not recomputed from
scratch but unaffected model parts are preserved as much as
possible.1 To obtain an incremental synchronization process,
two basic strategies have been pursued (in combinations):
(i) The synchronization algorithm takes additional informa-
tion of forward rules into account. This information might
consist of precedence relations over rules [40], dependency
information on model elements w.r.t. their creation [26,50],
a maximal, still consistent submodel [30], or information
about broken matches of forward rules provided by an incre-
mental pattern matcher [41,42]. (ii) The actual propagation
of changes in a synchronization process is not based on the
application of forward rules exclusively but also uses addi-
tional rules. To propagate a deletion on the source part, almost
all approaches support to revoke an application of a for-
ward rule. The revocation of rule applications is formalized
as inverse rule applications in, e.g., [40]. Also, custom-

1 Ideally, the runtime (complexity) of a synchronization should depend
on the size of the change to the source model and not on the sizes of the
source and the target model [26]. This requirement is a good motivation
for incremental synchronization.

made rules have been used in synchronization algorithms
that describe specific kinds of model edits in any modeling
language [24] or in a concretemodeling language [10].More-
over, generalized forward rules have been defined which
allow for re-use of elements [24,27,50]. Summarizing, sev-
eral approaches for incrementalmodel synchronizationbased
on TGGs have been presented in the literature. Some of them
such as [26,27] are informally presented without any guaran-
tee to reestablish the consistency of modified models. Others
present their synchronization approaches formally and show
their correctness but are only applicable under restricted cir-
cumstances [30] or have not been implemented yet, such as
[50]. Hence, we still miss a TGG-based model synchroniza-
tion approach that avoids unnecessary information loss, is
proven to be correct, and is efficiently implemented.

In this article, we present an incremental model synchro-
nization approach based on an extended set of TGG rules.
In [22], we introduced short-cut rules for handling com-
plex consistency-preserving model updates while avoiding
unnecessary information loss. A short-cut rule replaces one
rule application with another one while preserving involved
model elements (instead of deleting and re-creating them).
We deduce source and forward rules from short-cut rules to
support complex model edits and their synchronization with
the target domain. We present an incremental model syn-
chronization algorithm based on short-cut rules and show its
correctness.

We implementedour synchronization approach in eMoflon
[43,57,58], a state-of-the-art bidirectional model transforma-
tion tool, and evaluate it. Being based on eMoflon,we are able
to extend the synchronization process suggested byLeblebici
et al. [41,42] and rely on information provided by an incre-
mental pattern matcher also to detect when and where to
apply our derived repair rules. However, the construction and
derivation of these are general and could extend other sug-
gested TGG-based synchronization processes as well. The
results of our evaluation show that, compared to model syn-
chronization in eMoflon without short-cut repair rules, the
application of these repair rules allows reacting to model
changes in a less invasive way by preserving information.
Besides, it shows more efficiency.

This paper extends the work in [23]. Beyond [23], we

– present the actual synchronization process in pseudocode
and prove its correctness and termination (based on the
results obtained in [23,41,42]),

– extend our approach to deal with filter NACs (a specific
kind of negative application conditions in forward rules),

– describe the implementation, especially the tool architec-
ture, in more detail,

– extend the evaluation by investigating the expressiveness
of short-cut repair rules at the practical example of code
refactorings [21], and
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– consider the related work more comprehensively.

The rest of this paper is organized as follows. In Sect. 2,
we give an informal overview of our model synchronization
approach. It shall allow readers to grasp the general idea
without working through the technical details. In Sect. 3,
we recall triple graph grammars. The construction of short-
cut rules and their properties are presented in Sect. 4, while
Sect. 5 introduces the derivation of repair rules. Section 6
focuses on the implemented synchronization algorithm and
its formal properties. To be understandable to readerswho are
not experts on algebraic graph transformation, we use a set-
theoretical notion in thesemore technical sections, in contrast
to the original contribution in [23]which is based on category
theory. Section 7 describes the implementation of our model
synchronization algorithm in eMoflon, focussing on the tool
architecture. Our synchronization approach is evaluated in
Sect. 8. Finally, we discuss related work in Sect. 9 and con-
clude with pointers to future work in Sect. 10. “Appendix”
presents the rule set used for our evaluation.

2 Informal introduction to TGG-basedmodel
synchronization

In this section, we illustrate our approach to model synchro-
nization. Using a simple example, we will explain the basic
concepts as well as all main ingredients for our new synchro-
nization process. Reading this section and having a passing
view on the synchronization algorithm (Sect. 6.2), evaluation
(Sect. 8), and related works (Sect. 9) should give an adequate
impression of the core ideas of our work.

Graph transformations, and triple graph grammars in par-
ticular, are a suitable formal framework to reason about and
to implement model transformations and synchronizations
[9,18].2 A triple graph consists of three graphs, namely the
source, target, and correspondence graph. The latter encodes
which elements of source and target graph correlate to each
other. This is done by mapping each element of the corre-
spondence graph to an element of the source graph as well
as to an element of the target graph (formally these are two
graph morphisms). Elements connected via such a mapping
are considered to be correlated.

Triple graph grammars (TGGs) [51] declaratively define
how consistent models co-evolve. This means that a triple
graph is considered to be consistent if it can be derived from
a start triple (e.g., the empty graph) using the rules of the
given grammar. Furthermore, the rules can automatically be

2 Therefore, we will use the terms “graph” and “model” interchange-
ably in this paper.Wewill stick to the graph terminology inmore formal
sections.

Fig. 1 Example: type graph

Fig. 2 Example: TGG rules

operationalized to obtain new kinds of rules, e.g., for trans-
lation/synchronization processes.

We illustrate our model synchronization process by syn-
chronizing a Java AST (abstract syntax tree) and a custom
documentation model as example. This example has been
basically introduced by Leblebici et al. [44]; it is slightly
modified to demonstrate the core concepts of our approach.
Note, however, that the evaluation in Sect. 8 is based on a
larger and more complex TGG consisting of 24 rules (as pre-
sented in “Appendix”).

For model synchronization, we consider a Java ASTmod-
el as source model and its documentation model as target
model, i.e., changes in a Java AST model have to be trans-
ferred to its documentation model and vice versa. Note that
we do not consider concurrent model synchronization, i.e.,
concurrent changes to both sides that have to be synchro-
nized. Figure 1 depicts the type graph that describes the
syntax of our example triple graphs. It shows a Package
hierarchy and Classes as the source side, a Folder hierar-
chy with Doc-Files as target side and correspondence types
in between depicted as hexagons. Furthermore, Doc-Files
have an attribute content which is of type String. Note that,
in our example, there are two correspondence types which
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(a) (b) (c)

Fig. 3 Exemplary synchronization scenario

can be distinguished by the type of elements they connect on
both sides.

TGGrulesFigure 2 shows the rule set of our exampleTGG
consisting of three rules (assuming an empty start graph):

Root-Rule creates a root Package together with a root
Folder and a correspondence link in between. This rule has
an empty precondition and creates elements only; they are
depicted in green and with the annotation (++). Sub-Rule
creates a Package and Folder hierarchy given that an already
correlated Package and Folder pair exists. Finally, Leaf-Rule
creates a Class and a Doc-File under the same precondition
as Sub-Rule.

TGG rules can be used to generate triple graphs; triple
graphs generated by them are consistent by definition. An
example is depicted in Fig. 3(a) which can be generated by
first applyingRoot-Rule followed by two applications of Sub-
Rule and an application of Leaf-Rule: Startingwith the empty
triple graph, the first rule application just creates the ele-
ments rootP and rootF and the correspondence element
in between. The second rule application matches these ele-
ments and creates subP, subF, subPDoc, their respective
incoming edges, and the correspondence element between
subP and subF. The other two rule applications are per-
formed similarly.

Operationalization of TGG rulesA TGG can also be used
for translating amodel of onedomain to a correlatedmodel of
a second domain. Moreover, a TGG offers support formodel
synchronization, i.e., for restoring the consistency of a triple
graph that has been altered on one side. For these purposes,
each TGG rule has to be operationalized to two kinds of
rules: A source rules enable changes of source models (e.g.,
as performed by a user) while forward rules translate such
changes to the target model.3 The result of applying a source
rule followed by an application of its corresponding forward
rule yields the same result as applying the TGG rule they

3 Analogously, target and backward rules can be derived.

Fig. 4 Example: TGG source rules

Fig. 5 Example: TGG forwardRules

originate from. Figure 4 shows the resulting source rules for
our example TGG.

Forward translation rules Figure 5 depicts the resulting
forward rules. They have a similar structure compared to
their original TGG rules with three important differences.
First, elements on the source side are now considered as con-
text and as such have to be matched as a precondition for this
rule to be applicable. Second, since we consider elements
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on the source side to already be present, we have to mark
whether an element has already been translated or not. A ��
annotation can be found on source elements whichmust have
been translated before. On the other hand, � → �� annota-
tions indicate that applying this rule wouldmark this element
as translated. This annotation can be found at elements that
are created by the original TGG rule. Possible formalizations
of these marking are given, e.g., in [29,42]. The third differ-
ence is the use of negative application conditions (NACs) [17]
which are indicated with a (nac) and depicted in blue. Using
NACs, we are able to not only define necessary structure that
has to be found but also the explicit absence of structural ele-
ments as in Root-FWD-Rule where we forbid subP to have
a parent package. The theory behind these so-called filter
NACs is formalized by Hermann et al. [29] and they can be
derived automatically from the rules of a given TGG when
computing its forward rules.

Using these rules, we can translate Java AST to documen-
tation models. Considering the one on the source side of the
triple graph in Fig. 3(a), it is translated to a documentation
model such that the result is the complete graph depicted in
this part of the figure. To obtain this result we apply Root-
FWD-Rule at the root Package, Sub-FWD-Rule at Packages
subP and leafP, and finally Leaf-FWD-Rule at Class c.
Note that Sub-FWD-Rule, for example, is applicable when
matching Packages sp and p of the rule to the Packages
rootP and subP of the source graph, respectively, since
rootPwas marked as translated by the application of Root-
FWD-Rule.

Without the NAC in Root-FWD-Rule, this rule would also
be applicable at the elements subP and leafP. Applying
Root-FWD-Rule and translating these elements with it, how-
ever, would result in the edges from their parentPackages not
being translatable any longer: There is no rule in our TGG
rule set that creates edges between packages only. Hence,
NACs can direct the translation process to avoid these dead-
ends. Filter NACs are derived such that they prevent rule
applications leading to dead-ends, only.

Existing approaches to model synchronization Given a
triple graph such as the one in Fig. 3(a), a developer may
want to split the modeled project into multiple ones. For this
purpose, a subpackage such as subP shall become a root
package. Since subP was created and translated as a sub
package rather than a root element, this model change intro-
duces an inconsistency. To resolve this issue, the approaches
presented in [26,40–42] and, to a certain degree, also the
one in [30] revert the translation of subP into subF and re-
translate subP with an appropriate translation rule such as
Root-FWD-Rule. Reverting the former translation step may
lead to further inconsistencies as we remove elements that
were needed as context elements by other applications of
forward rules. The result is a reversion of all translation
steps except for the first one which translates the original

Fig. 6 Short-cut rules

root element. The result is shown in Fig. 3(b). Thereafter,
the untranslated elements can be re-translated yielding the
result graph in (c). This example shows that this synchro-
nization approach may delete and re-create a lot of similar
structureswhich appears to be inefficient. Second, itmay lose
information that exists on the target side only, e.g., documen-
tation saved in the content attribute which is empty now as it
cannot be restored from the source side only. Such an infor-
mation loss is unnecessary as we will show below. Instead
of deleting elements and recreating them, we will present a
synchronization process that aims to preserve information as
much as possible.

Model synchronization with short-cut repair In [22], we
introduce short-cut rules as a kind of sequential rule compo-
sition mechanism that allows replacing one rule application
with another one while elements are preserved (instead of
deleted and recreated).

Figure 6 depicts three short-cut rules which can be derived
from our original three TGG rules. The first two, Connect-
Root-SC-Rule and Make-Root-SC-Rule, are derived from
Root-Rule and Sub-Rule. The upper short-cut rule replaces an
application of Root-Rulewith one of Sub-Rule and turns root
elements into sub elements. In contrast, the lower short-cut
rule replaces an application of Sub-Rule with one of Root-
Rule, thus, turning sub elements into root elements. Both
short-cut rules preserve the model elements present in their
corresponding TGG rules and solely create elements that
do not exist yet (++), or delete those depicted in red and
annotated with (−−) which became superfluous. The third
short-cut ruleMove-To-New-Sub-SC-Rule relocates sub ele-
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ments and replaces a Sub-Rule application with another one
of the same kind.

A short-cut rule is constructed by overlapping two rules
with each other where the first one is the replaced and the
second the replacing rule.Overlapped elements are preserved
such as p and f in Connect-Root-SC-Rule. Created elements
that are not overlapped fall into two categories. If the ele-
ment was created in the replaced rule but is superfluous in
the replacing rule, it is deleted, e.g., d in Make-Root-SC-
Rule. On the other hand, if the element was not created by
the replaced rule but by the replacing rule, then the element is
created, e.g., d in Connect-Root-SC-Rule. Context elements
can be mapped as well while unmapped context elements
fromboth rules are glued onto the final short-cut rule, e.g.,op
and ofwhich are context in the replaced rule, and np and nf
which are context in the replacing rule. Since there are many
possible overlaps for each pair of rules, constructing a reason-
able set of short-cut rules depends on the concrete example
TGG and the requirement for advanced model changes that
go beyond the standard capabilities of TGG-based model
synchronizers. Usually, it is worthwhile to construct short-
cut rules for frequent model changes in order to increase the
synchronization efficiency and decrease information loss in
these cases.

