
Bringing Runtime Verification Home?

A Case Study on the Hierarchical Monitoring of Smart Homes
using Decentralized Specifications

Antoine El-Hokayem1 and Yliès Falcone2

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble, France
2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

firstname.lastname@univ-grenoble-alpes.fr

Abstract. We use runtime verification (RV) to check various specifications in a smart apartment. The specifica-
tions can be broken down into three types: behavioral correctness of the apartment sensors, detection of specific
user activities (known as activities of daily living), and composition of specifications of the previous types. The
context of the smart apartment provides us with a complex system with a large number of components with two
different hierarchies to group specifications and sensors: geographically within the same room, floor or globally
in the apartment, and logically following the different types of specifications. We leverage a recent approach to
decentralized RV of decentralized specifications, where monitors have their own specifications and communi-
cate together to verify more general specifications. We leverage the hierarchies, modularity and re-use afforded
by decentralized specifications to: (1) scale beyond existing centralized RV techniques, and (2) greatly reduce
computation and communication costs.

Sensors and actuators are used to create “smart” environments which track the data across sensors and human-
machine interaction. One particular area of interest consists of homes (or apartments) equipped with a myriad of
sensors and actuators, called smart homes [21]. Smart homes are capable of providing added services to users. These
services rely on detecting the user behavior and the context of such activities [16], typically detecting activities of
daily living (ADL) [49,18] from sensor information. Detecting ADL allows to optimize resource consumption (such
as electricity [1]), improve the quality of life for the elderly [44] and users suffering from mild impairment [50].

Relying on information from multiple sources and observing behavior is not just constrained to activities. It is
also used with techniques that verify the correct behavior of systems. Runtime Verification (RV) [37,42,6,7,8] is
a lightweight formal method which consists in verifying that a run of a system is correct wrt a specification. The
specification formalizes the behavior of the system typically in logics (such as variants of Linear Temporal Logic,
LTL [46]) or finite-state machines. Based on the provided specification, monitors are automatically synthesized
to run alongside the system and verify whether or not the system execution complies with the specification. RV
techniques have been used for instance in the context of automotive [20] and medical [43] systems. In both cases,
RV is used to verify communication patterns between components and their adherence to the architecture and their
formal specifications.

While RV can be used to check that the devices in a smart home are performing as expected, we show it can be
extended to monitor ADL, and complex behavior on the activities themselves. We identify three classes of specifi-
cations for applying RV to a smart home. The first class pertains to the system behavior. These specifications are
used to check the correct behavior of the sensors, and detect faulty sensors. Ensuring that the system is behaving
correctly is what is generally checked when performing RV. However, it is also possible to use RV to verify other
specifications. The second class consists of specifications for detecting ADL, such as detecting when the user is
cooking, showering or sleeping. The third class pertains to user behavior. These specifications can be seen as meta-
specifications for both system correctness and ADL, they can include safety specifications such as ensuring that the
user does not sleep while cooking, or ensuring that certain activities are only done under certain conditions.

However, standard RV techniques are not directly suitable to monitor the three classes of specifications. This is
mainly due to scalability issues arising from the large number of sensors, as typically RV techniques rely on a large
formula to describe specifications. Synthesizing centralized monitors from certain large formulas considered in this
paper is not possible using the current tools. Instead, we make use of RV with decentralized specifications [26,29],
as it allows monitors to reference other monitors in a hierarchical fashion. The advantage of this is twofold. First,

? This work is supported by the French national program “Programme Investissements d’Avenir IRT Nanoelec” (ANR-10-
AIRT-05). The authors thank the Amiqual4Home (ANR-11-EQPX-0002) team, in particular S. Borkowski and J. Crowley for
assisting in the case study and J. Cumin, for providing the collected data.

ar
X

iv
:1

80
8.

05
48

7v
2

 [
cs

.S
E

]
 1

0
Se

p
20

19

2 Antoine El-Hokayem and Yliès Falcone

it provides an abstraction layer to relate specifications to each other. This allows specifications to be organized
and changed without affecting other specifications, and even to be expressed with different specification languages.
Second, it leverages the structure and layout of the devices to organize the hierarchies. On the one hand, we have
a geographical hierarchy resulting from the spacial structure of the apartment from a given device, to a room, a
floor, or the full apartment. On the other hand, we have a logical hierarchy defined by the interdependence between
specifications, i.e. ADL, specifications that use other ADL specifications, and specifications that combine sensor
safety with ADL specifications. For example, informally, consider checking two activities: sleeping and cooking,
which can be expressed using formulae ϕs and ϕc respectively. A monitor that checks whether the user is sleeping
and cooking requires to check ϕs∧ϕc and as such will replicate the monitoring logic of another monitor that checks
ϕs alone, instead of re-using the output of that monitor. The formula will be written twice, and changing the formula
for detecting sleeping requires changing the formula for the monitor that checks both specifications.

Overall, we see our contributions as follows3:
- We apply decentralized RV to analyze traces of over 36,000 timestamps spanning 27 sensors in a real smart

apartment (Sect. 1.1).
- We show how to go beyond system properties, to specify ADL using RV, and more complex interdependent speci-

fications defined on up to 27 atomic propositions (Sect. 1.2).
- We leverage the hierarchies, modularity and re-use afforded by decentralized specifications (Sect. 2) to both be able

to synthesize monitors and to reduce overhead when monitoring complex interdependent specifications (Sect. 5.1).
- We improve the existing data structures used for monitoring decentralized specifications, to account for large traces

(Sect. 4).
- We use RV to effectively monitor ADL and identifying some insights and limitations inherent to using formal LTL

specifications to determine user behavior (Sect. 5.2).
- We elaborate on the advantages of modularity by adapting parts of the specification to the Activity Recognition

with Ambient Sensing (ARAS) [2] dataset (Sect. 5.3).
This paper extends existing work published in the proceedings of the the international conference on Runtime

Verification (RV 2018) [28] with the following:
- Providing a more detailed explanation of decentralized specifications and their dependency hierarchies (Sect. 2.2);
- Providing full details on trace generation, sensor polling, and trace replay using THEMIS (Sect. 3);
- Enhancing the existing data structures of [26] to support large traces, by elaborating on data structures, their

operations, and strategies for garbage collection and lazy evaluation in Sect. 4;
- Extending the evaluation section to include additional days where the trace is replayed, to illustrate changes in user

behavior in Sect. 5.2, adding more details for modifying the specification to improve precision and recall, and also
illustrating adaptability to new environments by porting the specification to the ARAS dataset in Sect. 5.3.

1 Writing Specifications for the Apartment
1.1 Devices and Organization

We consider an actual apartment, with multiple rooms, where activities are logged using sensors. Amiqual4Home [41]
is an experimental platform consisting of a smart apartment, a rapid prototyping platform, and tools for observing
human activity.

Overview of Amiqual4Home. The Amiqual4Home apartment is equipped with 219 sensors and actuators spread
across 2 floors. Amiqual4Home uses the OpenHab 6 integration platform for all the sensors and actuators installed.
Sensors communicate using the KNX, MQQT and UPnP protocols sending measurements to OpenHab over the
local network, so as to preserve privacy. The general layout of the apartment consists of 2 floors: the ground and
first floors. On the ground floor (resp. first floor), we have the following rooms: entrance, toilet, kitchen, and
livingroom (resp. office, bedroom, and bathroom). Between the two floors, there is a connecting staircase.
This layout reveals a tree-like geographical hierarchy of components, where we can see the rooms at the leaves,
grouped by floors then the whole apartment. While in effect all device data is fed to a central observation point, it is
reasonable to consider the hierarchy in the apartment as a simpler model to consider hierarchies in general, as one is
bound to encounter a hierarchy at a higher level (from houses, to neighborhoods, to smart cities, etc.). Furthermore,
hierarchies appear when integrating different providers for devices in the same house.

Reusing the Orange4Home dataset. Amiqual4Home has been used to generate multiple datasets that record
all sensor data, this includes an ADL recognition dataset [41] (ContextAct@A4H), and an energy consumption

3 An artifact [25] that contains data, documentation, and software, is provided to replicate and extend on the work.

Bringing Runtime Verification Home 3

Entering Entrance

Up Staircase

Showering Bathroom

Sink Bathroom

Down Staircase

TV Livingroom

Up Staircase

Computing Office

Down Staircase

Preparing Kitchen

Cooking Kitchen

Eating Livingroom

Dishes Kitchen

Cleaning Kitchen

Up Staircase

Sink Bathroom

Dressing Bedroom

Reading Bedroom

Napping Bedroom

Dressing Bedroom

Computing Office

TV Office

Down Staircase

Leaving Entrance

08:00

08:30

09:00

11:30

11:45

12:00

13:00

13:15

13:45

14:00

16:30

17:00

Fig. 1: Suggested Schedule (Tuesday, Jan 31 2017)

dataset [22] (Orange4Home). In this paper, we reuse the dataset from [22]. The case study involved a person living
in the apartment and following (loosely) a schedule of activities spread out across the various rooms. The schedule
was set out by the authors of [22]. Figure 1 displays the suggested schedule of activities for Tuesday, Jan 31 2017.
This allows us to nicely reconstruct the schedule from the result of monitoring the sensors. Furthermore, the person
living in the home provided manual annotations of the activities done, which helps us assess our specifications. We
chose to use the Orange4Home dataset over the ContextAct@A4H one as it involves only one person living in the
house at a time which simplifies specifying and validating specifications.

Monitoring environment. In total, we formalize 22 specifications that make use of up to 27 sensors, and evaluate
them over the course of a full day of activity in the apartment. That is, we monitor the house (by replaying the trace)
from 07:30 to 17:30 on a given day, by polling the sensors every 1 second, creating a trace of a total of 36,000
timestamps. Specifications are elaborated in Sect. 1.2 and expressed as decentralized specifications [26] (recalled in
Sect. 2.2). Traces are replayed using the THEMIS tool [27] which supports decentralized specifications and provides
a wide range of metrics. We elaborate on the trace replay in Sect. 3.

1.2 Property Groups

We now express the specifications that describe different behaviors of components in the smart apartment. Speci-
fications can be subdivided into 3 groups: system-behavior specifications, user-behavior specifications, and meta-
specifications on both system and user behavior. The considered specifications are listed in Table 1.

