International Journal on Software Tools for Technology Transfer (2021) 23:285-287

https://doi.org/10.1007/s10009-020-00589-6

GENERAL

Special Issue: FASE 2019

®

Check for
updates

Automated model analysis tools and techniques presented at FASE

2019

Reiner Hahnle' - Wil van der Aalst?

Published online: 7 September 2020
© The Author(s) 2020

Abstract

This special issue contains substantially revised and extended versions of some of the best papers presented at the 22nd
International Conference on Fundamental Approaches to Software Engineering in 2019. All papers share the common theme
that they are either concerned with model-based analysis of systems or they develop methods in its service.

Keywords Model transformation - Test generation - Model synchronization - Graph repair - Data flow analysis

1 Introduction

Two technology-driven developments are currently having
a massive impact on the way we live: the digitalization
of everything, and world-wide, wireless connectivity over
standardized protocols. The consequence is that all kinds
of processes and services move from the physical realm to
the software domain. In this sense, software is becoming
quickly—and quite literally—the fabric of our technological
and societal infrastructure. For this reason, the availability
of reliable, secure, and trusted software becomes ever more
crucial.

At the same time, expectations are sometimes unrealistic.
When building a bridge one would never dream of making
drastic changes, e.g., adding two more lanes and a bus stop.
However, when it comes to software we expect that things
can be changed at any point in time. Also software is used
in environments that did not exist during design. This is like
designing a bridge for a canal in Amsterdam and deploying
copies of it in Alaska and the Sahara. Subsequently, these
deployed copies are updated every two weeks.

Solid software engineering foundations and a good under-
standing of the fundamental properties of software are

B Reiner Hihnle
reiner.haechnle @tu-darmstadt.de

Wil van der Aalst
wvdaalst@pads.rwth-aachen.de
Technical University of Darmstadt, Darmstadt, Germany

2 RWTH Aachen University, Aachen, Germany

essential for building reliable and sustainable “software
bridges”. This requires substantial advances in software sci-
ence. And here the academics and practitioners involved with
FASE continue to make highly relevant contributions.

Here we showcase a sample of these contributions. Orig-
inating from the 2019 edition of the International Confer-
ence on Fundamental Approaches to Software Engineering!
(FASE), this special issue contains revised and substantially
extended versions of the strongest papers.

FASE is concerned with the foundations on which soft-
ware engineering is built. Accepted papers are supposed
to contribute novel contributions to making software engi-
neering a more mature and soundly based discipline. They
must be supported by appropriate arguments and validation.
Contributions combining the development of conceptual and
methodological advances with their formal foundations and
tool support are particularly encouraged. Specific topics of
interest include:

— Software engineering as an engineering discipline, includ-
ing its interaction with and impact on society and
€Conomics;

— Requirements engineering: capture, consistency, and
change management of software requirements;

— Software architectures: description and analysis of the
architecture of individual systems or classes of applica-
tions;

! Held as part of the European Joint Conference on Theory and Practice
of Software (ETAPS) in Prague, Czech Republic, 8—11 April 2019.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00589-6&domain=pdf

286

R.Hahnle, W. van der Aalst

— Specification, design, and implementation of particular
classes of systems: (self-)adaptive, collaborative, embed-
ded, distributed, mobile, pervasive, cyber-physical or
service-oriented applications;

— Software quality: (static or run-time) validation and ver-
ification of functional as well as non-functional software
properties using theorem proving, model checking, test-
ing, analysis, simulation, refinement methods, metrics or
visualization techniques;

— Model-driven development and model transformation:
meta-modeling, design and semantics of domain-specific
languages, consistency and transformation of models,
generative architectures;

— Software processes: support for iterative, agile, and open
source development;

— Software evolution: refactoring, reverse and re-engi-
neering, configuration management, also architectural
change, or aspect-orientation.

2 Contributions

We received 94 abstract submissions of which 74 were turned
into full submissions (63 research papers, 5 tool papers, and
6 demo papers). We had submissions from 33 countries. Of
the 74 actually submitted papers, 24 papers were accepted
after thorough reviewing and discussions among the Program
Committee members (20 research papers, 2 tool papers, and
2 demo papers). Next to the 30 PC members, there were 100
external reviewers. For the fourth time, FASE used a double-
blind reviewing process.

The guest editors of this special issue invited six of the
top-ranked papers in the peer-review process to submit an
extended version. The invitations were not just based on
score, but also on significance. Only in hindsight, though, the
editors noted to their surprise that all of the selected papers
share a common thread:

Today’s software is so complex that it is often advisable
not to work with the actual code, but with a model that
contains only its essential aspects and abstracts away from
artifacts that are irrelevant for the performed analysis. All
papers in this special issue have in common that they work
at the level of models, even though the considered models
are, of course, differing and are chosen to suit the intended
analysis or application domain. It is also noteworthy that four
out of six papers feature an incremental analysis approach
as one of their main contributions. Again, this is no coin-
cidence: in the absence of strong decomposition principles,
incremental computation is often the only way to handle large
or complex models. Finally, it needs to be stressed that all
of the included papers come with an implementation of the
theoretical advances they purport and feature an experimen-
tal evaluation of some kind. Several papers even demonstrate

@ Springer

their findings on realistic, industrial systems. This not only

reflects the growing maturity of the field of Fundamental

Software Aspects, but also the spirit of the STTT journal.
The six invited papers are as follows:

— Incremental Execution of Rule-based Model Transfor-
mation by A. Boronat [2] presents the design of a
model change propagation mechanism for executing
change-driven model transformations, which has been
implemented in YAMTL. Change propagation mecha-
nisms form the foundation for maintaining consistency
between large models. The novelty of the approach lies
in the standardized representation of model changes. The
VIATRA CPS benchmark has been used to evaluate the
work.

