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Abstract
We consider parametric Markov decision processes (pMDPs) that are augmented with unknown probability distributions over
parameter values. The problem is to compute the probability to satisfy a temporal logic specification with any concrete MDP
that corresponds to a sample from these distributions. As solving this problem precisely is infeasible, we resort to sampling
techniques that exploit the so-called scenario approach. Based on a finite number of samples of the parameters, the proposed
method yields high-confidence bounds on the probability of satisfying the specification. The number of samples required
to obtain a high confidence on these bounds is independent of the number of states and the number of random parameters.
Experiments on a large set of benchmarks show that several thousand samples suffice to obtain tight and high-confidence
lower and upper bounds on the satisfaction probability.

Keywords Markov decision processes · Uncertainty · Verification · Scenario optimization

1 Introduction

MDPsMarkov decision processes (MDPs) model sequential
decision-making problems in stochastic dynamic environ-
ments [48]. They are widely used in areas such as planning
[50], reinforcement learning [54], formal verification [7],
and robotics [40]. Mature model checking tools such as
PRISM [37] and Storm [25] employ efficient algorithms to
verify the correctness of MDPs against temporal logic spec-
ifications [45], provided all transition probabilities and cost
functions are exactly known. In many applications, however,
this assumption may be unrealistic, as certain system param-
eters are typically not exactly known and under control by
external sources.

Uncertainty on MDPs A common approach to deal
with unknown system parameters is to describe transition
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probabilities of an MDP using intervals [26,29,47] or gener-
alizations to a class of uncertain MDPs [42,55,57]. Solution
approaches rely on the limiting assumption that the uncer-
tainty at different states of the MDP is independent from
each other. As an example, consider a simple motion plan-
ning scenario where an unmanned aerial vehicle (UAV) is
tasked to transport a certain payload to a target location. The
problem is to compute a strategy (or policy) for the UAV to
successfully deliver the payload while taking into account
the weather conditions. External factors such as the wind
strength or direction may affect the movement of the UAV.
The assumption that suchweather conditions are independent
between the different possible states ofUAV is unrealistic and
may yield pessimistic verification results.

Illustrative examples We stress that the same situation
appears in various systems. For example, in the verification
of network protocols, we typically do not precisely know the
channel quality (i.e., the loss rate). However, the loss rate is
independent of the question of whether we are, e.g., probing
or actually sending useful data over the network. A typical
verification task would be to show that the protocol yields a
sufficiently high quality of service. A verification approach
that pessimistically assumes that the channel quality depends
on the protocol state may be too pessimistic and fail to estab-
lish that the protocol provides the required quality of service.
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Parametric models Parametric Markov models allow to
explicitly describe that some probabilities are unknown but
explicitly related [23,30,36]. In a parametric MDP, one uses
variables (parameters) that encode, e.g., the probability of
windgusts affecting aUAV,or the probability of packet loss in
a network. Transition probabilities are then given as expres-
sions over these parameters. Substituting the parameters with
concrete values yields an induced (standard) MDP. A variety
of parameter synthesis methods have been devised, see the
relatedwork in Sect. 8 for details. A typical verification query
concerns feasibility, that is, whether there exist parameter
values such that the induced model satisfies a specification,
which implicitly assumes that the parameters are control-
lable. Another query is to ask whether for all parameter
values the induced model satisfies a specification. The lat-
ter can lead to pessimistic verification results: a UAV may
be able to fly during most weather conditions, but it may be
impossible to find a satisfying strategy for flying during a
rare storm.

Uncertain parametric models Rather than asking about
the existence of parameter values, we want to analyze a sys-
tem by considering the typical parameter values. In terms
of our examples, this means that we want to investigate the
typical weather conditions and the typical channel qualities.
Similar to [51], we, therefore, assume that the parameters are
random variables. For instance, weather data in the form of
probability distributions may provide additional information
on potential changes during the mission, or a measurement
series may provide typical channel qualities. For weather
data, such probability distributions may be derived from his-
torical data of, for example, the wind speed [43].

Problem statement We study a setting where the uncer-
tain parameters are random variables that are defined on an
arbitrary (joint) probability space over all parameters. We
assume that we can sample independent and identically dis-
tributed parameter values from this distribution and solve the
following problem.

Problem statement. Given a parametric MDP and
a distribution over the parameter values, compute the
probability with which any randomly drawn parame-
ter values yield an induced MDP that satisfies a given
specification.

