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Abstract
The architecture of ARINC-653 partitioned scheduling has been widely applied to avionics systems owing to its robust tem-
poral isolation among applications. However, this partitioning mechanism causes the problem of how to optimize the partition
scheduling of a complex system while guaranteeing its schedulability. In this paper, a model-based optimization approach
is proposed. We formulate the problem as a parameter sweep application, which searches for the optimal partition schedul-
ing parameters with respect to minimum processor occupancy via an evolutionary algorithm. An ARINC-653 partitioned
scheduling system is modeled as a set of timed automata in the model checker UPPAAL. The optimizer tentatively assigns
parameter settings to the models and subsequently invokes UPPAAL to verify schedulability as well as evaluate promising
solutions. The parameter space is explored with an evolutionary algorithm that combines refined genetic operators and the
self-adaptation of evolution strategies. The experimental results show the applicability of our optimization method.

Keywords Partitioned scheduling ·Model-based optimization · Parameter sweep · Evolutionary algorithm · Timed automata ·
UPPAAL

1 Introduction

As theperformanceof embeddedprocessors rapidly increases,
there is a growing trend toward integratingmultiple real-time
applications into a partitioned scheduling system in avion-
ics development. The ARINC 653 standard [1] prescribes a
robust temporal partitioningmechanism for integratedmodu-
lar avionics (IMA) systems, where a global scheduler assigns
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a fraction of processor time to a temporally isolated partition
that contains a set of concurrent tasks. A local scheduler of
the partition manages the included tasks. The application of
partitioned scheduling is effectively able to prevent failure
propagation among partitions. However, it raises the ques-
tion of how to allocate processor time to partitions in an
optimal manner while guaranteeing their time requirements.

In ARINC 653, the time allocation for partitions is exe-
cuted cyclically according to a static schedule. A schedulable
system requires sufficient time allocation for all partitions.
The time requirement of a partition is described as a tuple of
periodic scheduling parameters 〈period, budget〉, which can
be used for generating the static schedule [1]. Given the set
of specific real-time applications in the system, these param-
eters determine not only the schedulability of the system
but also its processor occupancy. In this paper, the question
of resource allocation is interpreted as the optimization of
ARINC-653 partition scheduling parameters of a schedula-
ble system. The goal is to minimize the processor occupancy
of the system, thus making it possible to accommodate more
additional workload of applications [33].

The nature of ARINC-653 partition scheduling is a
complex nonlinear non-convex parameter optimization prob-
lem [33]. So far, most investigations [13,20,21,29,33] have
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been confined to analytical methods, whose rigorous mathe-
matical models build on theworst-case assumptions of a sim-
plified system. Inmore complex real-time applications, more
expressive model-checking (MC) approaches [8–11,22,32]
are extensively being developed to incorporate a great vari-
ety of behavioral features including concrete task actions,
dependency and communications. They are based on various
formal models such as preemptive Time Petri Nets (pTPN),
Linear Hybrid Automata (LHA), and Timed Automata (TA).
For each promising scheduling scheme, its schedulability can
be verified or falsified automatically via state space explo-
ration of the system model.

However, to identify a globally optimal scheduling con-
figuration, the entire combinatorial parameter space must
be explored thoroughly. Each of these combinations leads
to a single model-checking operation which is in itself a
PSPACE-complete problem. Therefore, we use Evolutionary
Algorithm (EA) as a heuristic optimization method, thereby
avoiding the brute-force search of parameter space.

The model-based methods are also confronted with the
state space explosion problem, which makes the exact
model checking practically infeasible. There have been
several promising techniques that attempt to mitigate the
state space explosion of classical MC. Statistical Model
Checking (SMC) [27] is a simulation-based method that
runs and monitors a number of simulation processes, pro-
viding the statistical results of verification with a certain
degree of confidence. However, SMC cannot provide any
guarantee of schedulability but quick falsification owing to
its nature of statistical testing. By contrast, compositional
approaches [24] decompose the system into components,
check each component separately by classical MC and con-
clude system properties at a global level, but might offer
conservative results due to abstraction of the components.
Therefore, it is reasonable to combine the global SMC and
compositional MC techniques. Nevertheless, we found no
studies that applied such a combination to the optimiza-
tion of ARINC-653 partition scheduling. Uppaal [3] is a
model-checking toolbox for modeling and verifying real-
time systems described as extended TA, which is expressive
enough to cover features of an IMA system. There are several
branches in the Uppaal family. The classical Uppaal and
Uppaal SMC [12] provide the implementation of symbolic
MC and SMC, respectively. In the previous work [18], we
have integrated the global SMC and compositional MC into
a Uppaal-based schedulability analysis of IMA systems.

In this paper, we propose a model-based optimization
method of ARINC-653 partition scheduling for IMA sys-
tems. The core idea is to extend theUppaal TAmodel of the
system with a parameter sweep application that searches for
the optimal schedulable solutions with respect to minimum
processor occupancy. Our main contributions include:

– A model-based optimization method that addresses the
optimal time allocation of partitioned scheduling sys-
tems by performing a heuristic search of the objective
parameter space of the Uppaal TA model.

– A Uppaal-based modeling and analysis technique that
supports parameter sweep by quickly falsifying non-
schedulable solutions and evaluating schedulable ones.
An IMA system is modeled as TAmodels inUppaal and
its schedulability constraints are verified automatically
via the integrated method of global SMC and composi-
tional MC analysis.

– A generator of ARINC-653 partition schedules that con-
nects the parameter optimizer and theUppaalTAmodels
of an IMA system to enable the automatic design of IMA
partition scheduling.

– An evolutionary algorithm that combines refined genetic
search operators and the adaptation of evolution strate-
gies, thereby accelerating the process of finding optimal
solutions and meanwhile reducing the risk of premature
convergence.

The rest of the paper is organized as follows. Section 2 gives
the definition of the optimization problem. Section 3 pro-
vides a background of the schedulability analysis. Section 4
introduces the parameter optimization method and briefly
presents its constituent components. We detail the evolution-
ary algorithm EA4HS in Sect. 5. The experiments on sample
systems are shown in Sect. 6. Section 7 gives the relatedwork
and Sect. 8 finally concludes.

2 Optimization problem description

In this section, we first outline an IMApartitioned scheduling
system, and then give the definition of its parameter optimiza-
tion problem.

2.1 Systemmodel

We focus on a two-level partitioned scheduling systemwhere
partitions are scheduled by a Time Division Multiplexing
(TDM) global scheduler and each partition also has a local
scheduler based on preemptive Fixed Priority (FP) policy to
manage the partition’s internal tasks.

The system consists of a set of temporal partitions Ω =
{Pi |i = 1, 2, . . . , n} running on a single processor. The
TDM global scheduler executes time allocation for parti-
tions according to a static schedule S cyclically and repeats
S every major time frame M [1]. The partition schedule S is
comprised of a set of partition time windows: S = {Wt |t =
1, 2, . . . , w}.Wt is a time slot 〈Pt , ot , dt 〉 belonging to a par-
tition Pt ∈ Ω , where ot and dt denote the offset from the start
of M and expected duration respectively. The w time slots
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Fig. 1 Hierarchical architecture of partitioned scheduling systems

are non-overlapping, satisfying that 0 ≤ o1 < o1 + d1 <

o2 < o2 + d2 < · · · < ow < ow + dw ≤ M . Partitions are
activated only during their partition time windows within M .

Each partition Pi accommodates a set of tasks Γi =
{τ ij | j = 1, 2, . . . ,mi } which are scheduled by the local
scheduler of Pi in accordance with the preemptive FP policy
and executed only when Pi is activated. A task τ is repre-
sented by the tuple 〈I , T , O, J , D, R, L〉 where I is initial
offset, T is release interval, O is offset, J is jitter, D ≤ T is
deadline, R denotes task priority, and L describes the behav-
ior of τ as a sequential list. Each element of L is an abstract
instruction 〈Cmd, Res, TBCET , TWCET 〉. Cmd is an oper-
ation code in the command set {Compute, Lock, Unlock,
Delay, Send, Receive, End}. Res is an identifier encoding
one of the resources such as processor time, locks, and mes-
sages. TBCET and TWCET are execution time in the best case
and theworst case respectively. In the command set,Compute
denotes a general computation step, Lock and Unlock han-
dle locks, Delay allows the task to stop running for a certain
time, Send and Receive are used for inter-partition commu-
nications, and End is the symbol of job termination.

2.2 Schedulability condition

The schedulability of a partitioned scheduling system can
also be divided into conditions at the global and the local
level. Figure 1 shows this hierarchical scheduling architec-
ture.