System behavior. The first group of specifications consists in ensuring that the system behaves as expected. That is,
verifying that the sensors are working properly. These properties are the subject of classical RV techniques [31,15]
applied to systems. For the scope of this case study, we verify light switches as system properties. We verify that for
a given room i, whenever the switch is toggled, then the light must turn on until the switch is turned off. We verify
the property at two scopes, for a given room, and the entire apartment. While this property appears simple to check,
it does highlight issues with existing centralized techniques applied in a hierarchical way. We develop the property
in Sect. 2.1, and show the issues in Sect. 2.2.

ADL. The second group of specifications is concerned with defining the behavior of the user inferred from sensors.
The sensors available in the apartment provide us with a wealth of information to determine the user activities. The
list of activities of interest is detailed in [40] and includes activities such as cooking and sleeping. By correctly iden-
tifying activities, it is possible to decide when to interact with the user in a smart setting [1], provide custom care
such as nursing for the elderly [44], or help users who suffer from mild impairment [50]. Inferring activities done by
the user is an interesting problem typically addressed through either data-based or knowledge-based methods [18].
The first method consists in learning activity models from preexisting large-scale datasets of users behaviors by uti-
lizing data mining and machine learning techniques. The built models are probabilistic or statistical activity models
such as Hidden Markov Model (HMM) or Bayesian networks, followed by training and learning processes. Data-
driven approaches are capable of handling uncertainty, while often requiring large annotated datasets for training and
learning. The second method consists in exploiting prior knowledge in the domain of interest to construct activity
models directly using formal logical reasoning, formal models, and representation. Knowledge-driven approaches
are semantically clear, but are typically poor at handling uncertainty and temporal information [18]. We elaborate
on such limitations in Sect. 5.2. Writing specifications can be seen as a knowledge-based approach to describe the
behavior of sensors. As such, we believe that runtime verification is useful to describe an activity as a specification

4 Antoine El-Hokayem and Yliès Falcone

Table 1: Specifications considered in this paper. (*) indicates added ADL specifications. G indicates specification
group: system (S), ADL (A), and meta-specifications (M). |AP|d (resp. (|AP|c): atomic propositions needed to
specify specification in decentralized (resp. centralized) specifications. d is the maximum depth of monitor depen-
dencies.

G Scope Name Description |AP|d |AP|c d

S Room sc light(i) light switch turns on light (i ∈ [0..3]). 2 2 1
M House sc ok All light switches are ok. 4 8 2

A Toilet toilet∗ Toilet is being used. 1 1 0
A Bathroom sink usage Sink is being used. 1 2 1
A Bathroom shower usage Shower is being used. 1 2 1
A Bedroom napping Tenant is sleeping on the bed. 1 1 1
A Bedroom dressing Tenant is dressing, using the closet. 2 3 1
A Bedroom reading Tenant is reading. 3 5 2
A Office office tv Tenant is watching TV. 1 1 1
A Office computing Tenant is using the computer. 1 1 1
A Kitchen cooking Tenant is cooking food. 2 2 1
A Kitchen washing dishes Tenant is cleaning dishes. 2 3 1
A Kitchen kactivity∗ Using cupboards and fridge. 4 9 1
A Kitchen preparing Tenant is preparing to cook food. 2 11 2
A Living livingroom tv Tenant is watching TV. 2 2 1
A Floor 0 eating Tenant is eating on the table. 2 2 1

M Floor 0 actfloor(0) Activity triggered on floor 0. 6 16 3
M Floor 1 actfloor(1) Activity triggered on floor 1. 7 11 3
M House acthouse Activity triggered in house 2 27 4
M House notwopeople No 2 simultaneous activities on different floors. 2 27 4
M House restricttv No watching TV for more than 10s. 2 3 3
M House firehazard No cooking while sleeping. 2 3 2

over sensor outputs. We formalize a specification for the following ADL activities described in [22] (see Table 1).
We re-use the traces to verify that our detected activities are indeed in line with the proposed schedule. Figure 2 dis-
plays the reconstructed schedule after detecting ADL with runtime verification. Each specification is represented by
a monitor that outputs (with some delay) for every timestamp (second) verdicts> or⊥. To do this, the monitor finds
the verdict for a timestamp t then respawns to monitor t+1. Verdict > indicates that the specification holds, that is,
the activity is being performed. The reconstructed schedule shows the eventual outcome of a specification for a given
timestamp ignoring delay. In reality some delay happens based on the specification itself, and the dependencies on
other monitors.

Meta-specifications. Specifications of the last group are defined on top of the other specifications. That is, we
refer to a meta-specification as a specification that defines the interactions between various specifications. While
one can easily define specifications by defining predicates over existing ones, such as checking that the light switch
specification holds in all rooms or whether or not detecting an activity was performed on a specific floor or globally
in the house, we are more interested in specifications that relate to each other. We consider a meta-specification that
reduces fire hazards in the house. In this case, we specify that the tenant should not cook and sleep at the same time,
as this increases the risk of fire. In addition to mutually excluding specifications, we can also constrain the behavior
of existing specifications. For example, we can specify a specification regulating the duration of watching TV to be
at most 10 timestamps.

2 Monitoring the Apartment
We show how we monitor the apartment using decentralized specifications, while highlighting their advantages.

2.1 Monitor Implementation

To monitor the apartment, we use LTL3 monitors [15]. LTL3 [13,14] is a variant of the standard Linear Temporal
Logic (LTL) [46] giving a semantics to finite traces. An LTL3 monitor is a complete and deterministic Moore
automaton where states are labeled with the verdicts in a domain B3 = {>,⊥, ?}. Verdicts > and ⊥ respectively
indicate that the current execution complies and does not comply with the specification, while verdict ? indicates that

Bringing Runtime Verification Home 5

Fig. 2: Detected ADL for Tuesday, Jan 31 2017. Time is in hours starting from 7:30.

the verdict has not been determined yet. Verdicts > and ⊥ are called final, as once the monitor outputs > or ⊥ for
a given trace, it cannot output a different verdict for any suffix of that trace. Using LTL3 monitors for representing
specifications allows us to take advantage of the multiple RV tools that convert different specification languages to
LTL3 monitors. For our monitoring, we use the THEMIS tool [27] which is able to use both ltl2mon [15] and
LamaConv [38] to generate monitors. ltl2mon generates LTL3 monitors from LTL formulae, while LamaConv
supports a wider range of languages such as Regular Expressions, Omega Regular Expressions, LTL, LTL with past
(pLTL), Regular LTL (RLTL) and RLTL with past (pRLTL), and Structured Assertion Language for Temporal Logic
(SALT) [12].

Example 1 (Check light switch). Let us consider property sc light(i) (sensor check light): “Whenever a light
switch is triggered in a room i at some timestamp t, then the light must turn on at t + 1 until the switch is turned
off again”. Figure 3a shows the Moore automaton that represents the property. Starting from q0 with verdict ?, the
automaton verifies that the property is falsified (as it is a safety property). That is, upon reaching q2 the verdict will
be ⊥ for all possible extensions of a trace.

For the scope of this paper and for clarity, we use LTL extended with two (syntactic) operators, mostly to strengthen
and relax time constraints. We consider the operator eventually within t (♦≤t) which considers a disjunction of next
operators. It is defined as: ♦≤tap

def
= ap∨©ap∨©©ap∨ ...©t ap, where ap is an atomic proposition. Intuitively,

the eventually within states that ap holds within a given number of timestamps. Operator ♦≤t allows us to relax the
time constraints for a given atomic proposition. Similarly, we consider the operator globally within t (�≤t) which is
the dual of the previous operator: �≤tap

def
= ap ∧©ap ∧©© ap ∧©tap.

Example 2 (Check light switch modalities). The property expressed in Ex. 1 can be expressed in LTL as: sc light(i)
def
=

�(si =⇒ ©(`i U¬si)). The property can be modified with the extra operators relax or constrain the time
on the light. The relaxed property sc light′(i)

def
= �(si =⇒ ♦≤3(`i U¬si)) allows the right-hand side of

the implication to hold within any of the next 3 timestamps instead of immediately after. The bounded property

6 Antoine El-Hokayem and Yliès Falcone

q0start

q1

q2

si ¬si

¬si

si ∧ `i

>

si ∧ ¬`i

(a) Centralized

q0start

q1

q2

si ¬si

¬si

si ∧ lighti

>

si ∧ ¬lighti

q′0start

q′1

q′2

`i

¬`i

>

>

Asc lighti Alighti

(b) Decentralized

Fig. 3: Monitor(s) for sc light(i), for a given room i in the house. The verdicts associated with the states are ⊥:
dotted red , >: double green, and ?: single yellow.

sc light′′(i)
def
= �(si =⇒ �≤3(`i)) states that the light is on starting from the timestamp the switch is turned

on and the subsequent two (for a total of 3). An example of such a property is the restriction on watching TV for a
specific duration (Table 1) where restricttv def

= �(tv =⇒ ♦≤10¬tv).

2.2 Decentralized Specifications

While simple specifications can be expressed with both LTL and automata, it quickly becomes a problem to scale
the formulae or account for hierarchies (see Sect. 2.3). As such, we use decentralized specifications [26].

Overview. Decentralized specifications consider a system of multiple components C = {C1 . . . Cn}, where the set
of all atomic propositions (noted AP) (i) has a partition over all components, i.e., AP = AP1∪ . . .∪APn such that
∀i, j ∈ [1..n], i 6= j =⇒ AP i ∩ AP j = ∅, and (ii) each component has at least one atomic proposition to monitor
(i.e., ∀i ∈ [1..n],AP i 6= ∅). Details for assigning sensor information as atomic propositions for this case study
are presented in Sect. 3.2. Furthermore, we have a set of monitor labels APmons (called monitor references), that
associates each monitor with a label. For this case study, each specification in Table 1 is assigned a monitor labeled by
its name. Each monitorAlbl (lbl ∈ APmons) is a Moore automaton (detailed in Sect. 2.1) and is assigned to a single
component. A monitor Albl assigned to component Cj ∈ C utilizes the alphabet AP lbl = AP j ∪ (APmons \ {lbl}).
That is, it contains the atomic propositions local to the component (in AP j), and the references to all dependent
monitors excluding itself (APmons \ {lbl}). A decentralized trace is a partial function that assigns each component
and timestamp with an event. A monitor reference is evaluated as if it were an oracle. That is, to evaluate a monitor
reference lbl at a timestamp t, the monitor referenced (Albl) is executed starting from the initial state on the trace
starting at t. The atomic proposition lbl at t takes the value of the final verdict reached by the monitor.