In our example above, the user wants to transform the
triple graph in Fig. 3(a) to the one in (c). Using Make-Root-
SC-Rule andmatching thePackagessp andp to thePackages
rootP and subP of the model (a) (and the correspondence
nodes and Folder accordingly), this transformation is per-
formed with a single rule application. Analogously, the triple
graph (c) can be directly transformed backwards to (a) using
Connect-Root-SC-Rule. Thus, these rules allow for complex
user-edits on both, source and target side; they preserve the
consistency of the model. However, there are also scenarios
where applying a short-cut rule may lead to an inconsis-
tent state of the resulting triple graph. A simple example is
that of applying Connect-Root-SC-Rule in order to connect
subP and subFwith rootP and rootF, respectively. The
result would be a cycle in both, the Package and the Folder
hierarchies; this model is no longer in the language of our
example TGG. In Sect. 4, we present sufficient conditions
for the application of short-cut rules to avoid such cases.

Operationalization of short-cut rules Short-cut rules
transform both models at once as TGG rules usually do and
therefore, they cannot copewith the change of a singlemodel.
Hence, similar to TGG rules, we have to operationalize them,
thereby obtaining short-cut source and short-cut repair rules.
Figure 7 depicts the short-cut source rules which are derived
analogously to those of standard TGG rules. In order to
be able to handle the deleted edge between rootP and
subP, as deleted by Make-Root-Source-Rule, for example,
a repair rule is needed that adapts the target graph accord-
ingly by deleting the now superfluous edge between rootF

Fig. 7 Short-cut source rules

Fig. 8 Repair rules

and subF. Figure 8 depicts the resulting repair rules derived
from the short-cut rules in Fig. 6. A short-cut rule is for-
ward operationalized by removing deleted elements from the
rule’s source graph since these deletions have already hap-
pened. Furthermore, created source elements become context
because we expect them to already exist, e.g., through the a
prior source rule application. Finally, since short-cut rules
transform an application of one rule into that of another, fil-
ter NACs are added during operationalization to comply with
application conditions of the replacing rule which naturally
have to hold when applying the short-cut rule. Hence,Make-
Root-Repair-Rule is only applicable and can turn subF into
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a root Folder if subP has no parent packages and, thus,
is indeed a root Package itself. Note that Root-FWD-Rule
is only applicable if subP has no parent packages, which
Make-Root-Repair-Rule has to incorporate as well. For this
reason, Make-Root-Repair-Rule contains nac1, which for-
bids rootP to be the parent package of subP and nac2,
which forbids subP to have any other parent packages than
rootP.

Short-cut repair rules allow propagating graph changes
directly to the other graph to restore consistency. Revisiting
our example of Fig. 3, we are now able to use Make-Root-
Repair-Rule to propagate the deleted edgebetweensubP and
rootP by deleting the corresponding edge between subF
and rootF and the now superfluous Doc-File subPDoc.
The result is the consistent triple graph again depicted in
Fig. 3(c) with the content attribute of leafPDoc containing
the value ‘leaf’. So, this repair does not cause information
loss and allows skipping the costly reversion process with
the intermediate result in Fig. 3(b).

Summarizing, the user edit of removing the edge between
PackagesrootP and subP corresponds to the source rule of
Make-Root-SC-Rule, namely Make-Root-Source-Rule, and
the according update to the target side is performed byMake-
Root-Repair-Rule which is the corresponding repair rule.
Together, they perform an edit step structurally equivalent to
the one depicted by the triple graphs in Fig. 3(a), (c); however,
the value of the attribute content does not get lost. Alterna-
tively, this step can be obtained by applying the short-cut
rule Make-Root-SC-Rule. This is not a coincidence: In [23,
Theorem 7], we showed that applying the source rule of a
short-cut rule (which corresponds to a user edit on the source
part only) followed by an application of the corresponding
repair rule at the according match is the same as applying the
original short-cut rule.

3 Preliminaries: triple graphs, triple graph
grammars and their operationalizations

In this section, we recall triple graph grammars (TGGs) and
their operationalization [51]. Our derivation of repair rules
is based on the construction of so-called short-cut rules [22],
which we recall as well. For simplicity, we stick with set-
theoretic definitions of the involved concepts (in contrast to
category-theoretic ones as, e.g., in [17,18,22,23]). Moreover,
while we provide formal definitions for central notions, we
will just explain others andprovide references for their formal
definitions.

3.1 Graphs, triple graphs, and their transformations

Graphs and their (rule-based) transformations are suitable
to formalize various kinds of models and their evolution, in

particular of EMF models [9].4 In the context of this work,
a graph consists of a set of nodes and a set of directed edges
which connect nodes. Graphs may be related by graph mor-
phisms, and a triple graph consists of three graphs connected
by two graph morphisms.

Definition 1 (Graph, graph morphism, triple graph, and
triple graph morphism) A graph G = (V , E, s, t) con-
sists of a set V of vertices, a set E of edges, and source
and target functions s, t : E → V . An element x of G is
a node or an edge, i.e., x ∈ V or x ∈ E . A graph mor-
phism f : G → H between graphs G = (VG, EG , sG, tG)

and H = (VH , EH , sH , tH ) consists of two functions fV :
VG → VH and fE : EG → EH that are compatible
with the assignment of source and target to edges, i.e.,
fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE . Given a fixed
graph TG, a graph typed over TG is a graph G together with
a graph morphism typeG : G → TG. A typed graph mor-
phism f : (G, typeG) → (H , typeH ) between typed graphs
is a graph morphism f : G → H that respects the typing,
i.e., typeG = typeH ◦ f (componentwise). A (typed) graph
morphism f = ( fV , fE ) is injective if both fV and fE are.

A triple graph G = (GS
σG←− GC

τG−→ GT ) consists of
three graphs GS,GC ,GT , called source, correspondence,
and target graph, and two graph morphisms σG : GC → GS

and τG : GC → GT , called source and target correspon-
dence morphism. A triple graph morphism f : G → H
between two triple graphs G and H consists of three graph
morphisms fS : GS → HS, fC : GC → HC and
fT : GT → HT such that σH ◦ fC = fS ◦ σG and
τH ◦ fC = fT ◦ τG . Given a fixed triple graph TG, a triple
graph typed over TG is a triple graphG together with a triple
graphmorphism typeG : G → TG. Again, typed triple graph
morphisms are triple graph morphisms that respect the typ-
ing. A (typed) triple graph morphism f = ( fS, fC , fT ) is
injective if fS, fC , and fT all are.

Example 1 Figure 3 depicts three triple graphs; their common
type graph is depicted in Fig. 1. The typingmorphism is indi-
cated by annotating the elements of the triple graphs with the
types to which they are mapped in the type graph. The nodes
in the triple graphs are of types Package, Folder, Class, and
Doc-File. In each case, the source graph is depicted to the
left and the target graph to the right. The hexagons in the
middle constitute the correspondence graphs. Formally, the
edges from the correspondence graphs to source and target
graphs are morphisms: The edges encode how an individ-
ual correspondence node is mapped by the correspondence
morphisms. For example, the nodes rootP and rootF of
types Package and Folder correspond to each other as they

4 Therefore in this paper, we use the terms graph and model inter-
changeably. In the formal parts, we will consequently speak of graphs
following the formal literature.
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share the same correspondence node as preimage under the
correspondence morphisms.

Rules offer a declarative means to specify transformations
of (triple) graphs.While classically rewriting of triple graphs
has been performed using non-deleting rules only, we define
a less restricted notion of rules5 right away since short-cut
rules and repair rules derived from them are both potentially
deleting. A rule p consists of three triple graphs, namely a
left-hand side (LHS) L and a right-hand side (RHS) R and
an interface K between them. Applying such a rule to a triple
graph G means to choose an injective morphism m from L
to G. The elements fromm(L\l(K )) are to be deleted; if this
results in a triple graph again, the morphism m is called a
match and p is applicable at that match. After this deletion,
the elements from R\r(K ) are added; the whole process of
applying a rule is also called a transformation (step).

Definition 2 (Rule, transformation (step))A rule p = (L
l←−

K
r−→ R) consists of three triple graphs, L , R, and K , called

the left-hand side, right-hand side, and interface, respec-
tively, and two injective triple graph morphisms l : K → L
and r : K → R. A rule is called monotonic, or non-
deleting, if l is an isomorphism. In this case we denote the
rule as r : L → R. The inverse rule of a rule p is the rule

p−1 = (R
r←− K

l−→ L).

Given a triple graph G, a rule p = (L
l←− K

r−→ R), and
an injective triple graph morphism m : L → G, the rule p is
applicable at m if

D := G\(m(L\l(K ))) ,

is a triple graph again. Operator \ is understood as node-
and edge-wise set-theoretic difference. The source and target
functions of D are restricted accordingly. If D is a triple
graph,

H := D ∪ n(R\r(K )) ,

is computed. Operator ∪ is understood as node- and edge-
wise set-theoretic union. n(R\r(K )) is a new copy of newly
created elements. n can be extended to R by n(r(K )) =
m(l(K )). The values of the source and target functions for
edges from n(R\r(K )) with source or target node in K are
determined by m ◦ l, i.e.,

sH (e) := m(l(r−1(sR(e))))

tH (e) := m(l(r−1(tR(e))))

5 As used in double pushout rewriting of graphs or objects of other
adhesive categories more generally [17,39].

for such edges e ∈ n(ER) with sR(e) ∈ rV (VK ) or tR(e) ∈
rV (VK ). The whole computation is called a transformation
(step), denoted as G ⇒p,m H or just G ⇒ H , m is called a
match, n is called a comatch and D is the context triple graph
of the transformation.

An equivalent definition based on computing two pushouts,
a notion from category theory generalizing the union of sets
along a common subset, serves as basis when developing a
formal theory [17]. In the following and in our examples,
we always assume K to be a common subgraph of L and R
and the injective morphisms l and r to be the corresponding
inclusions; this significantly eases the used notation. When
we talk about the union of two graphs G1 and G2 along a
common subgraph S, we assume that G1 ∩ G2 = S.

To enhance expressiveness, a rule may contain negative
application conditions (NACs) [17]. ANACextends theLHS
of a rule with a forbidden pattern: A rule is allowed to be
applied only at matches which cannot be extended to any
pattern forbidden by one of its NACs. If we want to stress
that a rule is not equipped with NACs, we call it a plain rule.

Definition 3 (Negative application conditions) Given a rule
p = (L ← K → R), a set ofnegative application conditions
(NACs) for p is a finite set of graphs NAC = {N1, . . . , Nk}
such that L is a subgraph of every one of them, i.e., L ⊂ Ni

for 1 ≤ i ≤ k.
A rule (p = (L ← K → R),NAC) with NACs is appli-

cable at a match m : L → G if the plain rule p is and,
moreover, for none of the NACs Ni there exists an injec-
tive morphism xi : Ni → G such that xi ◦ ιi = m where
ιi : L ↪→ Ni is the inclusion of L into Ni .

Example 2 Different sets of triple rules are depicted inFigs. 2,
5, 6, and 8. All rules in these figures are presented in an
integrated form: Instead of displaying LHS, RHS, and the
interface as three separate graphs, just one graph is pre-
sented where the different roles of the elements are displayed
using markings (and color). The unmarked (black) elements
constitute the interface of the rule, i.e., the context that has
to be present to apply a rule. Unmarked elements and ele-
ments marked with (−−) (black and red elements) form the
LHS while unmarked elements and elements marked with
(++) (black and green elements) constitute the RHS. Ele-
ments marked with (nac) (blue elements) extend the LHS to
a NAC; different NACs for the same rule are distinguished
using names.

As triple rules are depicted, their LHSs andRHSs are triple
graphs themselves. For example, the LHS L of Sub-Rule
(Fig. 2) consists of the nodes sp and sf of types Package
and Folder and the correspondence node in between.

While, e.g., all rules in Fig. 2 are monotonic,Make-Root-
SC-Rule is not as it deletes edges and a Doc-File. Applying
Make-Root-SC-Rule to the triple graph (a) in Fig. 3 leads
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to the triple graph (c), when Package-nodes sp and p (of
the rule) are matched to rootP and subP (in the graph),
respectively. (The Folder on the target part are mapped
accordingly.) The rules Connect-Root-SC-Rule and Make-
Root-SC-Rule are inverse to each other.

Finally, Root-FWD-Rule (Fig. 5) depicts a rule that is
equipped with a NAC: It is applicable only at Packages that
are not referenced by other Packages. This means that it is
applicable at node subP in the triple graph (b) depicted in
Fig. 3, but not at node leafP.

3.2 Triple graph grammars and their
operationalization

Sets of triple graph rules can be used to define languages.

Definition 4 (Triple graph grammar) A triple graph gram-
mar (TGG) GG = (R, S) consists of a set of plain,
monotonic triple rules R and a start triple graph S. In case
of typing, all rules ofR and S are typed over the same triple
graph.

The language of a TGG GG, denoted as L (GG), is the
reflexive and transitive closure of the relation induced by
transformation steps via rules from R, i.e.,

L (GG) := {H | S ⇒∗
R H}

where ⇒∗
R denotes a finite sequence of transformation steps

where each rule stems fromR.
The projection of the language of a TGG to its source part

is the set

LS(GG) := {GS |G = (GS ← GC → GT ) ∈ L (GG)} ,

i.e., it consists of the source graphs of the triple graphs of
L (GG).

In applications, quite frequently, the start triple graph of
a TGG is just the empty triple graph. We use ∅ to denote the
empty graph, the empty triple graph, and morphisms starting
from the empty (triple) graph; it will always be clear from the
context what is meant. To enhance expressiveness of TGGs,
their rules can be extended with NACs or with some attri-
bution concept for the elements of generated triple graphs.
A recent overview of such concepts and their expressive-
ness can be found in [59]. In the following, we first restrict
ourselves to TGGs that contain plain rules only and discuss
extensions of our approach subsequently.

Example 3 The rule set depicted in Fig. 2, together with the
empty triple graph as start graph, constitutes a TGG. The
triple graphs (a) and (c) in Fig. 3 are elements of the language
defined by that grammar while the triple graph (b) is not.

The operationalization of triple graph rules into source and
forward (or, analogously, into target and backward) rules
is central to working with TGGs. Given a rule, its source
rule performs the rule’s actions on the source graph only
while its forward rule propagates these to correspondence
and target graph. This means that, for example, source rules
can be used to generate the source graph of a triple graph
while forward rules are then used to translate the source graph
to correspondence and target side such that the result is a
triple graph in the language of the TGG. Classically, this
operationalization is defined for monotonic rules only [51].
We will later explain how to extend it to arbitrary triple rules.
We also recall the notion of marking [41] and consistency
patterns which can be used to check if a triple graph belongs
to a given TGG.

