
International Journal on Software Tools for Technology Transfer (2022) 24:735–756
https://doi.org/10.1007/s10009-022-00672-0

GENERAL

Special Issue: TACAS 2020

Partial-order reduction for parity games and parameterised Boolean
equation systems

Thomas Neele1 · Tim A. C. Willemse1 ·Wieger Wesselink1 · Antti Valmari2

Accepted: 29 August 2022 / Published online: 2 October 2022
© The Author(s) 2022

Abstract
Inmodel checking, reduction techniques can be helpful tools to fight the state-space explosion problem. Partial-order reduction
(POR) is a well-known example, and many POR variants have been developed over the years. However, none of these can be
used in the context of model checking stutter-sensitive temporal properties. We propose POR techniques for parity games, a
well-established formalism for solving a variety of decision problems, including model checking. As a result, we obtain the
first PORmethod that is sound for the full modalµ-calculus.We show how our technique can be applied to the fixed point logic
called parameterised Boolean equation systems, which provides a high-level representation of parity games. Experiments
with our implementation indicate that substantial reductions can be achieved.

Keywords Partial-order reduction · Parity games · Parameterised Boolean equation systems · Stubborn sets

1 Introduction

In the field of formal methods, model checking [2] is a
popular technique to analyse the behaviour of concurrent pro-
cesses. However, the arbitrary interleaving of these parallel
processes can cause an exponential blow-up, which is known
as the state-space explosion problem. Several approaches
have been identified to alleviate this issue, by reducing the
state space while it is generated. Two established techniques
are symmetry reduction [17] and partial-order reduction
(POR) [11,32,37]. Whereas symmetry reduction can only be
applied to systems that contain several copies of a compo-
nent, POR also applies to heterogeneous systems. The idea
behind POR is that, out of many interleavings arising from
commutative behaviour of concurrent processes, exploring
just one interleaving is often sufficient to draw conclusions
on the properties of the system. This is achieved by explor-
ing only a specific subset of the outgoing transitions in every
state that is visited.

B Thomas Neele
t.s.neele@tue.nl

1 Eindhoven University of Technology, Eindhoven, The
Netherlands

2 University of Jyväskylä, Jyväskylä, Finland

However, a major drawback of POR is that most variants
at best preserve only stutter-insensitive temporal properties.
The application of POR is thus limited to fragments of pop-
ular logics, namely LTL or CTL* without the next operator
(LTL−X /CTL∗−X ) [10,39] or theweakmodalµ-calculus [35].
Furthermore, most of the variants of POR that preserve the
semantics of formulae in a branching time logic impose
significant restrictions on the reduction. This decreases the
amount of reduction achieved.

In previous work [30], we addressed these shortcomings
by applying POR on parity games. A parity game is an
infinite-duration, two-player gameplayed on a directed graph
with decorations on the nodes, in which the players even
(denoted �) and odd (denoted �) strive to win the nodes of
the graph. Parity games find common application in model
checking, where every node v in the parity game encodes
whether a state s in a transition system satisfies a subformula
ϕ of a given formal property, formulated in a temporal logic
such as the modalµ-calculus [20]. Under a typical encoding,
player � wins in the node v if and only if ϕ holds in s.

In the context ofmodel checking, parity games suffer from
the same state-space explosion that models do. Exploring the
state space of a parity game under PORcan be a very effective
way to address this. We investigated these ideas in [30] and
proposed a number of conditions with the aim of preserving
the winning player after reduction. Furthermore, we identi-
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fied a typical structure that occurs in the setting of model
checking and exploited this to improve the reduction poten-
tial.We showed how this POR technique can be applied in the
context of solving a parameterised Boolean equation system
(PBES) [13]—a fixed point logic closely related to LFP—
as a high-level representation of a parity game. Finally, we
extended the implementation ideas of [22] with support for
non-determinism and applied these to create an experimental
implementation, which we used to evaluate our ideas.

After [30] was presented, Antti Valmari noticed an issue
with the POR conditions that affects their correctness, that is,
thewinning player is not necessarily preserved. This problem
was subsequently resolved in Thomas Neele’s thesis [26]
with the introduction of an additional condition called P,
for Player. The condition P prevents a situation where our
reduction forces one player to hand control of the game to
the other player, effectively giving the latter player a chance
to win. The current work extends [30] as follows:

– The POR conditions are amended with the additional
condition P. We show the correctness with completely
reworked proofs (Theorem 1).

– Extended discussion of the intricacies of applying POR
to PBESs. In traditional POR approaches, transition
labels are used to determine which transitions should be
grouped together. However, this information is lost in the
construction of a PBES; grouping related transitions thus
relies on heuristics. We show how the choice for such a
heuristic may impact reduction.

– We include full proofs for the lemmata that show that our
implementation satisfies the POR conditions we set.

Our approach has two distinct benefits over traditional
POR techniques that operate on transition systems. First, it
is the first work that enables the use of partial-order reduction
for model checking for the full modal µ-calculus. Second,
the conditions that we propose are strictly weaker than those
necessary to preserve the branching structure of a transition
system used in other approaches to POR for branching time
logics [10,35], increasing the effectiveness of POR.

In our implementation of POR for PBESs, it is neces-
sary to first conduct static analysis on the PBES to identify
reduction opportunities. Both this preparatory step and the
additional computation required during the exploration phase
create overhead compared to a regular exploration proce-
dure. Our experiments show, however, that particularly those
instances in which PBESs encode model checking problems
involving large state spaces benefit from the use of partial-
order reduction. In such cases, a significant size reduction is
possible, even when checking complexµ-calculus formulae,
and the time overhead mentioned above is more than made
up for by the reduction in the number of states.

Related Work The literature is rich with many variants
of partial-order reduction; the most prominent are ample sets
[32], persistent sets [11] and stubborn sets [37]. These meth-
ods are conceptually very similar, although the stubborn set
method is the only one that allows reasoning about disabled
actions (which label the transition relation), and thus offers
more reduction potential. We discuss several extensions and
applications of these methods.

There are several proposals for the application of POR in
the context of verifying branching-time logics. Groote and
Sellink [12] define several forms of confluence reduction
and prove which behavioural equivalences (and by exten-
sion, which fragments of logics) are preserved. In confluence
reduction, one tries to identify internal transitions, typically
labelled with the action τ that can safely be prioritised, lead-
ing to a smaller state space. Ramakrishna and Smolka [35]
propose a notion that coincides with strong confluence from
[12], preserving weak bisimilarity and the corresponding
logic, the weak modal µ-calculus.

Similar ideas are presented by Gerth et al. [10]. Their
approach is based on the ample sets method [32] and pre-
serves a relation that they call visible bisimulation and the
associated logic CTL−X . To preserve the branching struc-
ture, they introduce a singleton proviso which, contrary to
our theory, can greatly impair the amount of reduction that
can be achieved (see our Example 3, p. 6).

An approach that does preserve a branching semantics
but does not need a singleton proviso is proposed by Val-
mari and Vogler [41]. Their POR conditions are sufficient for
preservation of fair testing equivalence, which is the weak-
est congruence that preserves livelocks that cannot be exited.
This method is thus suited for checking properties under a
fairness assumption.

Valmari [38] (see [40] for an up-to-date discussion)
describes the stubborn setsmethod for LTL−X model check-
ing. While investigating the use of stubborn sets for parity
games, we identified a subtle issue in one of the stubborn set
conditions (calledD1 in [40]).When applied to labelled tran-
sition systems or Kripke structures, this means that LTL−X is
not necessarily preserved. Moreover, using the condition in
the setting of parity games may result in games with differ-
ent winners; see Example 2. In [27], we further explore the
consequences of the faulty condition for stubborn-set-based
POR techniques that can be found in the literature. We here
resort to a strengthened version of conditionD1 that does not
suffer from these issues.

Peled [33] applies POR on the product of a transition sys-
tem and a Büchi automaton, which represents an LTL−X

property. The resulting product automaton thus encodes both
the transition system and the property, in a way similar to
parity games, resulting in a POR approach that is similar to
ours. It is important to note, though, that this original theory
is not sound, as discussed in [36]. Kan et al. [18] improve on
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Peled’s ideas and manage to preserve all of LTL. To achieve
this, they analyse the Büchi automaton that corresponds to
the LTL formula to identify which part is stutter insensitive.
With this information, they can reduce the state space in the
appropriate places and preserve the validity of the LTL for-
mula under consideration.

Thework of Bønneland et al. [3,4] is close to ours in spirit:
they apply POR to reachability games. Such games can be
used for synthesis and for model checking reachability prop-
erties. The formalism they consider thus has less expressive
power than the parity games we consider. Their technique
is applied to weighted Petri net games with inhibitor arcs,
which are more low-level than our PBESs, and hence some
intricacies related to PBESs (see Sect. 4) are avoided. As
we already discussed in [30], the conditions proposed in [3]
contain a small correctness issue that was later resolved in
[4].

Outline We give a cursory overview of parity games in
Sect. 2. In Sect. 3 we introduce partial-order reduction for
parity games and prove its correctness. A further improve-
ment is introduced in Sect. 3.3. Section 4 briefly introduces
the PBES fixed point logic, and in Sect. 5, we describe how
to effectively implement parity-game based POR for PBESs.
We present the results of our experiments of using parity-
game based POR for PBESs in Sect. 6. We conclude in
Sect. 7.

2 Preliminaries

Parity games are infinite-duration, two-player games played
on a directed graph. The objective of the players, called even
(denoted by �) and odd (denoted by �), is to win nodes in
the graph.

Definition 1 A parity game is a directed graph G =
(V , E,Ω,P), where

– V is a set of nodes, called the state space;
– E ⊆ V × V is a total edge relation;
– Ω : V → N is a bounded function that assigns a priority
to each node; and

– P : V → {�,�} is a function that assigns a player to
each node.

We write s → t whenever (s, t) ∈ E . The set of succes-
sors of a node s is denoted with succ(s) = {t | s → t}.
We use © to denote an arbitrary player and © to denote its
opponent. Furthermore, we write V© = {v | P(v) = ©} for
the set of nodes that belong to ©.

A parity game is played as follows: initially, a token is
placed on some node of the graph. The owner of the node
can decide where tomove the token; the tokenmay bemoved

Fig. 1 Example of a parity game

along one of the outgoing edges. This process continues ad
infinitum, yielding an infinite path of nodes that the token
moves through. Such an infinite path is called a play. A play
π is won by player � if the minimal priority that occurs
infinitely often alongπ is even.Otherwise, it is won by player
�1. Note that at least one priority occurs infinitely often on π

because Ω is bounded. We stress that we consider min par-
ity games (smaller priorities dominate larger priorities);max
parity games (larger priorities dominate) are also commonly
found in literature.

To reason about moves that a player may want to take, we
use the concept of strategies. A strategy σ© : V ∗ · V© → V
for player © is a function that determines where © moves
the token next, after the token has passed through a finite
sequence of nodes. More formally, for all non-empty paths
s1 . . . sn such that P(sn) = ©, it holds that σ©(s1 . . . sn) ∈
succ(sn). A play s1, s2, . . . is consistent with a strategy σ if
and only if σ(s1 . . . si ) = si+1 for all i such that P(si ) = ©.
A player © wins in a node s if and only if there is a strategy
σ© such that all plays that start in s and that are consistent
with σ© are won by player ©.