— Cooperative, Verifier-Based Testing with CoVeriTest by
Beyer & Jakobs [1] is a test generation approach based on
verification attempts: from a solved reachability problem,
one can generate a test case. This idea is not new, the
innovation lies in how the approach is made feasible: the
reachability analysis is configurable with different types
of information and levels of abstraction. These ideas are
implemented in the CoVeriTest tool.

— Avoiding Unnecessary Information Loss by Fritsche et
al. [4] focuses on Triple Graph Grammars (TGGs) for
model synchronization, i.e., the task of restoring the con-
sistency between two models after model changes. Model
synchronization poses challenges, e.g., one should be
able to synchronize changes without unnecessary loss of
information and to show a reasonable performance. The
novel idea to address these challenges is to add shortcut
rules, a special form of generalized TGG rules that allow
taking back one edit action and to perform an alterna-
tive one. The authors show that repair rules derived from
shortcut rules allow for incremental model synchroniza-
tion with considerably decreased information loss and
improved runtime compared to existing approaches.

— A Logic-Based Incremental Approach to Graph Repair
Featuring Delta Preservation by Schneider et al. [5]
tackle the problem of graph repair, i.e., to find a min-
imal set of changes that make two given type graphs
consistent. This an essential capability of tools in model-
based design, because graphs are frequently used as
abstract representations of code. Numerous graph repair
approaches are known. This one distinguishes itself by
being incremental and founded on a formal logic as its
semantics. The algorithms are implemented in the tool
AutoGraph.

— Formal Testing of Timed Graph Transformation Systems
using Metric Temporal Graph Logic by Schneider et
al. [6] is about a model of embedded real-time sys-
tems called timed graph transformation systems (TGTS).
During model-based development of such systems it is



Automated model analysis tools and techniques presented at FASE 2019

287

essential that one can test the model, but, while TGTS
are adequate for modeling, they are too expressive to
directly permit testing. The authors define a series of
transformations that reduce testing of TGTS to satisfi-
ability checking in a metric temporal graph logic. All
this is implemented in the AutoGraph system.

— PolyGraph: A Data Flow Model with Frequency Arith-
metic by Dubrulle et al. [3] proposes an extension to
static data flow paradigms that includes frequency con-
straints and adjustable communication rates. PolyGraph,
the proposed data flow formalism, extends SDF with
synchronous firing semantics for the actors. The authors
define a novel algorithm for checking liveness of a given
polygraph. The proposed framework was evaluated using
both small (but realistic) examples as well as a large set
of automatically generated models.

Acknowledgements We are grateful to the editors of the Intl. J. on
Software Tools for Technology Transfer for supporting this special issue.
We would also like to thank all the Program Committee members of
FASE 2019 for their thorough and professional work. A big thank you
goes to the reviewers involved in this special issue: Several of the papers
have a substantial size and contain complex technical developments.
Still, you never let us down and came back with extensive constructive
suggestions. Your work is deeply appreciated. Finally, we thank all the
authors for creating substantially extended and revised versions of their
conference papers.

Funding Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Beyer, D., Jakobs, M.C.: Cooperative, verifier-based testing with
CoVeriTest. Int. J. Softw. Tools Technol, Transfer (in this issue)
(2020)

2. Boronat, A.: Incremental execution of rule-based model transforma-
tion. Int. J. Softw. Tools Technol, Transfer (in this issue) (2020)

3. Dubrulle, P., Kosmatov, N., Gaston, C., Lapitre, A.: PolyGraph: a
data flow model with frequency arithmetic. Int. J. Softw. Tools Tech-
nol, Transfer (in this issue) (2020)

4. Fritsche, L., Kosiol, J., Schiirr, A., Taentzer, G.: Avoiding unneces-
sary information loss. Int. J. Softw. Tools Technol, Transfer (in this
issue) (2020)

5. Schneider, S., Lambers, L., Orejas, F.: A logic-based incremental
approach to graph repair featuring delta preservation. Int. J. Softw.
Tools Technol, Transfer (in this issue) (2020)

6. Schneider, S., Maximova, M., Sakizloglou, L., Giese, H.: Formal
testing of timed graph transformation systems using metric temporal
graph logic. Int. J. Softw. Tools Technol, Transfer (in this issue)
(2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Automated model analysis tools and techniques presented at FASE 2019
	Abstract
	1 Introduction
	2 Contributions
	Acknowledgements
	References