At the global level, the schedulability is that the time sup-
ply of the global scheduler satisfies the time requirement of
each partition. The partition schedule S defines the time sup-
ply for partitions in the system. According to the ARINC
653 standard, the time requirement of a partition Pi can
be described as a tuple of periodic scheduling parameters
〈pi , bi 〉 where pi is a partition period and bi is the budget
within pi . Thus, the schedulability condition denotes that
the budget bi can be guaranteed by the partition schedule S

during each period pi . Compared with the variable-length
partition schedule, we are more interested in handling the
concise parameter tuple 〈pi , bi 〉 that is used as an input in
determining the partition time windows of Pi [1].

The schedulability at the local level requires all tasks to
meet their deadlines. The tuple of scheduling parameters
〈pi , bi 〉 indicates the total periodic time requirement of tasks
in Pi . We define two types of tasks:

– A periodic task has the kth release time tk ∈ [I + kT +
O, I + kT + O + J ] where k ∈ N and T denotes a fixed
period. A periodic task meets its deadline iff the task can
finish its kth job before the instant (I + kT + D) for any
k ∈ N.

– A sporadic task characterized by a minimum separation
T between consecutive jobs releases its (k + 1)th job
at tk+1 ∈ [tk + T ,+∞), and its first release is at t0 ∈
[I ,+∞). A sporadic task complies with its deadline iff
its kth job can be completed before (tk + D) for any
k ∈ N.

In addition, the ARINC-653 standard allows tasks to per-
form two types of communication between them: intra- and
inter-partition communication. The type of a communication
operation of a task depends on whether the communicat-
ing tasks are located in the same partition. The behavior of
resource sharing or message communication incurs the task-
blocking overheads that could affect the schedulability of
partitions at the local level. Hence, our model-based method
also needs to describe the concrete task behavior including
the (intra- and inter-partition) communication precisely in
Uppaal models.

2.3 Optimization problem

Consider the aforementioned partitioned scheduling system.
Given a set of partitions Ω = {Pi |i = 1, 2, . . . , n} and
their respective task sets {Γi }, the optimization problem is to
find a 2n-dimensional vector x = (x1, x2, . . . , x2n) ∈ R

2n+
where the parameter tuple 〈pi , bi 〉 of Pi corresponds to the
elements x2i−1 = pi and x2i = bi , such that the system
minimizes the processor occupancy U while guaranteeing
the schedulability at both the global and local level.

Suppose each release of partitions needs a context switch.
The processor occupancy is defined as

U =
n∑

i=1

ci · v + bi
pi

, (1)

where ci is the average number of context switching for Pi

during each partition period pi , and v is the context-switch
overhead.
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Fig. 2 Flowchart of schedulability analysis

Minimizing the processor occupancy of a partitioned
scheduling system makes it possible to accommodate more
additional workload of applications. Similar definitions of
the processor occupancy function have been proposed and
applied in previous papers [13,33], where it was called “pro-
cessor utilization” or “system utilization.” We found these
names counter-intuitive, because we normally chase a higher
“utilization” but it should beminimized in this problem. Thus
we renamed it processor occupancy in this paper. Equiv-
alently, we also define the remaining processor utilization
Ur = 1 −U and find the maximum Ur instead.

3 Background of schedulability analysis

In this section, we formulate the schedulability constraints
of the optimization problem on the basis of the model-
ing formalism of Uppaal. The behavior of the partitioned
scheduling systempresented inSect. 2.1 is furthermodeled as
a set ofUppaal templates. A template is a generalized object
of TA inUppaal. The automaton structure of a template con-
sists of locations and edges. A template may also have local
variables and functions. The templates can be instantiated as
a network of TAmodel instancesM that describe a complete
system. For any scheduling parameter vector x, the schedula-
bility of its system model is verified or falsified according to
the procedure in Fig. 2, where the right is the flowchart of our

model-based analysis and the left dashed-line box contains
the data objects of each process.

First, an ARINC-653 partition schedule S is generated
automatically from the input parameter vector x via an par-
tition scheduling algorithm, which guarantees S satisfies the
time requirement of x, i.e., schedulability at the global level.
We refer to x as a valid parameter combination if a partition
schedule can be generated from x, then the schedulability
analysis will proceed with the following costly steps. Oth-
erwise, it will conclude with the invalidity of x. A partition
scheduling algorithm is presented in Sect. 4.2.

Second, the schedulability constraints of the optimization
problem are expressed and fast falsified as queries of hypoth-
esis testing inUppaal SMC.We add a boolean array perror

with the initial value False to TA templates for this purpose.
Once the schedulability of partitionPi is violated, the related
model will assign the value True to perror[i] immediately.
Thus, the schedulability constraints for Pi are replaced with
the following query ρi :

Pr[<= N](<> perror[i]) <= θ, i = 1, 2, . . . , n (2)

where N is the time bound on the simulations and θ is a very
low probability.UppaalSMC is invoked to estimatewhether
the system model M satisfies the conjunction of n queries
statistically:

M |� ρ1 ∧ ρ2 ∧ · · · ∧ ρn (3)

SinceUppaalSMCapproximates the answer using simulation-
based algorithms,we can falsify any nonschedulable solution
rapidly but identify schedulable ones only with high proba-
bility (1 − θ ). Note that the probability distributions used in
such models affect the probabilities of events in the overall
model. In our case, this is not important as we do not evalu-
ate the probability of the events, but only search for a single
trace violating the schedulability. Therefore, all schedulable
results of SMC testing should be validated by classical MC
to confirm the schedulability of the corresponding system.

Finally, in order to alleviate the state-space explosion
problemof classicalMC,weapply our compositionalmethod
presented in [19] to schedulability validation, which is com-
prised of the following four steps:

1. DecompositionThe systemmodelM is first decomposed
into a set of communicating partitions models Pi , i =
1, 2, . . . , n. The schedulability property is also divided
into n TCTL (Timed Computation Tree Logic) safety
properties ϕi :

A[] not perror[i], i = 1, 2, . . . , n, (4)

each of which belongs to one partition.
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Fig. 3 Architecture of parameter sweep optimizer

2. Construction of message interfacesWe define a message
interface Ai as the assumption of the communication
environment for each partitionPi .Ai contains a set of TA
models that mimic the requisite message-sending behav-
ior of the other partitions.

3. Model checking We check each partition model Pi

including its environment assumptionAi individually by
verifying the local properties ϕi :

Pi‖Ai |� ϕi , i = 1, 2, . . . , n (5)

where the operator ‖ denotes composition of two TA
models.

4. DeductionAccording to the assume-guarantee paradigm,
we assemble the n local results together to derive con-
clusions about the schedulability of an entire systemM.

The optimization method proposed in the next section
builds on the above analysis approach, which guarantees the
schedulability constraints in search of the optimal solutions.

4 Parameter optimizationmethod

The parameter optimization method presented in this section
belongs to a class of random search methods. The optimizer
searches for the (nearly) optimal schedulable parameterswith
respect to minimum processor occupancy U . Each search
point in the considered parameter space can be converted
into a promising ARINC-653 partition schedule. We finally
give a Uppaal template framework that describes an IMA
partitioned scheduling system as a network of TA models.

4.1 Parameter sweep optimizer

Theoptimizer is structured as aParameter SweepApplication
(PSA) that comprises a set of independent “experiments”,
each of which is performed by a PSA task with a different
set of parameters [17]. These PSA tasks tentatively explore
the parameter space of 〈pi , bi 〉n to find promising search
points.

For any search point x, the optimizer creates a PSA task
that carries out the following procedure depicted in Fig.3:

(1) A search algorithm first offers a promising parameter
vector x to the PSA task. (2) An ARINC-653 partition sched-
ule is then generated from the parameter setting of x. (3) The
PSA task instantiates the Uppaal modeling framework by
assigning the partition schedule to the TA models and (4)
subsequently invokes Uppaal SMC to execute a fast global
schedulability test. (5) If the TA model goes through the
SMC test, it should be validated byUppaal classic via com-
positional analysis. (6) The schedulability constraints and
processor occupancy are evaluated by the objective function.
(7) The search algorithm receives feedback on the evalua-
tion of x to update its candidate solutions and exploration
direction. (8) Finally, this PSA task finishes its experiment
and waits for the next call from the optimizer. The optimizer
will continue the parameter sweep, based upon the results
of previous experiments, until the optimization criteria are
reached. The best scheduling parameter vector of x and its
partition schedule will be output at the end of the parameter
sweep.