We call this probability the satisfaction probability. The
intuition is that the question of whether all (or some) param-
eter values satisfy a specification—as is often done in
parameter synthesis [36]—is replaced by the question of how
much we expect the (sampled) model to satisfy a specifica-
tion. For example, a satisfaction probability of 80% tells that,
if we randomly sample the parameters, with a probability
of 80% there exists a strategy for the resulting MDP sat-
isfying the specification. Importantly, we thus assume that

the parameter values are observable, and hence known when
synthesizing a strategy. In every concrete MDP, we may use
a different strategy. This is in contrast to a robust strategy
synthesis approach, where a single strategy is sought that is
robust against all (or a portion of the) parameter valuations.

Scenario-based verification In this paper, we devise a
method that answers the problem statement up to a user-
specified confidence level. That is, we aim to solve the
problem statement up to a statistical guarantee. To achieve
this, we resort to sampling-based algorithms that yield a
confidence (probability) on the bounds of the satisfaction
probability. In doing so, we do not make any assumptions
about the distribution over the parameter values. Referring
back to the UAV example, we want to compute a confidence
bound on the probability for theUAV to successfully finish its
mission for some strategy. To derive confidence bounds, we
first formulate the problem of (exactly) computing the sat-
isfaction probability as a chance-constrained optimization
program. However, this problem is very hard to solve [16],
especially because we do not assume any knowledge on the
probability distribution of the parameters. We, therefore, use
a technique known as scenario optimization (also called the
scenario approach), which provides guarantees on the sat-
isfaction probability via sampling techniques [13,15]. The
basic idea is to consider a finite set of samples from the dis-
tribution over the parameters and restrict the problem to these
samples only. This so-called scenario optimization problem
can be solved efficiently [11]. The solution to the scenario
program is, with a high confidence probability, a solution to
the previously mentioned chance-constrained program.

Our approach For our setting, we first sample a finite
number of parameter instantiations, each of which induces
a concrete MDP. We can check the satisfaction of the spec-
ification for these concrete MDPs efficiently using, e.g. , a
probabilistic model checker. Based on the results, we com-
pute an estimate of the satisfaction probability, which is a
lower bound on the true satisfaction probability with the
desired confidence probability. For example, we may obtain
a lower bound on the satisfaction probability of 80%, which
holds with a confidence probability of at least 90%.We show
that the probability of an incorrect lower bound on the satis-
faction probability diminishes to zero exponentially rapidly
with an increasing sample size. Moreover, the number of
required samples depends onneither the size of the state space
nor the number of random parameters. Finally, we show that
we can use the same technique to additionally compute upper
bounds on the satisfaction probability.

Empirical evaluation In our experiments, we validate the
theoretical results using several MDPs that have different
sizes of state and parameter spaces. We demonstrate exper-
imentally that the required number of parameter samples is
indeed not sensitive to the dimension of the state and param-
eter space. In addition, we show the effectiveness of our
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method with a new dedicated case study based on the afore-
mentioned UAV example which incorporates 900 random
parameters.

Contributions This paper revises an earlier conference
paper [19] as follows. Due to new results in [28] that lift
some assumptions required for the scenario approach, we
can simplify and generalize our approach by a simplified
chance-constrained program. This program can be used in
conjunction with all (standard temporal) properties on para-
metricMDPs. This change in the approach yields completely
revised technical sections of the paper. Furthermore, this
paper fixes a technical error in [19]. The (new) bounds inThe-
orem 1 of this paper are less pessimistic. The (new) bounds
in Theorem 2 are now correct at the cost of being slightly
more conservative.

2 Motivating example

We consider the previouslymentionedUAVmotion planning
example in more detail, where the objective is to transport a
payload from one end of a valley to the other. A specification
for the UAVwould be that it (with at least probability x) real-
izes this objective. The typical approach to verify the UAV
against this specification is to create a model that faithfully
captures its dynamics.

However, the dynamics of the UAVdepend on theweather
conditions, which may be different on each day. Thus, each
weather condition induces a distinct model for the UAV. In
line with the problem statement, we assume that the weather
conditions are deterministically observed on the day itself,
and we can adapt the strategy accordingly. When designing
theUAV,wemay require that the expected number of days per
year on which the UAV can satisfy a mission objective is suf-
ficiently high. Concretely, this translates to the requirement
that the UAV shall satisfy the specification above on, e.g.,
at least 90% of the days. More abstractly, this requirement
implies we want to show that the probability of a random
day yielding weather conditions on which a specification of
the corresponding model is satisfied is at least 90%. To this
end, we assume that we have historical data that describe a
distribution over weather conditions.

