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Abstract
Process discovery is an important area in the field of process mining. To help advance this area, a process discovery contest
(PDC) has been set up, which allows us to compare different approaches. At the moment of writing, there have been three
instances of the PDC: in 2016, in 2017, and in 2019. This paper introduces the winning contribution to the PDC 2019,
called the Log Skeleton Visualizer. This visualizer uses a novel type of process models called log skeletons. In contrast with
many workflow net-based discovery techniques, these log skeletons do not rely on the directly follows relation. As a result,
log skeletons offer circumstantial information on the event log at hand rather than only sequential information. Using this
visualizer, we were able to classify 898 out of 900 traces correctly for the PDC 2019 and to win this contest.

Keywords Log skeletons · Process discovery · Event logs · Process discovery contest

1 Introduction

In the field of process mining [2], event logs (logs for short)
play a key role. In a nutshell, a log corresponds to a collection
of traces, where every trace corresponds to a single execution
of the process at hand that is captured by a sequence of events.
These events then may contain attributes like the name of the
activity involved, the resource (like an employee) that initi-
ated the event, or the time at which the event occurred. In
the area of process discovery, process models are discovered
from these logs. Such a process model describes the activi-
ties and the interplay between these activities in some way.
Ideally, of course, the discovered process model describes
the process at hand (that generated the log) perfectly. In the
area of process conformance, the extent to which a process
model agrees with the traces as captured in a log is measured.
For a process model to completely agree on a log, every trace
from that log can be replayed in the process model success-
fully. In the area of process extension, the process models
are enriched with additional perspectives based on the data
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as captured by logs. For example, if the log contains timing
information for every event, then (aggregated) timing infor-
mation can be added to the process model, which could show
clear bottlenecks (like activities in the process that take very
long to be completed).

To help advance and stimulate the process discovery area,
in the year 2016, the task force on process mining [3] initi-
ated the process discovery contest (PDC) [10]. This PDC has
now been organized in the years 2016 [8], 2017 [9], and 2019
[7]. In general, a PDC works as follows. The contestants are
providedwith a collection of 10 logs, called the training logs.
For each of these training logs, the contestants have to dis-
cover some processmodel of their choosing. It is important to
mention here that the type of process model is not prescribed
by the PDC, it could be any process model. The contestants
are also provided with a second collection of 10 logs, called
the test logs: one test log for every training log. Using the
process model as discovered from a training log, the contes-
tants should then check for every trace in the corresponding
test log whether the discovered process model agrees with
it. As such, they should classify every trace in the test log
as positive (process model agrees with it) or negative (oth-
erwise). This classification is then compared to the ground
truth classification, which results in a score: the number of
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correct classifications. Either the contestant with the highest
score wins the contest directly, or the contestants with high
enough scores (at least 95% of the highest score) go to a sec-
ond round which involves a jury that assesses the discovered
models and decides on the winner.

This paper introduces the novel Log Skeleton Visualizer
(Visualizer for short), which visualizes a log as a so-called
log skeleton. Such a log skeleton contains a collection of
nine relations as they are contained in the log: (1) three unary
activity relations, (2) fivebinary activity relations, and (3) one
equivalence activity relation. The Visualizer shows us these
nine relations in a comprehensible way as a directed graph.
Using the Visualizer, we were able to create process models
that classify 898 out of the 900 traces from the test logs of the
PDC 2019 correctly. This enabled us to win this contest, as
the jury considered our process models to be better than the
process models of the only other contestant that classified at
least 853 (95% of 898) traces correctly.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces log skeletons. Section 3 introduces the
Visualizer as it is implemented in ProM 6.9. Section 4 shows
how we have used the Visualizer on the PDC 2019 logs. Sec-
tion 5 discusses log skeletons and their evolution. Section 6
concludes the paper.

2 Log skeletons

We start with a definition of a log. For sake of simplicity, an
event in this log simply corresponds to an occurrence of an
activity, that is, no other attributes are involved. For sake of
convenience, we assume that some total order< exists on the
activities. As a result of this, a collection of activities always
contains a smallest activity.

Definition 1 (Trace, log) Let A be a set of activities. A trace
T over A is a sequence over A, that is, T ∈ A∗. A log L over
A is a bag1 (or multi-set) of traces over A, such that every
a ∈ A occurs at least once in the log L .