Each component of the parameter sweep optimizer copes
with a specific issue of the optimization problem.
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A search algorithm guides the parameter sweep to select
search points until an acceptable solution is found. We
consider that exhaustive search is mostly infeasible and
derivative information also unavailable for complex sys-
tems, thus employing an evolutionary algorithm to perform
a heuristic search of the parameter space. Since there are
no communications or data dependencies among PSA tasks,
we adopt parallel search policies that distribute PSA tasks
over several computing nodes so as to speed up the param-
eter sweep. Section 5 details the design of this evolutionary
algorithm.

An ARINC-653 schedule generator converts the parame-
ter vector x into an ARINC-653 static partition schedule by
using an offline scheduling algorithm, which can make all
scheduling decisions prior to run-time. This generator con-
nects the parameter sweep optimizer and the Uppaal TA
models of an IMA system to enable the automatic design
of ARINC-653 partition scheduling. Section 4.2 gives an
implementation of the generator based on the preemptive
FP scheduling policy.

A Uppaal template framework describes a partitioned
scheduling system as a network of TA models. Since
Uppaal supports arrays and user-defined types, the ARINC-
653 partition schedule is encoded into a structure array
partition_windows where each element corresponds to a
partition time window. The global scheduler modeled as a
TA template GS executes partition scheduling according to
the array records. When instantiating the templates, a PSA
task should assign the array of its partition schedule to a
copy of the Uppaal model file. The Uppaal templates are
presented in Sect. 4.3.

The schedulability constraints of the optimization prob-
lem are expressed as three properties: (1) validity of x, (2)
hypotheses of the SMC testing, and (3) TCTL safety prop-
erties in the MC compositional analysis. For any x, the
schedulability of its corresponding system is verified or falsi-
fied in the formof these properties according to the procedure
in Sect. 3. The results of this schedulability analysis are trans-
ferred from theARINC-653 schedule generator orUppaal to
the objective function in the optimizer.

The objective function of the optimization problem pro-
vides a quality evaluation for any parameter vector x. Since
the processor occupancy U of Eq. (1) is only valid for
schedulable parameter vectors, we define the objective of
the evolutionary search as a fitness function, which evaluates
the remaining processor utilization Ur of any x on the basis
of schedulability constraints. The evaluation of x is to update
the state and search direction of the evolutionary algorithm.
We give the definition of this fitness function in Sect. 5.2.

Fig. 4 Data flow of an ARINC-653 schedule generator

4.2 Generation of ARINC-653 partition schedules

As depicted in Fig. 4, the ARINC-653 schedule generator
takes input of n scheduling parameter tuples 〈pi , bi 〉, i =
1, 2, . . . , n and produces a partition schedule S with the
major time frame M . The design of the offline scheduling
algorithm should prevent a low-criticality application from
affecting high-criticality applications. Hence, we adopt the
preemptive FP scheduling policy to allocate processor time
to partitions. A partition is viewed as a periodic execution
unit scheduled in a preemptive fixed priority manner prior to
the running of the system. For any partition Pi , the execu-
tion budget bi should be provided during each period pi . We
assign a priority ri to Pi and use lower numbers for higher
priorities. In practice, the priority of a partition is commonly
pre-allocated on the basis of its criticality level. Without loss
of generality, We assume that ri ≤ r j iff i ≤ j .

Algorithm1presents the generation process of anARINC-
653 partition schedule. Themajor time frame M is defined as
the least common multiple of all partition periods and calcu-
lated by the function LCM (line 2). The partition schedule S
is initialized as a set of two auxiliary time slots 〈None, 0, 0〉
and 〈None, M, 0〉 that denote the lower and upper bound of
partition time windows, respectively (line 3). We allocate
processor time to partitions from higher priority to lower pri-
ority, thus avoiding handling partition preemption. For each
partition, we iteratively find gaps between the existing time
slots in S (line 9) and insert new partition time windows into
these gaps (line 15).

Algorithm 1 is able to handle any input parameter com-
binations and offer precise (non-)schedulability conditions
(line 10 and 24) at the global level, thereby integrating the
parameter sweep optimizer with the Uppaal TA models of
ARINC-653 partitioned scheduling systems.
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4.3 UPPAAL template framework

In the Uppaal template framework, an IMA partitioned
scheduling system is modeled as two types of TA: sched-
uler models and execution models. The TA template of a
global scheduler GS and a local scheduler LS constitute the
scheduler models, which control the execution models by
using a set of channels as scheduling commands. The exe-
cution models consist of two TA templates PeriodicTask

and SporadicTask describing two types of tasks. We present
the modeling methods of two major features of partitioned
scheduling systems1.
Two-level Hierarchical Scheduling: The two-level sched-
uler models GS and LS realize the hierarchical architecture.
Take the local scheduler LS shown in Fig.5 for example. A

1 A zip file containing the source code for the optimization and all
the models can be found at http://people.cs.aau.dk/~ulrik/submissions/
908233/EA_and_models.zip.

Fig. 5 Local scheduler model

local scheduler belongs to a partition identified by a tem-
plate parameter pid. LS receives notification from GS through
two channels enter_partition and exit_partition when
entering and exiting the partition pid respectively, and uses
four channels ready, release, sched and stop as commands
to manage the tasks in pid. If there is a task becoming ready
to run or relinquishing the processor, the task model will
send its LS a ready or release command respectively. LS
maintains a ready queue rq that keeps all the tasks ready and
waiting to run, and always allocates the processor to the first
task with the highest priority in rq. If a new task having a
higher priority than any tasks in rq get ready, LS will insert
the task into rq, interrupt the currently running task via stop

and schedule the new selected task via sched.
According to whether the current time is inside the parti-

tion as well as to the number of the tasks in the ready queue,
we create fourmajor locations NoTask, Idle, WaitPartition
, and Occupied. These four locations cover all situations,
where the model must be at one of these locations for any
instant. By contrast, the other locations realize conditional
branches and atomic action sequences in the model.

Note that this framework has the capability of adopting
different local scheduling policies in the system. This can be
achieved by instantiating a new template of the local sched-
uler with a different scheduling policy for the partition. The
new template is only required to conformwith the same func-
tion definition of the channels as before.

Task Behavior In the templates PeriodicTask and Spo-
radicTask, we define a set of abstract instructions to describe
concrete task behavior. Figure 6 shows the main structure of
the task templates. A clock exeTime measures the process-
ing time during the execution of an abstract instruction, and
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Fig. 6 Main structure of a task model

progresses only when the model is at the location Running.
Once the task is scheduled by LS through the channel sched,
it will start execution on the processor and move from the
location Ready to ReadOp.

A sequential list of abstract instructions is implemented
as the structure array op. By using an integer variable pc

as a program counter, the task can fetch the next abstract
instruction from op[pc] at the location ReadOp. According
to the command of this abstract instruction, the task model
performs a conditional branch and moves from the location
ReadOp to one of the different locations that represent differ-
ent operations.

5 Evolutionary algorithm EA4HS

Evolutionary algorithms (EA) are an iterative stochastic
search method inspired by natural selection and based on the
collective learning process within a population of individu-
als, each of which represents a search point in the solution
space of a specific problem [2]. The population evolves from
random initial values toward increasingly better solutions by
means of three selection, recombination, and mutation oper-
ators. The individuals are evaluated and selected according
to the value of a fitness function. There are several variants of
EAs such as Genetic Algorithms (GA), Evolution Strategies
(ES), and Evolutionary Programming (EP), which adopt dis-
tinctive fitness function, representation of search points, and
implementation of operators.

In this section, we present an evolutionary algorithm
EA4HS for solving the parameter optimization of ARINC-
653 hierarchical scheduling systems. This algorithm com-

bines improved operators of the GA and self-adaptation of
the ES. We first give the outline of EA4HS. The designs of
its fitness function, operators and self-adaptation are then
detailed.

5.1 Outline of the evolutionary algorithm EA4HS

The goal of EA4HS is to optimize a set of object parame-
ters x = (x1, x2, . . . , xm), i.e., the unknown 2n-dimensional
vector x in the optimization problem, regarding an objective
function Ω : R

m+ → R. The EA manipulates popula-

tions β(g), g ∈ N of individuals α
(g)
k , k = 1, 2, . . . , K

where g is the number of generations and K the size
of the population. An individual α

(g)
k is represented by a

tuple 〈x(g)
k , s(g)k 〉 that consists of not only object parameters

x(g)
k = (x (g)

k,1, x
(g)
k,2, . . . , x

(g)
k,m) but also strategy parameters

s(g)k = (σ
(g)
k,1 , σ

(g)
k,2 , . . . , σ

(g)
k,m).