Model construction Planning scenarios like the UAV
example are naturally modeled by MDPs, where the actions
determine the high-level control actions and the action out-
comes are stochastic due to the influences of the environment.
While this planning problem is, to some degree, continuous,
high-level planners often discretize theworld.We thus obtain
the following grid world in which the UAV can decide to fly
in either of the six cardinal directions (N,W, S, E, up, down).
States encode the position of the UAV, the current weather
condition (sunny, stormy), and the general wind direction
in the valley. In this particular scenario, we assume that the
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Fig. 1 An example of a 3D UAV benchmark with obstacles (red boxes)
and a target area (green box)

probabilistic outcomes are (only) determined by the wind
in the valley and the control action. Concretely, we assume
that an action moves the UAV one cell in the corresponding
direction. Moreover, the wind moves the UAV one cell in the
wind direction with a probability p, which depends on the
wind speed. Furthermore, we assume that the weather and
wind-conditions change during the day and are described by
a stochastic process.

We observe that some probabilities in the system are not
fixed but rather a function of the weather. Thus, the model
is an uncertain MDP (uMDP) whose transition probabilities
depend on the weather. Concretely, parameters describe how
the weather affects the UAV in different zones of the valley,
and how the weather/wind may change during the day. His-
torical weather data now induce a distribution over the (joint)
parameters. Sampling from this distribution yields a concrete
instantiatedMDP. The problem is to compute the satisfaction
probability, i.e., the probability that for any sampledMDP,we
are able to synthesize aUAV strategy that satisfies the specifi-
cation. Figure 1 shows an example environment for the UAV,
with the target zone in green and zones to avoid shown in red.
The shown trajectories are typical paths under three different
weather conditions (we refer to the experiments in Sect. 7 for
details).

3 Preliminaries

In the following, we use probability distributions over finite
and infinite sets, for whichwe refer to [9] for details. Let V =
{x1, . . . , xn} be a finite set of variables (parameters) overR

n .
The set of polynomials over V , with rational coefficients, is
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denoted by Q[V ]. We denote the cardinality of a set U by
|U |.

3.1 Parametric models

We introduce parametric Markov decision processes. Note
that we omit reward models, but our methods are directly
applicable to reward measures.

Definition 1 (pMDP) A parametricMarkov decision process
(pMDP) M is a tuple M = (S,Act, sI , V ,P) with a finite
set S of states, a finite set Act of actions, an initial state
sI ∈ S, a finite set V of parameters, and a transition function
P : S × Act × S → Q[V ].
The setActS(s) of enabled actions at state s ∈ S isActS(s) =
{α ∈ Act | ∃s′ ∈ S, P(s, α, s′) �= 0}. Without loss
of generality, we require ActS(s) �= ∅ for all s ∈ S. If
|ActS(s)| = 1 for all s ∈ S,M is a parametric discrete-time
Markov chain (pMC) and we denote its transition function
by P(s, s′) ∈ Q[V ].
Example 1 Consider the pMC in Fig. 2 with parameter V =
{v}, initial state s0, and target set T = {s3} (used later). Tran-
sitions are annotated with polynomials over the parameter v.

A pMDPM is aMarkov decision process (MDP) if the tran-
sition function yields well-defined probability distributions,
that is, P : S × Act × S → [0, 1] and ∑

s′∈S P(s, α, s′) = 1
for all s ∈ S and α ∈ ActS(s). We denote the parameter
space of M by VM, which consists of functions V → R

that map parameters to concrete values. Applying an instan-
tiation u ∈ VM to a pMDPM yields the instantiated MDP
M[u] by replacing each f ∈ Q[V ] inM by f [u]. An instan-
tiation u is well defined for M if the resulting model M[u]
is an MDP. In the remainder, we assume that all parameter
instantiations in VM yield well-defined MDPs. We call u
graph-preserving if for all s, s′ ∈ S and α ∈ Act it holds that
P(s, α, s′) �= 0 ⇒ P(s, α, s′)[u] ∈ (0, 1].
Assumption 1 We consider only parameter instantiations for
upMDPs that are graph-preserving.

To define measures on MDPs, nondeterministic choices are
resolved by a strategy σ : S → Act with σ(s) ∈ ActS(s).
The set of all strategies over M is StrM. For the specifi-
cations we consider in this paper, memoryless deterministic
strategies are sufficient [7]. Applying a strategy σ to anMDP
M yields an induced Markov chain (MC) M[σ ] where all
nondeterminism is resolved.