As we assumed that an event corresponds to an activity,
traces may not be unique. We would like a discovered model
to capture at least the frequent traces, and if possible the
infrequent traces. As a result, frequencies matter while doing
process discovery, which explains why we consider a log to
be a multiset of traces here.

We first introduce the basic structure for a log skeleton,
which contains an extended set of activities, three unary
(counting) relations, an equivalence relation, and five binary
relations.

1 A bag is a set which may contain the same element more than once.
We allow ourselves to use set notations for bags as well.

Definition 2 (Log skeleton) A log skeleton S is a 10-tuple
(A, c, h, l, E, R, P, R, P,C) where:

• A is a set of activities.
• c : A → {1, 2, 3, . . .}.
• h : A → {1, 2, 3, . . .}.
• l : A → {0, 1, 2, 3, . . .}.
• E ⊆ A × A such that E is an equivalence relation on A.
• R ⊂ A× A such that R is irreflexive, antisymmetric and
transitively closed.

• P ⊂ A× A such that P is irreflexive, antisymmetric and
transitively closed.

• R ⊂ A× A such that R is irreflexive and antisymmetric.
• P ⊂ A× A such that P is irreflexive and antisymmetric.
• C ⊂ A × A such that C is irreflexive.

To link a log skeleton to a log, we define the notion of a
valid log skeleton. A log skeleton is valid for some log if the
relations exactly capture some properties in the log.

Definition 3 (Valid log skeleton)Let L be a log over some set
of activities A, and let S = (A′, c, h, l, E, R, P, N R, N P, NC)

be a log skeleton. The log skeleton S is called valid for L if
and only if the following properties hold:

• A′ = A∪{| > , []}, that is, A′ extends Awith the artificial
start activity |> and the artificial end activity [].

• For every a ∈ A′, it holds that c(a) equals the number of
times a occurs in L . Furthermore, c(|>) = c([]) = |L|.

• For every a ∈ A′, it holds that h(a) equals the maximal
(highest) number of times a occurs in any trace T ∈ L .
Furthermore, h(|>) = h([]) = 1.

• For every a ∈ A′, it holds that l(a) equals the minimal
(lowest) number of times a occurs in any trace T ∈ L .
Furthermore, l(|>) = l([]) = 1.

• For every (a, b) ∈ E , it holds that for every trace T ∈ L
it holds that a and b occur equally often in T , that is,
two activities are equivalent if they occur equally often
in every trace. Furthermore, (|>, []) ∈ E , as they both
occur exactly once in every trace.

• For every (a, b) ∈ R, it holds that for every trace T ∈ L
it holds that any occurrence of a is always followed by
an occurrence of b in T , that is, activity a has activity b
as a response [4]. Furthermore, for every a ∈ A ∪ |> it
holds that (a, []) ∈ R, that is, any other activity is always
followed by the artificial end activity.

• For every (a, b) ∈ P , it holds that for every trace T ∈ L
it holds that any occurrence of a is always preceded by an
occurrence of b in T , that is, activity a has activity b as
a precedence [4]. Furthermore, for every a ∈ A ∪ {[]} it
holds that (a,|>) ∈ P , that is, any other activity is always
preceded by the artificial start activity.
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Fig. 1 An example log skeleton shown using the Log Skeleton Visualizer in ProM 6.9

• For every (a, b) ∈ R, it holds that for every trace T ∈ L
it holds that any occurrence of a is never followed by an
occurrence of b in T , that is, activity a has the absence
of activity b as a response. Furthermore, for every a ∈
A∪{[]} it holds that (a, |>) ∈ R, that is, any other activity
is never followed by the artificial start activity.

• For every (a, b) ∈ P , it holds that for every trace T ∈ L
it holds that any occurrence of a is never preceded by an
occurrence of b in T , that is, activity a has the absence
of activity b as a precedence. Furthermore, for every a ∈
A∪ |> it holds that (a, []) ∈ P , that is, any other activity
is never preceded by the artificial end activity.

• For every (a, b) ∈ C , it holds that for every T ∈ L it
holds that if a occurs in T then b does not occur in T .
That is, activity a has activity b as a not co-existence [4].

In the remainder of this paper, we will only consider log
skeletons which are valid for the log at hand.