Example 3 (Decentralized light switch). Figure 3b shows the decentralized specification for the check light property
from Ex. 1. We have two monitorsAsc lighti

andAlighti . They are respectively attached to the light switch and light
bulb components. In the former, the atomic propositions are either related to observations on the component (si,
switch on), or references to other monitors (lighti). The light switch monitor first waits for the switch to be on to
reach q1. In q1, at some timestamp t, it needs to evaluate reference lighti by running the trace starting from t on
monitor Alighti . Monitor Alighti then reads the value of `i at t from the trace, and moves to q′1 or q′2 depending on
its value, and sends the verdict > or ⊥ respectively back to monitor Asc lighti

. The returned verdict is associated
with the reference lighti for timestamp t allowing monitor Asc lighti

to evaluate its own transition at t.

Assumptions. The assumptions of decentralized specifications on the system are as follows: no monitors send
messages that contain wrong information; no messages are lost, they are eventually delivered in their entirety but
possibly out-of-order; all components share one logical discrete clock marked by round numbers indicating relevant
transitions in the system specification. While security is a concern in the smart apartment setting, the first two
assumptions are met in this case study as the apartment sensor network operates on the local network, and we expect
monitors to be deployed by the sensor providers, and users of the apartment. The last assumption is also met in the
smart setting, as all sensors share a global clock.

Hierarchical dependencies. Decentralized specifications allow us to analyze the dependencies between various
monitors, and organize them in logical hierarchies represented as directed acyclic graphs (DAGs). The DAGs help
us relate specifications to other specifications and analyze the inter-dependent behavior of monitors. We elaborate
on the benefits of the hierarchical dependencies in Sect. 2.3.

Example 4 (Hierarchical dependencies). Figure 4 presents the dependency DAG of specification preparing. We
can see that specification preparing depends directly on both specifications kactivity and cooking. Specifica-

Bringing Runtime Verification Home 7

preparing

kactivity cooking

sink water fridge door presencecupboard cooktop oven

oven∗cook∗pres∗fdoor∗cold∗ hot∗

c2∗ c3∗ c4∗ c5∗
c1∗

Fig. 4: Dependencies for preparing. * indicates an atomic proposition of a component.

tion kactivity depends on specifications cubpoard, sink water, presence, and fridge door, as it depends
on the tenant being present in the kitchen, opening or closing cupboards or the fridge, or using the sink. The later
specifications do not depend on other specifications but on direct observations from the components. We note that
while presence is not used in this case study to determine the cooking activity, since a tenant can start cooking
and leave the kitchen. One could imagine that specifications can share dependencies, as such the hierarchy is indeed
best represented as a DAG. Let us consider the monitor checking specification cupboard. Since we have 5 cupboard
doors, we have 5 sensors in total (1 for each door). The monitor observing the 5 different observations simply checks
if one is open and relays its verdict upwards, transmitting only the summary of observations instead of the totality.
In this example, the hierarchy can be seen starting from different sensors on the same component, and expanding
geographically to the different components in the room (kitchen).

2.3 Advantages of Decentralized Specifications

Modularity and re-use. Monitor references in decentralized specifications allow specifications writers to modu-
larize behavior. Given that a monitor represents a specific specification, this same monitor can be re-used to define
more complex specifications at a higher level, without consideration for the details needed for this specification.
This allows specification writers to reason at various levels about the system specification.

Let us consider the ADL specification cooking (resp. sleeping) which specifies whether the tenant is cooking
(resp. sleeping) in the apartment. One can reason about the meta-specification firehazard using both cooking

and sleeping specifications without considering the lower level sensors that determine these specifications, that is:

firehazard
def
= �(sleeping =⇒ ¬cooking).

While we can define cooking as:

cooking
def
= kitchen presence ∧ ♦≤5(kitchen cooktop ∨ kitchen oven).

Additionally, any specification that requires either sleeping or cooking specifications can re-use the verdict out-
putted by their respective monitors. For example, specifications actfloor(0) and actfloor(1) require the verdicts
from monitors associated with cooking and sleeping, respectively, since cooking happens on the ground floor
while sleeping on the first floor. Furthermore, we can disjoin actfloor(0) and actfloor(1) to easily specify that
there is some activity in the house, acthouse def

= actfloor(0) ∨ actfloor(1). While specification acthouse

can be seen as a quantified version of actfloor(i), we can use modular specifications for behavior, for exam-
ple we can verify the triggering of an alarm in the house within 5 timestamps of detecting a fire hazard, i.e.
checkalert

def
= firehazard =⇒ ♦≤5(firealert).

In addition to providing a higher level of abstraction and reasoning about specifications, the modular structure
of the specifications present three additional advantages.

1. The first is that sub-specifications can change without affecting the meta-specifications, that is if the sub-
specification cooking is changed (possibly to account for different sensors), no changes need to be propagated
to specifications firehazard, actfloor(0), acthouse, and checkalert.

2. The second advantage is controlling duplication of computation and communication, as such sensors do not have
to send their observations constantly to all monitors that verify the various specifications. Specification cooking
requires knowledge from the kitchen presence sensor, the kitchen cooktop (being enabled) and the kitchen oven.
Without any re-use these three sensors (presence, cooktop, and oven) need to send their information to monitors
checking: firehazard, actfloor(0), acthouse, and checkalert.

8 Antoine El-Hokayem and Yliès Falcone

3. The third advantage is a consequence of modeling explicitly the dependencies between specifications. This
allows the monitoring to take advantage of such dependencies and place the monitors that depend on each other
closer depending on the hierarchy, either geographically (i.e., in the same room or floor) or logically (i.e., close
to the monitors of the dependent sub-specifications). Furthermore, knowing the explicit dependencies between
specifications allows the user to choose a placement for their monitors, adjusting the placement to the system
architecture. In the case a placement is not possible, it is possible to create intermediate specifications that
simply relay verdicts of other monitors, to transitively connect all components that are not connected.

Abstraction from implementation. One setback for learning-based techniques to detect ADL is their specificity
to the environment. That is, the training set is specific to a house layout, user profile (i.e., elderly versus adults) [39].

Decentralized specifications define modular specifications that can be composed together to form bigger and
more complex specifications. By using references to monitors, we leave the implementation of the specification
to be specific for the house or user profile. Using our existing example, cooking is implemented based on the
available sensors in the house, which would change for different houses. However, the meta-specifications such as
firehazard can be defined independently from the implementation of both cooking and sleeping.

Furthermore, using monitor references, which are treated as oracles, opens the door to utilizing existing tech-
niques in the literature based on other formalisms (not based on automata). That is, as a reference is expected to
eventually evaluate to > or ⊥, any decision procedure can be incorporated to form more complex specifications.
For example, one can use the various machine learning techniques [16,39,49] to define monitors that detect specific
ADLs, then reference them in order to define more complex specifications.

Scalability. Decentralized specifications allow for a higher level of scalability when writing specifications, and also
when monitoring. By using decentralized specifications, we restrict the atomic propositions of monitors to (i) the
local atomic propositions of the components they are attached to and (ii) references to other monitors (see Sect. 2.2).
This greatly reduces the number of atomic propositions to consider when synthesizing the monitor and reduces its
size, as the sub-specifications are offloaded to another monitor.

For example, let us consider writing specifications using LTL formulae. The classical algorithm that converts
LTL to Moore automata is doubly exponential in the size of the formula counted in terms of atomic propositions (to
form events) [15]. Therefore, reducing both the size of the formula and the number of atomic propositions used in
the formula helps significantly when synthesizing the monitors, allowing us to scale beyond the limits of existing
tools. For a large formula, and the larger formulas considered in this paper, it becomes impossible to generate a
central monitor using the existing synthesis techniques. Decentralized specifications provide a way to manage the
large formula by subdividing it into subformulas. The decomposition ensures that the formula evaluates to the same
verdict given the same observations, at the cost of added delay.

Example 5 (Synthesizing the check light monitor). Recall the system property sc light(i) in Ex. 2 responsible for
verifying that in a room i a light switch does indeed turn a light bulb on until it is turned off. We recall the LTL
specification sc light(i)

def
= �(si =⇒ ©(`i U¬si)). To verify the property across n rooms of the house, we

formulate a property sc ok
def
=

∧
i∈[0..n] sc light(i). In the case of a decentralized specification the formula will

reference each monitor in each room, leading to a conjunction of at n atomic propositions. However, in the case of a
centralized specification, the specification needs to be written as: sc okcent

def
=

∧
i∈[0...n] �(si =⇒ ©(`i U¬si)),

which is significantly more complex as a formula consisting of 4n operators (to cover the sub-specification), along
n conjunctions, and defined over each sensor and light bulb atomic propositions (2n). Given that monitor synthesis
is doubly exponential, both ltl2mon [15] and lamaconv [38] require significant resources and time to generate
the minimal Moore automaton (in our case4, both tools where unable to generate the monitor for n = 3 after an hour
to timeout).

3 Trace Replay with THEMIS
To perform monitoring we use THEMIS [27] which is a tool for defining, handling, and benchmarking decentralized
specifications and their monitoring algorithms. For replaying the trace, we perform monitoring by defining a start
time, an end time and a polling interval. For this case study, for a given date, we use 07:30 as start time, 17:30 as an
end time, and a 1-second polling interval.

We first overview THEMIS in Sect. 3.1. Then, in Sect. 3.2, we elaborate on the trace format provided in the
public dataset, and our adaptation for replay to perform the monitoring. In brief, the process consists of extracting
each sensor data converting it to observations (atomic propositions and verdicts), and passing the observation to a

4 On an Intel(R) Core(TM) i7-6700HQ CPU, using 16GB RAM, and running openjdk 1.8.0 172, with ltl2mon 0.0.7.

Bringing Runtime Verification Home 9

logical component for multiple related sensors. Later in Sect. 4, we introduce extra considerations when monitoring
large traces.