Measures For an MC D, the reachability probability
PrD(♦T ) describes the (time unbounded) reachability prob-
ability of reaching a set T ⊆ S of target states from the initial
state sI [7]. Similar definitions can be given for the step-
bounded reachability probability of reaching a set T from

Fig. 2 A pMC/upMC with parameter v

the initial state within k steps, and—given rewards for every
state—the expected rewards accumulated until reaching the
target states or the long-run average, and so forth.

For an MDP M, these measures are typically lifted.
The maximum reachability probability Prmax

M (♦T ) is the
maximum reachability probability in all induced Markov
chains (for all strategies σ ∈ StrM), i.e., Prmax

M (♦T ) =
maxσ PrM[σ ](♦T ). Similar definitions hold for the mini-
mums and the othermeasures described above. Our approach
is directly applicable to more general measures, e.g., mea-
sures on paths described by LTL properties [45].

Specifications A specification ϕ combines a measure,
a threshold λ, and a comparison operator from {<,≤,≥
,>}. For example, the specification ϕ = P≤λ(♦T ) =
(Prmax

M (♦T ),≤ λ) specifies that the maximal reachability
probability Prmax

M (♦T ) is at most λ for the MDP M. If this
statement is true forM, we say thatM satisfies the specifi-
cation, written asM |� ϕ. For anMCD,P≤λ(♦T ) is defined
for the measure PrD(♦T ,≤ λ).

3.2 Solution functions

Recall that every parameter instantiation u ∈ VM for pMDP
M induces a concrete MDP M[u]. For this MDP, we may
then compute any of the measures described above. We
exploit this relationship to create a direct mapping from
parameter instantiations to real values.

Definition 2 (Solution function) A solution function
solM : VM → R for pMDP M is a function that maps a
parameter instantiation u ∈ VM to a value solM(u), called
the solution of u.

In particular, we are interested in solution functions that map
a parameter instantiation to the solution of computing a par-
ticular measure.1 For instance, we may consider a solution
function solM that maps a parameter instantiation u to the

1 Notice that we later assume the existence of the integral in Def. 4,
which excludes some esoteric functions.
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Fig. 3 The solution function for the reachability probability of s3 for
the pMC in Fig. 2

probability Prmin
M[u](♦T ). In that case, we say that u has solu-

tionPrmin
M[u](♦T ). Figure 3 depicts a solution function for the

reachability probability PrM(♦T ) in the pMC from Fig. 2.
Solution functions for parametric models with reacha-

bility and expected rewards measures are well studied, in
particular their computation [23,24,30], but also some of
their properties [6,56]. Already for pMCs, these functions are
typically infeasible to compute. In the context of this paper,
the important idea is that we can determine the size of the
region where this function exceeds a threshold by sampling,
as explained next.

3.3 Uncertain parametric MDPs

We now introduce the setting studied in this paper. Specif-
ically, we use pMDPs whose parameters define the uncer-
tainty in the transition probabilities of an MDP. We add
another layer of uncertainty, where each parameter follows
a probability distribution. For example, referring back to the
UAV example in Sect. 2, eachweather condition has a certain
probability, and every condition leads to a certain parameter
instantiation. Importantly, the probability distribution of the
parameters is assumed to be unknown, and we just assume
that we are able to sample this distribution.

Definition 3 (upMDP)Anuncertain pMDP (upMDP)MP is
a tupleMP = (M, P) withM a pMDP, and P a probability
distribution over the parameter space VM. If M is a pMC,
then we call MP a upMC.

Intuitively, a upMDP is a pMDP with an associated distribu-
tion over possible parameter instantiations. That is, sampling
from VM according to P yields concrete MDPs M[u] with
instantiations u ∈ VM (and P(u) > 0).

Definition 4 (Satisfaction probability) Let MP = (M, P)

be a upMDP and ϕ a specification. The (weighted) satisfac-
tion probability of ϕ inMP is

F(MP, ϕ) =
∫

VM
Iϕ(u) d P(u)

Fig. 4 The probability of satisfying the reachability specification ϕ =
P≤λ(♦T ) for the upMC in Fig. 2, versus the value of the parameter v.
Intervals that satisfy ϕ are green, intervals that violate ϕ are red

with u ∈ VM and Iϕ : VM → {0, 1} is the indicator for ϕ,
i.e., Iϕ(u) = 1 iffM[u] |� ϕ.