3 Log Skeleton Visualizer

The Log Skeleton Visualizer (or just Visualizer for short) as
used for the PDC 2019 has been implemented in ProM 6.92

[14]. Figure 1 shows an example log skeleton as a directed
graph (a log skeleton graph) in the Visualizer. The exam-
ple log skeleton was built from the log 4 of the PDC 2019
by selecting activities ‘as’ and ‘t’ as required (see Sect. 3.2)
and selecting only the activities as shown by the log skele-
ton while deselecting the ‘Show Neighbors’ option (see
Sect. 3.3). Note that below the log skeleton graph a legend
is shown, which provides useful information on how this log
skeleton was build from the log.

TheVisualizer shows the log skeleton graph in themiddle,
surrounded by three control panels: top, left, and right. The
top and left control panels use the log to build a new log
skeleton, whereas the right control uses the log skeleton to
create a new log skeleton graph, that is, a new visualization
of the log skeleton.

2 ProM 6.9 can be downloaded from http://www.promtools.org.
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3.1 Log skeleton graph

3.1.1 Nodes

The nodes in the log skeleton graph correspond to the activi-
ties in log skeleton (A′), but also provide information on the
three unary relations (c, h, and l) and the equivalence relation
E . In the top row, we find the activity name, like a. In the
bottom row, from left to right, we find the following:

1. The name of the representative activity for activity a. All
activities that have the same representative are equivalent.
Any equivalent activity can be the representative activity,
but we use the smallest activity (using the total order
on A). For sake of convenience, the background color
of the activity also indicates the equivalence class: Two
activities sharing the same background color (not being
white) are equivalent.

2. The total number of times activity a occurred in the log,
that is, c(a).

3. An interval containing the minimal and maximal num-
ber of times activity a occurred in any trace, that is,
l(a)..h(a). If l(a) = h(a), then the interval is simply
written as the single value h(a).

3.1.2 Edges

The edges in the log skeleton graph correspond to the five
binary relations (R, P , R, P , and C). The symbols on the
head and tail of the edges have the followingmeaning, where
outgoing (incoming) indicates that it is pointing to the farthest
(nearest) node, and where the point of reference for relation
is always the node nearest to the symbol:

• A (dark blue) outgoing arrowhead without a tee bar indi-
cates a response relation, that is, R. For example, ‘ai’ has
‘v’ as a response, that is, any occurrence of ‘ai’ is always
followed by a ‘v’.

• A (dark red) outgoing arrowhead with a tee bar indicates
a not response relation, that is, R. For example, ‘v’ has
‘ai’ as a not response, that is, no occurrence of ‘v’ is ever
followed by an ‘ai’.

• A (dark blue) incoming arrowhead without a tee bar indi-
cates a precedence relation, that is, P . For example, ‘c’
has ‘v’ as a precedence, that is, any occurrence of ‘c’ is
always preceded by a ‘v’.

• A (dark red) incoming arrowhead with a tee bar indicates
a not precedence relation, that is, P . For example, ‘v’ has
‘c’ as a not precedence, that is, no occurrence of ‘v’ is
ever preceded by a ‘c’.

• A (dark yellow) tee bar indicates a not co-existence
relation, that is, C . For example, ‘ai’ has ‘aj’ as a not

co-existence, that is, no ‘ai’ is ever followed or preceded
by an ‘aj’.

To show only the most relevant relations, the response and
precedence relations have priority over the not co-existence
relation, which in turn has priority over the not response and
not precedence relations. As a result, if a is always followed
by b and a is never preceded by b (which may happen), then
only the fact that a is always followed by b is shown. This is
done as we consider the response relation to be stronger than
the not precedence relation. Observe that we can intuitively
rephrase the not precedence relation like follows:

If both a and b occur in a trace, then any a is followed
by any b.

Although this is not exactly a conditional response, it resem-
bles it to a large extent, especially if there is at most one a
and a at most one b in every trace. Likewise, if a and b never
occur together, this is shown, instead of the fact that no a is
ever followed by a b, which then also holds.

3.1.3 Relation reductions

To avoid showing too many relations, the log skeleton graph
does not contain all possible relations. As mentioned, the
response and precedence relations are transitive. That means
we can perform a transitive reduction on them, which may
result in less relations shown in the graph. We can then still
conclude whether one activity always follows or always pre-
cedes another. For example, as |> is always followed by ‘a’,
and ‘a’ is always followed by ‘c’, we can still conclude that
|> is always followed by ‘c’, even though that relation is not
shown in the graph.