Example 1 Consider the parity game inFig. 1.Here, priorities
are inscribed in the nodes and the nodes are shaped according
to their owner (� or�). Letπ be an arbitrary, possibly empty,
sequence of nodes. In this game, the strategy σ�, partially
defined as σ�(πs1) = s2 and σ�(πs2) = s1, is winning for� in s1 and s2. After all, the minimal priority that occurs
infinitely often along (s1s2)ω is 0, which is even. Player �
can win node s3 with the strategy σ�(πs3) = s4. Note that
player � is always forced to move the token from node s4 to
s3. ��

The strategies σ� and σ� used in the above example are
memoryless; a strategy σ is called memoryless if and only if
σ(πs) is equivalent for all histories π . In fact, memoryless
strategies are sufficient for determining the winner of a node:
as shown by Zielonka [42], for all players ©, parity games
G and nodes s, there is a winning ©-strategy for s in G if
and only if there is a winning memoryless ©-strategy for s
in G. In the remainder, we mostly use memoryless strategies
and specify them as a partial function σ : V → V . Only in
the proof of Theorem 1, we apply strategies with memory.

1 For this reason, the players are sometimes also referred to as player
even (�) and player odd (�) in the literature.
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3 Partial-order reduction

In model checking, arbitrary interleaving of concurrent pro-
cesses can lead to a combinatorial explosion of the state
space. By extension, parity games that encode model check-
ing problems for concurrent processes suffer from the same
phenomenon.Partial-order reduction (POR) techniques help
combat the blow-up. The current work is based on Valmari’s
theory of stubborn sets [37] and its extension to LTL−X

model checking [38] as it can easily deal with nondetermin-
ism [39].

The name “partial-order reduction” came from the idea
that if two events occur concurrently, then it is artificial to
say that one of them occurred before the other. Therefore, the
“occurred before” relation is thought of as a partial order. Per-
mutations of concurrent events span equivalence classes of
executions. According to this idea, to analyse the behaviour
of the system, it suffices to represent each equivalence class
by a single execution. This intuition has proven misleading.
When constructing representatives that are kept for execu-
tions that are not kept, most “partial order” methods not only
permute, but also remove and add events. Furthermore, the
property being verified has a strong influence on what needs
to be kept. However, the term “partial order” has persisted.

3.1 Weak stubborn sets

Partial-order reduction relies on edge labels, here referred
to as events and typically denoted with the letter a. In a
typical application of POR, such events and edge labelling
are deduced from a high-level syntactic description of the
graph structure (see also Sect. 4). A reduction function sub-
sequently uses these events when producing an equivalent
reduced graph structure from the same high-level descrip-
tion, such that the answer to the verification question is not
changed. For now, we tacitly assume the existence of a set
of events and edge labelling for parity games and refer to the
resulting structures as labelled parity games. For the purpose
of defining labelled parity games as a structure on top of par-
ity games, we define edge labels in a somewhat unusual way.
This does not affect the theory in any way.

Definition 2 A labelledparity game is a triple L = (G,A, �),
whereG = (V , E,Ω,P) is a parity game,A is a set of events
and � : A → 2E is an edge labelling; it is required that for all
(s, t) ∈ E there is at least one a ∈ A such that (s, t) ∈ �(a).

For the remainder of this section, we fix an arbitrary labelled
parity game L = (G,A, �).Wewrite s a−→ t whenever s → t
and (s, t) ∈ �(a). The same notation extends to labelled
paths, which we call executions: s a1−→ s1

a2−→ . . . . We omit
the intermediate states when they are clear from the context
or not relevant and write s a1a2...−−−→ (or s a1...a2−−−→ t for finite
executions).We say an event a is enabled in a node s, notation

s a−→, if and only if there is a transition s a−→ t for some t .
The set of all enabled events in a node s is denoted with
enabledL(s).

The set of events A has a subset I whose elements are
called invisible, such that for every a ∈ I, s a−→ t implies
P(s) = P(t) andΩ(s) = Ω(t) for all s, t ∈ V . The elements
ofA\I are visible. This definition allows an implementation
to over-approximate A\I, i.e., if it is too difficult to find out
whether s a−→ t implies P(s) = P(t) and Ω(s) = Ω(t) for
all s, t ∈ V , then a may be classified as visible.

A reduction function indicates which edges are to be
explored in each node, based on the events associated to the
edges. Given some initial node ŝ, such a function induces a
unique reduced labelled parity game as follows.

Definition 3 Given a node ŝ ∈ V and a reduction function
r : V → 2A, the reduced labelled parity game induced by
r and starting from ŝ is defined as Lr = (Gr ,A, �r ), where
Gr = (Vr , Er ,Ωr ,Pr ) and �r are such that:

– if we let E ′ = {(s, t) ∈ E | ∃a ∈ r(s).(s, t) ∈ �(a)}
be the transition relation under r , then Vr = {s | ŝ E ′∗s}
is the set of nodes reachable with E ′, where E ′∗ is the
reflexive transitive closure of E ′, and Er = E ′∩(Vr×Vr )
is the restricted transition relation;

– Ωr and Pr are the respective restrictions of Ω and P on
Vr ;

– �r (a) = �(a) ∩ Er for all a ∈ A.

Note that a reduced labelled parity game is only well-
defined when r(s)∩enabledL(s) �= ∅ for every node s ∈ Vr ;
if this property does not hold, Er is not total. Even if totality
of Er is guaranteed, the same node s may bewon by different
players in L and Lr if no restrictions are imposed on r . In
case the reduced game is finite, the following conditions on r ,
as we will show, are sufficient to ensure both. Below, we say
an event a is a key event in s iff for all executions s a1...an−−−→ s′
such that a1 /∈ r(s), . . . , an /∈ r(s), we have s′ a−→. (The
underlying intuition will be explained later.) Key events are
typically denoted akey. Note that every key event is enabled,
by taking n = 0.

Definition 4 Given a labelled parity game L = (G,A, �),
where G = (V , E,Ω,P), we say that a reduction function
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r : V → 2A is a weak stubborn set for L iff for all nodes
s ∈ V , the following conditions hold2:

D1 For all a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s), if
s a1−→ s1

a2−→ . . .
an−→ sn

a−→ s′
n , then there are nodes

s′, s′
1, . . . , s

′
n−1 such that s

a−→ s′ a1−→ s′
1

a2−→ . . .
an−→ s′

n .
Furthermore, if a is invisible, then si

a−→ s′
i for every

1 ≤ i < n.
D2w r(s) contains a key event in s.

V If r(s) contains an enabled visible event, then it con-
tains all visible events.

I If an invisible event is enabled, then r(s) contains an
invisible key event.

L For every visible event a, every cycle in the reduced
game contains a node s′ such that a ∈ r(s′).

P If there is an event a ∈ r(s) and a node t such that
s a−→ t and P(s) �= P(t), then r(s) = A.

Below, we also use the term (weak) stubborn set to refer
to the set of events r(s) in some node s. Originally [37],
the set r(s) was constructed so that, if there is an enabled
event, it always contained an enabled event that could not be
disabled by events outside r(s). This is the origin of the word
“stubborn” in its name: at least one event in r(s) is determined
to happen and cannot be prevented by the outside world.

We sketch the intuition behind the stubborn set condi-
tions. Condition D1 ensures that whenever an enabled event
is selected for the stubborn set, it does not disable execu-
tions not in r(s). Hence, executions that are removed from
the state space can still be mimicked, albeit with a slightly
different order of events. (The events a and a1, . . . , an are
commuted.) The key event required byD2wmust be enabled
(as mentioned above), which guarantees totality of Er . Fur-
thermore, condition D1 applies in particular to key events,
and thus executions that are removed can always be mim-
icked via a key event. In this sense, D1 and D2w together
capture the core idea of POR: reduce the number of similar
interleavings that are explored. In a traditional setting where
POR is applied on a transition system, the combination of
D1 and D2w is sufficient to preserve deadlocks, hence their
name.

To preserve the winning player in a parity game, we, fur-
thermore, require conditions V, I and L, which originate
from the LTL−X -preserving stubborn set method [38], and
condition P, which is specific for parity games. Condition
V ensures that reduction only occurs when the mimicking
execution produced by D1 does not reorder visible events
compared to the executions that are pruned from the state

2 As noted before, the conditionD1 that we propose is stronger than the
version in the literature [38,40] since that one suffers from the inconsis-
tent labelling problem [27,28] which also manifests itself in the parity
game setting, as we will demonstrate in Example 2.

space. Condition L prevents the so called action-ignoring
problem, where a certain visible event is never selected for the
stubborn set and ignored indefinitely. Since we assumed the
reduced game is finite, such indefinite ignoring can only hap-
pen on cycles; this is thus properly addressed byL. Condition
I ensures that if the game has an invisible infinite execution
from some state, then also the reduced game has one.

In the traditional setting of POR for transition systems, the
LTL−X method using conditions D1, D2w, V, I and L was
designed to show that each infinite (or deadlocking) execu-
tion has a stuttering-equivalent representative in the reduce
transition system. Our parity game setting adds to this the
problem that control of the token may move from one player
to another. We thus need the additional condition P; this
guarantees that the winning player is preserved in roughly
the following way. Let s be a node that is won by © in the
original game and π an execution that is consistent with a
winning strategy for © in s. When the loser © is in con-
trol of the token in the reduced game, wherever it moves the
token next, the token will stay in nodes that © loses in the
original game. On the other hand, when the winner © is in
control of the token, the LTL−X arguments for representa-
tive paths apply until © loses control. When that happens,
condition P ensures that all original events chosen by ©
in π have been executed also in the reduced game. Invisi-
ble events may have been added compared to the original
execution π , but the ©-node t that the token ends up in can
also be reached by© in the original game by following those
same invisible events. Hence, the winner© also wins t in the
original game. Thus, as sketched above, we are able to reduce
those parts the game that belong to a single player, and where
multiple paths exist that observe the same priorities (up to
stuttering).

We use the example below to further illustrate the purpose
of—and need for—conditions V, I, L and P. In particular,
the example illustrates that the winning player in the original
game and the reduced gamemight be different if one of these
conditions is not satisfied.

Example 2 First, see the labelled parity games of Fig. 2.
These four games show a reduced game under a reduction
function satisfyingD1 and D2w but not I, L,V or P, respec-
tively. In each case, we start exploration from the node called
ŝ, using the indicated reduction function in ŝ; for all other
nodes s′ we have r(s′) = A. This yields the respective games
that only contain the solid nodes and edges; the dashed parts
have been pruned. Consequently, the winning strategy for
player � in the original game (highlighted in grey in the fig-
ures) is lost. The example in Fig. 2d, showing the necessity
of condition P, is due to Antti Valmari. Our previous work
[30] did not contain condition P andmay thus fail to preserve
the winner in this game.
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(a) (b) (c) (d)

Fig. 2 Four games that show the winner is not necessarily preserved if we drop one of the conditions V, I, L or P. The dashed nodes and edges
are present in the original game, but not in the reduced game. The edges taken from ŝ by the winning strategy for player � in the original game are
highlighted in grey

Fig. 3 A parity game that shows condition L cannot be weakened to
reason about strongly connected components (condition S) instead of
cycles

Now consider the parity game of Fig. 3, which is inspired
by an example fromValmari and Hansen [40]. Here, the con-
dition L is replaced by a weaker condition which states that
for all visible events a, every strongly connected component
(SCC) in the reduced game must contain a node s such that
a ∈ r(s). This condition is often called S in the literature.
Remark that the two leftmost nodes form an SCC and we
have a1 ∈ r(ŝ), thus satisfying S. However, condition L is
not satisfied in the cycle consisting of only the bottom-left
node.