The strategy parameters come from evolution strategies
to control statistical properties of the genetic operators [6].
These strategy parameters can evolve together with object
parameters during the evolution process. For any individual
α

(g)
k , there are 2n strategy parameters in s(g)k where the evo-

lution of x (g)
2i−1,k and x (g)

2i,k with i ∈ {1, 2, . . . , n} (i.e. the
unknown parameters pi and bi in the optimization problem)
is guided by the combination of σ

(g)
2i−1,k and σ

(g)
2i,k .

Let I be the range of individuals. The fitness function
f : I → R realizes the objective function Ω by map-
ping each individual to a fitness value. In general, the better
an individual fits, the higher is the probability of its being
selected in the next generation. Moreover, the EA adopts the
mechanism of elitism that many of the fittest individuals are
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copied directly to the next generation, and E is the number
of elitist individuals in each generation.

The outline of EA4HS is given in Algorithm 2.

The object parameters in the first population β(0) are
initialized as a set of independent random numbers from
a uniform distribution U(ximin, ximax ) where the interval
[ximin, ximax ] indicates the search range of the optimal solu-
tions. By contrast, all the strategy parameters are set to
user-defined values at the first generation according to the
definition of the mutation operator of object parameters.
Then we evaluate the fitness value of each individual in β(0)

(line 3). After initialization we enter and execute the main
loop of the evolution process until a termination condition is
satisfied (lines 4–19).

The main loop produces a descendant population β(g+1)

from the parent population β(g) at any generation g. First, E
elitist individuals are copied into the set e (line 5). According
to the fitness values of β(g), we execute the selection operator
that chooses (K − E) pairs of parents separately from the
population β(g) and writes these parental individuals into
the set β(g)′ (line 6). Then, the algorithm enters an inner
loop (lines 7-14) where a new individual is born during each
iteration.

In this inner loop, reproduction should be repeated until
a valid object parameter combination is produced or the
maximum number Rmax of iterations is reached (lines 8-
13). Otherwise the new generation would be drowning in
invalid parameters and starved of information. Based on the
selected parental pairs in β(g)′, the recombination and muta-

tion of object parameters are performed (lines 10 and 12),
generating the object parameter vector x(g+1)

k of the kth new
offspring. Meanwhile, the strategy parameters originating
from β(g) also undergo recombination (line 9) and muta-
tion (line 11) independently to control the mutation operator
of object parameters that achieves mutative self-adaptation.
The resulting object parameters x(g+1)

k and strategy parame-

ters s(g+1)
k constitute a new individual α(g+1)

k .
We obtain the descendant population β(g+1) by compos-

ing E elitist individuals e and (K−E) newoffspring {α(g+1)
k }

(line 15). The fitness of β(g+1) is evaluated (line 16) to
update the current optimal scheduling parameters x (line 17).
Finally, the evolution process returns x as an optimal solution
(line 20).

5.2 Definition of the fitness function

The fitness function provides a measure for any individual
α = 〈x, s〉 to determine which individuals should have a
higher probability of being selected to produce the population
at next generation.

The motivation for designing this fitness function stems
from two aspects: First, the fitness value should reflect not
only the goal of processor occupancy but also the potential
for schedulability satisfaction. Such a fitness function eval-
uates the processor occupancy on the basis of assessment of
the schedulability constraints in such a way that we select
better individuals without breaching the constraints of the
optimization problem. Second, it is necessary to speed up
the fitness calculation due to a costly model-based schedu-
lability analysis. An integration of global SMC testing and
compositional MC verification should provide a fast strict
assessment of schedulability properties for any individual.

Accordingly, the fitness function f : I → R extracts the
object parameters x = (x1, x2, . . . , x2n) from their individ-
ual α and evaluates the fitness value of x in accordance with
the following principles:

– Invalid parameter combinations, which cannot generate a
valid partition schedule, are assigned to the lowest fitness.

– For any valid parameter vector x, the MC verification
should not be invoked to confirm the strict schedulability
until the entire system of x is proved statistically schedu-
lable by the SMC tests.

– Higher fitness values should be assigned to statistically
schedulable parameter vectors than non-schedulable
ones, and to strictly schedulable parameter vectors than
only statistically schedulable ones.

– For any valid parameter vector x, if more schedulable
partitions are found in the SMC tests or MC verification,
a higher fitness should be assigned to x.
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– For any two valid parameter vectors, if they are equal in
the number of schedulable partitions, we will assign a
higher fitness to the vector whose schedulable partitions
occupy less processor time.

– For any strictly schedulable parameter vector, a lower
processor occupancy U means a higher fitness.

We define the fitness function as the following piecewise
formula:

f (α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ζ
(
1 +

∑n
i=1 g(x2i−1, x2i )∑n

i=1 x2i

)
, γ1

−ζ
(
1 − 1

∑n
i=1(x2i/x2i−1)

)
, γ2

0, γ3

ζ
(
1 + ∑n

i=1 ρ(i)(1 − x2i
x2i−1

)
)
, γ4

ζ
(
n + 1

n

(
1 + ∑n

i=1 ϕ(i)(1 − x2i
x2i−1

)
))

, γ5

ζ
(
1 + n +Ur (x)

)
, γ6

(6)

where the conditions consist of

– γ1 : ∃i, x2i−1 < x2i

– γ2 : ¬γ1 ∧ ∑n
i=1

x2i
x2i−1

> 1

– γ3 : ¬γ1 ∧ ¬γ2 ∧ ¬valid(x)
– γ4 : valid(x) ∧ ∑n

i=1 ρ(i) < n
– γ5 : valid(x) ∧ ∑n

i=1 ρ(i) = n ∧ ∑n
i=1 ϕ(i) < n

– γ6 : valid(x) ∧ ∑n
i=1 ρ(i) = n ∧ ∑n

i=1 ϕ(i) = n,

ζ is a scale factor, g(p, b) =
{
b − p, p < d
0, p ≥ d

provides

the excess budget for the period p and execution bud-

get b, ρ(i) =
{
1, if SMC query ρi is satisfied
0, if SMC query ρi is not satisfied

returns

the results of the SMC schedulability testing, Similarly

ϕ(i) =
{
1, if TCTL property ϕi is satisfied
0, if TCTL property ϕi is not satisfied

provides

the results of the compositional MC schedulability verifi-
cation, Ur (x) gives the remaining processor utilization, and
valid(x) fetches the validity of x after invoking Algorithm 1.
The condition

∑n
i=1 ρ(i) = n and

∑n
i=1 ϕ(i) = n imply the

statistically and strictly schedulability, respectively, for all n
partitions of the system conclude with positive results.

There are six cases in the definition of our fitness function.
As shown inFig.7,we allocate different ranges on the number
axis to these cases.

The first three cases handle invalid parameter combina-
tions that are indicated by negative or zero fitness values. In
the first case γ1, there exists a partition Pi whose execution
budget bi = x2i is greater than its period pi = x2i−1. Obvi-
ously, such a combination does not make sense. Thus, we

Fig. 7 Allocation of fitness values on the number axis

compute the normalized sum of all the excess budgets and
shift it to a low interval [−2ζ,−ζ ). The second caseγ2,where
the total utilization ratio

∑n
i=1 x2i/x2i−1 is greater than 1,

overspends all available budgets. Similarly, the excess ratio
ismapped into the interval (−ζ, 0). The rest of invalid param-
eter vectors should be reported by the ARINC-653 schedule
generator due to the non-schedulability at the global level.
They are classified as the third case γ3 and assigned zero
fitness. Note that the model-based schedulability testing or
verification is not required in these invalid cases.

On the contrary, the fitness of valid object parameters
is evaluated on the basis of the results of SMC tests and
MC verification. After fast testing the schedulability of
each partition in Uppaal SMC, we calculate a fitness value
according to the number of statistically schedulable parti-
tions ns = ∑n

i=1 ρ(i). The fitness value is mapped into the
interval [nsζ, (ns + 1)ζ ) by adding ζns and the normalized
remaining utilization ratio of statistically schedulable parti-
tions ζ(1 − ∑n

i=1 ρ(i)x2i/x2i−1) (i.e. case γ4).
Not until all n partitions go through the SMC tests will

the costly compositionalMCmethod be invoked to verify the
schedulability of the system. Once this property is confirmed
(i.e., case γ6), the fitness function will extend the remaining
processor utilization Ur by an offset (n + 1)ζ , thus obtain-
ing the highest fitness within [(n + 1)ζ, (n + 2)ζ ). If the
schedulability of the system is falsified by the MC verifica-
tion (i.e. case γ5), we will map the sum of the number of
strict schedulable partitions

∑n
i=1 ϕ(i) and their remaining

utilization ratio (1 − ∑n
i=1 ϕ(i)x2i/x2i−1) into the interval

[nζ, (n + 1)ζ ).