The not response and not precedence relations are not
necessarily transitive. For example, consider the log with
just three traces: a first one with a followed by b, a second
one with b followed by c, and a third one with c followed
by a. Clearly, from the facts the a never follows b and b
never follows c we cannot conclude that a never follows c.
Nevertheless, we consider such a situation to be an exception,
and to avoid showing too many relations in the graph, we
apply the transitive reduction on these relations as well. We
agree that in theory this is not always perfect (some relations
which should be shown may not be shown), but we feel that
in practice it works much better (as it may remove many
relations, and because the shown relations are still valid).

The not co-existence relation can optionally be reduced by
restricting them to the representative activities. For example,
if there would have been an additional activity ‘ja’ which
would have been equivalent to ‘aj’, and assuming that ‘aj’
< ‘ja’, then only the not co-existence between ‘ai’ and ‘aj’
would be shown. But we could easily deduce that there is
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also a not co-existence between ‘ai’ and ‘ja’, even though the
latter relation is not shown in the graph.

3.2 Log controls

The top panel contains a text field where we can specify
which event attributes should be used for the activity names
in the log skeleton. So far, we have assumed that an event
is the activity name, but in reality an event often contains
the activity name among other attributes. In the example,
the attribute ‘concept:name’ is used for the activity name.
Typical values for this attribute include ‘a’, ‘ai’, ‘c’, and ‘v’. If
multiple attributes are specified, the activity name is obtained
by concatenating all values separated by ‘+’ signs.

The left panel contains controls that we can use to filter
the log and build a log skeleton from this filtered log. In
the example, the activities ‘as’ and ‘t’ have been selected as
a required activities, which means that any trace that does
not contain both activities is filtered out. In a similar way,
by selecting an activity as a forbidden activity, we filter out
those traces that do contain the selected activity.

The ‘Activity Splitters’ allow us to set splitters, more on
this in Sect. 4.2. For now, it is sufficient to know that by
using splitters we can rename multiple occurrences of the
same activity in a trace to different activities. As an example,
if a occurs twice in every trace, then we can rename some to
a.0 and others to a.1.

The ‘Apply settings’ button at the bottom allows us to
build a new log skeleton from the log using the settings as
provided in the left control panel. As a side effect, selecting
this button also creates three new logs in the workspace of
ProM 6.9: a log containing the traces that passed the filter
(‘In’), a log containing the traces that did not pass the filter
(‘Out’), and a log containing the traces that passed the filter
with the splitters applied to it (‘Split’). These logs can be
accessed in the ‘All’ tab in ProM 6.9, and can be used for
further analysis (like using the Visualizer) in ProM 6.9.

3.3 Log skeleton controls

The right panel contains controls that allow us to change the
current log skeleton graph. For example, we can select which
activities to show (‘View Activities’) and which relations
(‘View Constraints’). We can also set several options, which
include noise levels3, whether to use hyper edges if possible
(‘Use Hyper Arcs’), whether to use edge colors (‘Use Edge

3 These noise levels indicate the percentage of cases for which the
relation may not hold. As an example, if the noise level of the response
relation is set to 5%, then activity a has activity b as a response if at least
95% of all occurrences of activity a are followed by some occurrence of
activity b. As noise levels were not used for the PDC 2019, we consider
this option as out-of-scope for this paper. In the entire paper, we simply
assume the noise level to be set to 0% everywhere.

Colors’), whether to not reduce the not co-existence relation
to only representative activities (‘Use Equivalence Class’),
etc.

At the bottom, we find a single button that allows us to
open a new window for the current log skeleton graph. This
allows us to easily compare two (ormore) different log skele-
tons graphs.

3.4 Behind the scenes

3.4.1 Building the log skeleton for the log

To build log skeleton S for a provided log L , the Visualizer
needs to build the nine relations. First, the log L is filtered on
the required activities, the forbidden activities, and updated
on the splitters. Every trace in this filtered log is then extended
with the artificial start and end activities. This results in an
extended filtered log L ′ that is used in the following steps.

The unary relations (c, h, and l) are quite straightforward,
as they only require to maintain three counter for every activ-
ity.