Finally, consider the parity game in Fig. 4. This game
shows that, if instead of condition D1 as presented in the
current work, we use the original formulation [38]

For all a ∈ r(s) and a1 /∈ r(s), . . . , an /∈ r(s), if
s a1−→ s1

a2−→ . . .
an−→ sn

a−→ s′
n , then there are nodes

s′, s′
1, . . . , s

′
n−1 such that s

a−→ s′ a1−→ s′
1

a2−→ . . .
an−→ s′

n .

then thewinning player is not necessarily preserved.We refer
the reader to [28] for an in-depth discussion of this problem
in the setting of LTL−X model checking. ��

Note that the games in Figs. 2a–c and 3 are from a subclass
of parity games calledweak solitaire, illustrating the need for
the identified conditions even in restricted settings. A game is
solitaire iff at most one player can make non-trivial choices,

Fig. 4 A parity game that illustrates the inconsistent labelling problem
also occurs in parity games when using the original formulation of
condition D1

i.e., the player owns a node with more than one outgoing
edge. A game is weak iff the priorities along all its paths are
non-decreasing, i.e., if s → t then Ω(s) ≤ Ω(t). The game
in Fig. 2d is weak, but not solitaire. Conversely, the game
in Fig. 4 is solitaire, but not weak. Weak solitaire games
can encode the model checking of safety properties, solitaire
games can capture logics such as LTL and ∀CTL∗ [14] (the
universal fragment of CTL∗) and weak games can be used to
check CTL properties.

Before we argue for the correctness of our POR approach
in the next section, we shortly demonstrate how our approach
improves over existing methods for branching time logics.
On topof the basic conditionsC1-C3,whichpreserveLTL−X

and are similar in spirit to our conditions D1 through L,
Gerth et al. [10] propose the following singleton proviso:

C4 Either enabledG(s) ⊆ r(s) or |r(s)| = 1.

This extra condition helps preserve the branching structure
and is thus needed for preservation of CTL−X . However, it
can severely impact the amount of reduction achieved; see
the following example.
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Example 3 Consider the two transition systems below, where
n ≥ 1 is some large natural number. ��

. . .
a1

a′
1

an

a′
n

. . .
b1

b′
1

bn

b′
n

The cross-product of these transition systems contains
(n + 1)2 states.

Assume we want to check the CTL-property ϕ =
∀�∃� an , where an is true in a state if and only action an
is enabled, on this cross-product. This property expresses:
“for all reachable states, there is a path to a state where an
is enabled”, which does not hold. There is no equivalent for-
mula in LTL, and hence, condition C4 is required for POR
to preserve this property.

In the initial state ŝ, neither r(ŝ) = {a1, a′
1} nor r(ŝ) =

{b1, b′
1} is a valid stubborn set, due to C4. Other choices for

r(ŝ) are ruled out by the remaining conditions, so we are
forced to set r(ŝ) = A. A similar argument applies to all
other states and thus no reduction can be achieved.

Alternatively, we can choose to attack our model check-
ing problem by encoding it in a parity game. For this, we
use a µ-calculus formula which corresponds to ϕ, namely
νX .([−]X ∧ μY .(〈−〉Y ∨ 〈an〉true)). The resulting labelled
parity game is depicted in Fig. 5. When not explicitly indi-
cated, horizontal edges are labelled with events bi and b′

i
(and therefore drawn twice), vertical edges are labelled with
events ai and a′

i and diagonal edges are labelled with c. This
game contains 2(n + 1)2 + 1 nodes: there is one node for
each combination of state (of which there are (n + 1)2) and
fixpoint variable (X and Y ) in the formula, and one auxiliary
node.

Applying POR with our conditions D1 through P allows
choosing r(v̂) = {b1, b′

1} in the initial node v̂; an analogous
choice can bemade in the other nodes. This ultimately results
in a game of 3(n + 1) nodes, which we can solve to answer
our model checking question.

While several optimisations for CTL−X model check-
ing under POR are proposed in [24], unlike our approach,
those optimisations can only be applied to certain classes of
CTL−X formulas and not in general.

3.2 Correctness

Condition D2w suffices, as we already argued, to ensure
totality of the transition relation of the reduced labelled par-
ity game. Hence, we are left to argue that the reduced game
preserves and reflects the winner of the preserved nodes of
the original game; this is formally claimed in Theorem 1.
We do so by constructing a strategy in the reduced game

Fig. 5 Parity game corresponding to the CTLmodel checking problem
of Example 3

that mimics the winning strategy in the original game. We
use stutter equivalence (formally defined below) to compare
plays that follow these strategies and use this to conclude
that the mimicking strategy we constructed is winning in the
reduced game. This reasoning is based on [9].

We introduce a couple of auxiliary lemmata, required for
our main correctness theorem. Fix a labelled parity game
L = (G,A, �) with G = (V , E,Ω,P), a node ŝ, a weak
stubborn set r and the reduced labelled parity game Lr =
(Gr ,A, �r ), with Gr = (Vr , Er ,Ωr ,Pr ), induced by r and
ŝ. We assume r and ŝ are such that Vr is of finite size. Given
a path π = s0s1s2 . . . (either in G or Gr ), we define the no-
stutter trace, notation no-stut(π), as the sequence of those
Ω(si ) such that i = 0 or Ω(si ) �= Ω(si−1).

Definition 5 Let π = s0s1s2 . . . and ρ = t0t1t2 . . . be two
paths in G. We say π and ρ are stutter equivalent, notation
π � ρ, if and only if they are both finite or both infinite, and
no-stut(π) = no-stut(ρ).

Lemma 1 All infinite stutter equivalent paths have the same
winner.

Proof Let π = s0s1s2 . . . be an infinite path and p the
minimal priority that occurs infinitely often on π . Take an
arbitrary infinite path ρ such that no-stut(π) = no-stut(ρ).

If no-stut(π) is finite, then p must be its last element and
p is in fact the only priority that occurs infinitely often on π .
The same then applies to ρ: p is the only priority that occurs
infinitely often on ρ.

Otherwise, if no-stut(π) is infinite, then it is equal to
Ω(s0)Ω(s1)Ω(s2) . . . where finite repetitions are collapsed.
This operation does not influence which priorities occur
infinitely often. Hence, p is also the minimal priority that
occurs infinitely often in no-stut(ρ) and, consequently, on
ρ.
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Since p is the minimal priority that occurs infinitely often
on both π and ρ, they must have the same winner. ��

Our second lemma provides a basic stubborn set fact on
the availability of key transitions.

Lemma 2 If, for some event a, it holds that s a−→ anda /∈ r(s),
then r(s) contains an invisible key event in s.

Proof If a is invisible, r(s) contains at least one invisible key
event, due to I.

Otherwise, ifa is visible,we obtain a key eventakey ∈ r(s)
fromD2w. In case akey is visible, we violate conditionVwith
the assumption that a /∈ r(s) and since akey is enabled by the
key event property. We conclude that akey is invisible. ��

In the lemmata below, we write →r to stress which tran-
sition must occur in Gr .

Lemma 3 [28, Lemma 5.1] If D1 yields ρ = s aa1...an−−−−→ s′
from π = s a1...ana−−−−→ s′, then π � ρ.

Proof Assume the executions are of the shape π = s0
a1−→

s1
a2−→ . . .

an−→ sn
a−→ s′

n and ρ = s0
a−→ s′

0
a1−→ s′

1
a2−→ . . .

an−→
s′
n .
If a is invisible, then it follows from D1 that si

a−→ s′
i for

all 1 ≤ i < n. With the transitions s0
a−→ s′

0 and sn
a−→ s′

n that
we already had, we obtain Ω(si ) = Ω(s′

i ) for all 0 ≤ i ≤ n.
It follows that π � ρ.

If a is visible, then our assumption that a ∈ r(s0) means
that r(s0) contains an enabled visible event, and, byV, it con-
tains all visible events. Thus the events a1, . . . , an , which we
assumed are not in r(s0), must be invisible. We get Ω(s0) =
Ω(s1) = · · · = Ω(sn) and Ω(s′

0) = Ω(s′
1) = · · · = Ω(s′

n).
If Ω(s0) �= Ω(s′

0), we reason that

no-stut(π) = Ω(s0)Ω(s′
n) = Ω(s0)Ω(s′

0) = no-stut(ρ).

Otherwise, no-stut(π) = Ω(s0) = no-stut(ρ) holds triv-
ially. We conclude π � ρ. ��
Lemma 4 Let π = s0

a1−→ s1
a2−→ . . . be any execution such

that ai /∈ r(s0) for every ai occurring on π . Then there is an
execution ρ = s0

akey−−→r s
′
0

a1−→ s′
1

a2−→ . . . for some invisible
event akey, and it holds that π � ρ.

Proof Let akey ∈ r(s0) be an invisible key event, obtained
through Lemma 2 by s0

a1−→ and a1 /∈ r(s0). The key event
property gives us, for each i , a state s′

i,i such that si
akey−−→ s′

i,i .
In caseπ has finite length n, we can simply applyD1 to the

execution s0
a1...an−−−→ sn

akey−−→ s′
n,n to obtain ρ = s0

akeya1...an−−−−−−→
s′
n,n . By Lemma 3, we have π � ρ.
Ifπ is infinite,we use a reasoning similar to that ofKönig’s

Lemma [21]. We can apply D1 to obtain a finite execution
πi = s0

akey−−→ s′
i,0

a1−→ . . .
ai−→ s′

i,i for every i ≥ 0. Because

Fig. 6 Example of how a1, a2, a3 is mimicked by introducing akey
and a′

key and moving a2 to the front (dashed trace). Transitions that are
drawn in parallel have the same label

akey is invisible, D1 furthermore gives us sk
akey−−→ s′

i,k for
every i ≥ 0 and 1 ≤ k < i . We prove by induction that
for every k, there is s′

k such that s0
akey−−→r s′

0 (for k = 0) or
s′
k−1

ak−→ s′
k (for k > 0), and s′

k = s′
i,k for infinitely many

values of i .
Because there are only finitely many states, there is a state

s′
0 that is the same as s′

i,0 for infinitely many values of i . This
constitutes the base case.

To prove the induction step, we observe that all or all but
one of the infinitely many i with s′

i,k = s′
k satisfy i > k,

and thus have an s′
i,k+1 such that s′

k
ak+1−−→ s′

i,k+1. Infinitely
many of these s′

i,k+1 are the same state, again because there
are only finitely many states. This state qualifies as s′

k+1.
Then we define ρ = s0

akey−−→r s′
0

a1−→ s′
1

a2−→ . . . . Since
akey is invisible, we have Ω(s j ) = Ω(s′

j ) for every j ≥ 0.