3.1 THEMIS

Overview. THEMIS [27] is a tool to facilitate the design, development, and analysis of decentralized monitoring
algorithms; developed using Java and AspectJ. It consists of a library and command-line tools. THEMIS provides an
API, data structures, and measures for decentralized monitoring. These building blocks can be reused or extended
to modify existing algorithms, design new algorithms, and elaborate new approaches to assess existing algorithms.
THEMIS encompasses existing approaches [11,19] that focus on presenting one global formula of the system from
which they derive multiple specifications, and in addition supports any decentralized specification [29].

Monitoring. THEMIS defines two phases for a monitoring algorithm: setup and monitor. In the first phase, the
algorithm creates and initializes the monitors, connects them to each other so they can communicate, and attaches
them to components so they receive the observations generated by components. In the second phase, each monitor
receives observations at a timestamp based on the component it is attached to. The monitor can then perform some
computation, communicate with other monitors, abort monitoring or report a verdict. The two distinct phases sepa-
rate the monitor generation (monitor synthesis) problem from the monitoring [26], giving algorithms the freedom to
generate monitors and deploy them on components, while integrating with existing tools for monitor synthesis such
as [15,38]. The monitors used in this case study use similar logic than choreography [19], as they are defined over
a shared global clock. All monitors start monitoring at t = 0. A monitor checks the compliance of the specification
for a given timestamp t, which could take a fixed delay d to check. After reaching the delay at t + d, the monitor
reports the verdict for t to all other monitors that depend on it, and starts monitoring the specification again for t+1
(i.e., it respawns). As such, the communication between monitors consists of sending verdicts for given timestamps.

3.2 Generating the Trace

Provided trace. The trace from [22] is given as a database with a table for each sensor. We extract each table
as a csv file for each sensor. The provided sensor data is stored as entries of values associated with timestamps,
representing the changes in the sensor data across time. Typically, a new entry is provided whenever a change in the
sensor data occurs. The provided data range over Boolean-like, integer, or real domains.

Generating atomic propositions. The sensor data needs to be processed to create observations, as LTL3 monitors
(see Sect. 2.1) operate on atomic propositions. Each sensor is implemented as an input (Periphery in THEMIS) to
a logical component. For example, for the shower water, we use both cold and hot water sensors but define only
a single component (“shower water”), from an RV perspective, “hot” and “cold” are multiple observations passed
to the “shower water” component. To process different sensor data, we implemented two peripheries: SensorBool
and SensorThresh. The first periphery parses Boolean values from the csv file associated with timestamps. The
processing assigns Boolean values > (resp. ⊥) based on sensor data such as: ”ON” (resp. ”OFF”), and ”OPEN”
(resp. ”CLOSED”). The second periphery reads real (double) values, and returns a Boolean based on whether the
number is below or above a certain threshold. Both peripheries associate each atomic proposition with the generated
Boolean to generate an observation.

Synchronizing traces. The provided dataset only provides sensor updates, that is, the data only contains timestamps
and values for a sensor when the value changes. Our monitoring strategy, however, requires polling the devices at
given fixed time intervals. Since the system has a global clock, to synchronize observations, our periphery imple-
mentations synchronize on a date at the start and an increase (in our case 1 second) and a default Boolean value
for the observation. When polled, the periphery returns the default value if nothing is observed yet, or the last value
observed otherwise. The last value observed is updated when changes occur in the csv file. In short, we interpolate
values between changes to return the oldest value before a change.

Determining the polling rate. We leverage the global clock of the system to evaluate the specification syn-
chronously for all components. As such, we need a fixed interval to poll the monitors in order to evaluate the
specification, that is, we take the necessary transition in each of the automata. We refer to this interval as the polling
rate. The polling rate determines the frequency of evaluation of the specification; the higher the rate, the more
rounds, and the more monitors process and communicate. To determine the minimal rate, we consider the rate of
change for all sensors involved in the specification. We are interested in ensuring that no sensor changes twice in
between the evaluation of the specification. To do so, we write a simple program that processes the trace files for
each sensor in an input specification, to determine the rate of change. Listing 1 shows an example output on the
27 sensors used for ADL detection. It shows the atomic proposition associated with the sensor, the sensor type, the
trace file, the fastest change rate (min), and the slowest change rate (max), and whether or not it is skipped. The rates

10 Antoine El-Hokayem and Yliès Falcone

Listing 1 Rates of change for sensor data. The highlighted sensors are skipped since their data never change.

1 livingroom_table SensorBool 28.csv Min: 3000 Max: 230704000 (ms) [OK]
2 kitchen_dishwasher SensorThresh 167.csv Min: 2190810000 Max: 2190810000 (ms) [SKIP]
3 office_deskplug SensorThresh 119.csv Min: 6000 Max: 231159000 (ms) [OK]
4 office_tv SensorBool 283.csv Min: 420000 Max: 343980000 (ms) [OK]
5 livingroom_couch SensorBool 45.csv Min: 3000 Max: 247031000 (ms) [OK]
6 kitchen_presence SensorBool 269.csv Min: 2000 Max: 230702000 (ms) [OK]
7 kitchen_c1 SensorBool 300.csv Min: 1000 Max: 259080000 (ms) [OK]
8 kitchen_c2 SensorBool 315.csv Min: 1000 Max: 431493000 (ms) [OK]
9 kitchen_c3 SensorBool 316.csv Min: 1000 Max: 259095000 (ms) [OK]

10 kitchen_c4 SensorBool 317.csv Min: 1000 Max: 259051000 (ms) [OK]
11 kitchen_c5 SensorBool 355.csv Min: 1000 Max: 779361000 (ms) [OK]
12 kitchen_sink_hotwater SensorThresh 184.csv Min: 12000 Max: 260085000 (ms) [OK]
13 kitchen_sink_coldwater SensorThresh 189.csv Min: 12000 Max: 260501000 (ms) [OK]
14 bedroom_closet_door SensorBool 339.csv Min: 7000 Max: 605093000 (ms) [OK]
15 bedroom_luminosity SensorThresh 120.csv Min: 1000 Max: 254250000 (ms) [OK]
16 kitchen_cooktop SensorThresh 36.csv Min: 7000 Max: 260333000 (ms) [OK]
17 bathroom_shower_coldwater SensorThresh 22.csv Min: 12000 Max: 345139000 (ms) [OK]
18 bathroom_shower_hotwater SensorThresh 201.csv Min: 12000 Max: 345066000 (ms) [OK]
19 kitchen_fridge_door SensorBool 314.csv Min: 1000 Max: 260749000 (ms) [OK]
20 livingroom_tv SensorBool 282.csv Min: 840000 Max: 344040000 (ms) [OK]
21 toilet SensorThresh 254.csv Min: 12000 Max: 518222000 (ms) [OK]
22 bathroom_sink_coldwater SensorThresh 86.csv Min: 12000 Max: 260437000 (ms) [OK]
23 bathroom_sink_hotwater SensorThresh 264.csv Min: 25000 Max: 25000 (ms) [SKIP]
24 kitchen_oven SensorThresh 232.csv Min: 2191235000 Max: 2191235000 (ms) [SKIP]
25 bedroom_drawer_1 SensorBool 357.csv Min: 1000 Max: 345825000 (ms) [OK]
26 bedroom_drawer_2 SensorBool 358.csv Min: 2000 Max: 515617000 (ms) [OK]
27 bedroom_bed_pressure SensorThresh 349.csv Min: 1000 Max: 342361000 (ms) [OK]
28

29 (Detected Rate) Min: 1000 Max: 779361000 (ms)

are provided in milliseconds. Then, we aggregate over all sensors by computing the fastest and slowest. Sensors are
not included in the aggregate computation (i.e., skipped) if no change appears in their entire trace file. In this case,
we choose 1 second as our polling rate, as no sensor will change twice within a second.

4 Consideration for Large Traces
Managing the trace length (36,000) is an issue for the monitoring techniques presented in [26]. Since the associated
monitors rely on eventual consistency [47], in some cases, they wait for input for the length of the trace, which
requires a lot of memory. This was not an issue for the small traces (of length 100) used to compare algorithms
originally, but becomes a significantly larger issue when monitoring a real apartment.

Two data structures are introduced in [26] to support monitoring decentralized specifications: memory and ex-
ecution history encoding (EHE). We briefly review them in Sect. 4.1 along with their key operations so we can we
present a garbage collection strategy for the memory data structure in Sect. 4.2 and an expansion strategy for the
EHE in Sect. 4.3. The memory footprint for monitors consists of the sizes of their memory and EHE. Both our im-
provements aim at reducing the size of the data structures for long traces. Theoretical details for the data structures
and monitoring are in [26].

4.1 Monitoring Data Structures and Their Operations

The data structures memory and EHE operate over atoms, where an atom is an encoding of atomic propositions. The
encoding used for monitoring the appartment consists of a pair of timestamp and atomic proposition. For example,
the atom 〈23, s1〉, is used to refer to the truth value of switch 1 at timestamp 23.

Memory. The memory buffers all observations the monitor received from the component it is associated with,
and the monitors it depends on. The memory is a partial function (noted M) that associates atoms with verdicts.
For example, the memoryM = [〈23, s1〉 7→ >, 〈23, s2〉 7→ ⊥] states that at timestamp 23, switch 1 was enabled
while switch 2 was disabled. An underlying operation used to perform monitoring is denoted by eval, which takes
a Boolean expression of atoms, and a memory. Function eval attempts to rewrite the expression by replacing the
value of the atoms present in the memory by their associated verdict, then simplifies the expression (using Boolean
simplification). The memory stores all observations and is used to rewrite expressions when performing monitoring.

Example 6 (eval). For the expression e = 〈23, s1〉 ∨ 〈23, `1〉 and memory M = [〈23, s1〉 7→ >], applying
eval(e,M) will first rewrite e to > ∨ 〈23, `1〉, which is then simplified to >.