5.3 Selection operator

In the evolution process, there is a high probability of pro-
ducing low-fitness object parameters such as the invalid
combinations where an execution budget is greater than its
partition period. Since each generation contains many bad
and only very few good individuals, we prefer exponential
ranking selection operator that is able to give higher selec-
tive pressure, i.e., the tendency to select better individuals
from a population [31], while guaranteeing certain standard
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deviation of the fitness distribution of the population after a
selection operation [26].

Exponential ranking selection is implemented as two
steps: (1) K individuals in a population are ranked in order
of fitness from worst 1 to best K . (2) The i th individual is
selected according to the exponentially weighted probability

pi = cK−i

∑K
j=1 c

K− j
(7)

where the base of exponent c ∈ (0, 1) is used to control the
selective pressure of the operator. A smaller c will lead to a
higher selective pressure, which means best-fitness individ-
uals are more likely to be selected. The selection operation
is repeated until (K − E) pairs of individuals are obtained.

5.4 Recombination operator

There is a widely accepted design principle that recombina-
tion operators mainly extract the similarities from selected
parents [5]. In our optimization problem, the similarities
between individuals originate not only from the independent
values of partition periods and budgets but from the proces-
sor usage of each partition. Accordingly, we design a local
line recombination operator for the EA4HS. For any parti-
tion Pi , the recombination operator mixes information from
parents about the period pi and budget bi of Pi , and extracts
the similarities in terms of the utilization ratio of bi to pi ,
which indicates the processor usage of Pi .

Let x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , ym) be the
object parameters of two parents. The local line recombina-
tion computes an offspring z = (z1, z2, . . . , zm) by

z j = x j + ξi (y j − x j ) j = 1, 2, . . . ,m i =
⌊
j + 1

2

⌋
(8)

where the weighting ξi is randomly generated by a uniform
distribution U(−d, 1 + d) and d ∈ [0.25, 0.5] is the con-
straint value on the line extension. For any offspring z, two
consecutive parameters pi = z2i−1 and bi = z2i belong-
ing to one partition share a common factor ξi . In doing so,
the recombination produces the offspring parameters of each
partition independently on a common line segment through
both of the parents.

We consider three types of genetic information: (1) the
period pi , (2) the budget bi , and (3) the utilization ratio
bi/pi of the i th partition. As depicted in Fig.8, the off-
spring z can be chosen uniformly at random from the line xy,
where the recombination operator mixes these three types of
genetic information simultaneously fromparents. Obviously,
all three types of genetic information are kept in the offspring
z and similar to those in its parents x and y.

Fig. 8 An example of recombination and mutation operations

5.5 Mutation operator

Compared with recombination, mutation operators do not
only provide a source of genetic variation but also maintain
degree of population diversity, whose insufficiency is one of
the major cause of premature convergence [30]. However,
generic mutation operators cannot utilize the correlations
between the period pi and budget bi in individuals to acquire
promising processor usage of partitions, causing the mutants
to be always eliminated after selection in all probability. This
extremely low survival rate increases the risk of premature
convergence. Thus, we propose a rotated Gaussian mutation
operator to help the EA4HS converge to a global optimum
effectively.

Themutation operator has two input parameters including
the set of object parameters z = (z1, z2, . . . , zm) after recom-
bination and of strategy parameters s = (σ1, σ2, . . . , σm) that
control mutation strength. Each pair of the object param-
eters (z2i−1, z2i ) is mutated as an independent vector z̃i .
The mutation operator transforms z into a new offspring
z′ = (z′1, z′2, . . . , z′m). Let z̃′i stand for (z′2i−1, z

′
2i ). We have

z̃′i = z̃i + Δi i = 1, 2, . . . , n (9)

where Δi is a random sample from a bivariate normal distri-
bution N (μi ,�i ).

The covariance matrix �i ∈ R
2×2 can be geometrically

interpreted as a set of ellipses, each of which is a density
contour ofN (μi ,�i ). Consider the fact that a parent z with
valid parameters has a high probability of producing a valid
offspring z′ if each of the new utilization ratios z′2i/z′2i−1
is close to the parental z2i/z2i−1. We define the covariance
matrix �i as the set of ellipses whose major axes are par-
allel with the lines of equal ratio z2i/z2i−1 shown in Fig.8.
Thus, N (μi ,�i ) is obtained by rotating a bivariate normal
distribution N (μi ,Di ) counterclockwise through an angle
θi :
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�i = RiDiRT
i (10)

where Di = diag(σ2i−1, σ2i ) derives two strategy parame-

tersσ2i−1 andσ2i from s,Ri =
(
cosθi −sinθi
sinθi cosθi

)
is a rotation

matrix, and

sinθi = z2i√
z22i−1 + z22i

, cosθi = z2i−1√
z22i−1 + z22i

. (11)

Strategy parameters σ2i−1 and σ2i indicate the standard
deviations of N (μi ,�i ) along the major and minor axes,
respectively. To perform such an ellipses-parallel mutation,
we initialize each σ2i−1 of the strategy parameters with a
greater value than σ2i , thereby adapting the mutation distri-
bution Δi ∼ N (μi ,�i ) to the fitness landscape.

The mean μi ∈ R
2 of the normal distribution is defined

as

μi =
{
0, ‖z̃i‖2 ≥ 2σ2i−1

2σ2i−1(cosθi , sinθi ), ‖z̃i‖2 < 2σ2i−1
(12)

where ‖z̃i‖2 =
√
z22i−1 + z22i is the Euclidean norm of the

vector z̃i . In most cases, the meanμi is assigned 0 and hence
the mutants z′ will center around the input parameters z.
However, the zero mean μi = 0 may cause the mutations to
generate a large number of invalid minus parameters, espe-
cially when the input points z̃i are close to the origin but their
mutations receive large standard deviations σ2i−1. Accord-
ing to the empirical rule in statistics (i.e., 95% of the values
in a normal distribution lie within two standard deviations of
the mean), we will add a 2σ2i−1 offset along the major axis
of N (0,�i ) to z̃i if the Euclidean norm of z̃i is less than
a distance of 2σ2i−1, effectively reducing the probability of
producing minus parameters.

Subsequently, the EA4HS sets strategy parameters adap-
tively to direct the search during the evolution process.

5.6 Self-adaptation of strategy parameters

The strategy parameters are encoded, selected and inherited
together with the object parameters of individuals. They also
undergo recombination and mutation operations to control
the statistical properties of the mutation operator of object
parameters adaptively.

Since the considerable fluctuations of strategy param-
eters normally degrade the performance of EAs [6], we
provide a weighted intermediate recombination operator
for strategy parameters in order to mitigate these fluctua-
tions as well as extract the similarities. The recombinant
s̄ is a weighted average of all the K vectors s(g)k =
(σ

(g)
k,1 , σ

(g)
k,2 , . . . , σ

(g)
k,m) of the strategy parameters in a pop-

ulation β(g) =
{
α

(g)
1 , α

(g)
2 , . . . , α

(g)
K

}
:

s̄ = 1

K

K∑

k=1

(1 − τr )
λk s(g)k (13)

where τr ∈ [0, 1] is a user-defined learning rate and λk is the
number of times an individual α

(g)
k appears continuously in

the elitist set ε. The recombination also assigns s̄ to all the
individuals in ε.

A log-normal operator [6] is applied to the mutation
of strategy parameters, providing the primary source of
their genetic variation. This log-normal mutation ensures
positiveness of the strategy parameters that serve as stan-
dard deviation of a normal distribution. The recombinant
s̄ = (σ̄1, σ̄2, . . . , σ̄m) mutates into the strategy parameters
s(g+1)
k = (σ

(g+1)
k,1 , σ

(g+1)
k,2 , . . . , σ

(g+1)
k,m ) at next generation by

σ
(g+1)
k, j = σ̄ j e

τuN j (0,1) (14)

where τu is also an input learning rate and N j (0, 1) denotes
a random sample from the standard normal distribution. The
learning rate τu = 1/

√
m is recommended according to [6].

6 Experiments

This section presents the experiments on two avionics sys-
tems to demonstrate the applicability of our optimization
method. In the experiments, our parameter sweep method
shows the capability of converging to a global optimum. We
also evaluate the performance of search algorithms by com-
paring the proposed EA4HS with exhaustive search and two
popular genetic algorithms.