This implies π � ρ. ��
We remark that Lemma 4 also holds for reduced labelled

parity games that have an infinite state space, but where all
the events are finitely branching. Beforewe continuewith the
next lemmata, we first consider a short example to provide
some intuition on how Lemmata 3 and 4 can be applied to
construct alternative paths in the reduced game.

Example 4 The structure of Fig. 6, in which parallel edges
have the same label, visualises part of a game in which the
execution π = s a1a2a3−−−−→ (drawn with solid edges) is part
of a play that traverses nodes of player �. If we assume
a1 /∈ r(s), then π does not exist in the reduced game. How-
ever, it might be possible to mimic π through the path that
follows the edges akeya2a1a′

keya3 (drawn with dashes). The
new play reorders the events a1, a2 and a3 according to the
construction of Lemma 3 and introduces the key events akey
and a′

key according to the construction of Lemma 4. Note

that existence of a′
key is only guaranteed if a3 /∈ r( ) (the

stubborn set in the fourth node of the mimicking path). ��
We now continue with two lemmata that, respectively,

show how finite and infinite executions from the original
game can be mimicked in the reduced game.
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Fig. 7 Showing the relation
between the paths π , ρi , ρ′

i and
πi from the proof of Lemma 5

Lemma 5 If s0 ∈ Vr and π = s0
a1−→ s1

a2−→ . . .
an−→ sn,

where P(s0) = · · · = P(sn−1) �= P(sn), then there are
executions ρ := s0 = t0

b1−→r t1
b2−→r . . .

bm−→r tm, where
P(t0) = · · · = P(tm−1) �= P(tm), and κ = sn

c1...cm−−−→ tm
such that π � πκ � ρ.

Proof We use induction to prove, for some m and each 0 ≤
i ≤ m, the existence of the following executions for some
k(i), where l(i) = i + k(i) − n:

ρi = t0
b1−→r t1

b2−→r . . .
bi−→r ti

ρ′
i = ti,0

ai,1−−→ ti,1
ai,2−−→ . . .

ai,k(i)−−−→ ti,k(i)

κi = u0
c1−→ u1

c2−→ . . .
cl(i)−−→ ul(i)

These executions, and alsoπ , are connected;wehave s0 = t0,
ti = ti,0, u0 = sn and ul(i) = ti,k(i) (see Fig. 7). Below, let
P(ρiρ

′
i ) be the sequence of node owners observed alongρiρ

′
i .

The induction assumption, furthermore, contains:

no-stut(π) = no-stut(πκi ) (1)

no-stut(ρiρ′
i ) = no-stut(πκi ) (2)

P(ρiρ
′
i ) = P(s0)

i+k(i)−1P(sn) (3)

The intuition behind the hypothesised executions is as fol-
lows: ρi contains transitions of π that we have been able to
mimic in the reduced game after i steps, as well as key events
that were necessarily introduced along the way. Those same
key events can also be used to extend π in the original game,
this is the execution κi . The transitions from π that are still
to be mimicked make up ρ′

i .
The base case i = 0 of the induction is obtained by setting

ρ0 and κ0 to the empty execution and ρ′
0 = π . By π = πκ0,

(1) holds. Thanks to ρ0ρ
′
0 = πκ0, (2) and (3) also hold.

For the induction step, we distinguish two cases when
k(i) > 0. The situation where k(i) = 0 will be handled at
the end of the proof.

If at least one of ai,1, . . . , ai,k(i) is in r(ti ), then D1
can be applied to the first such ai, j , yielding ti

ai, j−−→r
ti+1

ai,1...ai, j−1ai, j+1...ai,k(i)−−−−−−−−−−−−−−→ ti,k(i). This specifies ti+1, and we
choosebi+1 = ai, j andai+1,1 . . . ai+1,k(i+1) = ai,1 . . . ai, j−1

ai, j+1 . . . ai,k(i). We call this “moving ai, j to the front”.
Execution κi+1 remains unchanged from κi , since ρ′

i+1 still
ends in ti,k(i) = ti+1,k(i+1) (and also l(i + 1) = l(i), since
k(i + 1) = k(i) − 1). Using (1) from the induction hypoth-
esis, it thus follows that no-stut(π) (1)= no-stut(πκi ) =
no-stut(πκi+1), and (1) also holds for i + 1.

For (2), we apply Lemma 3 and part of the induction
hypothesis to deduce

no-stut(t0
b1...bi+1−−−−−→r ti+1

ai+1,1...ai+1,k(i+1)−−−−−−−−−−→ ti+1,k(i+1))

= no-stut(t0
b1...bi−−−→r ti

ai, j−−→ ti+1
ai,1...ai, j−1ai, j+1...ai,k(i)−−−−−−−−−−−−−−→ ti,k(i))

(L3)= no-stut(t0
b1...bi−−−→r ti

ai,1...ai,k(i)−−−−−−→ ti,k(i))
(2)= no-stut(πκi )

= no-stut(πκi+1)

Therefore, i + 1 also satisfies (2).
Finally, for (3), we reason that the last event will not be

moved forward unless it is the only event in ρ′
i , i.e., j = k(i)

implies k(i) = 1. Assume that ai,1, . . . , ai,k(i)−1 /∈ r(ti ) and
ai,k(i) ∈ r(ti ). By our initial assumption on the owners of
nodes in π , we have

P(ti,k(i)−1)
(3)= P(s0) �= P(sn)

(3)= P(ti,k(i))
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so ai,k(i) must be visible3 and, by D1, enabled in ti . Con-
dition V thus requires that all visible events are in r(ti );
ai,1, . . . , ai,k(i)−1 are not, so they must all be invisible. We
can deduce:

P(ti )
(3)= P(s0) �= P(sn)

(3)= P(ti,k(i)) = P(ti+1)

Thus, the antecedent of condition P is fulfilled by the transi-
tion ti

ai,k(i)−−−→r ti+1, and we have to set r(ti ) = A. This then
contradicts our assumption that ai,1, . . . , ai,k(i)−1 /∈ r(ti ),
unless k(i) = 1. So, after moving the event ai, j to the front,
we must have P(ρiρ

′
i ) = P(ρi+1ρ

′
i+1) for one of the follow-

ing reasons:

– ai, j is invisible: in this case the vertical transitions
ti,v

ai, j−−→ ti+1,v required by D1 guarantee P(ti,v) =
P(ti+1,v) for all 0 ≤ v < j . It immediately follows
that P(ρiρ

′
i ) = P(ρi+1ρ

′
i+1).

– ai, j is visible and j < k(i): now the eventsai,0, . . . , ai, j−1

must be invisible by V, since we assumed that they are
not contained in r(ti ). This gives us P(ti,0) = · · · =
P(ti, j−1) and P(ti+1,0) = · · · = P(ti+1, j−1). By j <

k(i) and assumption (3), we obtain P(ti, j−1) = P(ti, j ),
which together with the previous equalities gives us
P(ρiρ

′
i ) = P(ρi+1ρ

′
i+1).

– ai, j is visible and j = k(i): as we argued above, this
implies that k(i) = 1. Thus, ai, j was already at the
front and ρiρ

′
i and ρi+1ρ

′
i+1 actually coincide. The result

P(ρiρ
′
i ) = P(ρi+1ρ

′
i+1) follows trivially.

We also have i + k(i) = (i +1)+ k(i +1), and we conclude
that (3) remains valid:

P(ρi+1ρ
′
i+1) = P(ρiρ

′
i )

(3)= P(s0)
i+k(i)−1P(sn)

= P(s0)
(i+1)+k(i+1)−1P(sn)

In the opposite case none of ai,1, . . . , ai,k(i) is in r(ti ).
In that case, we obtain an invisible key event akey ∈ r(ti )
from Lemma 2 by ti

ai,1−−→ and ai, j /∈ r(ti ). The key
event property yields the transition ti,k(i)

akey−−→ ti+1,k(i+1),
to which we can apply Lemma 3 to obtain ti

akey−−→r
ti+1

ai,1...ai,k(i)−−−−−−→ ti+1,k(i+1). We choose bi+1 = akey and
ai+1,1 . . . ai+1,k(i+1) = ai,1 . . . ai,k(i). We call this “intro-
ducing a key event”. Note that l(i + 1) = l(i) + 1 (since
k(i + 1) = k(i)), so we need to extend κi , for which we
use the transition ti,k(i)

akey−−→ ti+1,k(i+1), yielding ul(i+1) =
ti+1,k(i+1) and akey = cl(i+1). The invisibility of akey gives

3 Here it is important that (in)visibility concerns not only priorities, but
also node ownership, otherwise wewould not be able to derive visibility
of ai,k(i).

us:

no-stut(π) (1)= no-stut(πκi ) = no-stut(πκi+1),

and so (1) also holds for i + 1.
The invisibility of akey = bi+1 = cl(i+1) also allows us to

deduce

no-stut(t0
b1...bi+1−−−−−→ ti+1

ai+1,1...ai+1,k(i+1)−−−−−−−−−−→ ti+1,k(i+1))

= no-stut(t0
b1...bi−−−→ ti

ai,1...ai,k(i)−−−−−−→ ti,k(i))
(2)= no-stut(s0

a1...an−−−→ sn
c1...cl(i)−−−−→ ul(i))

= no-stut(s0
a1...an−−−→ sn

c1...cl(i)−−−−→ ul(i)
cl(i+1)−−−→ ul(i+1))

So (2) remains valid in the step from i to i + 1.
Since akey is invisible, ρi+1 is simply extended with one

more node belonging toP(s0) and, byD1, we haveP(ti, j ) =
P(ti+1, j ) for all 0 < j ≤ k(i), so it follows that (3) remains
valid as well:

P(ρi+1ρ
′
i+1) = P(s0)

i+1+k(i+1)−1P(sn)

As the proof of Lemma 6 will show in more detail, due to
condition L and finiteness of the reduced game, the introduc-
tion of a key event can only happen at most |Vr | consecutive
times before a cycle is closed and some ai, j necessarily
occurs in r(ti ). Thus, we are guaranteed to eventually reach
an iteration m such that k(m) = 0. In that case, ρ′

m is empty
and all events in π have been mimicked, so we can stop the
induction. We obtain the required executions ρ = ρm and
κ = κm . ��
Lemma 6 If s0 ∈ Vr and π = s0

a1a2...−−−→, then there is an
execution ρ = s0

b1b2...−−−→r such that π � ρ.

Proof We use induction to prove, for each i ≥ 0:

– the existence of si and, if i > 0, bi such that si−1
bi−→r si ;

and
– the existence of an execution si,0

ai,1−−→ si,1
ai,2−−→ . . . ,

where si = si,0.

We assume the following:

no-stut(s0
b1...bi−−−→r si

ai,1ai,2...−−−−−→) = no-stut(π) (IH)

Then, ρ is the infinite execution s0
b1b2...−−−→r .

The base case i = 0 of the induction is obtained by
choosing s0

a0,1a0,2...−−−−−→, which is equivalent to π . Thanks to
b1 . . . b0 = ε, (IH) holds.