Definition 5 (Source and forward rule. Consistency pattern)
Given a plain, monotonic triple rule r = L → R with r =
(rS, rC , rT ), L = (LS

σL←− LC
τL−→ LT ) and R = (RS

σR←−
RC

τR−→ RT ), its source rule is defined as

r S := (LS ← ∅ → ∅)
(rS ,id∅,id∅)−−−−−−→ (RS ← ∅ → ∅) .

Its forward rule is defined as

r F := (RS
σR◦rC←−−− LC

τL−→ LT )
(idRS ,rC ,rT )−−−−−−−→ (RS

σR←− RC
τR−→ RT ).

We denote the left- and right-hand sides of source and for-
ward rules of a rule r by LS, LF , RS , and RF , respectively.

The consistency pattern derived from r is the rule

rC := (RS
σR←− RC

τR−→ RT )
(idRS ,idRC ,idRT )−−−−−−−−−−→ (RS

σR←− RC
τR−→ RT )

that, upon application, just checks for the existence of the
RHS of the rule without changing the instance it is applied
to.

Given a rule r , each element x ∈ RS\LS is called a source
marking element of the forward rule r F ; each element of LS

is called required. Given an application G ⇒r F ,mF H of a
forward rule r F , the elements of GS that have been matched
by source marking elements of r F , i.e., the elements of the
set mF (RS\LS) are called marked elements.

A transformation sequence

G0 ⇒mF
1 ,r F1

G1 ⇒mF
2 ,r F2

· · · ⇒mF
t ,r Ft

Gt (1)

is called creation preserving if no two rule applications
in sequence (1) mark the same element. It is called con-
text preserving if, for each rule application in sequence (1),
the required elements have been marked by a previous rule
application in sequence (1). If these two properties hold for
sequence (1), it is called consistently marking. It is called
entirely marking if every element of the common source
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graph GS of the triple graphs of this sequence is marked
by a rule application in sequence (1).

Themost important formal property of this operationaliza-
tion is that applying a (sequence of) source rule(s) followed
by applying the (sequence of) corresponding forward rule(s)
yields the same result as applying the (sequence of) original
TGG rule(s) assuming consistent matches [16,51].

Moreover, there is a correspondence between triple graphs
belonging to the language of a given TGG and consistently
and entirely marking transformation sequences via its for-
ward rules. We formally state this correspondence as it is an
ingredient for the proof of correctness of our synchronization
algorithm.

Lemma 1 (see [42, Fact 1] or [41, Lemma 4]) Let a TGGGG
be given. There exists a triple graph G = (GS ← GC →
GT ) ∈ L (GG) if and only if there exists a transformation
sequence like the one depicted in (1) via forward rules from
GG such that G0 = (GS ← ∅ → ∅), Gt = (GS ← GC →
GT ), and the transformation sequence is consistently and
entirely marking.

For practical purposes, forward rules and consistency pat-
terns may be equipped with so-called filter NACs which
can be automatically derived from the set of rules of the
given TGG. The simplest examples of such filter NACs arise
through the following analysis: For each rule that translate
a node without translating adjacent edges it is first checked
if other rules translate the same type of node but also trans-
late an adjacent edge of some type. If this is the case, it is
checked if there are further rules which only translate the
detected kind of adjacent edge. If none is found, the origi-
nal rule is equipped with a NAC forbidding the respective
kind of edges. This avoids a dead-end in translation pro-
cesses: In the presence of such a node with its adjacent edge,
using the original rule to only translate the node leaves an
untranslatable edge behind. The filter NAC of Root-FWD-
Rule is derived in exactly this way. For the exact and more
sophisticated derivation processes of filter NACs, we refer to
the literature [29,35]. For our purposes it suffices to recall
their distinguishing property: Filter NACs do not prevent
“valid” transformation sequences of forward rules. We state
this property in the terminology of our paper.

Fact 1 ([29, Fact 4]) Given a TGG GG = (R, S), for each
r ∈ R, let rFN denote the corresponding forward rule that is
additionally equipped with a set of derived filter NACs. (This
set might be empty). For G0 = (GS ← ∅ → ∅), there exists
a consistently and entirely marking transformation sequence

G0 ⇒r F1 ,mF
1
G1 ⇒r F2 ,mF

2
· · · ⇒r Ft ,mF

t
Gt

via the forward rules (without filter NACs) derived from R
if and only if the sequence

G0 ⇒rFN1 ,mF
1
G1 ⇒rFN2 ,mF

2
· · · ⇒rFNt ,mF

t
Gt

exists, i.e, if none of the filter NACs blocks one of the above
rule applications.

Example 4 The source rules of the triple rules depicted in
Fig. 2 are depicted in Fig. 4. They allow creating Packages
and Classes on the source side without changing correspon-
dence and target graphs. The formally existing empty graphs
at correspondence and target sides are not depicted. The cor-
responding forward rules are given in Fig. 5. Their required
elements are annotated with �� and their source marking ele-
ments with � → ��. The rule Root-FWD-Rule is equipped
with a filterNAC:The given grammar does not allow creating
a Package that is contained in another one with its original
rule Root-Rule. Hence, the derived forward rule should not
be used to translate a Package, which is contained in another
one, to a Folder. As evident in the examples, the application
of a source rule followedby the applicationof the correspond-
ing forward rule amounts to the application of the original
triple rule if matched consistently.

The consistency patterns that are derived from the TGG
rules of our example are depicted in Fig. 9. They just check
for existence of the pattern that occurs after applying the
original TGG rule. A consistency pattern is equipped with
the filter NACs of both its corresponding forward and back-
ward rule. In our example, only Root-Consistency-Pattern
receives such NACs; one from Root-FWD-Rule and the sec-
ond one from the analogous backward rule. An occurrence
of a consistency pattern in our example model indicates that
a specific location corresponds to a concrete TGG rule appli-
cation. Hence, a disappearance of such a match indicates that
a former intact rule application has been broken and needs
some fixing. We call this a broken match for a consistency
pattern or, short, a broken consistency match. Practically, we
will exploit an incremental pattern matcher to notify us about
such disappearances.

3.3 Sequential independence

The proof of correctness of our synchronization approach
relies on the notion of sequential independence. Transfor-
mations that are sequentially independent can be performed
in arbitrary order.

Definition 6 (Sequential independence) Given two transfor-
mation steps G ⇒r1,m1 H1 ⇒r2,m2 X , via plain rules r1, r2
these are sequentially independent if

n1(R1) ∩ m2(L2) ⊆ n1(K1) ∩ m2(K2) (2)
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Fig. 9 Example: consistency patterns

where n1 is the comatch of the first transformation.

By theLocalChurch–Rosser Theorem [17, Theorem3.20]
the order of sequentially independent transformation can be
switched. This means that, given a sequentially independent
transformation sequence G ⇒r1,m1 H1 ⇒r2,m2 X , there
exists a sequentially independent transformation sequence
G ⇒r2,m′

2
H2 ⇒r1,m′

1
X . If r1 and r2 are equipped with

NACs NAC1 and NAC2, respectively, transformation steps
as above are sequentially independent if condition (2) holds
and moreover, the thereby induced matches m′

2 : L2 → G
and m′

1 : L1 → H2 both satisfy the respective sets of NACs.
In particular, the Local Church–Rosser Theorem still holds.

In our setting of graph transformation, it is easy to check
the sequential independence of transformations [17,19]. A
sequence t1; t2 of two transformation steps is sequentially
independent if and only if the following holds.

– t2 does not match an element that t1 created.
– t2 does not delete an element that t1 matches.
– t2 does not create an element that t1 forbids.
– t1 does not delete an element that t2 forbids.

4 Short-cut rules

Short-cut rules were introduced in [22] to take back an appli-
cation of a TGG rule and to apply another one instead.
This exchange of application shall be performed such that
information loss is avoided. This means that model ele-
ments are check for reuse before deleting them. We recall
the construction of short-cut rules first and discuss their
expressivity thereafter. Finally, we identify conditions for
language-preserving applications of short-cut rules.

4.1 Construction of short-cut rules

We recall the construction of short-cut rules in a semifor-
mal way and reuse an example of [22] for illustration; a
formal treatment (in a category-theoretical setting) can be
found in that paper. Given an inverse monotonic rule (i.e.,
a rule that purely deletes) and a monotonic rule, a short-cut
rule combines their respective actions into a single rule. Its
construction allows identifying elements that are deleted by
the first rule as recreated by the second one. To motivate the
construction, assume twomonotonic rules r1 : L1 → R1 and
r2 : L2 → R2 be given. Applying the inverse rule of r1 to a
triple graph G provides an image of L1 in the resulting triple
graph H . When applying r2 thereafter, the chosen match
for L2 in H may intersect with the image of L1 yielding a
triple graph L∩. This intersection can also be understood as
saying that L∩ provides a partial match for L2. The inverse
application of the first rule deletes elements which may be
recreated again. In this case, it is possible to extend the sub-
triple graph L∩ of H to a sub-triple graph R∩ of H with these
elements. In particular, R∩ is a sub-triple graph of R1 and R2

as it includes elements only that have been deleted by the first
rule and created by the second. Based on this observation, the
construction of short-cut rules is defined as follows (slightly
simplified and directly merged with an example):

Construction 7 (Short-cut rule) Let two plain, monotonic
rules r1 = L1 → R1 and r2 = L2 → R2 be given. A
short-cut rule rsc for the rule pair (r1, r2), where r1 is consid-
ered to be applied inversely, is constructed in the following
way:

1. Choice of common kernel: A (potentially empty) sub-
triple graph L∩ of L1 and L2 and a sub-triple graph
R∩ of R1 and R2 with L∩ ⊆ R∩ are chosen. We call
L∩ ⊆ R∩ a common kernel of both rules. In Fig. 10,
an example of such a common kernel is given. It is a
common kernel for rule pair (Root-Rule, Sub-Rule). The
common kernel is depicted in the center of Fig. 10. This
choice of a common kernel will lead to Connect-Root-
SC-Rule as resulting short-cut rule. In this example, L∩ is
empty and R∩ extends L∩ by identifying the Packages p,
Folder f, and the correspondence node in between. The
elements of R∩\L∩, called recovered elements, are to
become the elements that are preserved by an application
of the short-cut rule compared to reversely applying the
first rule followed by applying the second one (provided
that these applications overlap in L∩). In the example
case, the whole graph R∩ is recovered as L∩ is empty.

2. Construction of LHS and RHS: One first computes the
union L∪ of L1 and L2 along L∩. The result is then
united with R1 along L1 and R2 along L2, respectively,
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Fig. 10 A common kernel rule pair (Root-Rule,Sub-Rule). The names of the nodes indicate their mappings and the rules are depicted top-down

Fig. 11 Constructing the LHS and the RHS of the short-cut rule Connect-Root-SC-Rule

to compute the LHS and the RHS of the short-cut rule.
Figure 11 displays this.

3. Interface construction: The interface K of the short-cut
rule is computed by taking the union of L∪ and R∩ along
L∩. For our example, this construction is depicted in
Fig. 12. The elements of L2\L∩ are called presumed ele-
ments since, given a match for the inverse first rule, i.e.,
for R1, these are exactly the elements needed to extend
this match to a match of the short-cut rule. In our exam-
ple, these are the Package sp, the Folder sf, and the
correspondence node in between.

Example 5 More examples of short-cut rules are depicted
in Fig. 6. Both, Connect-Root-SC-Rule and Make-Root-SC-
Rule, are constructed for the rules Root-Rule and Sub-Rule.
Switching the role of the inverse rule, two short-cut rules
can be constructed having equal common kernels. In both
cases, the Package p, the Folder f and the correspondence
node between themare recovered elements, as these elements
would have been deleted and re-created otherwise. While in
Connect-Root-SC-Rule, the presumed elements are thePack-
age sp and the Folder sf with a correspondence node in

Fig. 12 Constructing the interface of the short-cut Connect-Root-SC-
Rule; the interface is the resulting graph in the bottom right corner

between, the set of presumed elements of Make-Root-SC-
Rule is empty.

Another possible common kernel for Root-Rule and Sub-
Rule is one where R∩ is an empty triple graph as well. As the
resulting short-cut rule just copies both rules (one of them
inversely) next to each other, this rule is not interesting for
our desired application.
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4.2 Expressivity of short-cut rules

Given a set of rules, there are two degrees of freedom when
deciding which short-cut rules to derive from them: First,
one has to choose for which pairs of rules short-cut rules
shall be derived. Secondly, given a pair of rules, there is
typically not only one way to construct a short-cut rule for
them: In general, there are different choices for a common
kernel. However, when fixing a common kernel, i.e., L∩ and
R∩, the result of the construction is uniquely determined. If,
moreover, the LHSs and RHSs of the rules are finite, the set
of possible common kernels is finite as well.

As short-cut rules correspond to possible (complex) edits
of a triple graph, the more short-cut rules are derived, the
more user edits are available which can directly be prop-
agated by the corresponding repair rules. But the number
of rules that has to be computed (and maintained through-
out the synchronization process) in this way, would quickly
grow. Andmaybe several of the constructed rules would cap-
ture edits that are possible in principle but unlikely to ever
be performed in a realistic scenario. Hence, some trade-off
between expressivity and maintainability has to be found.

We shortly discuss these effects of choices: The construc-
tion of short-cut rules is defined for any twomonotonic rules
[22]—we do not need to restrict to the rules of a given TGG
but may also use monotonic rules that have been constructed
as so-called concurrent rules [17] of given TGG rules as
input for the short-cut rule construction. A concurrent rule
combines the actions of two (or more) subsequent rule appli-
cations into a single rule.Hence, deriving short-cut rules from
concurrent rules that have been built of givenTGG rules leads
to short-cut rules that capture even more complex edits into a
single rule. The next example presents such a derived short-
cut rule. While our conceptual approach is easily extended
to support such rules, we currently stick with short-cut rules
directly derived from a pair of rules of the given TGG in our
implementation.