All the experiments in this section were executed on
the cluster that consists of four computer nodes with 1 TB
memory. Each node has 64 cores of 4 AMD Opteron 6376
processors. The schedulability tests and validation were per-
formed on Uppaal 4.1.19 64-bit version. We assign the
timebound N = 1.0 × 104 time units and the probability
threshold θ = 0.05 for Eq.(2).

6.1 Experiment on simple periodic task sets

We first perform the experiments on a simple periodic task
set taken from [13]. The task set comprises two identical par-
titions with different priorities, thus making their partition
priority ordering irrelevant. Each partition contains multiple
independent periodic tasks, whose period, deadline and pri-
ority are encoded into Uppaal declarations. The behavior
of a task is described as a pure Compute instruction with a
Worst Case Execution Time (WCET).
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Table 1 Task set of Experiment 1 [13] (Times in µs)

PID PR Task

TID T E D R

P1 1 Tsk11 160 8 100 1

Tsk12 240 12 200 2

Tsk13 320 16 300 3

Tsk14 480 24 400 4

P2 2 Tsk21 160 8 100 1

Tsk22 240 12 200 2

Tsk23 320 16 300 3

Tsk24 480 24 400 4

The task set is shown in Table 1 where the column “PID”
and “TID” identify the partitions and tasks, respectively,
“PR” gives partition priorities, “T” is task periods, “E” is
the WCET, “D” is deadline, and “R” is task priorities. We
define the time unit as a microsecond in the table and the
context switch overhead as 2 time units.

Experiment 1

The parameter optimization of the above avionics workload
was carried out by three following methods:

– Exhaustive search An analytical condition for schedu-
lable parameters is derived from a response time analy-
sis [13]. This method scans all possible integer combina-
tions of the partition period through a potential interval
[4, 200]. For each period combination, it uses a binary
search together with the schedulability condition to find
the minimum execution budget from the highest prior-
ity to the lowest one. This exhaustive search is able to
produce a global optimal solution, but only applicable to
such a simple system.

– Parameter sweep with GAs Two popular GAs, the classic
and the breeder genetic algorithm [25], are first applied
to parameter sweep for comparison. Table 2 shows their
operator combinations and denotes them by “GA 1” and
“GA 2” respectively. Individuals are binary encoded in
both of the GAs. In GA 1, an exchange of each bit in
parents takes place with a probability pe = 0.5, and
the probability of bit mutation is pu = 0.2. In GA 2,

Table 3 Optimization result of Experiment 1 (Times in µs)

Method Solution Occupancy Optimal

GA 1 (120, 26, 180, 66) 61.67% No

GA 2 (126, 35, 126, 35) 58.73% No

EA4HS (160, 34, 160, 34) 45% Yes

the percentage T% of truncation selection is set to 50%,
the weighting constraint of intermediate recombination
is dr = 0.5, the standard deviation of Gaussian mutation
is σu = 10, and the mutation probability is pu = 0.2.

– Parameter sweep with EA4HS In the EA4HS, individuals
are also binary encoded, the base c of exponential ranking
selection is 0.8, the value d of local line recombination is
0.5, and we initialize the strategy parameters σ2i−1 = 50
and σ2i = 5 for i ∈ {1, 2} in an individual. We define
the learning rates τr = 0.7 and τu = 1/

√
4 = 0.5. The

operator combination is also shown in Table 2.

Both the GAs and EA4HS adopt the search range [4, 200]
for all partition periods, population size K = 64, elitism
size E = 4, and maximum generation G = 300. For each
individual, we calculate its fitness value and store them in
a hash table. Once the same individual reappears in the fol-
lowing generations, the fitness value will be fetched from the
hash table directly, thus avoiding the costly redundant fitness
calculation.

Table 3 shows the optimization result of Experiment 1.
Both the exhaustive search and parameter sweep with the
EA4HS reached the same global optimal solution xopt =
(160, 34, 160, 34), which gives a minimum processor occu-
pancy U = 45%. Unfortunately, two GAs only offer two
local optimal solutions with much higher processor occu-
pancy 61.67% and 58.73%.

Figure 9 presents the evolution of minimum processor
occupancy and cumulative processing time of the GAs and
EA4HS in Experiment 1. Since duplicate fitness calculation
is replacedwith reading the hash table, the convergence of the
evolution means a synchronous slowdown in the variation of
minimum processor occupancy and cumulative processing
time. Obviously, both GA 1 and GA 2 fell into a premature
convergence on local optimal solutions after 30 generations.

Table 2 Operator combinations of the EAs

EA Selection operator Recombination operator Mutation operator

GA 1 Roulette wheel selection Uniform crossover Bit-flip mutation

GA 2 Truncation selection Intermediate recombination Gaussian mutation

EA4HS Exponential ranking selection Local-line recombination Rotated Gaussian mutation
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Fig. 9 Evolution of minimum processor occupancy and cumulative processing time in Experiment 1

In contrast, the EA4HS adjusts strategy parameters adap-
tively to control the average search area of mutation oper-
ations. When there was a convergence trend during the
generations of [30, 70) and [160, 200), the self-adaptation
of strategy parameters expanded the search areas to improve
population diversity and subsequently made the search con-
centrated in smaller areas to find better solutions within few
generations, thereby leading to a fast decrease in the mini-
mum processor occupancy over the subsequent generations
[100, 160) and [270, 300) shown in Fig. 9a. The repeated
adjustments of the EA4HS reduce the risk of premature con-
vergence on a local optimal area, producing two “steps” of
its processing time curve in Fig. 9b.

Experiment 2

Considering that the premature convergence may affect the
result of these two GAs, we continue the comparison exper-
iment on the same task set but adopt different configuration
for the EAs to defer their convergence during the evolution.
Experiment 2 repeats the same procedure for Experiment
1, using the same search range [4, 200], population size
K = 64, elitism size E = 4, maximum generationG = 300,
and the following detailed configuration:

– GA 1 More frequent bit-flip mutation in GA 1 will
produce new individuals more randomly, thus possibly
raising the degree of population diversity to prevent pre-
mature convergence. Hence we keep the bit-exchange
probability pe = 0.5 but use a double bit-mutation prob-
ability pu = 0.4.

– GA 2We increase both the probability and strength of the
variablemutation to delay the convergence inGA2, using
the new standard deviationσu = 20 ofGaussianmutation

Table 4 Optimization result of Experiment 2 (Times in µs)

Method Solution Occupancy Optimal

GA 1 (60, 14, 120, 33) 55.83% No

GA 2 (120, 27, 120, 26) 47.5% No

EA4HS (160, 34, 160, 34) 45% Yes

and its larger mutation probability pu = 0.4. We still
keep the percentage T = 50% of truncation selection
and the weighting constraint dr = 0.5 of intermediate
recombination.

– EA4HS In the EA4HS, a lower learning rate τr will slow
down the convergence by adjusting the average strategy
parameters of populations. Hence we invoke the EA4HS
with a smaller learning rate τr = 0.4 and retain the other
configuration including the base c = 0.8 of exponential
ranking selection, the weighting constraint d = 0.5 of
local line recombination, the learning rate τu = 0.5, and
the initial strategy parameters σ2i−1 = 50 and σ2i =
5, i ∈ {1, 2}.

In Table 4, the results of Experiment 2 show that our
EA4HS gets accustomed to this new configuration, for
the algorithm acquired the global optimal solution xopt =
(160, 34, 160, 34) with the minimum processor occupancy
U = 45%. Unfortunately, two GAs still deviated from the
global optima, but they generated better solutions compared
with their optimization result in Experiment 1.

Figure 10 depicts the evolution of minimum processor
occupancy and cumulative processing time in Experiment 2.
Although GA 1 obtained a lower processor occupancy than
that in Experiment 1, it fell into the premature convergence
again at around the 30th generation. The new configuration
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Fig. 10 Evolution of minimum processor occupancy and cumulative processing time in Experiment 2

of GA 2 successfully avoided its convergence to find more
better individuals but significantly increased the processing
time from 347 to 2833 min.

Compared with the configuration of EA4HS in Experi-
ment 1, a lower learning rate τr = 0.4 avoids a sharp drop
in strategy parameters and frequent adjustments during the
evolution. Thus the EA4HS generated smoother curves of
minimum processor occupancy (Fig. 10a) and cumulative
processing time (Fig. 10b) in Experiment 2. The evolution
had not entered a convergence until it found a nearly optimal
solution at around the 200th generation, finally reaching the
global optimum at the 212nd generation.