The binary relations take more effort. Basically, for every
event e corresponding to an activity a in some trace in L ′, we
first build the set of activities that follow event e in the trace,
say TF(e), and the set of activities that precede event e in that
trace, say TP(e). Using these, we can then update set of activ-
ities AF(a) (AP(a)) that always follow (precede) activity a,
and a set of activities SF(a) (SP(a)) that sometimes follow
(precede) activity a. To update AF(a) and AP(a), we use the
set intersection: AF(a)∩TF(e) and AP(a)∩TP(e), whereas
for SF(a) and SP(a)we use the set union: SF(a)∪TF(e) and
SP(a) ∪ TP(e). This provides us with sufficient information
in the end for the response and precedence relation:

• R = {(a, b) ∈ A′ × A′|b ∈ AF(a)} and
• P = {(a, b) ∈ A′ × A′|b ∈ AP(a)}.

For thenot response (andnot precedence) relation,we take
for every event in L ′ the set difference between the set of all
activities (A′) and the set of activities that follow (precede)
event e. This results in the set of activities that do not follow
(not precede) event e. As a result, we can also update the set
of activitiesNF(a) (NP(a)) that never follow (never precede)
activity a, and use the set intersection: NF(a)∩ (A′ \TF(e))
(NP(a) ∩ (A′ \ TP(e))). In the end,

• R = {(a, b) ∈ A′ × A′|b ∈ NF(a)} and
• P = {(a, b) ∈ A′ × A′|b ∈ NP(a)}.

For the not co-existence relation, we use SF(a) and SP(a)
in the end:

• C = {(a, b) ∈ A′ × A′|b /∈ SF(a) ∪ SP(a)}.
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Fig. 2 Time it takes to build and visualize the initial log skeleton for all PDC 2019 logs

The equivalence relation is maintained by keeping a trace
count C ∈ T → {0, 1, 2, 3, . . .} for every activity. This trace
count maps every trace onto the number of times the activity
occurred in that trace. In the end, if activities a and b have
identical trace counts (like Ca = Cb), then (a, b) ∈ E .

After having built the entire log skeleton like this, the
transitive reductions are applied on R, P , R, and P , and, if
selected, the representative reduction is applied on C .

3.4.2 Visualizing the log skeleton graph

After the log skeleton has been built, the corresponding log
skeleton graph can be shown.

First, we determine the set of candidate activities, say CA.
Initially, CA is set to the set of activities as selected (‘View
Activities’) by us. Second, we determine from R, P , R, P ,
andC the set of candidate relations, sayCR. A relation (a, b)
is included in CR if

• the relation type (‘View Constraints’) is selected and
• {a, b} ⊆ CA or the ‘Show Neighbors’ option has been

selected and {a, b} ∩ CA 
= ∅.

In the latter case, the activity not inCA is considered a neigh-
bor: an unselected activity that has a relevant relation to a
selected activity. Third, we add the neighbor activities toCA.

Finally, all other settings are applied and the log skeleton
graph containing CA as nodes and CR as relations is shown.
Selected activities will be shown with a border, neighbor
activities will be shown without a border.

3.5 Performance results

Figure 2 shows the time4 it takes to build (top left number,
orange bar) and visualize (top right number, gray bar) the
initial log skeleton (excludes any filtering) for any of the 10
PDC 2019 training logs, and the number of activities (bottom
number, blue bar, includes the twoartificial activities) in these
logs. For sake of completeness, wemention that each training
log contains 700 traces, that the number of events varies from
3728 (log 5) to 18,485 (log 9), and that we ran everything
three times and selected the largest time for every training
log. As we can see, it takes less than a second to build the
initial log skeleton for any of the training logs and also less
than a second to visualize it. When combined, it seems fair to
say that the Log Skeleton Visualizer takes about a second for
any PDC 2019 training log. There also seems to be a positive
relation between the number of activities and the time it takes
to build the initial log skeleton.

4 All runs were done on a 64-bit Windows 10 laptop with an Intel(R)
Core(TM) i7-7700HQ CPU running at 2.80 GHz with 32 GB of RAM.
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4 Using the Log Skeleton Visualizer on log 4
of the PDC 2019

To show how we can use the Log Skeleton Visualizer to
discover a processmodel, we use it on log 4 of the PDC2019)
[7].

4.1 Training log 4 of the PDC 2019

This training log contains 700 traces, 7065 events, and 34
different activities (note that the artificial activities | > and
[] are not included in the log). The additional characteristics
of this log as provided by the organizers are:Noise,Recurrent
activities, Inclusive choices, and Unbalanced paths.