Bringing Runtime Verification Home 11

Execution History Encoding. We recall from Sect. 2.1 that monitors are Moore automata that check decentralized
traces. Since we are dealing with partial information due to the decentralized nature of monitors, the EHE encodes the
execution of the underlying automaton, keeping track of potential states when receiving partial observations. In brief,
an EHE can be modeled as a partial function (I) that associates a timestamp t and a state q of the automaton with a
boolean expression e. Whenever e holds (i.e., I(t, e)), we are sure that the automaton is in state q at timestamp t. The
Boolean expression e is evaluated using the content of the monitor’s memory data structure using eval. The size of
the EHE grows to account for timestamps and potential reachable states as the system executes (as time passes). The
main function that extends the EHE to new timestamps is mov. Function mov takes the current EHE, along with its
last stored timestamp, and an arbitrary timestamp in the future, and expands the entries by generating the expressions
up to the future timestamp using the structure of the automaton and reachability. As such, to create an EHE I ′ from
another one I containing current information at timestamp tcur with information up to timestamp tfuture, we use
I ′ = mov(I, tcur, tfuture). Expanding the EHE when information is missing leads to large expressions in the EHE
which require a larger memory to store and a longer time to simplify. As such, it is important to ensure that mov is
called when sufficient information is present to resolve the EHE.

4.2 Memory Garbage Collection For Large Traces

We optimized data structure memory (which is used to store observations) to add garbage collection. To do so we
have created a new implementation (MemoryIndexed) that indexes observations by timestamp. When the monitor
concludes with a final verdict for timestamp t, and respawns to monitor timestamp t+1, all observations associated
with a timestamp lesser than or equal to t are removed from the memory. That is, the new memoryM′ is constrained
to dom(M′) = dom(M) \ {〈t′′, ap〉 ∈ dom(M) | t′′ < t} (where dom indicates the domain of the partial
function). This ensures that older information is discarded as the monitoring moves with time.

4.3 Lazy EHE Expansion

The EHE data structure is designed to be as general as possible, and keeps expanding while it has not detected the
state the automaton is in. For large trace sizes, this can cause an EHE to grow quickly to consume all available
memory and prevents monitoring from completion. That is, the monitor expands the EHE using mov, causing the
expressions to grow exponentially [29], when no information is provided to the monitor.

This is prominently the case when monitoring safety properties. Safety properties such as p def
= �(ap) will only

conclude when the value of ap is ⊥. So long as the value of ap is >, the monitor checking p does not reach a
final verdict, and does not report it to its parent. Consequently, a monitor that checks a safety property that is never
violated, incurs a delay that is as long as the trace size. One approach is to limit the expansion of the EHE to a fixed
length (assuming a fixed maximal delay), and use a sliding window to maintain the limit. This approach, however,
may cause monitoring not to conclude in cases where monitoring requires more time than that of the window. To
solve this issue and provide the user with more control, we allow the user to specify the expansion condition for the
EHE as an additional Boolean formula that is determined by communication. This allows us to expanding the EHE
based on the communication patterns between monitors.

Scope. We recall from Sect. 2.2 that, for a given monitor labeled lbl, its alphabet AP lbl consists of atomic proposi-
tions of dependent monitors and the alphabet of the attached component. For this enhancement, we consider monitors
which only depend on other monitors, i.e., when AP lbl ⊆ APmons. We can see, when looking at dependencies in
Fig. 4, that most monitors eventually rely only on lower-level monitors which themselves rely on component obser-
vations. As such, most high-level specifications for the smart home, and in particular safety properties (formulated as
meta-specifications in Table 1), rely on other monitors which evaluate different specifications, and thus only depend
on monitors.

Communication AP. For a monitor that only depends on other monitors, its alphabet consists of monitor references
(i.e., AP lbl ⊆ APmons). For each dependent monitor (labeled dep), we create two atomic propositions, one if the
received verdict is> (noted>dep) and one if it is⊥ (noted⊥dep). The resulting alphabet is APcom

lbl = {>dep,⊥dep |
dep ∈ AP lbl}. The expansion condition (noted ϕtrigger

lbl) is thus a Boolean expression over the alphabet APcom
lbl .

Evaluating the expansion condition. To evaluate the added atomic propositions, we define function resolve which
takes as input an expansion condition ϕtrigger

lbl , a memoryM, and a timestamp t as follows:

resolve(ϕtrigger
lbl ,M, t) = match ϕtrigger

lbl with

| >dep ∈ APcom
lbl → eval(〈t, dep〉,M) = >

| ⊥dep ∈ APcom
lbl → eval(〈t, dep〉,M) = ⊥

12 Antoine El-Hokayem and Yliès Falcone

Function resolve performs pattern matching to convert the communication atomic proposition to an expression
capable of being evaluated using eval, checking if the monitor returned verdict > and ⊥ at timestamp t for >dep

and ⊥dep, respectively. We note that when the atom is not found in the memory, both >dep and ⊥dep do not hold.

Triggering the expansion. Given a current time tcur for which we last expanded the EHE, we determine the
maximum possible expansion for the EHE by looking for the atom in the memory with the highest timestamp,
noted tmax. Next, we define function resolved, which takes as input an expansion condition, a memory, a current
timestamp and a maximum timestamp and generates the timestamps for which the EHE must be expanded.

resolved(ϕtrigger,M, tcur, tmax) = {tcur < t ≤ tmax | resolve(ϕtrigger,M, t) = >}

Finally, we pick the maximum of the timestamps and expand the EHE accordingly.

Remark 1 (Wildcard Trigger.). It is common to observe a expansion condition that involves, for a given monitor
(labeled lbl), all the atoms found in the checked specification. The expansion condition is then a disjunction of all
atoms (i.e.,

∨
ap∈APcom

lbl
(ap)). To avoid evaluating such large expression, particularly when many dependencies exist

(for example, meta-specifications actfloor(0) and actfloor(1)), we provide an optimization flag for a monitor
to only trigger expansion upon receiving messages from other monitors.

Example 7 (Combination of safety properties and expansion). Consider the three monitors m0,m1 and m2 that
check for the following specifications: �(¬firehazard), �(¬notwopeople) and m0∧m1. We can see that in this
case m0 and m1 only output verdicts when the property is falsified. That is, monitor m2 which depends on both,
has to normally expand its own EHE as time passes awaiting information that will only become available when the
specification of either is falsified (i.e., firehazard or notwopeople evaluate to true in either monitors m0 or m1,
respectively). As such, we can specify the expansion condition for monitor m2 to be ⊥m0 ∨ ⊥m1 : so long as no ⊥
is communicated from either m0 or m1, the EHE is not expanded, as it cannot be falsified. When using lazy EHE
expansion using m0,m1 and m2 with the unbounded operator �, we are able to reduce the maximal observed size
of an EHE during the simulation by as much as 58%.

5 Assessing the Monitoring of the Appartment
Monitoring the smart apartment requires leveraging the interdependencies between specifications to be able to scale,
beyond monitoring system properties, to more complex meta-specifications (as detailed in Sect. 1.2). We assess using
decentralized specifications to monitor the apartment by conducting three scenarios. The first scenario (Sect. 5.1)
evaluates the scalability and re-use advantages of using decentralized specifications presented in Sect. 2.3 by looking
at the complexity of monitor synthesis, and communication and computation costs when adding more complex
specifications that re-use sub-specifications. The second scenario (Sect. 5.2) evaluates the effectiveness of detecting
ADL by looking at various detection measures such as precision and recall. The third scenario (Sect. 5.3) portrays
the advantages of modularity by (i) adapting specification napping to use different sensors without modifying
dependencies, and (ii) porting specification firehazard to a completely different environment (using the ARAS
dataset [2]).

5.1 Monitoring Efficiency and Hierarchies

Monitor synthesis. Table 1 displays the number of atomic propositions referenced by each specification for the
decentralized (|APd|) and the centralized (|APc|) settings. Column d indicates the maximum depth of the directed
acyclic graph of dependencies. We use the depth to assess how many levels of sub-specifications need to be com-
puted. When d = 0, it indicates that the specification can be evaluated directly by the monitor placed on the
component, while d = 1 indicates that the monitor has to poll at most 1 monitor for its verdict (which typically
relays the component observations). More generally, when d = n, it indicates that the specification depends on a
monitor that has at most depth n−1. The atomic propositions indicate either direct references to sensor observations
(in the centralized setting) or references to either sensor observations or dependent monitors (in the decentralized
setting). For certain specifications such as toilet which relies only on the water sensor in the toilet to be detected,
there is no difference between using a centralized or decentralized specification, as it resolves to the observations.
Reduction becomes more pronounced when specifications re-use other specifications as sub-specifications. For ex-
ample, specification acthouse

def
= actfloor(0) ∨ actfloor(1), when decentralized, uses only 2 references (for

each of the sub-specifications). However, when expanded, it references all 27 sensors used to detect activities. Ad-
ditionally, specification notwopeople

def
= ¬(actfloor(0)∧ actfloor(1)) would not re-use the sub-specifications

if expanded, requiring all sensors again. Henceforth, re-use greatly reduces the formula size and allows us to syn-
thesize the monitors needed to check the formulas, as the synthesis algorithm is doubly exponential as mentioned in
Sect. 2.3.

Bringing Runtime Verification Home 13

46.00

39.00
41.00

24.00

8.00
6.00

0

10

20

30

40

SW−D SW−C ADL ADL+H ADL+H+2 ADL+M
Properties

#M
sg

s
(N

or
m

al
iz

ed
)

(a) Communication.

405.99

363.78
375.55

326.76

57.39
39.42

0

100

200

300

400

SW−D SW−C ADL ADL+H ADL+H+2 ADL+M
Properties

#S
im

pl
ifi

ca
tio

ns
 (

N
or

m
al

iz
ed

)

(b) Computation.

Fig. 5: Scalability of communication and computations in decentralized specifications.

Assessing re-use and scalability. Reducing the size of the atomic propositions needed for a specification not only
affects monitor synthesis, but also runtime performance, as atomic propositions represent the information needed
to determine the specification (Sect. 2.3). To assess re-use and scalability, we perform two tasks and gather two
measures pertaining to computation and communication, and present results in Fig. 5. The first task compares a
centralized (SW-C) and a decentralized (SW-D) version of specification sc ok presented in Example 5 using only 2
rooms. The second task introduces large meta-specifications on top of the ADL specifications to check scalability.
Firstly, we measure the communication and computation for monitoring ADL specifications (ADL). Secondly, we
introduce specifications actfloor(0), actfloor(1) and acthouse (ADL+H) as they require information about all
sensors for ADL. Thirdly, we add specification notwopeople (ADL+H+2), as it re-uses the same sub-specifications
as specification acthouse. Lastly, we show all measures for all meta-specifications in Table 1 (ADL+M). We re-use
two measures from [26]: the total number of simplifications the monitors are doing, and the total number of messages
transferred. These measures are provided directly with THEMIS [27]. The total number of messages abstracts the
communication (#Msgs), as our messages are of fixed length, they also represent the total data transferred. The total
number of simplifications (#Simplifications) abstracts the computation done by the monitors, as they attempt to
simplify Boolean expressions that represent automaton states, which are the basic operations for maintaining the
monitoring data structures in [26]. Both measures are normalized by the number of timestamps in the execution
(36,000). The resulting normalized measures represent the number of simplifications and messages per round.