The experiments reveal distinct superiority of our EA4HS
over the GAs. First, GA 1 is not applicable to this optimiza-
tion problem. We find the bit-based reproduction of GA 1
cannot produce more better individuals steadily, making GA
1 very prone to premature convergence. By contrast, GA
2 can overcome the problem of premature convergence by
adjusting the mutation configuration. However, GA 2 has a
low search efficiency. In both of the experiments, GA 2 con-
centrate search on the local optimal areawhere all the periods
are centered around 120 µs and far from the best 160 µs. For
this purpose, our EA4HS is provided with new recombina-
tion and mutation operator which can produce descendant
individuals on the basis of the processor usage of parents.
Hence, it is more likely to climb up a higher processor occu-
pancy even if our current individuals are far from the optimal
area.

6.2 Experiment on a concrete avionics system

We undertake the third experiment on a much larger and
more complex IMA partitioned scheduling system includ-
ing multiple task types, task dependency, and inter-partition

communication [11,16]. As shown in Table 5, the system
consists of five partitions that contain a total of 18 periodic
tasks and four sporadic tasks. The type of a task depends
on its release interval. A periodic task has a fixed period,
whereas a sporadic task satisfies a minimum separation
between consecutive release. The execution of a task is char-
acterized as a sequence of chunks. Each chunk has a lower
and upper bound on execution time, a set of potentially
required resources and message-passing operations. There
are 3 intra-partition locks, as shown in column mutex, and 4
inter-partition message types in the task set. The columns
output and input indicate transfer direction of messages.
According to the resources required by chunks, we convert
each chunk into a subsequence of the abstraction instruction
sequence (Receive, Lock, Compute, Unlock, Send, End) in
theUppaal executionmodels.We assume the context switch
overhead to be 0.2 milliseconds in the experiment.

In this IMA system, the features such as task dependency
and communication render the analytical bounds in [13] non-
applicable. Moreover, the immense parameter space makes
it impossible to complete a brute-force search for a global
optimal solution. Hence, Experiment 3 compares the EA4HS
optimization with the empirical scheduling scheme given in
[11]. Their detailed configuration is listed as follows:

– Empirical scheduling In this scheme, all the partitions
have a unique period p = 25 ms, which is the mini-
mum and a harmonic of task periods. Each partition is
allocated to a time slot of the same length 5 ms within
every partition period.Wefirst create anARINC-653 par-
tition schedule according to this empirical scheme. The
common partition period is used as the major time frame
M = 25ms.Within everyM , thefive time slots of the par-
titions are arranged in order of priority. A context switch

123



736 P. Han et al.

Table 5 Workload of the
avionics system [11,16](Times
in milliseconds)

No. Task Release Offset Jitter Deadline Priority Execution Chunks

Time Mutex Output Input

P1 Tsk11 [25,25] 2 0 25 2 [0.8,1.3] - - -

[0.1,0.2] - - -

Tsk12 [50,50] 3 0 50 3 [0.2,0.4] - Msg1 -

Tsk13 [50,50] 3 0 50 4 [2.7,4.2] - - -

Tsk14 [50,50] 0 0 50 5 [0.1,0.2] Mux11 - -

Tsk15 [120,∞) 0 0 120 6 [0.6,0.9] - - -

[0.1,0.2] Mux11 - -

P2 Tsk21 [50,50] 0 0.5 50 2 [1.9,3.0] - - -

Tsk22 [50,50] 2 0 50 3 [0.7,1.1] - Msg2 -

Tsk23 [100,100] 0 0 100 4 [0.1,0.2] Mux21 - -

Tsk24 [100,∞) 10 0 100 5 [0.8,1.3] - - -

[0.2,0.3] Mux21 - -

P3 Tsk31 [25,25] 0 0.5 25 2 [0.5,0.8] - - Msg1

Tsk32 [50,50] 0 0 50 3 [0.7,1.1] - - Msg2

Tsk33 [50,50] 0 0 50 4 [1.0,1.6] - - Msg3

Tsk34 [100,∞) 11 0 100 5 [0.7,1.0] - - -

[0.1,0.3] - - -

P4 Tsk41 [25,25] 3 0.2 25 2 [0.7,1.2] - - -

Tsk42 [50,50] 5 0 50 3 [1.2,1.9] - Msg3 Msg1

Tsk43 [50,50] 25 0 50 4 [0.1,0.2] - - Msg4

Tsk44 [100,100] 11 0 100 5 [0.7,1.1] - - -

Tsk45 [200,200] 13 0 200 6 [3.7,5.8] - - -

P5 Tsk51 [50,50] 0 0.3 50 1 [0.7,1.1] - - Msg1

Tsk52 [50,50] 2 0 50 2 [1.2,1.9] - Msg4 Msg2

Tsk53 [200,200] 0 0 200 3 [0.4,0.6] - - -

[0.2,0.3] Mux51 - -

Tsk54 [200,∞) 14 0 200 4 [1.4,2.2] - - -

[0.1,0.2] Mux51 - -

overhead 0.2 ms is inserted into the start of the time slots,
each of which thus shrinks to the size of 4.8 ms. Subse-
quently, we analyze the schedulability of this empirical
scheme by using the compositional approach given in
Sect. 3.

– EA4HS Considering the larger parameter space and
longer processing time for each generation, we apply a
new population size K = 256, elitism size E = 16 and
maximum generation G = 200 but keep the rest of the
configuration of Experiment 2, which has been proved
applicable to the simple system with similar quantities
of time. We set the base of exponential ranking selec-
tion c = 0.8 and the value of local line recombination
d = 0.5. In the first generation, the strategy parame-
ters of an individual are initialized as σ2i−1 = 50 and
σ2i = 5 for i ∈ {1, 2, . . . , 5}. We define the learning
rates τr = 0.4 and τu = 1/

√
10 ≈ 0.3.

Table 6 presents the optimization results of Experiment
3. Owing to the much larger unknown parameter space, it
is more difficult to find a schedulable solution than Experi-
ment 1 and 2. The empirical scheme even failed to conclude
with a schedulable solution. In the schedulability analysis,
a counterexample generated by Uppaal demonstrates that
Tsk13 misses its deadline at the instant t = 50.2 ms. Although
the original 5 ms allocation is sufficient for the execution of
Tsk13, the additional overhead of context switchesmakesTsk13
go over budget. Moreover, this empirical scheme takes up all
the processor time, increasing the integration cost of addi-
tional avionics workload.

In contrast to the unsatisfactory results of the empiri-
cal method, our EA4HS acquired a schedulable solution
x = (25, 4.9, 25, 4.7, 25, 3.4, 25, 4.5, 50, 4.5) with a lower
processor occupancy 82.6%. Its schedulability is not only
tested statistically by Uppaal SMC but also validated rig-
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Table 6 Optimization result of
Experiment 3 (Times in
milliseconds)

Method Solution Schedulability Occupancy Optimal

Empirical (25, 4.8, 25, 4.8, 25, 4.8, 25, 4.8, 25, 4.8) No 100% No

EA4HS (25, 4.9, 25, 4.7, 25, 3.4, 25, 4.5, 50, 4.5) Yes 82.6% Unknown

Fig. 11 Evolution of best fitness values, processing time and population composition in Experiment 3

orously by Uppaal classic MC. Even though its global
optimality cannot be confirmed, engineers can still benefit
from such schedulable results that have acceptable processor
occupancy.

Figure 11a illustrates the best fitness value and process-
ing time of each generation in the EA4HS optimization. The
fitness value offers the quality evaluation of any parameter
combination regardless of its schedulability. According to
the definition of fitness function in Sect. 5.2, the coordinate
plane can be divided into three areas that correspond to dif-
ferent fitness intervals: (1) [0, 500) where the generations
contain no schedulable solution, for all the individuals are
fast falsified by SMC. (2) [500, 600)where all five partitions
of the best individual are proved statistically schedulable by
SMC but its schedulability is finally excluded by MC. (3)
[600, 700) where the schedulability of the best individual is
strictly confirmed by MC.

As shown in Fig. 11a, there was no schedulable indi-
vidual in the initial population. During the generations of
[1, 105), the best fitness value and processing time increased
gradually as more partitions of individuals were proved sta-
tistically schedulable by SMC. At the 105th generation, we
found the first statistically schedulable individual with the
fitness value 501 and started the MC compositional analy-
ses. Although its schedulability was excluded by MC, there
were a growing number of higher-fitness individuals that
went through the SMC tests at the following generations.
Since most of the MC compositional analyses were much
more time-consuming than the SMC tests, the average pro-

cessing time for each generation rose from around 10min to
more than 40min after 105 generations. Finally, we acquired
the first schedulable individual at the 161st generation and
found the best solution with the lowest processor occupancy
82.6% at the 179th generation within the cumulative time of
62 hours.