4.1.1 Noise

20% of the traces (that is, 140 traces) are truncated at the
tail. As a result, when replaying the trace on the process
model, the trace may not lead to the end of the process, but
stop somewhere in the middle. In principle, this makes the
discovery of the process model more complex. Note, how-
ever, that this may affect the set TF(e) (activities following
event e in the trace) while building the log skeleton, but not
the set TP(e) (activities preceding event e in the trace): For
any event e in the log, TP(e) will be correct. As a result, no
precedence-based relation will be incorrect because of this
particular type of noise.

4.1.2 Recurrent activities

The process model may contain multiple activities with the
same name, which is also known as duplicate activities. As
a result of this, we need to match an event to either one of
the activities in the model, which makes the discovery of the
process model more complex.

4.1.3 Inclusive choices

At some points in themodel, it is possible to execute any pos-
itive number of the branches that follow. Usually, the choices
are restricted to only one branch or all branches, but for an
inclusive choice it is possible to choose, for example, 3 out
of 5 branches as well. This also makes the discovery of the
process model more complex.

4.1.4 Unbalanced paths

For every non-inclusive choice (where exactly one possible
branch needs to be chosen), one branch has a probability of
90% to be chosen, whereas the other branches together have
a probability of only 10%. The branch with 90% probabil-
ity models the so-called happy flow here, whereas the other

Fig. 3 Log skeleton for the sublog from training log 4 from the
PDC 2019 where ‘as’ and ‘t’ are required

branches model exceptions. The discovery of the exceptions
in the process model is typically more error-prone, as less
data (less number of traces) are available for them. As an
example, if we only have a few traces, then concurrency may
be hard to discover.

4.2 Using the visualizer

Figure 3 shows a log skeleton graph for a sublog that we
encountered while discovering a workflow net for this train-
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ing log. This sublog contains only those traces that include
both the activities ‘as’ and ‘t’, that is, both ‘as’ and ‘t’ are
required activities for this sublog. As the log skeleton shows,
118 out of the 700 traces were included in this sublog, which
is a substantial part.

This log skeleton graph clearly shows that the activity ‘c’
occurs exactly twice in every trace and that both occurrences
are always preceded by ‘ak’ and ‘v’ and always followed
by ‘as’. Furthermore, it shows that activity ‘am’ is always
followed by ‘c’. From this, we can construct the hypothesis
that one occurrence of ‘c’ is concurrent to ‘am’ while the
other follows ‘am’.

To be able to check this hypothesis, we split activity ‘c’
over itself. Splitting an activity a over an activity b results
in renaming every occurrence a that occurs after the first
occurrence of b to a.1 and every other occurrence of a to
a.0. By splitting ‘c’ over itself, the first ‘c’ in the trace is
renamed to ‘c.0’, whereas every other ‘c’ is renamed to ‘c.1’.
Figure 4 shows the resulting log skeleton, which confirms
our hypothesis.

From this log skeleton, the process for these 118 traces can
be easily deduced. First, we do activity ‘a’ concurrent with
a choice between ‘ai’ and ‘aj’. Second, we do activity ‘ak’
concurrent with ‘v’. Third, we do activity ‘am’ concurrent
with ‘c’. Fourth, we do activity ‘c’, followed by ‘as’, ‘r’, and
‘t’.

This ‘divide-and-conquer’ strategywas followed for all 10
PDC 2019 logs. By selecting appropriate required and for-
bidden activities, and sometimes using splitters as well, often
clear processes were discovered for sublogs that could easily
be captured by workflow nets. As an example, Fig. 5 shows
the workflow net for the process we have just discovered.
Likewise, requiring activities ‘au’ and ‘t’ in log 4 results in
another clear log skeleton that covers another 132 traces of
the log, and requiring ‘ao’ and ‘t’ would cover another 126
traces. The resulting workflow nets were then merged into a
single workflow net by hand. We would then check confor-
mance of the log on the resulting workflow net and follow
up on any remaining issues.