Note that Iϕ is measurable for all specifications mentioned
in this paper, as it partitions VM into a finite union of semi-
algebraic sets [8,56]. Moreover, we have that F(MP, ϕ) ∈
[0, 1] and

F(MP, ϕ) + F(MP,¬ϕ) = 1. (1)

Example 2 Weexpand the pMC inFig. 2 toward a upMCwith
a uniform distribution for the parameter v over the interval
[0, 1]. In Fig. 4, we again plot the solution function for the
reachability probability in the pMC from Fig. 2, which was
also shown in Fig. 3. Additionally, we compare this proba-
bility against a threshold λ = 0.13 with comparison operator
≤, and we plot the satisfying region and its complementary
as green and red regions. The satisfying region is given by the
union of the intervals [0.13, 0.525] and [0.89, 1.0], and the
satisfaction probability F(MP, ϕ) is 0.395+ 0.11 = 0.505.

4 Problem statement

Let us now formalize the problem of interest.We aim to com-
pute the satisfaction probability of the parameter space for a
specification ϕ on a upMDP. Equivalently, we thus seek the
probability that a randomly sampled instantiation u from the
parameter space VM induces an MDPM[u] which satisfies
ϕ. Formally: given a upMDP MP = (M, P), and a speci-
fication ϕ, compute the satisfaction probability F(MP, ϕ).
We approximate this probability by sampling the parame-
ters. Such an approach cannot be precise and correct in all
cases, because we only have a finite number of samples at our
disposal. Instead, we provide the following probably approx-
imately correct (PAC) style formulation [33], meaning that
we compute a lower bound on the satisfaction probability
that is correct with high confidence:
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Formal problem 1. Given a upMDPMP = (M, P), a
specificationϕ, and a confidence probabilityβ ∈ (0, 1),
compute a lower bound η on the satisfaction probabil-
ity, such that F(MP, ϕ) ≥ η holds with a confidence
probability of at least β.

Intuitively, given a confidence probability β close below one,
we obtain η as a high-confidence lower bound on the satis-
faction probability F(MP, ϕ).

Remark 1 We can also compute an upper bound on the satis-
faction probability by exploiting (1) and computing a lower
bound for the negated specification ¬ϕ.

Furthermore, as is typical in PAC settings, if a specific
value for η is desired, we are also able to compute the con-
fidence that η is indeed a lower bound on the satisfaction
probability.Wewill exploit both directions, with either given
β or η, in the numerical examples in Sect. 7.We illustrate our
formal problem by continuing our examples on the upMC in
Fig. 2 and the UAV.

Example 3 Let us reconsider the upMC fromExample 2 with
ϕ and satisfaction probability F(MP, ϕ) = 0.505. Assume
we do not yet know this probability. The problem statement
then asks how to compute an η such that with high confidence
β, say 0.99, F(MP, ϕ) ≥ η.

Example 4 For the UAV motion planning example intro-
duced in Sect. 2, consider the question “What is a lower
bound on the probability that on a given day, there exists a
strategy for the UAV to successfully complete the mission?”
Our specification ϕ for successfully completing a mission
could then be that the maximal reachability probability to
a target state is above 0.99, or that the expected travel time
is below 12 hours. For any such ϕ, assume that we want to
answer the question above with confidence of β = 0.9. The
resulting lower bound on the satisfaction probability could
be, e.g., η = 0.81. This means that with a confidence proba-
bility of β = 0.9, the actual satisfaction probability is indeed
at least η = 0.81. If we change the confidence β to 0.99, the
obtained lower bound may reduce to η = 0.78. Intuitively,
the more confidence we want to have, the lower the lower
bound.

5 Computing the satisfaction probability

In this section, we introduce our approach for solving the
problem presented in Sect. 4. We focus on a practical
overview of our approach in this section, while postponing
technical details and the derivation of our main results (The-
orems 1 and 2) to Sect. 6. First, in Sect. 5.1, we fix some
notation for our concrete setup. In particular, we discuss how

Fig. 5 Schematic overview of our approach. After obtaining the
solutions, we choose to apply Theorem 1 (outputting a specification
threshold λ∗(UN ) depending on UN ) or Theorem 2 (inputting a fixed
threshold λ)

we obtain solutions solM(u) by sampling parameter instan-
tiations u from VM. In Sect. 5.2, we then first address a
simpler yet related problem in which we let the specification
ϕ depend on the set of sampled solutions at hand. In Sect.
5.3, we return to our original problem statement: we intro-
duce our approach in which we keep the specification fixed.
An algorithmic overview of both of these methods is shown
in Fig. 5. Finally, we discuss the quality of the obtained lower
bounds in Sect. 5.4

5.1 Obtaining solutions from parameter samples

We describe how we obtain solutions by sampling from
the parameter space. Specifically, we define the set UN =
{u1, u2, . . . , uN } as the outcome of sampling N parameter
instantiations from VM according to the probability dis-
tribution P. Recall that we assume that these samples are
independent and identically distributed. Thus, the set UN of
N samples is a random element drawn according to the prod-
uct probabilityP

N = P×· · ·×P (N times) over the parameter
probability distribution P. For each sample u ∈ UN , we
compute the resulting solution solM(u), as shown in the fol-
lowing example.