Figure 11b shows the composition of populations during
the evolution. A population consists of the following four
types of individuals: (1) Invalid individuals that cannot gener-
ate ARINC-653 schedules. (2) SMC falsified individuals that
turnedout to benon-schedulable in theSMCtests. (3)MCfal-
sified individuals that were proved statistically schedulable
by SMC but eliminated in the MC compositional analyses.
(4) schedulable individuals.

The evolution of the population composition demonstrates
improvements in the efficiency of our EA4HS optimization.
First, the EA4HS avoids the populations drowning in invalid
individuals via repeated reproduction (lines 8–13 of Alg. 2).
As shown in Fig. 11b, invalid individuals accounted for a
quarter of the initial population that was generated randomly,
but the EA4HSkept their proportion falling sharply until they
vanished after the 17th generation. Second, the application of
SMC fast falsification speeds up the optimization. For each
population in Fig. 11b, most of the individuals underwent the
SMC tests rather than the costlyMC compositional analyses.
Third, the EA4HS adaptively keeps a steady growth in the
number of higher-fitness individuals but does not concentrate
rapidly on the localities of dominant solutions, thus reducing
the risk of premature convergence. In Fig. 11b, the propor-
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tion of schedulable individuals increased gradually until they
filled the elitist list. At the following generations, the newly-
produced individuals did not converge on a few dominant
solutions but maintained a degree of population diversity.
Finally, there was a steady proportion of schedulable indi-
viduals in the populations at around the 200th generation.

7 Related work

A few approaches to optimizing the partition scheduling
of avionics systems have been presented in the literature,
applying analytical or formal methods from either a global
or compositional viewpoint on the hierarchical scheduling
architecture.

Compositional analyticalmethods introducing the abstrac-
tion and composition of constituent partitions optimize
each partition locally for the whole system. The authors
of [15,28,29] adopted different resource models to charac-
terize the time demand and supply of partitions, presented
the schedulability conditions under EDF (Earliest Deadline
First) and RM (Rate Monotonic) policy, and gave utiliza-
tion bounds of these resource models. In [16], they extended
this compositional framework intoARINC-653 avionics sys-
tems, providing a task model to deal with the behaviors
like communication latencies and blocking/preemption over-
heads within partitions. In [23], the authors proposed a
similar analytical method for applications consisting of peri-
odic or sporadic tasks scheduled by FP policy to find the
best scheduling parameter pairs of partitions. To improve
the runtime performance, Dewan and Fisher [14] proposed
a polynomial-time approximation algorithm for minimizing
the interface bandwidth of sporadic task systems.

However, the combination of local optimality of each
partition does not necessarily lead to the globally optimal
solution, because the parameters chosen for one partition
may affect the choice for other partitions [13]. From a global
viewpoint, Davis and Burns [13] formulated the optimiza-
tion problem as a holistic selection of partition parameters,
providing a set of search algorithms to find the best param-
eter combination. Nevertheless, the optimal solution can
only be determined by an exhaustive search in the case of
small systems. Yoon et al. [33] showed the non-convexity of
multiple partition optimization and solved this nonlinear non-
convex problem with Geometric Programming (GP). Kim et
al. [21] formulated a linear programming problem for the
utilization bound of a schedulable periodic task set sched-
uled by RM policy in a given ARINC-653 partition. Blikstad
et al. [7] simplified the two-level hierarchical scheduling
into the pre-runtime scheduling of non-overlapping periodic
tasks, adopting a Mixed Integer Programming (MIP) formu-
lation to generate the optimal schedule.

Unfortunately, both of the analytical methods introduce a
certain degree of pessimism due to the oversimplification of
their optimization policies or system models:

The pessimism of the compositional methodsmainly orig-
inates from the oversimplification of optimization policies.
The compositional methods employ the “Divide and Con-
quer” strategy, finding the optimal solution for each partition
independently and assembling all the local results as a com-
plete solution of the system. For each partition, such solvers
always search for its optimal solution on the worst-case
assumption of the rest of the partitions. This policy reduces
the complexity of optimization solving but ignores the possi-
ble coordination between partitions. Hence the final solution
of anARINC-653 partitioned system is only the combination
of local optima and not globally optimal.

Thepessimismof theglobal optimizationmethods is intro-
duced by the oversimplification of system models. Since
the nature of ARINC-653 partition scheduling is a com-
plex nonlinear non-convex optimization problem [33], these
global methods simplify the system models by linearizing
the analytical equations of the schedulability constraints and
formulate it as a classical optimization problem like MIP.
This simplification leads to a conservative solution of par-
tition scheduling. The degree of pessimism depends on the
approximation precision of the simplified system model.

By contrast, model-based methods provide rigorous for-
mal models to describe more concrete behaviors of avionics
systems in a readable and understandable way.

Beji et al. [4] expressed the constraints of distributed IMA
architecture as SMT(SatisfiabilityModuloTheory) logic for-
mulas and used the SMT solver YICES to find automatically
feasible scheduling parameters that minimize the integration
cost. However, modeling a detailed system requires a large
number of lengthy logic formulas. Their SMT model only
covering a flat rather than hierarchical structured partition
scheduling system did not give any specification of the tasks
in partitions.

Sun et al. [32] proposed a component-based schedula-
bility analysis of hierarchical scheduling systems encoded
into linear hybrid automata, thus enabling the optimization
of partition parameters. All the integer values of partition
parameters were exhaustively tested for schedulability to
minimize the processor utilization. Obviously, this exhaus-
tive search is not feasible for a large high-dimensional
parameter space.

The authors of [8,22] appliedUppaal to the compositional
optimization of partition parameters. Given a specific parti-
tion, they used a lightweight SMC method for a fast design
exploration of objective parameters, assuring the schedula-
bility of the correspondingTAmodelswith a high confidence.
Once a promising parameter tuple had been found, it could
be proved schedulable using the costly MC method. This
approach mitigating the state-space explosion coped with
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each partition up to 6 tasks. However, as remarked above,
this compositional optimization does not necessarily lead to
the globally optimal solution. Moreover, they also ignored
concrete task behaviors in the TA models.

In summary, the analytical methods build on a rigorous
mathematical deduction under the worst-case assumptions
of a simplified system, thereby fast solving the optimiza-
tion problem at a low cost. By contrast, the model-based
methods are more expressive to describe a concrete avionics
system but their optimizers face the challenge of the com-
plexity problem. In this paper, our model-based approach
adopts a global evolutionary search to explore the objective
solution space effectively and uses the integrated method
of simulation-based tests and compositional verification to
make the costly schedulability analysis feasible.

8 Conclusion

The model-based method presented in this paper addresses
the optimization problem of ARINC-653 partition schedul-
ing in a complex IMA system. We conclude that our
model-based approach is applicable to this optimization
problem, where an IMA system is modeled as a network of
timed automata inUppaal. Comparedwithwidely-used ana-
lytic optimization, the timed automata model of our method
is more expressive to describe complex features of IMA
systems. We formulate the problem as a global search for
the optimal partition scheduling parameters that achieve the
minimum processor occupancy and meet the schedulabil-
ity constraints. A parameter sweep optimizer explores the
solution space via evolutionary algorithm while guarantee-
ing the schedulability by model checking. The evolutionary
algorithm EA4HS is promising for reaching the optimal
parameters quickly as well as avoids exhaustive exploration
of the solution space. The combination of global SMC test-
ing and compositionalmodel-checking verification alleviates
the state space explosion of classical model checking. The
experiments demonstrate that our optimizer is able to iden-
tify the global optimum solutions for simple task sets and
find acceptable ones effectively for complex systems.

The design of the model-based parameter sweep also
introduces limitations into this optimization method. First,
the evolutionary search may not reach a global optimal solu-
tion within a finite number of generations, especially when
handling a complex IMA system with a large number of par-
titions. However, our method is still capable of producing
better high-quality candidates than purely empirical schedul-
ing schemes. Engineers can benefit from the optimization
results of our method in integrating a set of complex appli-
cations. Second, the model-based method involves frequent
time-consuming schedulability analyses, leading to a long
processing time from a few hours to days. But we believe

that such a processing time is negligible in the development
life cycle of an IMA system. Moreover, we can speed up the
optimization process by running on more powerful clusters.
As future work, we plan to add more features such as multi-
core processor support and more local scheduling policies
to the system, further generalizing the proposed method to
more complex ARINC-653 scheduling systems.
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