As mentioned earlier, the PDC 2019 did not prescribe to
use workflow nets.We could also have used the log skeletons
themselves, like we did for the PDC 2017. However, like the
PDC 2017, the PDC 2019 did include a jury who would look
at the discovered models for the top ranking submissions and
rank the submissions based on their findings. For people in
the process mining field, workflow nets are well-known and
are therefore easier to grasp than the (novel) log skeletons.
For the PDC 2017, our submission with log skeletons was
outranked by a submission with workflow nets, even though
our log skeletons classified more traces correctly than these
workflow nets. For this reason, we submitted workflow nets
instead of log skeletons for the PDC 2019.

Fig. 4 Log skeleton for the sublog after splitting ‘c’ over itself

4.3 Resulting process model

Based on many such insights as provided by the Visualizer,
we were able to construct the sound workflow net [1] as
shown in Fig. 6 for training log 4 of the PDC 2019. Basically,
discovery was done by inspecting relevant sublogs using the
Visualizer, creating as many subnets, and then (manually)
merging all subnets into a singleworkflownet. For the record,
we did not rely on the Visualizer only in this discovery, but
also sometimes used the event log explorer [13] for additional
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Fig. 5 Workflow net for the log
skeleton shown in Fig. 4. The
black transitions do not
correspond to any activity and
are required for routing purposes

insights, and the conformance checker [6] to check whether
there were indeed 140 noisy traces.

To convert a log skeleton in general into a workflow net
is not a trivial exercise [11]. An attempt was made to do this
conversion using an automated evolutionary approach [12],
but this only showed that sometimes quite different work-
flow nets would equally fit some log skeleton. As a result,
this conversion (and hence part of the discovery) was done
manually.

Fortunately, the log skeletons that resulted from various
sublogs were typically easy to convert into a workflow net
manually (see also Figs. 4, 5). Although this conversion itself
did not take thatmuch time (a fewminutes atmost), themerg-
ing was much more of a challenge, especially for a workflow
net that is discovered late, as this requires merging it into a

workflow net that is already quite complex. As a result, most
time (like many minutes) during the manual discovery was
spent in merging the workflow nets into a single workflow
net.

In the near future, it may be possible to convert log skele-
tons that satisfy certain additional criteria automatically. The
log skeleton as shown in Fig. 4 is an example log skeleton that
should satisfy these additional criteria. An example criterion
could be that the number of traces add up in a construct like
for the activities ‘ai’ and ‘aj’. The automation of the merging
is, however, a different issue. We could try to use existing
synthesis techniques like the ones used in [5], but these tech-
niques take a lot of run-time (see also [5]). Doing it manually
by an expert may then be a better option.

In the discovered workflow net, four different transitions
are needed to model the behavior of activity ‘c’. Apparently,
this activity occurs in four different contexts in the log. Fur-
thermore, activity ‘c’ is not the only activity that require
multiple transitions. For example, the activities ‘aj’, ‘as’, and
‘t’ all require two transitions.

Using this workflow net, we were able to classify all 90
traces for the corresponding test log correctly: 48 were clas-
sified as positive and 42 as negative. Furthermore, this log
exactly classifies 140 out of the 800 traces in the training
log itself as not fitting, which is in accordance with the fact
that 140 traces in the training log are known to contain noise.
As a result, we may assume that this workflow net is a good
representation of the behavior as present in the training log.

5 Discussion

5.1 Why log skeletons?

The work on log skeletons started with the process discov-
ery contest of 2017 (PDC 2017) [9]. Basically, log skeletons
were the direct results of trying to think outside the box for
this contest. As we assumed the organizers of this contest to
have a bias toward imperative process models like workflow
nets, they were also assumed to have a bias toward logs con-
taining process constructs that are typically hard to capture
in such process models. Therefore, creating a different kind
of process model might be beneficial to discover and classify
these hard process constructs.

To create this other kind of process model, we use the
observation that most workflow net discovery algorithm rely
on the so-called directly follows relation as contained in the
log, that is, they only use the information that an activity
is directly followed by another activity. As a result, these
discovery algorithm only use the sequential information as
captured in the log, but not the circumstantial information
[11]. The six log skeleton relations (the equivalence relation
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Fig. 6 Workflow net discovered
using the Visualizer for training
log 4 from the PDC 2019
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and the five binary relations) all offer such circumstantial
information.