Regarding the induction step, if at least one of ai,1, ai,2,
…is in r(si ), then D1 can be applied to the first such ai, j ,
yielding si

ai, j−−→r si+1
ai,1...ai, j−1ai, j+1...−−−−−−−−−−−→, which moves ai, j

to the front. This specifies si+1 and for our events we choose
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bi+1 = ai, j and ai+1,1ai+1,2 . . . = ai,1 . . . ai, j−1ai, j+1 . . ..
We apply Lemma 3 and the induction hypothesis to deduce

no-stut(s0
b1...bi+1−−−−−→r si+1

ai+1,1ai+1,2...−−−−−−−−→)

= no-stut(s0
b1...bi−−−→r si

ai, j−−→ si+1
ai,1...ai, j−1ai, j+1...−−−−−−−−−−−→)

(L3)= no-stut(s0
b1...bi−−−→r si

ai,1ai,2...−−−−−→)

(IH)=no-stut(π)

Therefore, i + 1 also satisfies (IH).
In the opposite case none of ai,1, ai,2, . . . is in r(si ).

Lemma 4 yields si+1 such that si
akey−−→r si+1

ai,1ai,2...−−−−−→. We
can thus introduce a key event and choose bi+1 = akey and
ai+1,1ai+1,2 . . . = ai,1ai,2 . . .. Furthermore, invisibility of
akey gives

no-stut(s0
b1...bi+1−−−−−→ si+1

ai+1,1ai+1,2...−−−−−−−−→) =
no-stut(s0

b1...bi−−−→ si
ai,1ai,2...−−−−−→)

So (IH) remains valid in the step from i to i + 1.
Since we have shown that (IH) holds for every i ≥ 0, it

follows that no-stut(ρ) is a prefix of no-stut(π). To show
that no-stut(ρ) and no-stut(π) are in fact equal, we assume
that no-stut(ρ) is a proper prefix of no-stut(π) and try to
derive a contradiction.

The fact that no-stut(ρ) is a proper prefix means that it
must be finite, and hence there is an i such that no-stut(ρ) =
no-stut(s0

b1...bi−−−→ si ). By the latter fact and the proper prefix
property, there is a v such that Ω(si,v−1) �= Ω(si,v), and so
ai,v is visible. We use the smallest such v.

Observe that if D1 is applied at si to move event ai, j to the
front, where j > v, or D2w is applied, then ai+1,k = ai,k for
1 ≤ k ≤ v. If the samealso happens at si+1 thenai+2,k = ai,k
for 1 ≤ k ≤ v, and so on, either forever or untilD1 is applied
such that j ≤ v, whichever comes first. We show next that
the latter comes first.

Because Sr is finite, we may let n = i + |Sr |. By the
pigeonhole principle, si , …, sn cannot all be distinct. So the
execution si

bi+1...bn−−−−−→ sn contains a cycle. L implies that
there is i ≤ l < n such that ai,v ∈ r(sl). This guarantees
that there is the smallest h such that i ≤ h < i + |Sr | and
{ai,1, . . . , ai,v} ∩ r(sh) �= ∅. Observe that at any step i ≤
i ′ < h, whether D1 is applied to move ai ′, j forward, where
j > v, or D2w is applied to introduce a key event, we have
ai ′+1,v = ai ′,v . Furthermore, for all i ≤ i ′ < h, V and the
fact that ai,v /∈ r(si ′) imply that bi ′ must be invisible, so the
priorities occurring before and after ai,v are preserved, that
is, Ω(si ′,v−1) = Ω(si ′+1,v−1) and Ω(si ′,v) = Ω(si ′+1,v).
By D1, bh+1 is one of ah,1, …, ah,v . So either bh+1 = ai,v
or ai,v = ah+1,v−1. In the latter case, si ′,v−1 = si ′+1,v−1 and
si ′,v = si ′+1,v .

Repeating the argument at most v times proves that there
is i ≤ h < i + v|Sr | such that bh+1 = ai,v . Furthermore,

we have Ω(sh) = Ω(si,v−1) �= Ω(si,v) = Ω(sh+1), which
contradicts no-stut(ρ) = no-stut(s0

b1...bi−−−→ si ). ��
To be able to lift our knowledge about mimicking execu-

tions in the reduced game tomimicking strategies, we need to
formalise the relation between paths through nodes belong-
ing to player© and partial strategies for©. Given a (possibly
infinite) path π = s1s2 . . . where all nodes, except the last
node (if it exists), belong to©, the partial strategyσπ induced
by π is such that σπ(s1 . . . si ) = si+1 for all i < |π |. Con-
versely, given a node s1 belonging to © and a strategy σ for
© such that σ(si ) = si+1, the induced path is the longest
sequence π = s1s2 . . . such that P(si ) = © for all i < |π |.

We are now ready to present our main correctness result.
The overarching reasoning in its proof is also used in [9]
to create parity game equivalence relations that preserve the
winning player.

Theorem 1 If Gr has a finite state space then it holds that
for every node s in Gr , the winner of s in Gr is equal to the
winner of s in G.

Proof We first give a short outline of the proof. Let s be an
arbitrary node inGr and let© be the player that wins s inG,
with σ as its winning strategy. To show that s is also won by
© in Gr , we need to construct a strategy σr in Gr and show
that it is indeed a winning strategy for © in s. The latter is
achieved by showing that for any Gr -play πr starting in s
and consistent with σr , there is a stutter equivalent G-play
π starting in s and consistent with σ . Since σ is a winning
strategy for ©, π must be won by © and, by Lemma 1,
so must πr . We can then conclude that all Gr -plays starting
from s and consistent with σr are won by ©, and hence σr
is a winning strategy for © in s. This yields the final result
that © also wins s in Gr .

Letπs = s0s1 . . . be the path induced by some node s ∈ G
and σ , where s = s0. If πs is infinite, then the token stays in
nodes owned by ©. We apply Lemma 6 to obtain a path ρs
in Gr and define σs to be the partial strategy induced by ρs .

Otherwise, πs is finite and ends in a node owned by ©.
Here, we can apply Lemma 5 to obtain paths ρs in Gr and
κs in G, such that πs � πsκs � ρs and, except for the last,
all nodes in ρs belong to ©. This gives rise to the partial
strategy σs that is induced by ρs .

Repeating this procedure for every node s owned by ©
yields a set of partial strategies σs such that σs is defined only
for the prefixes of the paths ρs that we constructed above.
We create a total strategy σr in Gr by setting σr (s0 . . . sn) =
σsi (si . . . sn) if si . . . sn is a prefix of ρsi , where si . . . sn is the
longest non-empty suffix of s0 . . . sn wholly belonging to©.
If si . . . sn is not a prefix of ρsi , then an arbitrary successor
of sn in Gr may be chosen for σr (s0 . . . sn).

What remains is to show that for all plays consistent with
σr , there is a stutter equivalent play consistent with σ . Let
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πr = s0s1 . . . be an arbitrary play inGr and assume it is con-
sistent with σr . We break up πr into maximal subsequences
πi = si . . . s j (respectively, π = si . . . ) such that P(si ) =
. . .P(s j−1) �= P(s j ) (respectively, P(si ) = P(si+1) = . . . )
and show how these can be transformed into subsequencesπ ′

i
to create a play π such that π � πr and π is consistent with
σ . Note that there is an overlap of one node between adjacent
subsequences πi and πi+1; these nodes will be preserved by
our transformation.

Let πi = si . . . s j or π = si . . . be such a maximal subse-
quence. If P(si ) = ©, then πi is trivially consistent with σ ,
since σ only concerns ©-nodes. We thus choose π ′

i = πi .
Otherwise, if P(si ) = ©, we use maximality of πi to

deduce that σr (s0 . . . sk) = σsi (si . . . sk) for all k such that
i ≤ k < j , respectively, i ≤ k when πi is infinite. We
constructed the partial strategy σsi from ρsi and πi is con-
sistent with σsi , so πi must coincide with ρsi . During the
construction of ρsi we showed that it is stutter-equivalent to
πsi , which was derived from and is consistent with σ . In the
infinite case, we thus choose π ′

i = πsi . In the finite case,
we have to ensure s j is also the last node in π ′

i , so it can be
joined up with π ′

i+1. This is achieved by setting π ′
i = πsi κsi ,

which we also showed to be stutter-equivalent to ρsi . Fur-
thermore κsi contains only nodes owned by ©, so πsi κsi is
still consistent with σ .

In all three cases, we have for each i , πi � π ′
i and πi

and π ′
i have the same first and, if finite, last nodes. We

define π as the play π ′
0π

′
1 . . . , with the aforementioned over-

lap removed. Stutter-equivalence of πr and π follows from
stutter-equivalence of the subsequences. ��

3.3 Optimising D2w

The theory we have introduced identifies and exploits rectan-
gular structures in the parity game.This is especially apparent
in conditionD1. However, parity games obtained frommodel
checking problems also often contain triangular structures,
due to the (sometimes implicit) nesting of conjunctions and
disjunctions, as the following example demonstrates.

Example 5 Consider the process (a ‖ b) · c, in which actions
a and b are executed in (interleaved) parallel, and action c
is executed upon termination of both a and b. In the context
of this process, the µ-calculus property μX .([a]X ∧ [b]X ∧
〈−〉true), also expressible in LTL, expresses that the action
c must unavoidably be done within a finite number of steps;
clearly this property holds true of the process. Below, the
transition system is depicted on the left and a possible parity
game encoding of our liveness property on this state space is
depicted on the right. The edges in the labelled parity game
that originate from the subformula 〈−〉true are labelled with
d.

a

a

b b

c

1 1

1 1

2

a

a

b b
d d

d d

d

Whereas the state space of the process can be reduced by
prioritising a or b, the labelled parity game cannot be reduced
due to the presence of a d-labelled edge in every node. For
example, if s is the top-left node in the labelled parity game,
then r(s) = {a, d} violates conditionD1, since the execution
s bd−→ exists, but s db−→ does not. ��

In order to deal with games that contain triangular struc-
tures, we propose a condition that is weaker than D2w.

D2t There is an event a ∈ r(s) such that for all a1 /∈
r(s), . . . , an /∈ r(s), if s a1−→ s1

a2−→ . . .
an−→ sn , then

either sn
a−→ or there are nodes s′, s′

1, . . . , s
′
n such that

s a−→ s′ a1−→ s′
1

a2−→ . . .
an−→ s′

n and for all i , si = s′
i or

si
a−→ s′

i .

Theorem 1 holds even for reduction functions satisfying
the weak stubborn set conditions in which condition D2t is
used instead of conditionD2w. The proof thereof resorts to a
modified construction of a mimicking winning strategy that
is based on Lemma 7, described below, instead of Lemma 4.

Lemma 7 Let r be a reduction function satisfying conditions
D1, D2t, V, I and L. Suppose π = s0

a1−→ s1
a2−→ . . . is

such that ai /∈ r(s0) for every ai occurring on this execution.
Then, the following holds:

– If π ends in sn, there exist a key event akey and nodes
s′
0, . . . , s

′
n such that:

– sn
akey−−→ s′

n or sn = s′
n; and

– s0
akey−−→r s

′
0

a1−→ . . .
an−→ s′

n and π � s0s′
0 . . . s′

n.

– If π is infinite, there exists another execution s0
akey−−→r

s′
0

a1−→ s′
1

a2−→ . . . and π � s0s′
0s

′
1 . . . .