Example 5 We continue from Example 3 on the upMC in
Fig. 2. We sample N = 10 parameters from the (uni-
form) probability distribution of this upMC,which are shown
in red on the x-axis in Fig. 6. The resulting solutions
solM(u1), . . . , solM(u10) are depicted as the blue points.
As expected, these points indeed lie on the solution func-
tion curve shown in Fig. 3. In Fig. 6a and b, we check
these solutions against a specification in two different ways:
(1) In Fig. 6a, we first observe the solutions and then devise
a threshold for the given measure, such that these samples
all satisfy the resulting specification. That is, the threshold,
denoted by λ∗(UN ), depends on the solutions at hand, such
thatM[u] |� ϕ for all u ∈ UN . For this example, the specifi-

123



Scenario-based verification of uncertain parametric MDPs 809

(a) (b)

Fig. 6 A set of N = 10 parameter instantiations UN = {u1, . . . , u10}
(shown as red crosses) for the upMC inFig. 2 and the solutions solM(u).
In Fig. 6a, the specification threshold λ∗(UN ) is chosen after observing
the solutions such that all samples are satisfying; Fig. 6b uses a fixed
threshold λ and has two violating samples

cation is P≤λ∗(UN )(♦T ), and the tightest threshold satisfying
this condition is λ∗(UN ) = maxu∈UN solM(u). (2) In Fig.
6b, we fix the specification with its threshold first, and then
evaluate the number of samples satisfying the specification.
This may lead to samples violating the specification (e.g.,
Fig. 6b has two violating samples).

In both cases, we can partition UN into disjoint sets of
samples that satisfy (UNϕ ) or violate (UN¬ϕ

) the specification,
i.e., UN = UNϕ ∪ UN¬ϕ

. Note, that in the first case (Fig. 6a),
the set of violating samples is empty by construction, i.e.,
UN¬ϕ

= ∅. Let Nϕ = |UNϕ | denote the number of satisfying
samples and N¬ϕ = |UN¬ϕ

| the number of violating samples.

5.2 Restriction to satisfying samples

Before solving the main problem introduced in Sect. 4, we
consider a simpler setting to introduce some of the necessary
ideas. Intuitively, we want to investigate the case where we
adapt the specification (or rather the threshold in this speci-
fication) such that UN = UNϕ , or equivalently Nϕ = N . This
simpler setting is shown by Fig. 6a. Here, we do not fix a
threshold λ for the specification ϕ a-priori, but instead derive
a threshold λ∗(UN ) from the solutions at hand such that all
samples are satisfying, i.e., we ensure that

M[u] |� ϕ for all samples u ∈ UN . (Assumption A)

Problem We raise the question: “What is the probabil-
ity that, given these N samples and a specification threshold
thatmakes all samples satisfying, the next sampledparameter
valuation u (on the x-axis of Fig. 6a) with the correspond-
ing solution solM(u) will also satisfy this specification?”
This probability is similar to the satisfaction probability
F(MP, ϕ) in Def. 4, but the threshold of specification ϕ

is not fixed a-priori.

Result Using Theorem 12, we compute a lower bound η on
this satisfaction probability that holds with a user-specified
confidence probability β:

Theorem 1 Let upMDP MP and the set UN of N ≥ 1 sam-
pled parameters. For any set UN , choose threshold λ∗(UN )

of specification ϕ such that UN = UNϕ , and fix a confidence
probability β ∈ (0, 1). Then, it holds that

P
N
{
F(MP, ϕ) ≥ (1 − β)

1
N

}
≥ β. (2)

Applying Theorem 1 to the solutions in Fig. 6a, we compute
that the satisfaction probability F(MP, ϕ) with respect to
specification ϕ with threshold λ∗(UN ) = 0.142 is bounded
from below by η = 0.794 (with a confidence probability of
at least β = 0.9) and by η = 0.631 (with a confidence of at
least β = 0.99).

Sample complexity More generally, Theorem 1 asserts
that with a probability of at least β, the next sampled
parameter from VM will satisfy the specification (with
sample-dependent threshold λ∗(UN )) with a probability of

at least (1− β)
1
N . Thus, the satisfaction probability is lower

bounded by η = (1 − β)
1
N with high confidence, given that

β is close to one. This high confidence is easily achieved for
a sufficiently large number of samples N , as seen from the
following corollary.