Example 6 The short-cut rule Delete-Middle-SC-Rule
depicted in Fig. 13 is not directly derived of the TGG rules
depicted in Fig. 2. Instead, the concurrent rule of two given
applications of Sub-Rule is constructed first. This concurrent
rule directly creates a chain of two Packages and Folder into
an existing pair of Package and Folder. The rule in Fig. 13 is
a short-cut rule of this concurrent rule and Sub-Rule. It takes
back the creation of a chain such that the bottom package is
directly included in the top package in Fig. 13.

Concerning the choice of a common kernel, we follow
two strategies. In both strategies, we overlap as many of the
newly created elements of the two input rules as possible
since these are the elements that we try to preserve.

Aminimal overlap overlaps created elements only, i.e., no
context elements. An example is Sub-Rule, which overlapped

Fig. 13 Example for a short-cut rule not directly derived from the rules
of our example TGG

with itself, results inMove-To-New-Sub-SC-Rule and which
corresponds to a move refactoring step.

A maximal overlap overlaps not only created elements
of both rules but also context elements. Creating such an
overlap for Sub-Rule with itself would result in the Sub-
Consistency-Pattern, which has no effect when applied.
However, when overlapping different rules with each other,
it is often useful to re-use context elements. This is the
case, for example, for VariableDec-2-Parameter-Rule and
TypeAccess-2-ReturnType-Rule of our evaluation rule set in
Fig. 19 in the “Appendix” below. A full overlap between
both rules would allow to transform a signature parameter to
a return parameter of the same method and of the same type
and, vice versa.

Both strategies aim to create different kinds of short-cut
rules with specific purposes. Since generating all possible
overlaps and thus short-cut rules is expensive, we chose a
heuristic approach to generate a useful subset of them.

As we are dealing with triple graphs being composed of
source, target and correspondence graphs, the overlap of
source graphs should correspond to that of target graphs.
This restricts the kind of “reuse” of elements the derived
short-cut rules enable. The allowance of any kind of overlap
may include unintended ones. We argue for the usefulness of
these strategies in our evaluation in Sect. 8.

4.3 Language preserving short-cut rule applications

The central intuition behind the construction of short-cut
rules is to replace the application of a monotonic triple rule
by another one. In this sense, a short-cut rule captures a com-
plex edit operation on triple graphs that (in general) cannot
be performed directly using the rules of a TGG.We illustrate
this behavior in the following. Subsequently, we discuss the
circumstances underwhich applications of short-cut rules are
“legal” in the sense that the result still belongs to the language
of the respective TGG.

Let a TGG GG and a sequence of transformations

G0 ⇒r1,m1 G1 ⇒r2,m2 G2 ⇒ · · · ⇒rt ,mt Gt (3)
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be given where all the ri , 1 ≤ i ≤ t , are rules of GG, all
the mi denote the respective matches, and G0 ∈ L (GG); in
particular Gt ∈ L (GG) as well. Fixing some j ∈ {1, . . . , t}
and some rule r of GG, we construct a short-cut rule rsc for
(r j , r) with some common kernel L∩ ⊆ R∩. Next, we can
consider the transformation sequence

G0 ⇒r1,m1 G1 ⇒r2,m2 G2 ⇒ · · · ⇒rt ,mt Gt ⇒rsc,msc G
′
t

that arises by appending an application of rsc to transfor-
mation sequence (3). Under certain technical circumstances
(which we will state below) this transformation sequence is
equivalent6 to the sequence

G0 ⇒r1,m1 G1 ⇒ · · · ⇒r j−1,m j−1 G j−1 ⇒r ,m′
sc
G ′

j

⇒r j+1,m′
j+1

· · · ⇒rt ,m′
t
G ′′

t
(4)

where the application of r j at match m j is replaced by an
application of r at a matchm′

sc that is derived from the match
msc of the short-cut rule. The following matches m j+1, . . . ,

mt have been adapted accordingly. They still match the same
elements but formally they do so in other triple graphs. In
particular, G ′′

t , the result of the transformation sequence (4),
is isomorphic to G ′

t and hence, G ′
t can be understood as

arising by replacing the j-th rule application in the transfor-
mation sequence (3) by an application of the rule r ; thus, G ′

t
also belongs to the language of the TGG: The sequence (4)
starts at a triple graph G0 ∈ L (GG) and solely consists of
applications of rules from GG.

Example 7 Consider the triple graph depicted in Fig. 3(a). It
arises by applying Root-Rule, followed by two applications
of Sub-Rule, and finally an application of Leaf-Rule. When
matched as already described in the introductory example,
an additional application ofMake-Root-SC-Rule to this triple
graph results in the one depicted in Fig. 3(c). Alternatively,
this can be derived by two applications of Root-Rule, fol-
lowed by an application of Sub-Rule and Leaf-Rule each. As
schematically depicted in Fig. 14, the application of the short-
cut rule Make-Root-SC-Rule transforms a transformation
sequence deriving the first triple graph into a transformation
sequence deriving the second one by replacing an application
of Sub-Rule by one of Root-Rule.

In the following,we statewhen the above described behav-
ior is the case (in a somewhat less technical language than
originally used).

6 The formal notion of equivalence used here is called switch equiv-
alence and captures the idea that, in case of sequential independence,
the order of rule applications might be switched while using basically
the same match for each rule application and receiving the same result;
compare, e.g., [8,38].

Theorem 2 ([23, Theorem 8]) Let the transformation
sequencex (3) be given and let rsc be a short-cut rule that
is derived from (r j , r). If the following three conditions are
met, this sequence is equivalent to sequence (4) where orig-
inal TGG rules are applied only.

1. Reversing match: The application of rsc at msc reverses
the application of r j , i.e., n j (R j ) = msc|R j (R j ).

2. Sequential independence:

(a) Non-disabling match: The application of rsc at m′
sc

does not delete elements used in the applications of
r j+1, . . . , rt .

(b) Context-preserving match: The match msc for rsc
already exists in G j−1. Since the assumption on the
match to be reversing already ensures this for ele-
ments of Lsc that stem from R j , context-preservation
ensures in particular that the presumed elements of
rsc are matched to elements already existing in G j−1.

Example 8 We illustrate each of the above mentioned condi-
tions:

1. Reversing match: In our example of matching Connect-
Root-SC-Rule to the triple graph (c) in Fig. 3 this means
that its nodes p and f (and the correspondence node in
between) are allowed to be matched to elements only
that have been created using Root-Rule. In this way, it
is avoided to misuse the rule to introduce Packages (and
Folder) that are contained by more than one Package (or
Folder).

2. Non-disabling match: For example, Delete-Middle-SC-
Rule from Fig. 13 is not allowed to delete Packages and
Folder that already containClasses orDoc-Files, respec-
tively.

3. Context preserving match: Returning to our example of
matching Connect-Root-SC-Rule to the triple graph (c)
in Fig. 3 this means that as soon as nodes subP and
subF in that triple graph have been chosen as matches
for the nodes p and f of Connect-Root-SC-Rule, the
nodesleafP and leafF are not allowed to be chosen as
matches for nodes sp and sf of Connect-Root-SC-Rule.
The creation of leafP and leafF depends on subP
andsubF being created first. In thisway, the introduction
of cyclic dependencies between elements is avoided.

5 Constructing language-preserving repair
rules

In this section, we formally define the derivation of repair
rules from a given TGG and characterize valid applications
of these. Our general idea is to construct repair rules that
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Fig. 14 Example: transforming
sequences of rule applications
by applying short-cut rules

can be used during model synchronization processes that are
based on the formalism of TGGs. Our construction of such
repair rules is based on short-cut rules which we recalled in
Sect. 4.

5.1 Deriving repair rules from short-cut rules

Having defined short-cut rules, they can be operationalized
to get edit rules for source graphs and forward rules that
repair these edits. As such edits may delete source elements,
correspondence elements may be left without corresponding
source elements. Hence, the resulting triple graphs show a
formof partiality. They are called partial triple graphs. Given

amodel, formally considered as triple graphGS
σG←− GC

τG−→
GT , a user edit on GS may consist of the deletion and/or cre-
ation of graph elements, resulting in a graph G ′

S . In general,
the “old” correspondence morphism σG : GC → GS does
not extend to a correspondence morphism from GC to G ′

S :
The user might have deleted elements in the image of σG .
However, there is a partial morphism σ ′

G : GC ��� G ′
S that

is defined for all elements whose image under σG still exists.

Definition 8 (Partial triple graph)A partial graphmorphism
f : A ��� B is a graph morphism f : A′ → B where A′ is
a subgraph of A; A′ is called the domain of f .

A partial triple graph G ′ = G ′
S �

σ ′
G��� G ′

C

τ ′
G��� G ′

T
consists of three graphs G ′

S,G
′
C ,G ′

T and two partial graph
morphisms σ ′

G : G ′
C ��� G ′

S and τ ′
G : G ′

C ��� G ′
T .

Given a triple graph G = (GS
σG←− GC

τG−→ GT ) and a
user edit of GS that results in a graph G ′

S , the partial triple

graph induced by the edit is G ′
S �

σ ′
G��� GC

τG−→ GT where
σ ′
G is obtained by restricting σG to those elements x of GC

(node or edge) for which σG(x) ∈ GS is still an element of
G ′

S .

According to the above definition, triple graphs are spe-
cial partial triple graphs, namely those, where the domain of
both partial correspondence morphisms is the whole corre-
spondence graph GC .

When operationalizing short-cut rules, i.e., splitting them
into a source and a forward rule, we also have to dealwith this
kind of partiality: In contrast to the rules of a given TGG, a
short-cut rule might delete an element. Hence, its forward
rule might need to contain a correspondence element for

which the corresponding source element is missing; it is ref-
erenced in the short-cut rule. This element is deleted by the
corresponding source rule.

Definition 9 (Source and forward rule of short-cut rule.
Repair rule) Given a pair (r1, r2) of plain, monotonic triple

rules with short-cut rule rsc = (Lsc
lsc←− Ksc

rsc−→ Rsc), the
source and forward rule of rsc are defined as

r Ssc := (LS
sc

(lsc,S ,id∅,id∅)←−−−−−−−− K S
sc

(rsc,S ,id∅,id∅)−−−−−−−−→ RS
sc)

and

r Fsc := (LF
sc

(idRsc,S ,lsc,C ,lsc,T )←−−−−−−−−−−− K F
sc

(idRsc,S ,rsc,C ,rsc,T )−−−−−−−−−−−→ RF
sc)

where

LS
sc := (Lsc,S ← ∅ → ∅),

K S
sc := (Ksc,S ← ∅ → ∅),

RS
sc := (Rsc,S ← ∅ → ∅),

LF
sc := (Rsc,S ��� Lsc,C → Lsc,T ),

K F
sc := (Rsc,S ← Ksc,C → Ksc,T ), and

RF
sc := (Rsc,S ← Rsc,C → Rsc,T ) .

Given a TGGGG, a repair rule for GG is the forward rule
r Fsc of a short-cut rule rsc where rsc has been constructed from
a pair of rules of GG.

Formore details (in particular, the definition ofmorphisms
between partial triple graphs), we refer the interested reader
to the literature [23,37]. In this paper, we are more interested
in conveying the intuition behind these rules by presenting
examples. We next recall the most important property of this
operationalization, namely that, as in the monotonic case, an
application of a short-cut rule corresponds to the application
of its source rule, followed by an application of the forward
rule if consistently matched.

Theorem 3 ([23, Theorem 7] and [37, Theorem 23]) Given
a short-cut rule rsc, there is a transformation

(GS ← GC → GT ) ⇒rsc,msc (HS ← HC → HT )
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via this short-cut rule if and only if there is a transformation

(GS ← GC → GT ) ⇒r Ssc,m
S
sc

(HS ��� GC → GT )

⇒r Fsc,m
F
sc

(HS ← HC → HT )

applying source rule r Ssc with match m
S
sc = (msc,S,∅,∅) and

forward rule r Fsc at match mF
sc = (nsc,S,msc,C ,msc,T ).

For practical applications, repair rules should also be
equipped with filter NACs. Let the repair rule r Fsc be obtained
froma short-cut rule rsc that has been computed from rule pair
(r1, r2), both coming from a given TGG. As the application
of r Fsc replaces an application of r

F
1 by one of r F2 , r

F
sc should

be equipped with the filter NAC of r F2 . However, just copy-
ing that filter NAC would not preserve its semantics; a more
refined procedure is needed. The LHS of r F2 is a subgraph of
the one of r Fsc by construction. There is a known procedure,
called shift along a morphism, that “moves” an application
condition from a subgraph to the supergraph preserving its
semantics [19, Lemma 3.11 and Construction 3.12]. We use
this construction to compute the filter NACs of repair rules.
By using this known construction, the filter NACs we con-
struct for our repair rules have the following property:

Lemma 2 ([19, Lemma 3.11 and Construction 3.12].) Let rsc
be a plain short-cut rule obtained from the pair of monotonic
rules (r1, r2) where the forward rule r F2 is equipped with
a set NACF

2 of filter NACs. Let NACF
sc be the set of NACs

computed by applying the shift construction to NACF
2 along

the inclusion morphism ι : LF
2 ↪→ LF

sc of the LHS of r
F
2 into

the LHS of rsc (which exists by construction).
Then, an injective matchmF

sc for r
F
sc (into any partial triple

graph G) satisfies the set of NACs NACF
sc if and only if the

induced injective match mF
sc ◦ ι for r F2 satisfies NACF

2 .

Example 9 The forward rules of the short-cut rules in Fig. 6
are depicted in Fig. 8. Make-Root-Repair-Rule is derived to
replace an application of Sub-FWD-Rule by one of Root-
FWD-Rule. This forward rule is equipped with a filter NAC
which ensures that the rule is used only to translate Packages
at the top of a hierarchy. Just copying thisNAC to thePackage
p inMake-Root-Repair-Rule would not preserve this behav-
ior: The rule would be applicable in situations where the
Package to which sp is matched contains aPackage to which
p is matched. Shifting the NAC from Root-FWD-Rule to
Make-Root-Repair-Rule instead, the forbidden edge between
the two Packages is introduced in addition. It ensures that p
can be matched to Packages at the top of a hierarchy, only.