Proof Let akey ∈ r(s0) be an invisible key event; its existence
follows from Lemma 2 and s0

a1−→ and a1 /∈ r(s0).
In case π has finite length n, we derive the existence of

s
akey−−→r s

′ a1−→ . . .
an−→ s′

n either directly fromD2t (if sn = s′
n)

or from D1 (if s′
n

akey−−→). Stutter-equivalence follows by the
same reasoning as in Lemma 3.

If π is infinite, we distinguish the following cases:

– If s
akeya1...ai−−−−−−→ si for some i , we can trivially extend this

execution along π to obtain π ′ = s
akeya1...ai−−−−−−→ si

ai+1−−→
si+1

ai+2−−→ . . . .
– Otherwise, if there is no i such that s

akeya1...ai−−−−−−→ si , we
can apply the same reasoning as in the proof of Lemma 4.
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With the fact that akey is invisible and si
akey−−→ s′

i or si = s′
i ,

we conclude that π � π ′. ��
We remark that the concepts of triangular and rectangular
structures bear similarities to the concept of weak confluence
from [12].

4 Parameterised Boolean equation systems

Parity games are used, among others, to solve parameterised
Boolean equation systems (PBESs) [13], which, in turn, are
used to answer, e.g., first-order modal µ-calculus model
checking problems [5]. In the remainder of this paper, we
show how to apply POR in the context of solving a PBES
(and, hence, the encoded decision problem). We first intro-
ducePBESs and showhow they induce labelled parity games.

A parameterised Boolean equation system is a sequence
of fixed point equations over predicate formulae, i.e., first-
order logic formulae with second order variables. A PBES is
given in the context of an abstract data type, which is used
to reason about data. Non-empty data sorts of the abstract
data type are typically denoted with the letters D and E . The
corresponding semantic domains are D and E. We assume
that sorts B and N represent the Booleans and the natural
numbers respectively, and have B and N as semantic coun-
terpart. The set of data variables is V, and its elements are
usually denoted with d and e. To interpret expressions with
variables, we use a data environment δ, which maps every
variable in V to an element of the corresponding sort. The
semantics of an expression f in the context of such an envi-
ronment is denoted � f �δ. For instance, �x < 2 + y�δ holds
true iff δ(x) < 2 + δ(y). To update an environment, we use
the notation δ[v/d], which is defined as δ[v/d](d) = v and
δ[v/d](d ′) = δ(d ′) for all variables d �= d ′.

For conciseness, we only consider PBESs in standard
recursive form (SRF) [29], a normal form in which each
right-hand side of an equation is a guarded formula instead
of an arbitrary (monotone) predicate formula. We remark
that a PBES can be rewritten to SRF in linear time, while
the number of equations grows linearly in the worst case [29,
Proposition 2]. For a formalisation of the transformation to
SRF, see [26, section 3.1].

Let X be a countable set of predicate variables. In the
exposition that follows we assume for the sake of simplicity
(but without loss of generality) that all predicate variables
X ∈ X are of type D. We permit ourselves the use of non-
uniformly typed predicate variables in our example.

Definition 6 A guarded formula φ is a disjunctive or con-
junctive formula of the form:

∨

j∈J

∃e j :E j . f j ∧ X j (g j ) or
∧

j∈J

∀e j :E j . f j ⇒ X j (g j )

where J is an index set, each f j is a Boolean expression,
referred to as guard, every e j is a (bound) variable of sort
E j , each g j is an expression of type D and each X j is a
predicate variable of type D. A guarded formula φ is said to
be total if for each data environment δ, there is a j ∈ J and
v ∈ E j such that � f j �δ[v/e j ] holds true.
We refer to the conjuncts, respectively, disjuncts, of a guarded
formula as clauses. The denotational semantics of a guarded
formula is given in the context of a data environment δ for
interpreting data expressions and a predicate environment
η : X → 2D, yielding an interpretation of X j (g j ) as the
truth value �g j �δ ∈ η(X j ). Given a predicate environment
and a data environment, a guarded formula induces a mono-
tone operator on the complete lattice (2D,⊆). By Tarski’s
theorem, least (μ) and greatest (ν) fixed points of such oper-
ators are guaranteed to exist.

Definition 7 A parameterised Boolean equation in SRF nor-
mal form is an equation that has the shape

(μX(d:D) = φ(d)) or (νX(d:D) = φ(d)),

where φ(d) is a total guarded formula in which d is the only
free data variable. A parameterised Boolean equation system
in SRF is a sequence of parameterised Boolean equations in
SRF, in which no two equations have the same left-hand side
variable.

Henceforward, let

E = (σ1X1(d:D) = ϕ1(d)) . . . (σn Xn(d:D) = ϕn(d))

be a fixed, arbitrary PBES in SRF, where σi ∈ {μ, ν}. The
set of bound predicate variables of E, denoted by bnd(E),
is the set {X1, . . . , Xn}. If the predicate variables occurring
in the guarded formulae ϕi (d) of E are taken from bnd(E),
then E is said to be closed; we only consider closed PBESs.
Every bound predicate variable is assigned a rank, where
rankE(Xi ) is the number of alternations in the sequence of
fixpoint symbols νσ1σ2 . . . σi . The sequence of fixpoint sym-
bols in this definition is prepended with a ν to ensure that
rankE(Xi ) is even if and only if σi = ν. We use the func-
tion opE : bnd(E) → {∨,∧} to indicate for each predicate
variable in E whether the associated equation is disjunctive
or conjunctive. As a notational convenience, we write Ji to
refer to the index set of the guarded formula ϕi (d), and we
assume that the index sets are disjoint for different equations.

Note that for the sake of simplicity, we only consider
PBESs in which each equation carries the same parameter
d:D. The theory presented in the following can be straight-
forwardly extended to support PBESs where each equation
has a different number of parameters, something we also per-
mit ourselves in the examples.
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4.1 Semantics

The standard denotational fixed point semantics of a closed
PBES associates a subset of D to each bound predicate
variable (i.e., their meaning is independent of the predicate
environment used to interpret guarded formulae). For details
of the standard denotational fixed point semantics of a PBES
we refer to [13]. We forego the denotational semantics and
instead focus on the (provably equivalent, see e.g. [6,29])
game semantics of a PBES in SRF. Below, recall that, in
the PBES E that we fixed, each predicate variable Xi carries
a data parameter named d and uses the set Ji to index the
clauses in its right-hand side.

Definition 8 The solution to E is a mapping �E� : bnd(E) →
2D, defined as

�E�(Xi ) = {v ∈ D | (Xi , v) is won by � in GE},

where Xi ∈ bnd(E) and GE is the parity game associated
with E. The game GE = (V , E,Ω,P) is defined as:

– V = bnd(E) × D is the set of nodes;
– E is the edge relation, satisfying (Xi , v) → (X j , w) for

given Xi , j ∈ Ji , v and w if and only if there exists
an environment δ such that both � f j �δ[v/d] and w =
�g j �δ[v/d] hold;

– Ω((Xi , v)) = rankE(Xi ); and
– P((Xi , v)) = � iff opE(Xi ) = ∨.

In the definition of the transition relation E , the successors
of (Xi , v) are exactly those (X j , w)which may influence the
validity of the right-hand side ϕi of Xi ; this does not depend
on whether ϕi is disjunctive or conjunctive. Note that the
parity game GE may have an infinite state space when D is
infinite. In practice, we are often interested in the part of the
parity game that is reachable from some initial node (X , v);
this is often (but not always) finite. We illustrate the PBES
semantics with an example.

Example 6 Consider the following PBES E in SRF:

νX(b:B) = (b ∧ Z)∨
∃n:N .n ≤ 2 ∧ Y (b, n)

μY (b:B, n:N ) = true ⇒ Y (false, 0)

νZ = true ∧ Y (false, 0)

The six nodes in the parity game GE which are reach-
able from (X , true) are depicted in Fig. 8. We study the
clause ∃n:N .n ≤ 2 ∧ Y (b, n) in detail. The conditions
�n ≤ 2�δ[true/b] and true, 2 = �b, n�δ[true/b] fromDefini-
tion 8 are satisfied if δ(n) = 2. Hence, the edge (X , true) →

Fig. 8 Reachable part of the parity game underlying the PBESofExam-
ple 6, when starting from node (X , true)

(Y , true, 2) is present in the game. In fact, all three horizontal
edges at the top stem from this same clause.

The leftmost vertical edge originates from the clauseb∧Z ,
while the horizontal edge from Z to (Y , false, 0) originates
from true ∧ Y (false, 0). The remaining edges, including the
selfloop, are induced by the clause true ⇒ Y (false, 0).

All plays in this game end in the node (Y , false, 0) and
iterate there ad infinitum. Since its priority is odd, all plays
– and consequently all nodes – are won by player odd. This
means that the semantics of E satisfies true /∈ �E�(X). ��

As suggested by the above example, each edge is associ-
ated with (at least) one clause in E. Consequently, we can
use the index sets Ji to event-label the edges emanating
from nodes associated with the equation for Xi . We denote
the set of all events in E by evt(E), defined as evt(E) =⋃

Xi∈bnd(E) Ji .

Definition 9 Let GE be the parity game associated with E.
The labelled parity game associated with E is the structure
(GE, evt(E), �), where GE is as defined in Definition 8, and,
for j ∈ Ji , we have

�( j) = {〈(Xi , v), (X j , w)〉 ∈ E | � f j �δ[v/d] holds true
and w = �g j �δ[v/d] for some δ}

It follows from the definition that the event j ∈ Ji is invis-
ible if rankE(Xi ) = rankE(X j ) and opE(Xi ) = opE(X j ),
and visible otherwise. Since solving the parity game G
corresponding to a PBES E also yields a solution for E (Def-
inition 8) and POR preserves the solution of a parity game
(Theorem 1), it suffices to solve a reduced gameGr to obtain
a (partial) solution to E.

As discussed before, our main application domain is
model checking. When checking a µ-calculus formula ϕ on
a transition system T , we typically only need to determine
whether the initial node of T satisfies ϕ. That corresponds to
finding the solution of a single node (X , v) in the PBES that
encodes T and ϕ. Our approach is thus, given a PBES E, to
compute a reduced game Gr , starting from (X , v), and then
determine the winner of (X , v) in Gr . If Gr is sufficiently
smaller than the full game G and the overhead of computing
the reduction function r is limited, this is faster than solving
the PBES through the full game G.
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Fig. 9 Labelled parity game corresponding to the PBES of Example 7

4.2 Choice of edge labelling

The labelled parity game derived from a PBES E associates
exactly one event with every clause in E. However, our POR
correctness theorem (Theorem 1) in principle allows any
edge labelling as long as the stubborn set conditions are sat-
isfied. The choice for the labelling function does influence
the amount of reduction that can be achieved. In the extreme
cases that every edge has a unique label or all edges are
labelled the same, no reduction can be achieved. The below
example shows a case for which our current labelling func-
tion hinders reduction.

Example 7 Consider the SRF-PBES below, where the name
of each clause is indicated on the right, and its labelled parity
game in Fig. 9.