Corollary 1 The sample size N necessary to obtain a desired
lower bound η ∈ (0, 1) on the satisfaction probability with
at least a confidence of β ∈ (0, 1) is

N = ceil
( log(1 − β)

log η

)
, (3)

where the function ceil(x) rounds its argument x ∈ R

upwards to the nearest integer.

Corollary 1 states that the sample size N is logarithmic in the
confidence probability β. Thus, a significant improvement in
β (i.e., closer to one) only requires a marginal increase in N .
Similarly, increasing the sample size N improves the lower
bound on the satisfaction probability η. For example, when
increasing the number of samples in Fig. 6a to N = 100 (note
thatwe still assume thatM[u] |� ϕ for all u ∈ UN ), Theorem
1 concludes that the satisfaction probability is lower bounded
by 0.977 (with a confidence of at least β = 0.9) and by 0.955
(with a confidence of at least β = 0.99). Next, consider the
extreme case, where β is infinitely close to one. We observe
from Corollary 1 that such a confidence probability can only
be obtained for N = ∞. Intuitively, this observation makes
sense: we can only be absolutely certain of our lower bound

2 We derive this theorem using Lemma 1, which is provided later on in
Sect. 6.3
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on the satisfaction probability, if we have based this estimate
on infinitely many samples. In practice, our sample set is
finite, and a typical confidence probability may be β = 1 −
10−3.

5.3 Treatment of violating samples

We return to a setting with a fixed threshold λ and possible
violating samples. In other words, we violate (Assumption
A) that M[u] |� ϕ for all samples u ∈ UN . Consider again
Fig. 6b, where for some of the samples u ∈ UN , the value
solM(u) exceeds λ, so UN �= UNϕ , and Theorem 1 does not
apply. Instead, we state Theorem 23 as a generalization that
uses a fixed threshold λ and is also applicable in the presence
of violating samples:

Theorem 2 Let upMDP MP and the set UN of N ≥ 1 sam-
pled parameters. Choose a confidence probabilityβ ∈ (0, 1).
Then, it holds that

P
N
{
F(MP, ϕ) ≥ t∗(N¬ϕ)

}
≥ β, (4)

where t∗(N ) = 0 for N¬ϕ = N, and for k = 0, . . . , N − 1,
t∗(k) is the solution of

1 − β

N
=

k∑

i=0

(
N

i

)

(1 − t)i t N−i . (5)

Theorem 2 solves the formal problem stated in Sect. 4.
Recall that N¬ϕ denotes the number of samples whose value
solM(u) violates the specification ϕ. Applying Theorem 2
to the solutions in Fig. 6b (with N¬ϕ = 2), we conclude that
the satisfaction probability is bounded from below by 0.388
(with a confidence of at least β = 0.9) and by 0.282 (with
β = 0.99). When we increase the number of samples to
N = 100 and assume that N¬ϕ = 20, these results improve
to the lower bounds 0.654 (with β = 0.9) and 0.622 (with
β = 0.99). We note that the intuition in Corollary 1 about
the relationships between the sample size N , lower bound η,
and the confidence probability β also holds for Theorem 2.

5.4 Quality of the obtained lower bounds

Figure 7 illustrates how the number of violating samples,
N¬ϕ , influences the quality of the lower bound on the
satisfaction probability. The points at N¬ϕ = 0 are the
bounds returned by Theorem 1, while the lines correspond
to Theorem 2. Intuitively, the lower bound on the satisfac-
tion probability computed by Theorem 2 decreases with an
increased number of violating samples. Moreover, Theorem

3 We derive this theorem using Lemma 2, which is provided later on in
Sect. 6.4

(a)

(b)

Fig. 7 Lower bounds on the satisfaction probability as computed by
Theorem 1 (shown as points at N¬ϕ = 0) and Theorem 2 (lines for
different N¬ϕ = 0, . . . , N )

1 yields a better lower bound than Theorem 2 (points versus
the lines in Fig. 7), at the cost of not using a fixed threshold
on the specification, and not being able to deal with violating
samples.

In Fig. 8,wefix the fraction of violating samples N¬ϕ/N and
plot the lower bounds on the satisfaction probability obtained
using Theorem 2 for different values of N and β. Note that
the lower bounds grow toward the fraction of violation for
increased sample sizes. As also shown with Corollary 1, the
confidence probability β only has a marginal effect on the
obtained lower bounds.