Using a predecessor of the Visualizer [15], we could clas-
sify all 200 test traces from the PDC 2017 correctly, and we
were the only one to do so. However, this predecessor did
not win the PDC 2017, as the jury appreciated the workflow
nets submitted by another contestant muchmore than our log
skeletons (see also [15]). For us, this was also an important
reason to submit workflow nets rather than log skeletons to
the PDC 2019.

5.2 Declare [4]

The realization that the always follows always precedes and
never together relations already existed in Declare [4] as
response, precedence, and not co-existence followed only
after the PDC 2017. As a result, we adopted the Declare
nomenclature for these relations, as until then they were
names like always after, always before, and never together.

5.3 Duplicate tasks

Using theVisualizer, the divide-and-conquer approach to dis-
cover a single workflow net worked for 9 out of 10 logs. The
exception was log 7, the result of which is shown in Fig. 7.
In the end, the highlighted part in the model was left for us
to discover, but because it contained the duplicate activities
‘d’, ‘f’, and ‘r’, we could not single this part out using the
filters and the splitters. Apparently, for this log, the splitters
are insufficient to unduplicate these duplicate activities from
the activities in the remainder of the model. As a result, a
better way of handling duplicate activities is left for future
work.

5.4 Loops

Loops are an issue with relations like response and prece-
dence. For example, while an occurrence of a may always
precede an occurrence of b in a single iteration of some loop,
the occurrence of activitya in the next iteration of that loop by
definition follows an occurrence of activity b in the current
iteration. Currently, we have no way to detect or visualize
loops in a log skeleton. This is also left for future work, but a
first ideamay be to allow us to select activities that jump back
in the process, that is, activities that initiate a new instance
of a loop. While building the set of activities T F(e) (T P(e))
that follow (precede) some event e in the trace, we could then
stop at such a back-jumping activity. The log skeleton could
then show that a always precedes b under the assumption that
some activity c starts a new instance of the loop that contains
a and b.

An important observation to make here is also that none
of the PDC 2019 logs actually contained loops. Although

the initial information from the organizers of the PDC 2019
mentioned that the logs 2, 5, 6, 7, and 8 contain loops, this
was later corrected by them because the published logs did
not contain loops. Clearly, the absence of loops was not
a disadvantage for our submission using the Log Skeleton
Visualizer. In our defense: Using the Visualizer, we actually
discovered that these logs did not contain loops, which trig-
gered the correction as made by the organizers.

5.5 Relation reductions

The relation reductions in this version of the Visualizer occur
at the end of building the log skeleton, that is, before the
log skeleton is visualized. Hence, selected activities cannot
be taken into account while doing these reductions. As a
result, sometimes some relations are not shown as they were
reduced because of other relations, which may not be shown
now because some required activity is not selected. In the
future, we want to move these reductions from the log skele-
ton builder to the Log Skeleton Visualizer, as then we can
take the selected activities into account, which would show
more relevant relations.

6 Conclusion

This paper has introduced a new declarative process model
called log skeletons. Log skeletons are more simple than
Declaremodels [4] and can be computed easily. Like Declare
models, log skeletons offer us circumstantial information,
whereas typical discovery techniques result in imperative
process models that typically offer sequential information
[11]. As such, log skeletons offer a readily available alter-
native view on the process model that underlies the log at
hand.

A visualizer for log skeletons has been implemented in
ProM 6.9 [14], called the Log Skeleton Visualizer, or Visu-
alizer for short. This Visualizer allows us to create sublogs
on the fly, to automatically discover a log skeleton for the
currently created sublog, and to change the view on the dis-
covered log skeleton.

The Visualizer has been used for discovering work-
flow nets [1] for the Process Discovery Contest of 2019
(PDC 2019) [7]. Using the Visualizer, we could gain suf-
ficient insights in the training logs of the PDC 2019 to create
a sound workflow net for every training log. In the end,
these sound workflow nets classified 898 out of the 900 test
traces correctly, which was more than any other submission,
and they were considered to be more comprehensible than
process models from any other submission that classified
sufficiently many traces correctly. This made these sound
workflow nets the winning submission of this contest, which
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Fig. 7 Workflow net discovered using the Visualizer for training log
7 from the PDC 2019, with a problematic part highlighted. Note that
the activities ‘d’, ‘f’, and ‘r’ also appear in other parts of the net. As a

result, if we would filter on these activities, other parts of the net would
also be affected, which complicates the discovery of this part

shows the potential value of log skeletons and the Log Skele-
ton Visualizer.
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