Delete-Middle-Repair-Rule (see Fig. 15) assumes two
connected Packages and deletes a Folder between their cor-
responding Folder as well as the Doc-File contained in the
deleted Folder and the correspondence node referencing it.
The LHS of this rule is a proper partial triple graph as there is

Fig. 15 Repair rule derived from Delete-Middle-SC-Rule

a correspondence node which is not mapped to any element
of the source part.

5.2 Conditions for valid repair rule applications

Now, we transfer the results obtained so far to the case of
repair rules. To do so, we first define valid matches for repair
rules (in a restricted kind of transformation sequences).

Definition 10 (Valid match for repair rule) Let a TGG GG
and a consistently-marking transformation sequence

G0 ⇒rFN1 ,mF
1
G1 ⇒rFN2 ,mF

2
· · · ⇒rFNt ,mF

t
Gt (5)

via forward rules rFNi , 1 ≤ i ≤ t , (possiblywith filter NACs)
of GG be given. Let

Gi = (G0,S ← Gi,C → Gi,T ) .

Let there be some source edit step

Gt ⇒r Ssc,m
S
sc
G ′

where G ′ = (HS ��� Gt,C → Gt,T ) rsc is a source rule
of a short-cut rule derived from a rule pair (r j , r) where
1 ≤ j ≤ t and r stems from GG, and mS

sc|R j,S = n j,S , i.e.,
when restricted to the source part of the RHS R j of r j match
mS

sc coincides with the source part of the comatch n j . More-
over, the application of this source edit shall not introduce a
violation of any of the filter NACs of rFN1 , . . . , rFNj−1.

Then, a match mF
sc for the corresponding forward rule r

F
sc

in G ′ is valid if the following properties hold.

1. Reversing match: Given comatch (nSsc,S,∅,∅) of the

application of the source rule r Ssc, its match is

mF
sc = (nSsc,S,m

F
sc,C,mF

sc,T )

and also mF
sc,C and mF

sc,T coincide with n j,C and n j,T

when restricted to R j,C and R j,T , respectively.
2. Sequential independence:
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(a) Non-disabling match: The application of r Fsc does
not delete elements used in the applications of
rFNj+1, . . . , r

FN
t nor does it create elements forbidden

by one of the filter NACs of those forward rules.
(b) Context-preserving match: The presumed source ele-

ments of the repair rule r Fsc (which accord to the
presumed source elements of the short-cut rule rsc)
are matched to elements of HS which are marked
as translated in G j−1,S . Presumed context and target
elements of r Fsc are matched to elements of Gt,C and
Gt,T that are already created in G j−1,C and G j−1,T ,
respectively. This means, elements stemming from
the LHS L of r which have not been identified with
elements from L j in the short-cut rule rsc arematched
to elements already translated/existing in G j−1.

Together, items (a) and (b) imply that the application of
r Fsc is sequentially independent from each of the applica-
tions of rFNk for j + 1 ≤ k ≤ t .

3. Creation-preserving match: All source elements that are
newly created by short-cut rule rsc, i.e., the source ele-
ments of RS\LS that have not been merged with an
element of R j,S\L j,S during the short-cut rule construc-
tion, are matched to elements which are yet untranslated
in Gt,S .

The following corollary uses Theorem 3 to transfer the
statement of Theorem 2 to repair rules. The additional
requirement on the match to be creation preserving in the
above definition of valid matches (compared to Theorem 2
for short-cut rules) originates from the fact that forward rules
do not create but mark source elements.

Corollary 1 Let a TGGGGand a consistently marking trans-
formation sequence as in (5), followed by an edit step exactly
as in Definition 10 above be given. Then, applying r Fsc at a
valid match mF

sc in G ′ induces a consistently marking trans-
formation sequence

G ′
0 ⇒rFN1 ,mF

1
G ′

1 ⇒rFN2 ,mF
2

. . . ⇒rFNj−1,m
F
j−1

G ′
j−1

⇒rFN ,mF X
(6)

with G ′
i = (HS ��� Gi,C → Gi,T ) for 0 ≤ i ≤ j − 1.

Proof For a valid matchmF
sc of r

F
sc , by its reversing property,

the conditions of Theorem 3 are met. Hence, we obtain a
sequence

G0 ⇒rFN1 ,mF
1

· · · ⇒rFNt ,mF
t
Gt ⇒rsc,msc X ′ .

As a consistently marking sequence of forward rules cor-
responds to a sequence of TGG rule applications, and the
preconditions of Theorem2 aremet (“exists” is exchanged by

“marked” on the source component), this sequence induces
a sequence

G0 ⇒rFN1 ,mF
1

· · · ⇒rFNj−1,m
F
j−1

G j−1 ⇒r ,m X

(where we do not care for the further applications of forward
rules).

Now, we can split r into its source and forward rule.
Its source rule is sequentially independent from the other
forward rule applications: r Ssc does not delete anything, the
rules rFN1 , . . . , rFNj−1 match, and does not create a filter NAC

violation by assumption and, as a consequence, r S does
not. Hence, by the local Church–Rosser Theorem, we might
equivalently switch the application of r S to the beginning
of the sequence and obtain sequence (6), as desired. More-
over, by Lemma 2, the filter NAC of r F holds whenever mF

sc
satisfies the filter NAC of r Fsc .

Finally, as the start of the transformation sequence (up to
index j − 1) is context preserving, and by assumption 2. (b),
the match mF

sc matches presumed elements of r Fsc to already
translated ones (in HS) or already created ones (in G j−1,C

and G j−1,T ), this sequence is context preserving. Analo-
gously, assumption 3. ensures that it is creation-preserving:
No element which is already marked as translated in Gt,S is
marked a second time. Hence, the whole sequence is consis-
tently marking. ��

6 Synchronization algorithm

In this section, we discuss our synchronization algorithm that
is based on the correct application of derived repair rules.We
first present the algorithm and consider its formal properties
subsequently. The section closes with a short example for a
synchronization based on our algorithm and a discussion of
extensions and support for advanced TGG features.

6.1 The basic setup

We assume a TGG GG with plain, monotonic rules to be
given. Its language defines consistency. This means that a
triple graph G = (GS ← GC → GT ) is consistent if and
only if G ∈ L (GG).

The problem A consistent triple graph G = (GS ←
GC → GT ) ∈ L (GG) is given; by Lemma 1 there exists a
corresponding consistently and entirely marking sequence t
of forward rule applications. After editing source graph GS

we get G ′ = (HS ��� GC → GT ). Generally, the result G ′
is a partial triple graph and does not belong to L (GG). We
assume that all the edits are performed by applying source
rules. They may be derived from the original TGG rules or
from short-cut rules. Our goal is to provide amodel synchro-
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nization algorithm that, given G = (GS ← GC → GT ) ∈
L (GG) and G ′ = (HS ��� GC → GT ) as input, computes
a triple graph H = (HS ← HC → HT ) ∈ L (GG). As
a side condition, we want to minimize the amount of ele-
ments of GC and GT that are deleted and recreated during
that synchronization.

Ingredients of our algorithm We provide a rule-based
model synchronization algorithm leveraging an incremen-
tal pattern matcher. During that algorithm, rules are applied
to compute a triple graph (HS ← HC → HT ) ∈ L (GG)

from the (partial) triple graph (HS ��� GC → GT ). We
apply two different kinds of rules, namely

1. forward rules derived from the rules of the TGG GG and
2. repair rules, i.e., operationalized short-cut rules.

Forward rules serve to propagate the addition of elements.
The use of these rules for model synchronization is standard.
However, the use of additional repair rules and the way in
which they are employed are conceptually novel.7 The repair
rules allow directly propagating more complex user edits.

During the synchronization process, the rules are applied
reacting to notifications by an incremental pattern matcher.
We require this pattern matcher to provide the following
information:

1. The original triple graph G = (GS ← GC → GT )

is covered with consistency patterns. When considering
the induced matches for forward rules, every element
of GS is marked exactly once. The dependency relation
between elements required by these matches is acyclic.
This means that the induced transformation sequence of
forward rules is consistently and entirelymarking. Such a
sequence always exists sinceG ∈ L (GG); seeLemma1.

2. Broken consistency matches are reported. A match for a
consistency pattern in G is broken in G ′ if one of the
elements it matches or creates has been deleted or if an
element has been created that violates one of the filter
NACs of that consistency pattern.

3. The incremental pattern matcher notifies about newly
occurring matches for forward rules. It does so in a cor-
rect way, i.e., it only notifies about matches that lead to
consistently marking transformations.

4. In addition, the incremental pattern matcher informs a
precedence graph. This precedence graph contains infor-
mation about the particular sequential dependencies of
the elements in the partial triple graph. Here, an element
is dependent on another one if the forward rule appli-
cation marking the former matches the latter element as

7 Note that consistency is still defined by the (plain, monotonic) rules
of the given TGG; the general repair rules are derived only to improve
the synchronization process.

required. We consider the transitive closure of this rela-
tion.

6.2 Synchronization process

Our synchronization process is depicted in Algorithm 1. It
applies rules to translate elements and repair rule applica-
tions. In that, it applies a different strategy than suggested in
[41,42]. There, invalid rule applications are revoked as long
as there exist any. Subsequently, forward rules are applied
as long as possible. By trying to apply a suitable repair
rule instead of revoking an invalid rule application, we are
able to avoid deletion and recreation of elements. Our syn-
chronization algorithm is defined as follows. Note that we
present an algorithm for synchronizing in forward direction
(from source to target) while synchronizing backwards is
performed analogously.

The function synchronize is called on the current partial
triple graph that is to be synchronized. In line 2, updateM-
atches is called on this partial triple graph. It returns the set of
consistency matches currently broken, a set of consistency
matches being still intact, and a set of forward TGG rule
matches.

By calling the function isFinished (line 4), termination
criteria for the synchronization algorithm are checked. If the
set of broken consistency matches and the set of forward
TGG rule matches are both empty and all elements of the
source graph are marked as translated, the synchronization
algorithm terminates (line 18). Yet, if both sets are empty
but there are still untranslated elements in the source graph,
an exception is thrown in line 20, signaling that the (partial)
triple graph is in an inconsistent state.

Subsequently, function translate is used (line 7) to prop-
agate the creation of elements: If the set of forward TGG
rule matches is non-empty (line 24), we choose one of these
matches, apply the corresponding rule, and continue the syn-
chronization process (line 27). This step is done prior to any
repair. The purpose is to create the context which may be
needed to make repair rules applicable. An example for such
a context creation is the insertion of a new root Package
which has to be translated into a root Folder before applying
Connect-Root-Repair-Rule thereafter (see Fig. 5). If the
above cases do not apply, there must be at least one broken
consistencymatch and the corresponding rule application has
to be repaired (line 10): Hence, we choose one broken consis-
tency match (line 32) for which a set of suitable repair rules
is determined. A broken consistency match includes infor-
mation about the rule it corresponds to (e.g., the name of the
rule). Furthermore, it includes which elements are missing
or which filter NACs are violated such that the correspond-
ing application does not exist any more. We calculate the
set of matches of repair rules (i.e., forward short-cut rules)
that stem from short-cut rules revoking exactly the rule that
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Algorithm 1 eMoflon – Synchronization Process
1: function synchronize(tripleGraph)
2: (brokenCMatches, intactCMatches,fwdMatches) ← updateMatches(tripleGraph)
3:
4: if isFinished(tripleGraph, fwdMatches, brokenCMatches)) then
5: return
6:
7: if translate(tripleGraph, fwdMatches) then
8: return
9:
10: (cMatch, success) ← repair(tripleGraph, brokenCMatches)
11: if !success then
12: throw InconsistentStateException
13: return
14:
15: function isFinished(tripleGraph, fwdMatches, brokenCMatches)
16: if isEmpty(brokenCMatches) && isEmpty(fwdMatches) then
17: if allElementsTranslated(tripleGraph.source) then
18: return true
19: else
20: throw InconsistentStateException
21: return false
22:
23: function translate(tripleGraph, fwdMatches)
24: if !isEmpty(fwdMatches) then
25: fwdMatch = chooseMatch(fwdMatches)
26: tripleGraph ← applyRule(tripleGraph, fwdMatch, getFWDRule(fwdMatch))
27: synchronize(tripleGraph)
28: return true
29: return false
30:
31: function repair(tripleGraph, brokenCMatches)
32: cMatch ← chooseMatch(brokenCMatches)
33: scRules ← getSuitableSCRules(cMatch)
34: scMatches ← findSCMatches(scRules, cMatch)
35:
36: while !isEmpty(scMatches) do
37: scMatch ← chooseMatch(scMatches)
38: if isValidMatch(scMatch) then
39: tripleGraph ← applyRule(tripleGraph, cMatch, getSCRule(scMatch))
40: synchronize(tripleGraph)
41: return (cMatch, true)
42: return (cMatch, false)

corresponds to the broken consistency match. In particular,
by knowing which elements of a broken rule application still
exist in the current source graph, we can stick to those repair
rules that preserve exactly the still existing elements.

While the calculated set of unprocessed repair rule
matches is not empty (line 36), we choose one of these
matches and check whether it is valid. By constructing the
partial match of a repair rule, we only need to ensure that
none of its presumed elements is matched in such a way that
a cyclic dependency is introduced. This means that theymust
not be matched to elements that are dependent of elements
to which the recovered elements are matched. If a match is
valid, we apply the corresponding repair rule and continue
the synchronization process (line 40). If no such rule or valid
match is available, an exception is thrown (line 12).

6.3 Formal properties of the synchronization
process

We discuss the termination, correctness, and completeness
of our synchronization algorithm.

Our algorithm terminates as long as every forward rule
translates at least one element (which is a quite common
condition; compare [30, Lemma 6.7] or [41, Theorem 3]).

Theorem 4 Let a TGG GG with plain, monotonic rules be
given. If every derived forward rule of GG has at least one
source marking element, our algorithm terminates for any
finite input G ′ = (H ′

S ��� GC → GT ).