Results. Figure 5a shows the normalized number of messages sent by all monitors. For the first task, we notice
that the number of messages is indeed lower in the decentralized setting, SW-D sends on average 2 messages per
timestamp less than SW-C, which corresponds to the difference in the number of atomic propositions referenced (6
for SW-D and 8 for SW-C). For the second task, we notice that on the baseline for ADL, we observe 24 messages
per timestamp, a smaller number than the sensors count (27). This is because some ADL like toilet are directly
evaluated on the sensor without communicating, and other ADL like preparing, re-use other ADL specifications
like kactivity. By introducing the 3 meta-specifications stating that an activity occurred on a floor or globally in
the appartment, the number of messages per round only increases by 15. This also coincides with the number of
atomic propositions for the specifications (6 for actfloor(0), 7 for actfloor(1), and 2 for acthouse) as those
monitors depend in total on 15 other monitors to relay their verdicts. This costs much less than polling 16 sensors to
determine actfloor(0), 11 sensors to determine actfloor(1), and 27 (a total of 54) to determine acthouse. To
verify this, we notice that the addition of notwopeople (ADL+H+2) that needs information from all 27 sensors, only
increases the total number of messages per timestamp by 2. The specification notwopeople reuses the verdicts of
the two monitors associated with each actfloor specification. After adding all the meta-specifications (ADL+M),

14 Antoine El-Hokayem and Yliès Falcone

Table 2: Precision, Recall, and F1 scores of monitoring all ADL specifications on three days with different schedules.
Tuesday, Jan 31 2017 Monday, Feb 20 2017 Tuesday, Feb 21 2017

Specification Precision Recall F1 Precision Recall F1 Precision Recall F1

computing 0.98 0.99 0.99 0.94 0.99 0.96 0.99 0.99 0.99
office tv 1.00 0.80 0.89 1.00 0.94 0.97 -
cooking 0.88 0.88 0.88 0.90 0.93 0.92 -

shower usage 1.00 0.50 0.67 - 1.00 0.63 0.77
washing dishes 1.00 0.47 0.64 0.93 0.63 0.75 -
livingroom tv 1.00 0.43 0.60 - 1.00 0.47 0.64
dressing 1.00 0.41 0.58 1.00 0.31 0.47 -

toilet∗ 1.00 0.18 0.30 - 0.75 0.24 0.36
sink usage 1.00 0.13 0.23 1.00 0.24 0.35 0.003 0.16 0.01

eating 0.61 0.35 0.44 0.70 0.73 0.71 -

napping 0.43 0.95 0.60 0.38 0.94 0.54 -
preparing 0.23 0.77 0.35 0.21 0.79 0.34 -

reading 0.37 0.04 0.06 0.02 0.10 0.03 -

the total number of messages per timestamp is 46, whihc is less than the number needed to verify adding actfloor,
and acthouse in a centralized setting (54). We notice a similar effect for computation (Fig. 5b).

5.2 ADL Detection using RV

Measurements. Table 2 displays the effectiveness of using RV to detect all ADL specifications on the trace of
three days with different schedules. To assess the effectiveness, we compared with the provided self-annotated data
from [22], where the user annotated the start and end of each activity. We measure precision, recall and F1 (the
geometric mean of precision and recall). To measure precision, we consider a true positive when the verdict > of
a monitor for a given timestamp fell indeed in the self-annotated interval for the activity. To measure recall, we
measure the proportion of the intervals for which the monitors have determined > (using RV). This approach is
more fine-grained than the approach used in [41] where the precision and recall are computed for the start and end
of intervals.

Results. The effectiveness of detection depends highly on the specification. Our approach performs well for the
specifications computing, cooking, office tv, as it exhibits high precision and high recall. The second group
of specifications contains specifications such as shower usage, and livingroom tv. It exhibits high precision but
medium recall, that is, we were able to determine around 40 to 50% of all the timestamps where the specifica-
tions held according to the person annotating, without any false positives. The third group is similar to the second
group but has very low recall (13-18%) and contains the specifications toilet and sink usage. We notice that for
sink usage specific user behavior can throw it off, as seen for the trace of Feb 21, we elaborate on the limitations
in the next paragraph. The fourth group, which includes the specifications napping and preparing, shows high
recall but a high rate of false positives. And finally, specification reading is not properly detected, as it has a high
rate of false positives and covers almost no annotated intervals.

Limitations of RV for detecting ADL. The limitations of using RV to detect ADL are due to the modeling. As
mentioned in Sect. 1.2, RV can be seen as a knowledge-based approach to activity detection, as such it suffers from
similar weaknesses and limitations [18]. The activity is described as a rigid formal specification over the sensor data,
and this has two consequences. Firstly, since RV relies purely on sensor data, activities which cannot be inferred
from existing sensors will be poorly detected or not detected at all. This is the case for reading, as there are no
sensors to indicate that the tenant is reading. We infer reading by checking that the light is on in the room and no
other specified activity holds. Secondly, given that specifications are rigid, we expect the user to behave exactly
as specified for the activity to be detected, any minor deviation results in the activity not being detected (as seen
on Feb 21). To illustrate this point, the specification computing relies on the power consumption of the plug in
the office. Had the tenant been charging his phone instead of computing, the recall would have suffered greatly.
Another great example of this is the shower usage specification, that is captured by inspecting the water usage of
the shower. The time the tenant spends getting into the shower and out of the shower will not be considered, which
greatly impacts recall. The above issues are further compounded by the annotation being carried out by a person.

Bringing Runtime Verification Home 15

Table 3: Modifying the decentralized specification to improve detection, and adapt to new environment.
(a) Refining napping using the bedroom sensors: bed pressure
(weight), presence (pres), and light (`).

Formula Precision Recall F1

�≤25(weight) 0.43 0.95 0.60
�≤3(weight) 0.43 0.99 0.60
♦≤3(weight) 0.43 1.0 0.60

�≤3(pres ∧ weight) 0.34 0.14 0.20
�≤3(¬` ∧ weight) 1.00 0.97 0.99

(b) Modifications to detect firehazard in ARAS.

Specification Formula

preparing ♦≤3(m kdrawer ∨ m fridge ∨ m cupboard)
cooking preparing

beds bed1 ∨ bed2

beds′ bed1 ∧ bed2

napping �≤25(beds)

firehazard napping =⇒ ¬cooking

The annotator can for example take a few seconds to annotate some events which could impact recall, especially
for short intervals of activity. However, even with the inherent limitations of using knowledge-based approaches,
our observed groups and results fall within the expected range, of knowledge-based approaches such as [41], and
also have similar effectiveness as model-based SVM approaches such as [17]. We elaborate on how the introduced
modularity from decentralized specifications can alleviate some of these issues in Sect. 5.3.

5.3 Specification Adaptation for ADL Detection

Decentralized specifications introduce numerous advantages (see Sect. 2.3) for monitoring hierarchical systems that
can change. We illustrated in Sect. 5.1 the scalability of decentralized specifications with hierarchies. Decentral-
ized specifications allows specifications to be written with references to other specifications. The references allow
specifications to be modular, changing the referenced specification is transparent with no modification to the speci-
fications that depend on it. In this section, we illustrate the advantages of modularity in two cases. In the first case,
we improve the detection of the activity napping by adding relevant sensors. The change only requires changing
the monitor for napping, and no change is necessary for the remaining dependent specifications. In the second case,
we apply the specification firehazard and all its dependencies on a completely different environment using the
ARAS dataset [2].

Improving activity detection. We modify the specification napping to better capture the activity. This requires no
change to specifications that depend on napping. Table 3a shows the changes in precision and recall, for various
versions of the specification napping. We modify the formula to relax the time constraints on the output of the
bed pressure sensor. We notice, that while this could slightly improve recall (0.95 to 1), it does not translate to
any precision improvement (it remains at 0.43). We explore using additional sensors in the room to capture the
specification better. Using the presence sensor proves to be detrimental as it reduces precision to 0.34 and recall to
0.14. This is reasonable, as the presence sensor is a motion detector, and when someone is sleeping there may be no
motion at all. However, people typically tend to turn the lights off when sleeping. Using the additional light sensor
to detect lights are off, helps us increase precision to 1 and recall to 0.99. One could see that the effect of ADL
detection is behavior specific, a tenant that sleeps with lights on will have undetected sleep using our specification.
Being able to change to specific parts of the specification without impacting the rest of the it provides the flexibility
to tune the ADL detection to specific users and behaviors.

Adapting to new environments. In Sect. 1.2 we mentioned that ADL can be challenging as the detection of the
specification does not only depend on the user behavior, but also on the environment in which it is monitored. In the
context of learning techniques, using information learned from one environment to apply it to detection of ADL in
other environments is discussed in [39]. Since decentralized specifications provide both a hierarchical and modular
approach to designing specifications, it is possible to adapt specifications to new environment, by only changing the
relevant parts or dependencies, and reasoning at the appropriate level. For instance, while specifications specifying
ADL may change depending on the sensors and user behavior, meta-specifications do not necessarily change. We
adapt specification firehazard and all its dependencies in the ARAS [2] dataset. The ARAS dataset features
contact, pressure, distance, and light sensors, recording the interactions of two tenants with the sensors over a period
of 30 days.