νX(b:B) = b ∧ X(false) (a1)

∨ Y (b) (a2)

μY (b:B) = b ⇒ Y (false) (a3)

∧ ¬b ⇒ Z (a4)

νZ = Z (a5)

Note that a2 and a4 are visible; the other events are invis-
ible. It is impossible to reduce the parity game: the only
viable location is (X , true), but it does not allow stubborn
sets smaller than {a1, a2, a4}. Setting r((X , true)) = {a1} is
not possible due to D2w, since a1 is not a key event in that
case. Conversely, r((X , true)) = {a2} is not allowed by D1.
Furthermore, if we have a2 ∈ r((X , true)), then V requires
that a4 ∈ r((X , true)). However, if we label both the a1
edge and the a3 edge with a, then it becomes possible to set
r((X , true)) = {a}. ��

The example suggests that it can be beneficial to use the
same event for multiple clauses. Specifying which clauses
should correspond to the same event can be done with an
equivalence relation on clauses. The next definition for-
malises theparity game that follows fromsuch an equivalence
relation.

Definition 10 Let E be an SRF-PBES,R ⊆ evt(E) × evt(E)
an equivalence relation on events and evt(E)/R the correspond-
ing set of equivalence classes. Then, the labelled parity game

corresponding to E and R is the structure (GE, evt(E)/R, �),
where GE is the parity game corresponding to E, and, for all
Xi ∈ bnd(E) and J ∈ evt(E)/R, the labelling �(J ) is defined as
follows:

�(J ) =
⋃

Xi∈bnd(E), j∈Ji∩J

{((Xi , v), (X j , w)) |

� f j �δ[v/d] holds true and w = �g j �δ[v/d] for some δ}

Here, an event J ∈ evt(E)/R is invisible if and only if all
its constituting clauses j ∈ J are invisible. Henceforth, we
adopt the strategy to identify two clauses j and j ′ when the
corresponding conditions and update expressions are syntac-
tically equal, i.e., we set j R j ′ iff f j = f j ′ and g j = g j ′ .

5 PBES solving using POR

A consequence of the partial-order reduction theorem is that
a reduced parity game suffices for computing the truth value
to X(e) for a given PBES E with X ∈ bnd(E). However,
D1, D2w/D2t and L are conditions on the (reduced) state
space as a whole and, hence, hard to check locally. We there-
fore approximate these conditions in such a way that we can
construct a stubborn set while generating the state space.

From hereon, let E again be a PBES in SRF with equa-
tions of the shape σi Xi (d:D) = ϕi and (G,A, �), with
G = (V , E,Ω,P), its labelled parity game. The most com-
mon local condition for L is the stack proviso LS [32]. This
proviso assumes that the state space is explored with depth-
first search (DFS), and it uses the Stack that stores unexplored
nodes. Any transition leading back from the current node to
a node in the DFS stack closes a cycle. In that case, the node
must be fully expanded, i.e., r(s) = A. The following should
thus hold for all nodes s ∈ Vr encountered during explo-
ration:

LS If succGr (s) ∩ Stack �= ∅, then r(s) = A.

We use the color proviso [8], which improves on the above
condition with some additional bookkeeping of which nodes
on the stack are or will be fully expanded. As a result, not
every transition that leads back to the DFS stack requires its
originating node to be fully expanded, improving reduction
potential.

Locally approximating conditionsD1 and D2w requires a
static analysis of the PBES. For this,we drawupon ideas from
[22] and extend these to properly deal with non-determinism.
In the following definitions, any relation on the set A of
events is also a relation on equivalence classes of clauses in
the PBES, see Definition 10. Furthermore, if the event a cor-
responds to the clauses that contain condition fa , statements
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such as “for all s ∈ V , it holds s a−→” can be approximated
on the PBES level by checking whether the event a occurs in
each right-hand side of the PBES and evaluating the expres-
sion ∀d:D.∃ea :Ea . fa , where d is the data parameter carried
by each equation in our PBESE.Whether this closedBoolean
expression is equal to true or equal to false can, for example,
be determined with the help of an SMT-solver.

To reason about which events are independent, we rely on
the idea of accordance.

Definition 11 Let a, b ∈ A. We define the accordance rela-
tions DNL, DNS, DNT and DNA on A as follows:

– a left-accordswith b if for all nodes s, s′ ∈ V , if s ba−→ s′,
then also s ab−→ s′. If a does not left-accord with b, we
write (a, b) ∈ DNL.

– a square-accords with b if for all nodes s, s1, s2 ∈ V ,
if s a−→ s1 and s b−→ s2, then for some s′ ∈ V , s1

b−→ s′
and s2

a−→ s′. If a does not square-accord with b we write
(a, b) ∈ DNS.

– a triangle-accords with b if for all nodes s, s1, s2 ∈ V ,
if s b−→ s1 and s a−→ s2, then s2

b−→ s1. If a does not
triangle-accord with b we write (a, b) ∈ DNT .

– a accords with b if a square-accords or triangle-accords
withb. Ifa does not accordwithbwewrite (a, b) ∈ DNA.

Note that DNL and DNT are not necessarily symmetric
relations. An illustration of the conditions for left-according,
square-according and triangle-according is given in Fig. 10.

For the case of left-accordance, we illustrate how the
definition can be translated to an analysis on the level of
PBESs. Recall that a clause ∃e j :E j . f j ∧ X j (g j ) (respec-
tively ∀e j :E j . f j ⇒ X j (g j )) contains a condition f j as well
as an update expression g j that determines what the next
state is. The expression f j , respectively, g j , depends on the
data parameter d of the surrounding equation, as well as on
the quantified variable e j . We write f j (d, e j ), respectively,
g j (d, e j ), to make this explicit. Given an event a (or, equiv-
alently, equivalence class of clauses), we write Xi

a
↪→ Y if

and only if there is a j ∈ a ∩ Ji such that Y = X j , i.e., a
clause j ∈ a occurs in the right-hand side of Xi and leads to
Y . With this, left-accordance of a with b can be characterised
exactly by

∀d, eb, ea, X , X1, X
′ ∈ bnd(E).( fb(d, eb)∧

fa(gb(d, eb), ea) ∧ X b
↪→ X1 ∧ X1

a
↪→ X ′) ⇒

(∃e′
a, e

′
b, X2 ∈ bnd(E). fa(d, e′

a) ∧ fb(ga(d, e′
a), e

′
b)∧

ga(gb(d, e′
b), e

′
a) = gb(ga(d, e′

a), e
′
b)∧

X a
↪→ X2 ∧ X2

b
↪→ X ′)

This expression considers whether the left-accordance con-
dition is satisfied by the data expressions fa , fb, ga and gb

contained in E, as well as by the presence of clauses in dif-
ferent equations (as captured by a

↪→ and b
↪→).

Accordance relations safely approximate the indepen-
dence of events. The dependence of events, required for
satisfyingD2w, can be approximated using Godefroid’s nec-
essary enabling sets [11].

Definition 12 Let a be an event that is disabled in some
node s. A necessary-enabling set (NES) for a in s is any
set NESs(a) ⊆ A such that for every execution s a1...ana−−−−→
there is at least one ai such that ai ∈ NESs(a).

For every node and event there might be more than one
NES. In particular, every superset of a NES is also a NES.
A larger-than-needed NES may, however, have a negative
impact on the reduction that can be achieved. Given a PBES,
computing a NES can be done in a similar fashion as the
accordance relations, by constructing an expression over ele-
ments of the clauses and analysing their presence in each
equation.

The following lemmata show how the accordance rela-
tions and necessary-enabling set can be used to implement
conditions D1, D2w and D2t, respectively. A combination
of Lemmata 8 and 9 in a deterministic setting appeared as
Lemma 1 in [22]. Note that as a notational convention we
write R(a) to denote the projection {b | (a, b) ∈ R} of a
binary relation.

Lemma 8 A reduction function r satisfies D1 in node s ∈ V
if for all a ∈ r(s):

– if a is disabled in s, then NESs(a) ⊆ r(s) for some NESs;
and

– if a is enabled in s, then DNL(a) ⊆ r(s).

Proof Let s be an arbitrary node and let r be a reduction
function that satisfies the conditions above. Furthermore, let
s a1...ana−−−−→ s′

n be an execution such that a1 /∈ r(s), . . . , an /∈
r(s) and a ∈ r(s). We distinguish the following cases:

– If a is disabled in s, it must hold that NESs(a) ⊆ r(s)
for some NESs . However, according to the definition of a
necessary-enabling set, at least one of a1, . . . , an is con-
tained in NESs(a) and thus in r(s). Since this contradicts
our assumption that a1 /∈ r(s), . . . , an /∈ r(s), we con-
clude that the execution s a1...ana−−−−→ s′

n does not exist, and
so D1 is satisfied.

– If a is enabled in s, it must be thatDNL(a) ⊆ r(s). Since
that implies a1, . . . , an /∈ DNL(a), it follows that for
every ai and all nodes t , t1 and t ′, the following holds:
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Fig. 10 Illustrations of the concepts left-according, square-according and triangle-according

t t1

t ′

a

ai

⇒
t

t2

t1

t ′

a

ai

ai

a

By inductively applying this implication from right to left
on the execution s a1...an−−−→ sn

a−→ s′
n , we derive the existence

of the dashed transitions in the figure below.

s s1 sn−1 sn

s′ s′
1 s′

n−1 s′
n

a1 an

a

a1 an

a a a

We conclude that the conditions of D1 are satisfied. ��
Lemma 9 A reduction function r satisfiesD2w in a node s ∈
V if there is an enabled event a ∈ r(s) such that DNS(a) ⊆
r(s).

Proof Let s a1...an−−−→ sn be an execution such that all
a1, . . . , an /∈ r(s) and let a ∈ r(s) ∩ enabled(s) be an
event such thatDNS(a) ⊆ r(s).We deduce that a1, . . . , an /∈
DNS(a), and thus the following implication holds for all ai
and nodes t , t1 and t2:

t

t2

t1

a

ai

⇒
t

t2

t1

t ′

a

ai

ai

a

Applying this inductively from left to right on the tran-
sition s a−→ s′ and the execution s a1...an−−−→ sn , we derive the
existence of the dashed transitions in the following figure.

s s1 sn−1 sn

s′ s′
1 s′

n−1 s′
n

a1 an

a

a1 an

a a a

Hence, a satisfies the conditions of D2w. ��
Lemma 10 A reduction function r satisfies D2t in a node s if
there is an enabled event a ∈ r(s) such that DNA(a) ⊆ r(s).

Proof Let s a1...an−−−→ sn be an execution such that all
a1, . . . , an /∈ r(s) and let a ∈ r(s) ∩ enabled(s) be an event
such that DNA(a) ⊆ r(s). We distinguish two cases:

– It holds that a1, . . . , an ∈ DNT(a). Since a1 /∈
r(s), . . . , an /∈ r(s) and r(s) ⊇ DNA(a) = DNS(a) ∩
DNT(a), we can deduce that a1, . . . , an /∈ DNS(a). By
following the same reasoning as in the proof of Lemma 9,
we derive the validity of D2t.

– There is an 0 < i ≤ n such that ai /∈ DNT(a). We con-
sider the smallest such i , i.e., a1, . . . , ai−1 ∈ DNT(a).
With a1 /∈ r(s), . . . , an /∈ r(s) and r(s) ⊇ DNA(a) =
DNS(a) ∩ DNT(a), we deduce that a1, . . . , ai−1 /∈
DNS(a) and ai /∈ DNT(a).