Proof The algorithm terminates—by either throwing an
exception or returning a result—if at one point both, the set
of broken consistency matches and the set of matches for
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forward rules are empty; compare the function isFinished
starting in line 15.

The algorithm is called recursively, always applying a
forward rule if a match is available. As every forward rule
marks at least one element as translated and forward rules
are only matched in such a way that source marking ele-
ments are matched to yet untranslated ones, the application
of forward rules (lines 24 et seq.), i.e., the recursive call
of function translate, halts after finitely many steps. More-
over, an application of a forward rule never introduces a
new broken consistency match: As it neither creates nor
deletes elements in the source graph, it cannot delete ele-
ments matched by a consistency pattern nor create elements
forbidden by one. This means that, as soon as the set of bro-
ken consistencymatches is empty, thewhole synchronization
algorithm will terminate. We show that at some point this set
of broken consistency matches will be empty or an exception
is thrown.

Whenever the algorithm is called with an empty set of
matches for forward rules, broken consistency matches are
considered by applying a repair rule, i.e., by calling the
function repair. New matches for forward rules can result
from this; as discussed above, newly appearing matches
for forward rules are unproblematic. However, an applica-
tion of a repair rule does not introduce a new violation of
any consistency match: As it does not create source ele-
ments, it cannot introduce violations of filter NACs. And
by the condition on valid matches to be non-disabling (con-
dition 2. (a) in Definition 10), no elements needed by other
consistency matches are deleted. Hence, by application of
a repair rule, the number of invalid consistency matches
is reduced by one and the algorithm terminates as soon
as all broken consistency matches are repaired. If there
is a broken consistency match that cannot be repaired—
either because no suitable repair rule or no valid match is
available—an exception is thrown and the algorithm stops.

��
Correctness Upon termination without exception, our

algorithm is correct.

Theorem 5 (Correctness of algorithm) Let a TGG GG with
plain, monotonic rules, a triple graph G = (GS ← GC →
GT ) ∈ L (GG), and a partial triple graph G ′ = (G ′

S ���
GC → GT ) that arises by a user edit step on the source
graph be given. If our synchronization algorithm terminates
without exception and yields H = (HS ← HC → HT ) as
output, then HS = G ′

S and H ∈ L (GG).

Proof We see immediately that HS = G ′
S since none of

the applied rules modifies the source graph. If the synchro-
nization process terminates without exception, all elements
are translated, no matches for forward rules are found, and
no consistency match is broken any more. This means that

the collected matches of the forward rules form an entirely
marking transformation sequence. By Lemma 1, we have
to show that this sequence is also consistently marking.
Then, the matches of the forward rules that correspond to
the matches of the consistency patterns that the incremen-
tal pattern matcher has collected encode a transformation
sequence that allows translating the triple graph (HS ←
∅ → ∅) to a triple graph (HS ← HC → HT ) ∈ L (GG).
We assume that the incremental pattern matcher recog-
nizes all broken consistency matches and reports correct
matches for forward rules only. This means, throughout
the application of forward rules, the set of all valid con-
sistency matches remains consistently marking. We have
to show that this is also the case for repair rule applica-
tions. If it is, upon termination without exception, there
is an entirely and consistently marking sequence of for-
ward rules which corresponds to a triple graph from GG by
Lemma 1.

Whenever we apply a repair rule we are (at least locally)
in the situation of Corollary 1: There is a (maybe empty)
sequence of consistently marking forward rule applications
and a suitable broken consistency pattern indicates, that a
user edit step applying the source rule r Ssc of a short-cut rule
rsc has taken place. Applying the repair rule r Fsc at a valid
match amounts to replacing the application of rule r Fj , whose

consistency pattern was broken, by rule r F in a consistently
marking way. ��

We only informally discuss completeness. We understand
completeness as follows: for every input G ′ = (HS ���
GC → GT ) with HS ∈ LS(GG), we obtain a result
H = (HS ← HC → HT ) ∈ L (GG). In general, the above
proposed algorithm is not complete. We randomly apply for-
ward rules at available matches (without using backtracking)
but the choice and order of such applications can affect the
result if the final sequence of forward rule applications leads
to a dead-end or translates the given source graph. How-
ever, the algorithm is complete whenever the set of forward
rules is of such a form that the order of their application
does not make a difference (somewhat more formally: they
meet some kind of confluence) and the user edit is of the
form discussed in Sect. 6.1. Analogous restrictions on for-
ward rules hold for other synchronization processes that have
been formally examined for completeness [30,41]. Adding
filter NACs to the forward rules of a TGG is a technique
that can result in such a set of confluent forward rules even
if the original set of forward rules is not. Moreover, there
are static methods to test TGGs for such a behavior [6,30];
they check for sufficient but not for necessary criteria. If it is
known that the set of forward rules of a given TGG guaran-
tees completeness and the edit is of a suitable kind, a thrown
exception during our synchronization process implies that
HS /∈ LS(GG).

123



Avoiding unnecessary information loss: correct and efficient model synchronization based on… 355

(a)

(d) (e)

(b) (c)

Fig. 16 Example of our proposed synchronization algorithm. Grey background indicates broken consistency matches

6.4 A synchronization example

We illustrate our synchronization algorithm with an example
illustrated in Fig. 16. For simplicity, we neglect the con-
tent attribute and concentrate on the structural behavior. As
a starting point, we assume that a user edits the source graph
of the triple graph depicted in Fig. 16(a) (in the following, we
will refer to the triple graphs occurring throughout the algo-
rithm just by their numbers). She adds a new root package
above rootP, removes the link between Packages rootP
and subP, and creates a further class c2. All these changes
are specified by either a source rule of the TGG or the source
rule of a derived short-cut rule. The resulting triple graph is
depicted in (b). The elements in front of the grey background
are considered to be inconsistent, due to a broken consistency
match. Furthermore, c2 and nRootP are not translated, yet.
In the first two passes of the algorithm, the two available
matches for forward rules are applied (in random order):
Leaf-FWD-Rule translates the newly added Class c2 and
Root-FWD-Rule translates thePackage nRootP; this results
in the triple graph (c). Note that the last rule application cre-
ates a match for the repair rule Connect-Root-Repair-Rule.
This is the reason why we start our synchronization process
with applications of forward rules.

The incremental patternmatcher notifies about twobroken
consistency matches, which are dealt with in random order.
rootP is no longer a root package (which is detected by a
violation of the according filter NAC in the consistency pat-

tern) and subP is now a root package (which is detected by
the missing incoming edge). Both violations are captured by
repair rules, namely Connect-Root-Repair-Rule and Make-
Root-Repair-Rule, whose applications lead to (d) and (e).
The algorithm terminates with a triple graph that belongs to
the TGG.

6.5 Prospect: support of further kinds of editing and
advanced TGG features

We shortly describe the support of further kinds of editing
and more advanced features of TGGs by our approach to
synchronization, namely attributed TGGs, rules with NACs,
and support for additional attribute constraints.

Further kinds of editing In our implementation (see
Sect. 7), we do not only support the addition of elements
and propagation of edits that correspond to source rules of
derived edit rules. Actually, we do not make any assumptions
about the kind of editing. This is achieved by incorporating
the application of repair rules into the algorithm suggested
by Leblebici et al. [41,42], which has also been proved to
be correct and to terminate. The implemented algorithm first
tries to apply a forward or repair rule. If there is none avail-
able with a valid match, the algorithm falls back to revoking
of an invalid rule application. This means that all elements
that have been created by this rule application are deleted
(and adjacent edges of deleted nodes are implicitly deleted
as well). In line with that revoking of invalid rule applica-
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tions, it also allows for implicit deletion of adjacent edges in
the application of repair rules. In that way, the application of
a repair rule might trigger new appearances of broken con-
sistency matches. We are convinced that correctness is not
affected by thatmore general approach: Inspecting the proofs
of Corollary 1 and Theorem 5, the key to correctness is that
the sequences of currently valid consistency matches remain
consistently marking. That is achieved via the conditions on
matches for repair rules to be reversing, context-preserving,
and creation-preserving. Dropping the condition to be non-
disabling (by implicitly deleting adjacent edges) does not
effect correctness, therefore. However, proving termination
in that more general context is future work.

Advanced features The attribution of graphs can be for-
malized by representing data values as special nodes and the
attribution of nodes and edges as special edges connecting
graph elements with these data nodes [17]. As the rules of a
TGG are monotonic, they only set attribute values but never
delete or change them. (The deletion or change of an attribute
valuewould include the deletion of the attribution edge point-
ing to it.) The formal construction of short-cut rules is based
purely on category-theoretic concepts, which can be directly
applied to rules on attributed triple graphs as well. The prop-
erties proven for short-cut rules in [22] are valid also in that
case.8 Hence, we can freely apply the construction of short-
cut rules and derivation of repair rules to attributed TGGs.
In fact, our implementation already supports attribution. For
the propagation of attribute changes (made by a user), how-
ever, we rely on the inherent support eMoflon offers, which is
discussed in Sect. 7. Deriving repair rules to propagate such
changes is possible in principle but remains future work.

In practical applications,TGGsare oftennot only attributed
but also equippedwith attribute constraints. These enable the
user to, for example, link the values of attributes of correlated
nodes. eMoflon comes with facilities to detect violations
of such constraints and offers support to repair such vio-
lations. In our implementation, we rely on these features of
eMoflon to support attribute constraints but do not contribute
additional support in our newly proposed synchronization
algorithm.

To summarize, while fully formalized for the case of plain
TGG rules without attribution, our implementation already
supports the synchronization of attributed TGGs with addi-
tional attribute constraints. As these additional features do
not affect our construction of short-cut and repair rules, we
do not consider them (yet) to improve the propagation of
attribute changes (that may lead to violations of attribute

8 To be precise, in [22], all proofs are elaborated for the case of mono-
tonic rules in an adhesive category. Attributed triple graphs are adhesive
HLRwhich is aweaker notion.However, inspecting the proofs, this does
not make any difference as long as the category has so-called effective
pushouts. This is known to be the case for attributed (triple) graphs;
compare, e.g., [18, Remark 5.57].

constraints). Instead, we rely on the existing theory and
facilities of eMoflon as introduced by Anjorin et al. [7]. In
contrast, while computing short-cut and repair rules of rules
with NACs is straightforward, adapting our synchronization
algorithm to that case is future work and no tool support is
available yet.

7 Implementation

Our implementation9 of a model synchronizer using (short-
cut) repair rules is built on top of the existing EMF-
based, general-purpose graph and model transformation tool
eMoflon [43,57,58]. eMoflon offers support for rule-based
unidirectional and bidirectional graph transformationswhere
the latter one uses TGGs. The model synchronizer imple-
mented in eMoflonextendsAlgorithm1 slightly. It allows any
kind of user edit on the source part of a triple graph. If there
are no forward or repair rules to fix a broken match, broken
rule applications can be revoked. Revoking of rule applica-
tions has been the standard way of fixing broken matches.
Hence, the implemented model synchronizer is a true exten-
sion of the previous synchronizer in eMoflon supporting the
repair of broken applications.

In the following, we present the architecture behind our
optimized model synchronizer first. Thereafter, we describe
how the automatic calculation of short-cut and repair rules is
implemented.

7.1 Tool architecture

Figure 17 depicts a UML component diagram to show the
main components of eMoflon’s bidirectional transforma-
tion engine. The architecture has two main components:
TGG Core contains the core components of eMoflon and
Repair Framework adds (short-cut) repair rules to eMoflon’s
functionality. The TGG enginemanages the synchronization
process and alters source, target, and correspondence model
in order to restore consistency. For this purpose, it applies
forward/ backward operationalized TGG rules to translate
elements or revokes broken rule applications.

Finding matches in an incremental way is an important
requirement for efficient model synchronization since minor
model changes should be detectablewithout re-evaluating the
whole model. For this reason, eMoflon relies on incremental
pattern matching to detect the appearance of new matches
as well as the disappearance of formerly detected ones. It
uses different incremental pattern matchers such as Demo-
cles [55] and HiPE [1] and allows switching freely between
them for optimizing the performance for each transformation

9 Both, the implementation and the evaluation, can be accessed via
https://github.com/Echtzeitsysteme/STTT-SC-Eval.
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Fig. 17 eMoflon—Architecture of the bidirectional transformation engine

scenario. Furthermore, eMoflon employs the use of various
integer linear programming (ILP) solvers such as Gurobi
[28] and CPLEX [34], e.g., in order to find correspondence
links (mappings) between source and target models, which
is referred to as consistency check [46].

We have extended this basic setup by introducing the
Repair Framework, which consists of theRepair Strategy and
the Shortcut Rule Creator. The Repair Strategy is attached
to the TGG Engine from which it is called with a set of bro-
ken rule matches. It attempts to repair the corresponding rule
applications by using repair rules created by the Shortcut
Rule Creator, which uses the ILP interface provided by the
TGG Core in order to find overlaps between TGG rules and
finally, to create short-cut repair rules. For invoking the repair
rules, however, we have to find matches of repair rules. This
is done by a Batch (local-search) Pattern Matcher which, in
contrast to the incremental pattern matcher, does not perform
any book-keeping. As a repair of a rule application is always
done locally, the checking of matches throughout the whole
model is considered to be too expensive and thus, a Batch
Pattern Matcher can perform this task more efficiently.

7.2 ILP-based short-cut rule creation

In order to create an overlap between two rules, a morphism
between the graphs of both rules has to be found: Each ele-

ment may only be mapped once; a context element may only
be mapped to another context element. Created elements are
mapped to each other, respectively. Furthermore, a node can
only bemapped to a node of the same type aswe do not incor-
porate inheritance between types yet. Edges are allowed to be
mapped to each other only if their corresponding source and
target elements are also mapped to each other, respectively.