Table 3b shows the changes in the decentralized specification compared with that of Amiqual4Home found in
Appendix A. For activity preparing, we follow a similar pattern, looking at the usage of cupboards, fridge, and
kitchen drawers. Thus, we adapt the formula to reflect the available sensors in the kitchen. However, the ARAS

16 Antoine El-Hokayem and Yliès Falcone

dataset does not provide any electricity sensors for appliances, nor any way to detect heat being turned on. As such
it is impossible to detect cooking using any sensors. Since we cannot tell preparing and cooking apart, we define
cooking to simply be equivalent to preparing. Notice how in this case, we inverted the dependency from Fig. 4
(in ARAS, cooking depends on preparing). The ARAS dataset records the behavior of two people, instead of just
one. As such, activity napping needs to be adjusted for the two beds. There are two ways to do so, the first assumes
either one of the tenants is napping (beds), and the second assumes both are napping simultaneously (beds′). We
notice that the meta-specification firehazard remains unchanged. However, it has two different interpretations.
If we use beds, then it is possible to trigger firehazard when one tenant is cooking while the other is sleeping.
We verify that, and notice that it is indeed falsified in 8 days (7, 9, 16, 17-19, 24, 27). Using beds′, allows us to
only capture firehazard when both tenants are sleeping. It is then possible to refer napping to allnapping and
anynapping, then using firehazard on allnapping, which would apply in both scenarios.

Discussion. We see that modularity provides several advantages. It allows us to make local change to specifications
that do not need to be propagated upwards. It also makes it possible to generalize and abstract the specification
to adapt to multiple environments. Decentralized specifications allow specifications to be written in a modular and
adaptable fashion, allowing specifications to be adapted to target changes in user behavior and environment. It can
be seen much like component-based design [48], which separate the implementation of each component in software,
from its interaction with other components.

6 Related Work
We present similar or useful techniques for detecting ADL in a smart apartment that use log analysis and complex
event processing. Then, we present techniques from stream-based RV that can be extended for monitoring smart
apartments.

ADL detection using log analysis. Detecting ADL can be performed using trace analysis tools. The approach
in [41] defines parametric events using Model Checking Language (MCL) [45] based on the modal mu-calculus
(inspired by temporal logic and regular expressions). Traces are read and transformed into actions, then actions
are matched against the specifications to determine locations in the trace that match ADL. Five ADL (sleep, using
toilets, cooking, showering, and washing dishes) are specified and checked in the same smart apartment as our work.
While this technique is able to detect ADL activities, it amounts to checking traces offline, and a high level of post-
processing is required to analyze the data. In [10], the authors describe an approach for log analysis at very large
scale. The specification is expressed using Metric First Order Temporal Logic (MFOTL), and logs are expressed as
a temporal structure. The authors develop a MapReduce monitoring algorithm to analyze logs generated by more
than 35,000 computers, producing approximately 1 TB of log data each day. While this approach is designed for
distributed systems, does not map dependencies, and works offline, it could be used to process and monitor rich
specifications over sensor data seen as log files.

ADL detection using Complex Event Processing. Reasoning at a much higher level of abstraction than sensor
data, the approach in [36] attempts to detect ADL by analyzing the electrical consumption in the household. To do
so, it employs techniques from Complex Event Processing (CEP), in which data is fed as streams and processed
using various functions to finally output a stream of data. In this work, the ADL detection is split into two phases,
one which detects peaks and plateaus of the various electrical devices, and the second phase uses those to indicate
whether or not an appliance is being used. This illustrates a transformation from low-level data (sensor signal)
to a high-level abstraction (an appliance is being used). The use of CEP for detecting ADL is promising, as it
allows for similar scalability and abstraction. However, CEP’s model of named streams makes it hard to analyze the
specification formally, making little distinction between specification and implementation of the monitoring logic.

ADL detection using Runtime Verification. Similarly to CEP but focusing on Boolean verdicts, various stream-
based RV techniques have been elaborated such as LOLA [23] which are used to verify correctness properties
for synchronous systems such as the PCI bus protocol and a memory controller. A more recent approach uses the
Temporal Stream-Based Specification Language (TeSSLa) to verify embedded systems using FPGAs [24]. Stream-
based RV is particularly fast and effective for verifying lengthy parametric traces. However, it is unclear how these
approaches handle monitor synthesis for a large number of components and account for the hierarchy in the system.

Discussion. Stream-based systems such as stream-based RV and CEP are bottom-up. Data in streams is eventually
aggregated into more complex information and relayed to a higher level. Decentralized specifications also support
top-down approaches, which would increase the efficiency of monitoring large and hierarchical systems. To illus-
trate the point, consider the decentralized specification in Fig. 3b. In the automaton Asc lighti

, the evaluation of the
dependent monitor A`i only occurs when reaching q1, so long as the automaton is in q0, no interaction with the de-

Bringing Runtime Verification Home 17

pendent monitor is necessary. This top-down feedback can be used to naturally optimize dependencies and increase
efficiency. Because of the oracle-based implementation of decentralized specifications, it is possible to integrate any
monitoring reference that eventually returns a verdict. One could imagine integrating other stream-based monitors
or even data-driven ADL detection approaches. The integration works both ways, as monitors can be considered a
(blocking) stream of verdicts for the other techniques.

7 Conclusion and Future Work
7.1 Conclusion

Monitoring a smart apartment presents RV with interesting new problems as it requires a scalable approach that is
compositional, dynamic, and able to handle a multitude of devices. This is due to the hierarchical structure imposed
by either limited communication capabilities of devices across geographical areas or the dependencies between vari-
ous specifications. Attempting to solve such problems with centralized specifications is met with several obstacles at
the level of monitor synthesis techniques (as we are presented with large formulae), and also at the level of monitor-
ing as one needs to model interdependencies between formulae and re-use the sub-specifications used to build more
complex specifications. We illustrate how decentralized specifications tackle such systems by explicitly modeling
of interdependencies between specifications. Furthermore, we illustrate monitoring specifications that detect ADL
in addition to system properties and even more specifications defined over both types of specifications.

7.2 Future Work

We believe that the use of decentralized specifications could be further extended to bring monitoring closer to
data (collected on sensors), and make RV a suitable verification technique for edge computing. One challenge
of the case study was to determine the correct sampling period for monitor to operate. Further investigation is
required to layout the tradeoffs between the sampling period, communication overhead, and energy consumption.
Also, decentralization is only supported by specifications based on the standard (point-based) LTL3 semantics. We
believe that the use and decentralization of richer specification languages are desirable. For instance, we consider (i)
using a counting semantics able to compute the number of steps needed to witness the satisfaction or violation of a
specification [5] (ii) using techniques allowing to deal with uncertainty (e.g., in case of message loss) [9] (iii) using
spatio-temporal specifications (e.g. [35]) to reason on physical locations in the house, and (iv) using a quantitative
semantics possibly with time [4]. Finally, we consider using runtime enforcement [30,34,33] techniques (especially
those for timed specifications [32]) to guarantee system properties and improve safety in the house (e.g., disabling
cooking equipment whenever specification firehazard is violated). This requires to define the foundations for
decentralized runtime enforcement on the theoretical side, and provide houses and monitors with actuators on the
practical side.

References
1. Aimal, S., Parveez, K., Saba, A., Batool, S., Arshad, H., Javaid, N.: Energy optimization techniques for demand-side manage-

ment in smart homes. In: Advances in Intelligent Networking and Collaborative Systems, The 9th International Conference
on Intelligent Networking and Collaborative Systems, INCoS-2017. Lecture Notes on Data Engineering and Communica-
tions Technologies, vol. 8, pp. 515–524. Springer (2017)

2. Alemdar, H.Ö., Ertan, H., Incel, Ö.D., Ersoy, C.: ARAS human activity datasets in multiple homes with multiple residents.
In: 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, PervasiveHealth
2013. pp. 232–235. IEEE (2013)

3. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis, Santa Barbara, CA,
USA, July 10 - 14, 2017. ACM (2017)

4. Bakhirkin, A., Ferrère, T., Maler, O., Ulus, D.: On the quantitative semantics of regular expressions over real-valued sig-
nals. In: Abate, A., Geeraerts, G. (eds.) Formal Modeling and Analysis of Timed Systems - 15th International Conference,
FORMATS 2017, Berlin, Germany, September 5-7, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10419, pp.
189–206. Springer (2017)

5. Bartocci, E., Bloem, R., Nickovic, D., Röck, F.: A counting semantics for monitoring LTL specifications over finite traces.
CoRR abs/1804.03237 (2018)

6. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory and Advanced Topics, Lecture Notes in
Computer Science, vol. 10457. Springer (2018)

7. Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund, K., Joshi, Y., Klaedtke, F., Milewicz, R.,
Reger, G., Rosu, G., Signoles, J., Thoma, D., Zalinescu, E., Zhang, Y.: First international competition on runtime verification:
rules, benchmarks, tools, and final results of crv 2014. International Journal on Software Tools for Technology Transfer (Apr
2017)

8. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification. In: Bartocci, E., Falcone, Y. (eds.)
Lectures on Runtime Verification - Introductory and Advanced Topics, Lecture Notes in Computer Science, vol. 10457, pp.
1–33. Springer (2018), https://doi.org/10.1007/978-3-319-75632-5_1

https://doi.org/10.1007/978-3-319-75632-5_1

18 Antoine El-Hokayem and Yliès Falcone

9. Bartocci, E., Grosu, R.: Monitoring with uncertainty. In: Bortolussi, L., Bujorianu, M.L., Pola, G. (eds.) Proceedings Third
International Workshop on Hybrid Autonomous Systems, HAS 2013, Rome, Italy, 17th March 2013. EPTCS, vol. 124, pp.
1–4 (2013)

10. Basin, D.A., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable offline monitoring of temporal specifica-
tions. Formal Methods in System Design 49(1-2), 75–108 (2016)

11. Basin, D.A., Klaedtke, F., Zalinescu, E.: Failure-aware runtime verification of distributed systems. In: Harsha, P., Rama-
lingam, G. (eds.) 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2015. LIPIcs, vol. 45, pp. 590–603. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

12. Bauer, A., Leucker, M.: The theory and practice of SALT. In: NASA Formal Methods - Third International Symposium,
NFM 2011. Proceedings. Lecture Notes in Computer Science, vol. 6617, pp. 13–40. Springer (2011)

13. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is ugly? In: Sokolsky, O., Tasiran, S.
(eds.) Runtime Verification, 7th International Workshop, RV 2007, Vancouver, Canada, March 13, 2007, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 4839, pp. 126–138. Springer (2007)

14. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Log. Comput. 20(3), 651–674
(2010)

15. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol. 20(4),
14 (2011)

16. Brdiczka, O., Crowley, J.L., Reignier, P.: Learning situation models in a smart home. IEEE Trans. Systems, Man, and
Cybernetics, Part B 39(1), 56–63 (2009)

17. Chen, B., Fan, Z., Cao, F.: Activity recognition based on streaming sensor data for assisted living in smart homes. In: 2015
International Conference on Intelligent Environments, IE 2015. pp. 124–127. IEEE (2015)

18. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Systems, Man, and
Cybernetics, Part C 42(6), 790–808 (2012)

19. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with a global clock. Formal Methods in System
Design 49(1-2), 109–158 (2016)

20. Cotard, S., Faucou, S., Béchennec, J., Queudet, A., Trinquet, Y.: A data flow monitoring service based on runtime verification
for AUTOSAR. In: 14th IEEE International Conference on High Performance Computing and Communication & 9th IEEE
International Conference on Embedded Software and Systems, HPCC-ICESS 2012. pp. 1508–1515. IEEE Computer Society
(2012)

21. Crowley, J.L., Coutaz, J.: An ecological view of smart home technologies. In: De Ruyter, B., Kameas, A., Chatzimisios, P.,
Mavrommati, I. (eds.) Ambient Intelligence. pp. 1–16. Springer International Publishing, Cham (2015)

22. Cumin, J., Lefebvre, G., Ramparany, F., Crowley, J.L.: A dataset of routine daily activities in an instrumented home. In:
Ubiquitous Computing and Ambient Intelligence - 11th International Conference, UCAmI 2017, Proceedings. Lecture Notes
in Computer Science, vol. 10586, pp. 413–425. Springer (2017)

23. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma, H.B., Mehrotra, S., Manna, Z.:
LOLA: runtime monitoring of synchronous systems. In: 12th International Symposium on Temporal Representation and
Reasoning (TIME 2005). pp. 166–174. IEEE Computer Society (2005)

24. Decker, N., Dreyer, B., Gottschling, P., Hochberger, C., Lange, A., Leucker, M., Scheffel, T., Wegener, S., Weiss, A.: Online
analysis of debug trace data for embedded systems. In: 2018 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2018. pp. 851–856. IEEE (2018)

25. El-Hokayem, A., Falcone, Y.: THEMIS Smart Home Artifact Repository, gitlab.inria.fr/monitoring/
themis-rv18smarthome

26. El-Hokayem, A., Falcone, Y.: Monitoring decentralized specifications. In: Antoine El-Hokayem and Yliès Falcone [3], pp.
125–135

27. El-Hokayem, A., Falcone, Y.: THEMIS: a tool for decentralized monitoring algorithms. In: Antoine El-Hokayem and Yliès
Falcone [3], pp. 372–375

28. El-Hokayem, A., Falcone, Y.: Bringing runtime verification home. In: Colombo, C., Leucker, M. (eds.) Runtime Verification -
18th International Conference, RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 11237, pp. 222–240. Springer (2018), https://doi.org/10.1007/978-3-030-03769-7

29. El-Hokayem, A., Falcone, Y.: On the monitoring of decentralized specifications. ACM Transactions on Software Engineering
and Methodology (TOSEM) (2019), to appear.

30. Falcone, Y.: You should better enforce than verify. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace,
G.J., Rosu, G., Sokolsky, O., Tillmann, N. (eds.) Runtime Verification - First International Conference, RV 2010, St. Julians,
Malta, November 1-4, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6418, pp. 89–105. Springer (2010)

31. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Engineering Dependable Software Systems,
NATO science for peace and security series, d: information and communication security, vol. 34, pp. 141–175. ios press
(2013)

32. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regular timed properties by suppressing and
delaying events. Sci. Comput. Program. 123, 2–41 (2016)

33. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reaction. In: Bartocci and Falcone [6], pp.
103–134

gitlab.inria.fr/monitoring/themis-rv18smarthome
gitlab.inria.fr/monitoring/themis-rv18smarthome
https://doi.org/10.1007/978-3-030-03769-7

Bringing Runtime Verification Home 19

34. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement monitors: composition, synthesis, and enforcement
abilities. Formal Methods in System Design 38(3), 223–262 (2011)

35. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Gros, R., Belta, C.: Spatel: A novel spatial-temporal logic and its applications
to networked systems. In: Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control.
pp. 189–198. HSCC ’15, ACM, New York, NY, USA (2015)

36. Hallé, S., Gaboury, S., Bouchard, B.: Activity recognition through complex event processing: First findings. In: Artificial
Intelligence Applied to Assistive Technologies and Smart Environments, Papers from the 2016 AAAI Workshop. AAAI
Workshops, vol. WS-16-01. AAAI Press (2016)

37. Havelund, K., Goldberg, A.: Verify your runs. In: Meyer, B., Woodcock, J. (eds.) Verified Software: Theories, Tools, Ex-
periments, First IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected
Papers and Discussions. Lecture Notes in Computer Science, vol. 4171, pp. 374–383. Springer (2005)

38. Institute for Software Engineering and Programming Languages: LamaConv - Logics and Automata Converter Library,
www.isp.uni-luebeck.de/lamaconv

39. van Kasteren, T., Englebienne, G., Kröse, B.J.A.: Transferring knowledge of activity recognition across sensor networks. In:
Pervasive Computing, 8th International Conference, Pervasive 2010. Proceedings. Lecture Notes in Computer Science, vol.
6030, pp. 283–300. Springer (2010)

40. Katz, S.: Assessing self-maintenance: Activities of daily living, mobility, and instrumental activities of daily living. Journal
of the American Geriatrics Society 31(12), 721–727 (1983)

41. Lago, P., Lang, F., Roncancio, C., Jiménez-Guarı́n, C., Mateescu, R., Bonnefond, N.: The ContextAct@A4H real-life dataset
of daily-living activities - activity recognition using model checking. In: Modeling and Using Context - 10th International
and Interdisciplinary Conference, CONTEXT 2017, Proceedings. Lecture Notes in Computer Science, vol. 10257, pp. 175–
188. Springer (2017)

42. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr. Program. 78(5), 293–303 (2009)
43. Leucker, M., Schmitz, M., à Tellinghusen, D.: Runtime verification for interconnected medical devices. In: Leveraging

Applications of Formal Methods, Verification and Validation: Discussion, Dissemination, Applications - 7th International
Symposium, ISoLA 2016, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9953, pp. 380–387 (2016)

44. Majumder, S., Aghayi, E., Noferesti, M., Memarzadeh-Tehran, H., Mondal, T., Pang, Z., Deen, M.J.: Smart homes for elderly
healthcare - recent advances and research challenges. Sensors 17(11), 2496 (2017)

45. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing systems. In: FM 2008: Formal Methods,
15th International Symposium on Formal Methods, Proceedings. Lecture Notes in Computer Science, vol. 5014, pp. 148–
164. Springer (2008)

46. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, Providence,
Rhode Island, USA, 31 October - 1 November 1977. pp. 46–57. IEEE Computer Society (1977)

47. Shapiro, M., Preguiça, N.M., Baquero, C., Zawirski, M.: Conflict-free replicated data types. In: Défago, X., Petit, F., Villain,
V. (eds.) Stabilization, Safety, and Security of Distributed Systems - 13th International Symposium, SSS 2011, Grenoble,
France, October 10-12, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6976, pp. 386–400. Springer (2011)

48. Szyperski, C.A., Gruntz, D., Murer, S.: Component software - beyond object-oriented programming, 2nd Edition. Addison-
Wesley component software series, Addison-Wesley (2002)

49. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Pervasive
Computing, Second International Conference, PERVASIVE 2004, Vienna, Austria, April 21-23, 2004, Proceedings. Lecture
Notes in Computer Science, vol. 3001, pp. 158–175. Springer (2004)

50. Thapliyal, H., Nath, R.K., Mohanty, S.P.: Smart home environment for mild cognitive impairment population: Solutions to
improve care and quality of life. IEEE Consumer Electronics Magazine 7(1), 68–76 (2018)

A List of Properties
Table 4 shows all property definitions used in this case study. We ommitted the smaller monitors that are trivial such
as m kitchen cupboard which is a disjunction of all cupboard doors observations in the kitchen.

www.isp.uni-luebeck.de/lamaconv

20 Antoine El-Hokayem and Yliès Falcone

Table 4: Definitions of the specifications used in the case study. A specification with name prefixed with m is such
that the corresponding monitor is directly deployed on the component.

Name Formula

sc light(i) �(switchi =⇒ ©(lighti U¬switchi), i ∈ [0..3]
sc ok

∧
i∈[0..3] sc light(i)

m toilet toilet water

sink usage �≤3(m bathroom sink water)
m bathroom sink water bathroom sink cold ∨ bathroom sink hot

shower usage �≤2(m bathroom shower water)
napping �≤25(m bedroom bed pressure)
dressing ♦≤4(m bedroom closet door ∨ m bedroom drawers))
reading m bedroom light ∧ ♦≤4(¬dressing ∧ ¬napping)
office tv ♦≤3(m office tv)
computing ♦≤3(m office deskplug)
cooking ♦≤5(m kitchen cooktop ∨ m kitchen oven)
washing dishes ♦≤3(m kitchen dishwasher ∨ m kitchen sink water)
kactivity m kitchen presence ∧ ♦≤3(m kitchen sink water ∨

m kitchen fridgedoor ∨ m kitchen cupboard)
preparing kitchen activity ∧ ¬cooking
livingroom tv ♦≤3(m livingroom tv ∧ m livingroom couch)
eating ¬m kitchen presence ∧�≤6(m livingroom table)

actfloor(0) cooking∨preparing∨eating∨washing dishes∨livingroom tv∨
m toilet

actfloor(1) computing ∨ dressing ∨ napping ∨ office tv ∨ reading ∨
shower usage ∨ sink usage

acthouse actfloor(0) ∨ actfloor(1)
notwopeople ¬(actfloor(0) ∧ actfloor(1))
restricttv office office tv =⇒ ♦≤10(¬office tv)
restricttv living livingroom tv =⇒ ♦≤10(¬livingroom tv)
restricttv restricttv living ∧ restricttv office

firehazard napping =⇒ ¬cooking

	Bringing Runtime Verification Home