By first applying the square-according relation from left
to right on the events a and a1, . . . , ai−1 and then applying
the triangle-according relation on a and ai , we derive the
existence of the dashed transitions in the following figure.

s s1 si−1 si sn−1 sn

s′ s′
1 s′

i−1

a1 an

a

ai

a1

a a ai

Thus a satisfies the conditions of D2t. ��
More reduction can be achieved if a PBES is partly or

completely “deterministic”, in which case some of the con-
ditions can be relaxed.We say that an event a is deterministic,
denoted by det(a), if for all nodes t, t ′, t ′′ ∈ V , if t a−→ t ′ and
t a−→ t ′′, then also t ′ = t ′′. This means event-determinism
can be characterised as follows:

det(a) iff � fa�δ and � fa�δ
′ implies �ga�δ = �ga�δ

′

for all δ, δ′ with δ(d) = δ′(d).

The following lemma specialises Lemma 8 and shows
how knowledge of deterministic events can be applied to
potentially improve the reduction.

Lemma 11 A reduction function r satisfies D1 in a node s if
for all a ∈ r(s):

– if a is disabled in s, then NESs(a) ⊆ r(s) for some NESs;
and
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– if det(a) and a is enabled in s, then DNS(a) ⊆ r(s) or
DNL(a) ⊆ r(s).

– if ¬det(a) and a is enabled in s, then DNL(a) ⊆ r(s).

Proof Let s be an arbitrary node and let r be a reduction
function that satisfies the conditions above. For the cases
where a is disabled or a is enabled and DNL(a) ⊆ r(s), see
the proof of Lemma 8. Here, we only consider the new case
wherea is deterministic and enabled in s andDNS(a) ⊆ r(s).

��

Let s a1...an−−−→ sn
a−→ s′

n be an execution such that a1 /∈
r(s), . . . , an /∈ r(s) and a ∈ r(s) and let s a−→ s′. The fol-
lowing implication holds for all ai and nodes t , t1 and t2:

t

t2

t1

a

ai

⇒
t

t2

t1

t ′

a

ai

ai

a

Applying this inductively from left to right on the transi-
tion sn

a−→ s′
n and the execution s a1...an−−−→ sn , we deduce the

existence of the dashed transitions for some node s′′
n .

s s1 sn−1 sn

s′ s′
1 s′

n−1 s′′
n s′

n

a1 an

a
a

a1 an

a a a

Since a is deterministic it follows that s′
n = s′′

n . Regardless
of whether a is invisible, the transitions si

a−→ s′
i are present

for every 1 ≤ i < n, and thus D1 is satisfied. ��
Since relationsDNS andDNL are incomparablewe cannot

decide a prioriwhich should be used for deterministic events.
However, Lemma 11 permits the choice between DNS and
DNL to be made individually for every state, so we can do
this during exploration of the state space. This choice can be
made based on a heuristic function, similar to the function
for NESs proposed in [22].

As sketched above, both the accordance relations and the
NESs can be computed based on the condition fa and update
expression ga associatedwith each clause, aswell as the pres-
ence of clauses captured by a

↪→. Evaluation of the expressions
constructed in this way can be computationally expensive, so
often it is better to compute a (cheaper) approximation. In a
PBES with multiple parameters per predicate variable, this
can, for example, be done by analysing which parameters
influence the validity of condition fa and which parameters
are changed in the update functions ga Two clauses a and b
that operate on disjoint sets of parameters are often left- and
square-according (depending on a

↪→ and b
↪→). NESs may be

approximated using techniques to extract control flow graphs
from a PBES [19], although we have not done so.

6 Experiments

We implemented the ideas from the previous section in a pro-
totype tool, called pbespor, as part of the mCRL2 toolset
[5]; it is written in C++. Our tool converts a given input
PBES to a PBES in SRF, runs a static analysis to compute
the accordance relations (see Sect. 5), and uses a depth-first
exploration to compute the parity game underlying the PBES
in SRF. Since our previous work [30], we have updated the
implementation to produce stubborn sets that adhere to the
new condition P. The static analysis relies on an external
SMTsolver. (WeuseZ3 in our experiments.) Experiments are
conducted on a machine with four Intel Xeon 6136 CPUs @
3.00GHz and 3TB of RAM, running mCRL2 with Git com-
mit hash b7976da39c4e. All our code is single-threaded,
so similar performance may be obtained on a more modest
machine.

To measure the effectiveness of our implementation, we
analysed the following models, encoded in mCRL24: Ander-
son’s mutual exclusion protocol [1], the dining philosophers
problem, the gas station problem [15], Hesselink’s hand-
shake register [16], Le Lann’s leader election protocol [23],
Milner’s Scheduler [25] and the Krebs cycle of ATP pro-
duction in biological cells (model inspired by [31]). Most of
these models are scalable, i.e., the number of components
can easily be adjusted. Each model is subjected to one or
more requirements phrased as mCRL2’s first-order modal
µ-calculus formulae. If possible, Table 1 provides a CTL∗
formula that captures the essence of the requirement.

We analyse the effectiveness of our partial-order reduc-
tion technique by measuring the reduction of the size of the
state space, and the time that is required to generate the state
space. Since the static analysis that is conducted can require
a non-negligible amount of time, we pay close attention to
the various forms of static analysis that can be conducted.
In particular, we compare the total time and effectiveness (in
terms of reduction) of running the following static analysis:

– computing left-accordance (the relation DNL) vs. over-
approximating it with the complete relation.

– computing a NES vs. over-approximating it with the set
of all events A.

– using D2w vs. the use of D2t (i.e., use Lemma 9 vs.
Lemma 10);

4 The models are archived online at https://doi.org/10.5281/zenodo.
3602969.
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As a baseline for comparisons, we take a basic static analysis
(over-approximated DNL, over-approximated NES, D2w),
see column “basic” in Table 1. In order to guarantee termi-
nation of the static analysis phase, we set a timeout of 200
ms per formula that is sent to the solver. Table 1 reports on
the statistics we obtained for exploring the full state space
and the four possible POR configurations described above;
the table is sorted with respect to the time needed for a full
exploration. The time we list consists of the time needed to
conduct the analysis plus the time needed for the exploration.

For most small instances, the time required for static
analysis dominates any speed-up gained by the state space
reduction. When the state spaces are larger, it becomes more
likely to achieve a speed-up, while the highest overhead
suffered by “basic” is 55% (Hesselink, cache consistency).
Significant reduction can be achieved even for non-trivial
properties, such as “lann.5” with “no data loss”. Scheduler is
an extreme case: its processes have very few dependencies,
leading to an exponential reduction, both in terms of the state
space size and in terms of time. In several cases, the use of
a NES or D2t brings extra reduction (highlighted in bold).
Moreover, the extra time required to conduct the additional
analysis seems limited. The use of DNL, on the other hand,
never pays off in our experiments; it even results in a slightly
larger state space in two cases. These results are very similar
to those of our earlier experiments [30], and thus, the addi-
tion of condition P has little impact on the reduction for these
particular PBESs.

We note that there are also models, not listed in Table 1,
where our static analysis does not yield any useful results
and no reduction is achieved. Even if in such cases a reduc-
tion would be possible in theory, the current static analysis
engines are unable to deal with the more complex data types
often used in such models; e.g., recursively defined lists or
infinite sets, represented symbolically with higher-order con-
structions. This calls for further investigations into static
analysis theories that can effectively deal with complex data.

Furthermore, we remark that all the models we listed here
contain symmetry: two or more processes that show almost
the same behaviour. Thismaymean that our results cannot be
generalised to non-symmetric models, although [7] suggests
that partial-order reduction and symmetry reduction exploit
different aspects of a model.

Finally, we point out that in the case of, e.g., the dining
philosophers problem, the relative reduction under the “no
deadlock” property ismuch better than under the “∀�∀�eat”
property. This demonstrates the impact properties can have
on the reductions achievable and the importance of the way
edges are labelled. We explain this in the following example.

Example 8 Consider the PBES below, which encodes the
formula νX .([−]X ∧ ∀i .μY .([a1−i ]Y ∧ 〈−〉true)) on the
transition system of Fig. 11a. For reference, in Table 1, we

denoted formulae of this shape as∀�∀�ai . Below, the names
of each of the clauses are indicated on the right.

νX(b0, b1:B) = b0 ⇒ X(false, b1) ( j0)

∧ b1 ⇒ X(b0, false) ( j1)

∧ ∀b:B.Y (b0, b1, b) (xy)

μY (b0, b1, b:B) = (b ∧ b0) ⇒ Y (false, b1, b) ( j ′0)
∧ (¬b ∧ b1) ⇒ Y (b0, false, b) ( j ′1)
∧ ¬(b ∧ b0 ∨ ¬b ∧ b1) ⇒ Z ( f )

μZ = Z ( f ′)

The event xy represents the transition from fixpoint X into
Y , which does not involve an action from the transition sys-
tem. Note that the complete state space is encoded once in
the fixpoint X and twice in Y , albeit with a subset of the tran-
sitions. In the corresponding labelled parity game, depicted
in Fig. 11b, no reduction can be achieved. ��

To achieve reduction in this example, we need to do three
things. First, the quantifier in the clause xy needs to be
unfolded; this yields two clauses, namely Y (b0, b1, false)
(name xy0) and Y (b0, b1, true) (name xy1). Furthermore, we
should identify clauses j0 and j ′0 (resp. j1 and j ′1); the result-
ing event is called a0 (resp. a1). Lastly, we have to change
the fixpoint of X to ensure xy0 and xy1 are invisible. Remark
that this does not change the solution of the PBES. In that
case, four nodes can be eliminated, see Fig. 11c.

In the experiments,we achieve the identification of clauses
j0 and j ′0 (resp. j1 and j ′1) by partially instantiating the
PBES [34]. This procedure is implemented in the mCRL2
tool pbesinst. In the example above, instantiating param-
eter b:B of Y results in two new equations:

μYtrue(b0, b1) = b0 ⇒ Ytrue(false, b1) ( j0)

∧ ¬b0 ⇒ Z
μYfalse(b0, b1) = b1 ⇒ Yfalse(b0, false) ( j1)

∧ ¬b1 ⇒ Z

The clauses in these equations can be identified with the
first two clauses in the right-hand side of X with our original
strategy based on syntactic equivalence of the condition and
update expressions.

7 Conclusion

We have presented an approach for applying partial-order
reduction on parity games. This has two main advantages
over POR applied on labelled transition systems or Kripke
structures: our approach supports the full modal µ-calculus,
not just a fragment thereof, and the potential for reduction
is greater, because we do not require a singleton proviso.
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(a)

(b) (c)

Fig. 11 A transition system and two parity games showing that, although the transition system can be reduced, it is not always possible to reduce
the corresponding parity game. After tweaking the edge labelling, some reduction is possible

Furthermore, we have shown how the ideas can be imple-
mented with PBESs as a high-level representation. In future
work, we aim to gain more insight into the effect of identify-
ing events across PBES equations in several ways. We also
want to investigate the possibility of solving a reduced parity
game while is it being constructed. In certain cases, one may
be able to decide the winner of the original game from this
partial solution.
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