We use integer linear programming (ILP) to encode the
search space of all possible mappings and search for a max-
imal mapping. Each possible mapping m is considered to be
a variable of our ILP problem such that calculating

max(
∑

m∈M
m)

yields the maximal overlap, with M being the set of all map-
pings and m ∈ {0, 1}. To ensure that each element e is
mapped only once, we define a constraint to exclude non-
used mappings: (

∑
m∈Ae

m) ≤ 1 with Ae being the set of all
alternative mappings for element e. To ensure that edges are
mapped only if their adjacent nodes are mapped as well, we
define the following constraint: me �⇒ mv which trans-
lates to me ≤ mv with me being the edge mapping and mv

being one of the mappings of node src(e) or trg(e). Maxi-
mizing the number of activated variables yields the common
kernel of both input rules, i.e., a maximal overlap between
them. If the overlap between the created elements of both
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rules is empty, we drop this overlap as the resulting short-cut
rule would not preserve any elements. Given a common ker-
nel of two rules, we glue them along this kernel and yield a
short-cut rule. For all elements of the resulting short-cut rule,
which are not in the common kernel, we do the following:
(1) Preserved elements remain preserved in the short-cut rule.
(2) Created elements of the first rule become deleted ones as
the first rule is inverted. (3) Created elements of the second
rule remain created ones.

We calculate twokinds of overlap for each pair of rules and
hence, two short-cut rules: a maximal and a minimal over-
lap. Themaximal overlap is calculated by allowingmappings
between all created and context elements, respectively. On
the other hand, the minimal overlap is created by allowing
mappings between created elements only. Considering the
corresponding ILP problem, this means that all other map-
ping candidates are dropped.

Finally, the derived short-cut rules are operationalized to
obtain the repair rules employed in our synchronization algo-
rithm.

7.3 Attribute constraints

Although attribute constraints have not been incorporated
formally in our approach, eMoflon is able to define and solve
those within the former legacy translation and synchroniza-
tion process. As can be seen in Fig. 19, many rules have an
equality constraint defined between the name attributes of
created elements on both, source and target parts. For TGG
rules, this means that the attribute values may be chosen arbi-
trarily since both nodes would be created from scratch. In
forward rules, source elements are already present which
means that an attribute constraint can be interpreted as to
propagate or copy the alreadypresent value to a newly created
element.We reuse this functionality for our new synchroniza-
tion process in the following way: After applying a repair
rule, we ensure that the constraints of the replacing rule are
fulfilled. The definition of attribute constraints and their treat-
ment is due to Anjorin et al. [7].10

8 Evaluation

We evaluate our approach with respect to two aspects using
the running example in an extended form. First, we investi-
gate the performance of our approach w.r.t. information loss
and execution time. A set of real and synthesized models is
given which we use to apply four different kinds of model
changes. Secondly, we evaluate the quality of our short-cut

10 This approach allows one to specify constraints on attributes that
involve also operations which are not only equality checks such as the
concatenation of values of type String.

rule generation strategy by comparing generated short-cut
rules with well-known code refactorings.

Our experimental setup consists of 24 TGG rules (shown
in “Appendix”) that specify consistency between Java AST
and custom documentation models. In addition, there are 38
short-cut rules being derived from the set of TGG rules. A
small modified excerpt of this rule set was given in Sect. 2.
For this evaluation, however, we define consistency not only
between Package and Folder hierarchies but also between
type definitions, e.g., Classes and Interfaces, and Fields and
Methods with their corresponding documentation entries.

8.1 Performance evaluation

To get realistic models, we extracted five models from Java
projects hosted on Github using the reverse engineering tool
MoDisco [12] and translated them into our own documenta-
tion structure. In addition,we generatedfive syntheticmodels
consisting of n-level Package hierarchies with each non-leaf
Package containing five sub-Packages and each leaf Package
containingfiveClasses.While the realisticmodels shall show
that our approach scales to real world cases, the synthetic
models are chosen to show scalability in a more controlled
way by increasing hierarchies gradually.

To evaluate our synchronization process, we performed
several model changes. We refactored each of the models
in four different scenarios; two example refactorings are the
moving of a Class from one Package to another or the com-
plete relocation of a Package. Then we used eMoflon to
synchronize these changes in order to restore consistency
to the documentation model using two synchronization pro-
cesses, namely with and without repair rules. The legacy
synchronization process of eMoflon is presented in [41,42];
the new synchronization process applying additional repair
rules takes place according to the algorithm presented in
Sect. 6 with the extensions mentioned in Sect. 6.5.

These synchronization steps are subject to our evaluation
and we pose the following research questions: (RQ1) For
different kinds of model changes, how many elements can be
preserved that would be deleted and recreated otherwise?
(RQ2) How does our new synchronization process affect the
runtime performance? (RQ3) Are there specific scenarios in
which our new synchronization process performs especially
good or bad?

In the following, we evaluate our new synchronization
process by repair rules against the legacy synchronization
process in eMoflon. While the legacy one revokes forward
rule applications and re-propagates the source model using
forward rules, our new one prefers to apply short-cut repair
rules as far as possible and falls back to revoking and re-
propagation if there is no possible repair rule application.
However, in our evaluation, it will not be necessary to apply
revocation steps as we will see below.
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Table 1 Legacy
synchronizer—time in sec. and
number of created elements

Models Both Legacy synchronization

Trans. Scen. 1 Scen. 2 Scen. 3 Scen. 4

Sec. Elts Sec. Elts Sec. Elts Sec. Elts Sec. Elts

tgg.core 6.4 1.6k 39 1.6k 3.8 99 0.64 17 0.2 3

modisco.java 9.9 3.2k 228 3.3k 18.6 192 3.6 33 0.4 4

eclipse.compare 10.74 3.8k 83 3.7k 3.1 76 2.36 47 0.1 1

eclipse.graphiti 20.7 6.5k 704 6.5k 63.9 490 5.65 25 0.9 3

synthetic n = 1 0.6 89 0.5 84 0.2 21 0.07 5 0.03 1

synthetic n = 2 1.4 345 1.7 340 0.2 21 0.11 5 0.04 1

synthetic n = 3 3.5 1369 13.2 1364 0.3 21 0.11 5 0.07 1

synthetic n = 4 14.5 5.5k 141.5 5.5k 1 21 0.32 5 0.09 1

synthetic n = 5 58.5 22k 2863 22k 10.7 21 1.07 5 0.23 1

To evaluate the performance of both legacy and the new
model synchronization process, we consider four scenarios
ranging from worst-case (Scenario 1) to best-case (Sce-
nario 4) for the legacy implementation: Altering a root
Package by creating a new Package as root would imply that
all rule applications have to be reverted to synchronize the
changes correctly with the legacy synchronization process
(Scenario 1). In contrast, our new approach might perform
poorlywhen amodel change does not inflict a long cascade of
invalid rule applications. Hence, we move Classes between
Packages (Scenario 3) and Methods between Classes (Sce-
nario 4) to measure if the effort of applying repair rules does
infer a performance loss when both, the new and old algo-
rithm, do not have to repair many broken rule applications.
Note that Scenario 4 extends our evaluation presented in [23]
as it provides a more fine-granular scenario. Finally, we sim-
ulate a scenario which is somewhat between the first three by
relocating leafPackages (Scenario 2) which, using the legacy
model synchronization, would lead to a re-translation of all
underlying elements.

Tables 1 and 2 depict the measured time in seconds
(Sec.) and the number of re-/created elements (Elts) in each
Scenario (1)–(4). The first table additionally shows measure-
ments for the initial translation (Trans.) of the Java AST
model into the documentation structure. For each scenario,
Table 1 shows the numbers of synchronization steps using
the legacy synchronizer without repair rules while Table 2
reflects the numbers of our new synchronizer with repair
rules.

W.r.t. our research questions stated above, we interpret
these tables as follows: The Elts columns of Table 2 show
clearly that using repair rules preserves all those elements
in our scenarios that are deleted and recreated by the legacy
algorithm otherwise as shown in Table 1 (RQ1). The runtime
shows a significant performance gain for Scenario 1 includ-
ing a worst-case model change in which the legacy algorithm
has to re-translate all elements (RQ2).

Repair rules do not introduce an overhead compared to
the legacy algorithm as can be seen for the synthetic time
measurements in Scenario 4 where only one rule application
has to be repaired or reapplied (RQ2). Our new approach
excels when the cascade of invalidated rule applications is
long. Even if this is not the case, it does not introduce any
measurable overhead compared to the legacy algorithm as
shown in Scenarios 2, 3, and 4 (RQ3). Furthermore, the syn-
thetic examples also show that the new synchronizer needs
nearly constant time for synchronizing amodel change, inde-
pendent of the size of a model.

Threats to validity Our evaluation is based on five real
world and five synthetic models. Of course, there exists a
wide range of Java projects that differ significantly from each
other w.r.t. their size, purpose, and developer style. Thus, the
resultsmay not be transferable to other projects.Nonetheless,
we argue that the four larger models extracted from Github
projects are representative since they are deduced from estab-
lished tools of the Eclipse ecosystem. The synthetic models
are also representative as they show the scalability of our
approach in a more controlled environment with an increas-
ing scaling factor. Together, realistic and synthetic models
show that our approach does not only increase the perfor-
mance of eMoflons synchronization process but also reduce
the amount of re-created elements. Since each re-created ele-
ment may contain information that would be lost during the
process, we preserve this information and increase the overall
quality of eMoflons synchronization results. In this evalua-
tion, we selected four edit operations that are representative
w.r.t. their dependency on other edit operations. In particu-
lar, only edits are considered that (i) correspond to source
rules of short-cut rules we derive; (ii) consist of a single step.
They may not be representative w.r.t. other aspects such as
size or kind of change. We consider those aspects to be of
minor importance in this context as dependency is the cause
for deleting and recreating elements in the legacy synchro-
nization process. Nonetheless, our implementation is also not
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Table 2 New
synchronizer—time in sec. and
number of created elements

Models Synchronization by repair rules

Scen. 1 Scen. 2 Scen. 3 Scen. 4

Sec. Elts Sec. Elts Sec. Elts Sec. Elts

lang.List 0.2 0 – – 0.03 0 0.02 0

tgg.core 0.8 0 0.11 0 0.05 0 0.04 0

modisco.java 2.5 0 0.2 0 0.09 0 0.1 0

eclipse.compare 0.7 0 0.08 0 0.04 0 0.03 0

eclipse.graphiti 6.1 0 0.21 0 0.09 0 0.1 0

synthetic n = 1 0.1 0 0.05 0 0.03 0 0.05 0

synthetic n = 2 0.1 0 0.05 0 0.02 0 0.04 0

synthetic n = 3 0.1 0 0.07 0 0.02 0 0.04 0

synthetic n = 4 0.4 0 0.14 0 0.04 0 0.04 0

synthetic n = 5 1.5 0 0.37 0 0.09 0 0.06 0

Table 3 An overview of short-cut based propagation of refactorings

Refactoring Function of TGG rules/eMoflon Function of short-cut rules

Extract Class Creating Class & Reference as Field Relocating Fields

Extract Superclass Creating Superclass & deleting superfluous
Fields & Methods

Relocating Methods & Fields

Inline Class Deleting Class Relocating Fields

Replace Superclass with Delegate Creating Fields for Delegation Revoke inheritance

Collapse Hierarchy Deleting Sub/Super-Class & superfluous
Methods/Fields

Relocating Methods & Fields

Introduce Parameter Object Creating Class & deleting Parameters

Change Function Declaration Renaming Methods &
Creating/Deleting/Renaming Parameters

Move Method Relocating Method

Combine Functions into Class Deleting superfluous Parameter Relocating Function/Method

Push-Up Method Deleting superfluous Fields in Subclasses Relocating Methods

Push-Down Method Creating Fields in Subclasses Relocating Methods

Remove Setting Method Deleting Method

Move Field Relocating Fields

Push-Up Field Deleting superfluous Fields in Subclasses Relocating Fields

Push-Down Field Creating Fields in Subclasses Relocating Fields

Rename Field Re-Evaluate Attribute Constraints

able to derive short-cut rules that are able to handle multi-
ple steps at once, due to our current heuristic of generating
them. Hence, we plan to investigate this further in the near
future. Finally, we limited our evaluation to one TGG rule set
only but we experienced similar results for a broader range
of TGGs from the eMoflon test zoo,11 which also included
more asymmetric TGGs.12

11 Accessible via https://github.com/eMoflon/emoflon-ibex-tests.
12 Such as TerraceHouses2BlockSet, which is also accessible via the
eMoflon test zoo.

8.2 Refactorings

As explained in Sect. 7, we currently employ two differ-
ent strategies to overlap two rules and to create a short-cut
rule.We pose the following research question: (RQ4)Are the
generated short-cut rules applicable to realistic scenarios?
Are further short-cut rules necessary? Since our example
addresses code changes that are incorporated by the Java
AST model primarily, we relate our approach to available
code refactorings. In the following, we refer to the book
on code refactorings written by Martin Fowler [21] which
presents 66 refactorings.
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Fig. 18 Move-Field-Repair-Rule

Our example TGG, depicted in Fig. 19, defines con-
sistency on a structural level solely, without incorporating
behavior, i.e., the bodies ofmethods and constructors. Hence,
we selected those refactorings that describe changes on
Packages, Classes and Interfaces, MethodDeclarations and
Parameters, and Fields. The result is a set of 16 refactor-
ings for which we evaluated if short-cut rules help to directly
propagate the corresponding change of the AST model or
deletion and recreation has to take place.

Table 3 lists these refactorings together with information
on the TGG rules and/or short-cut rules that are applica-
ble in these scenarios. For some of the refactorings as e.g.,
Extract Class and Push-Down Field, we identified situations
where not only short-cut rules are necessary to propagate
the changes. In these cases, new elements may be created
which can be propagated using operationalized TGG rules.
The deletion of elements can be propagated by revoking the
corresponding prior propagation step. For the reevaluation of
attributes (e.g., for the refactoring Rename Field), we rely on
the facilities of eMoflon. However, many refactorings bene-
fit from using short-cut rules, for example, those that move
methods and fields. If recreation of documentation on the tar-
get part is necessary, it can lead to information loss as there
may not be all the necessary information in the Java AST
model.

Example 10 Push-Up Field moves and merges a similar field
from various subclasses into a common superclass. If one
of the subclass fields is moved to the superclass, we can
propagate this change usingMove-Field-Repair-Rule, which
is depicted in Fig. 18.

In summary,we are able to solve all 16 refactorings using a
combination of (inverse) TGG rules and our generated short-
cut rules (RQ4).

Threats to validity Note that short-cut rules are especially
useful when elements are moved instead of deleting and
recreating them in some other location. Those changes are
hard to detect and are not covered here. Refactorings such
as Push-Up Method, which moves a method that occurs in
several subclasses to their common superclass, can be done
in two different ways. First, one of the methods is moved to
the superclass while the methods in the other subclasses are

deleted. This employs the use of short-cut rules for themoved
method followed by revocation steps for the deleted methods
to delete the correspondingdocumentation elements. Second,
all methods may be deleted and a new similar method is cre-
ated in the superclass. In that case, there is no short-cut rule
that helps to preserve information and all propagated doc-
umentation elements for the method will be blank. Hence,
our approach depends on the kind of change. In particular, it
helps when user edits also try to preserve information instead
of recreating them.

In addition, we have not incorporated behavior in our
example; such an extension of our TGG may be considered
in future work. However, we can argue that most of those
refactorings can be reduced to the movement of elements,
the deletion of superfluous elements and the creation of new
elements. These changes are manageable in general using a
sequence of short-cut rule and (inverse) operationalized TGG
rule applications.

Finally,we evaluated these cases byhandbasedon thegen-
erated short-cut rules from our implementation. Nonetheless,
test cases implementing the identified refactorings and com-
binations of them will be made accessible via eMoflons test
zoo. We hope that these tests will suite as a base to compare
different sequential synchronizers in the future.

9 Related work

In this section, we relate our new model synchronization
approach to already existing incremental model synchro-
nization approaches. First, we discuss other TGG-based
approaches in detail before relating to other bidirectional
transformation (bx) approaches; these are considered more
roughly. Finally, wemention some unidirectional approaches
that are closely related to incremental model transformation
and model repair. Work that is related to our use of partial
triple graphs but not to model synchronization is considered
in [37].

TGG-based approaches to incremental model synchro-
nizationSynchronization approaches are supposed to comply
with the least-change property, which means that no unnec-
essary deletions and thus information loss should take place
while restoring consistency. An overview of TGG-based
least-change synchronization has been given by Stojkovic
et al. [52]. The first part of our related work is based on that
presentation.

Several approaches to model synchronization based on
TGGs suffer from the fact that the revocation of a rule
application may trigger the revocation of all dependent rule
applications as well [26,40–42]. Such cascades of deletions
shall be avoided to decrease runtime and unnecessary infor-
mation loss.
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Leveraging an incremental pattern matcher for TGG-
based model synchronization was first suggested in [41,42].
Proofs of termination, correctness, and completeness are
given. Moreover, the approach is implemented. In fact, this
is the legacy synchronization we evaluated against in Sect. 8.
As already mentioned, that approach revokes invalid con-
sistency matches as long as there are any and subsequently,
applies forward rules to translate yet untranslated elements.
So, that approach is a typical example where a lot of unnec-
essary deletions may take place.

Hermann et al. [30] proposed a synchronization algorithm
where, after an edit on the source part, first those correspon-
dence elements are deleted that do not refer to an element
in the source graph any longer. Thereafter, they parse the
remaining triple graph to find the maximal, still valid sub-
model. This model is used as a starting point to propagate the
remaining changes from source to correspondence and target
graphs using forward rules. The approach is completely for-
malized and proven to be correct, also for attributed TGGs;
it can be applied to TGGs with deterministic13 sets of oper-
ationalized rules. That approach avoids some unnecessary
deletions but there are some that still can occur. In fact, the
amount of unnecessary deletion taking place in that approach
is dependent on the given TGG rules; a concrete example
for that is given in [52]. While that approach is definitely
a valuable contribution towards least-change synchroniza-
tion, repeated parsing formaximally consistent sub-models is
highly inefficient andmight not scale to largemodels.At least
part of that approach is implemented as HenshinTGG [20]
using AGG [53] to perform necessary dependency checks
on derived rules. As that approach focusses on correct-
ness, completeness, and invertibility, the amount of achieved
incrementality as well as principles of least change are not
discussed in [30].

In [24], Giese and Hildebrandt propose rules that save
nodes instead of deleting and re-creating them. In particular,
they present a rule that directly propagates the movement
of elements, i.e., the redirection of edges between existing
elements. Moreover, they suggest to try a re-use of elements
before deleting them. But they neither present a general con-
struction for their rules nor formalize the re-use that takes
place.Consequently, noproof of correctness is given. Instead,
it is left as future work in [25]. The additional propagation
rules that are given exemplary in [24] can be automatically
derived as repair rules using our approach. In [10], Blouin
et al. also add specifically designed repair rules to the rule
set of their case study for avoiding information loss. Those
example rules can be realized as repair rule in our approach
as well.

13 Deterministic in the sense that there are no competing rules for any
translated element.

In a similar vein, Greenyer et al. [27] propose to delete
elements not directly but to mark them for deletion and to
allow for their re-use in rule applications during synchro-
nization. Only elements that cannot be re-used are deleted
at the very end of synchronization. But that approach comes
without any formalization and proof of correctness as well.

In contrast, the idea of re-using elements in model syn-
chronizations has been rigorously formalized by Orejas and
Pino [50]. They introduced forward translation rules with
reuse and proposed a synchronization algorithm based on
those rules. That algorithm is actually proven to be correct;
moreover, it is incremental (in a technical sense). The prac-
tical effects of applying a repair rule in our approach and
in their approach are very similar. While our repair rules
allow for reuse and perform necessary deletions on the corre-
spondence and target parts directly, their forward translation
rules allow for a reuse where necessary deletions are per-
formed at the end of a synchronization in a separate step.
They need some additional technical infrastructure to deter-
mine the exact amount of necessary deletion. To the best of
our knowledge, their approach has not been implemented yet.

In a guideline on how to develop a TGG, Anjorin et al.
[5] explain how certain kinds of rules in a TGG avoid the
loss of information better than others. There is empirical evi-
dence that, following these guidelines, synchronization can
be considerably accelerated compared to a batch mode as
long as there is no need for additional offline recognition
of model differences [45]. Transforming a given TGG into
that form, however, may change the defined language and
thus, is not always applicable. For example, the grammar of
our running example allows generating hierarchies of Pack-
ages that constitute a set of disconnected trees. For meeting
the suggestions in [5], a naive change of this grammar may
change the language such that arbitrary graphs can be gener-
ated. That effect can be avoided by, e.g., designing suitable
NACs for the rules and proving the equality of the generated
model languages. That effort is not needed when following
our approach.

In summary, it is well-known in the literature that there
are a lot of situations where the derived forward rules of a
TGG (and the revocation of their applications) are not suit-
able to efficiently propagate changes from source to target
models. Several formal and informal approaches have been
suggested to avoid this problem, at least partly. Table 4 pro-
vides an overview of all the approaches described above. It
indicates the degree of information loss and presents whether
the approach is automated, whether correctness of the pro-
posed synchronization algorithm is proven, whether it has
been (prototypically) implemented, and whether any perfor-
mance gain could be shown for it. Our approach is based on
the automated derivation of repair rules; it is able to com-
ply with all the above categories. The correctness has been
shown for model synchronization with repair rules. As our
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Table 4 An overview of TGG-based synchronization approaches

Degree of information loss Automated Correctness proven Implemented Evaluated performance gain

[41,42] High Yes Yes Yes Yes

[26] High Yes Only partially in [25] Yes Yes

[40] High Yes Yes Yes Yes

[30] To some extent Yes Yes At least partially No

[24] Low Yes No Yes Yes

[27] Low Yes No Yes No

[50] Low Yes Yes No No

[5,45] Low Not needed Not needed Yes Yes

[48,54] Low No Yes Yes No

Ours Low Yes Yes Yes Yes

implemented synchronization process can also revoke for-
ward rules, the correctness proof has to be slightly extended
to cover also that casewhich seems to be straight forward (see
discussion in Sect. 6.5). Furthermore, support for some addi-
tional features of TGGs like NACs and attribution is future
work (NACs) or not rigorously formalized (attribution).

Comparison to other bx approachesAnjorin et al. [4] com-
pared three state-of-the-art bx tools, namely eMoflon [43]
(rule-based), mediniQVT [2] (constraint-based), and BiGUL
[36] (bx programming language) w.r.t. model synchroniza-
tion. They point out that synchronization with eMoflon is
faster than with both other tools as the runtimes of those
tools all correlate with the overall model size while the run-
time of eMoflon correlates with the size of the changes done
by edit operations. Furthermore, eMoflon is the only tool
that was able to solve all but one synchronization scenario
while mediniQVT failed in four and BiGUL in two scenar-
ios. One scenario was not solved because the solution with
eMoflon deletes more model elements than absolutely nec-
essary in that case. Using short-cut repair rules, we can solve
the remaining scenario andmoreover, can further increase the
performance of eMoflon when solving model synchroniza-
tion tasks. Macedo and Cunha present bidirectional model
transformations based on ATL in [47]. By using the SAT
solver Alloy, they are able to guarantee least-change model
synchronization where two metrics are supported measuring
change: the graph edit distance and the operation-based dis-
tance. While the synchronization results may be very good,
this solver-based approach does not scale for large models.
All this suggests that our tool is highly competitive, not only
among TGG-based tools but also in comparison to other bx
tools.

With regard to theoretical considerations, least change and
incremental synchronization have also been actively investi-
gated in other approaches, in particular when using lenses,
e.g., [15,31–33,56]. The approach by Wang et al. [56] seems
to be the most similar one to ours. That approach derives

functions to directly propagate changes from a source to a
viewand is applicable to tree-shaped data structures.As those
approaches are less close to our work, detailed formal com-
parisons are left to future work.

Further related works Change-preserving model repair
as presented in [48,54] is closely related to our approach.
Assuming a set of consistency-preserving rules and a set
of edit rules to be given, each edit rule is accompanied by
one or more repair rules completing the edit step if possible.
Such a complement rule is considered as repair rule of an
edit rule w.r.t. an overarching consistency-preserving rule.
Operationalized TGG rules fit into that approach but provide
more structure: As graphs and rules are structured in triples,
a source rule is also an edit rule being complemented by a
forward rule. In contrast to that approach, source and forward
rules can be automatically deduced from a given TGG rule.
By our use of short-cut rules, we introduce a pre-processing
step to first enlarge the sets of consistency-preserving rules
and edit rules. Furthermore, the repair process presented in
that paper has more restrictive presumptions than our syn-
chronization process using repair rules w.r.t. independence
of rule applications.

Boronat [11] presents an incremental uni-directional
transformation approach. When retranslating a model after a
change, affected elements of the old model are marked first
and then, if possible, re-used instead of deleted and re-created
(similar to the approaches suggested in [27,50] for TGGs).
Again, the same effects can be obtained by constructing and
applying short-cut rules but there, for plain graph transfor-
mation. A correctness proof for that approach is still missing.

10 Conclusion

Model synchronization, i.e., the task of restoring the con-
sistency between two models after model changes, poses
challenges to modern bidirectional model transformation
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approaches and tools: We expect them to synchronize
changeswithout unnecessary loss of information and to show
a reasonable performance. Here, we restrict ourselves to
model synchronizations where only one model is changed
at a time.

While Triple GraphGrammars (TGGs) provide themeans
to perform model synchronization tasks in general, efficient
model synchronizationwithout unnecessary information loss
may not always be fulfilled since basic TGG rules are not
designed to support intermediate model editing and repair.
Therefore, we propose to add short-cut rules, a special form
of generalized TGG rules that allow taking back one edit
action and to perform an alternative one. In our evaluation,
we show that repair rules derived from short-cut rules allow
for a kind of incremental model synchronization with con-
siderably decreased information loss and improved runtime
compared to synchronization without these rules.

In this paper, we show the correctness of our synchro-
nization approach, present the implementation design, and
evaluate the corresponding tool support w.r.t. performance
and unnecessary information loss. While the tool support
already covers attributes of model elements, the correctness
proof of our synchronization approach w.r.t. to these exten-
sions is prepared but still up to future work.

While model synchronization means the propagation of
model changes fromone view to another,model changesmay
also occur concurrently on both views of a model. Hence,
model synchronization approaches have to cover those sce-
narios as well. Short-cut rulesmay also be promising to avoid
information loss in that more general setting; they have not
been considered in the context of other approaches to con-
current model synchronization in the literature [49,60]. As
changes of both model views may be in conflict with each
other, the development of an efficient concurrent model syn-
chronization process which avoids unnecessary information
loss poses a challenge for future work.
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Appendix: A evaluation ruleset

In this section, we present additional information related to
our evaluation from Sect. 8.

Figure 19 depicts the full TGG rule set used of our eval-
uation. The first rule JavaModel-2-DocModel-Rule defines
consistency between aMoDiscoModel and aDocModel that
contains three sub DocModels and another Folder linked to
the common DocModel. These different containers are used
to separate Java entities on the documentation site to split
them up into common Java data types, external Java refer-
ences and source references. JavaModel-2-DocModel-Rule
then defines consistency between Packages and Folder given
that their parent are a MoDisco Model and a DocModel,
respectively. Using JavaPackage-2-DocFolder-Rule, we can
now create Package and Folder hierarchies recursively. Fur-
thermore, there are four rules that define consistency for
ClassesDeclarations, InterfacesDeclaration, EnumDeclara-
tion and inner ClassesDeclarations each with a Doc-File.
Also, for the nine primitive types, e.g., boolean, byte and
short, consistency is defined between each of themand aDoc-
File. Given a ClassDeclaration or an InterfaceDeclaration
with its corresponding Doc-File, we also define consistency
betweenMethodDeclarations on one andMethodEntries on
the other side. Using the consistency between methods on
both sides,we are able to define consistency betweenTypeAc-
cesses and Parameters, once for method signatures and
once for the return statement. Finally, we define consistency
between generalization and realization relationships using
three rules. First, a rule for ClassesDeclarations that extend
another ClassDeclaration, second a rule for InterfacesDec-
laration extending another InterfaceDeclaration and last for
ClassesDeclarations implementing an InterfaceDeclaration.
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Fig. 19 Evaluation—TGG rule set
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