Finally, we make the following remark with respect to the
sample complexity of Theorems 1 and 2.

Remark 2 (Independence to model size) The number of sam-
ples needed to obtain a certain confidence probability in
Theorems 1 and 2 is independent of the number of states,
transitions, or parameters of the upMDP.4

4 Despite this independence, note that the time to compute solutions via
model checking still depends on the number of states and transitions of
the instantiated MDP.
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(a)

(b)

Fig. 8 Bounds on the satisfaction probability from Theorem 2 for fixed
fractions N¬ϕ/N of violated samples

6 Derivation of themain results

In this section, we explain how we obtain Theorems 1 and 2.
Toward proving these theorems, we reformulate our problem
statement into the domain of linear programs (LPs). First, we
define the case where we account for all but a small fraction
of the parameters instantiations u ∈ VM (recall that VM
typically has infinite cardinality), which we formalize using
a so-called chance-constrained LP. We remark that solving
this chance-constrained LP directly is difficult [16]. Instead,
we formalize our sampling-based approach, which is based
on scenario optimization, and which only considers a finite
number of sampled parameters u ∈ UN .

6.1 Chance-constrained LP reformulation

Recall from Sect. 4 that the problem is to compute a lower
bound η on the satisfaction probability F(MP, ϕ). In other
words, when sampling a parameter instantiation u ∈ VM
according to probability measure P, compute a lower bound
η on the probability that M[u] |� ϕ. If the specification ϕ

has a comparison operator ≤ and a threshold λ (e.g., ϕ =
P≤λ(♦T )), then the condition M[u] |� ϕ is equivalent to
solM(u) ≤ λ. As the solution function (Def. 2) is a function
of (only) the parameter instantiation, the solution solM(u) is
also a random variable with probability measure P. Thus, we

can formalize the problem of finding a lower bound η based
on the following chance-constrained LP:

minimize
τ≥0

τ (6a)

subject to Pr
{
u ∈ VM

∣
∣
∣ solM(u) ≤ τ

}
≥ η. (6b)

Then, the satisfaction probability F(MP, ϕ) is lower
bounded by η, given that the optimal solution τ ∗ to (6) is
at most λ.

Similarly, if the specification ϕ has a lower bound compar-
ison operator ≥ and a threshold λ, we consider the following
chance-constrained LP:

maximize
τ≥0

τ (7a)

subject to Pr
{
u ∈ VM

∣
∣
∣ solM(u) ≥ τ

}
≥ η. (7b)

Note that the differences between (6) and (7) are the optimiza-
tion direction and the operator within the chance constraint.
Solving these chance-constrained problems is very hard in
general, in particular because the probability distribution of
the parameters is unknown [16].

In what follows, we introduce our sampling-based
approach to solve these problems with high confidence. For
brevity, we assume specifications with a lower bound com-
parison operator as in (6), but modifying our results for other
operators is straightforward.

6.2 Scenario optimization program

Instead of solving the chance-constrained LP in (6) directly,
we compute probably approximately correct lower bounds on
the satisfaction probability based on scenario optimization
[12,13]. Specifically, we replace the chance constraint (6b),
which asks for the satisfaction of a certain fraction of a set
of infinitely many constraints, with a finite number of hard
constraints that are induced by the sampled parameters u ∈
UN . The resulting optimization problem is called a scenario
program [16] and is formulated as follows:

minimize
τ≥0

τ (8a)

subject to solM(u) ≤ τ ∀u ∈ UN . (8b)

Upon solving scenario program (8), we obtain a unique opti-
mal solution τ ∗ = maxu∈UN solM(u). In Sect. 6.3, we show
that Theorem 1 follows from solving program (8) directly,
while Theorem 2 corresponds to a setting where we deal with
samples that violate the specification.
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6.3 Restriction to satisfying samples

Consider the case where we directly solve the scenario pro-
gram (8). In this case, the following theorem, which is
based on [13, Theorem 2.4], enables us to compute a high-
confidence lower bound on the satisfaction probability.

Lemma 1 Let uMDPMP, a specification ϕ with operator≤,
and the set UN of N ≥ 1 sampled parameters. Let τ ∗ be the
optimal solution of (8), and choose a confidence probability
β ∈ (0, 1). Then, it holds that

P
N
{
Pr{u ∈ VM | solM(u) ≤ τ ∗} ≥ (1 − β)

1
N

}
≥ β. (9)

Lemma 1 states that with a probability of at least β, the
probability that solM(u) ≤ τ ∗ for the next sampled param-

eter u ∈ VM is at least (1 − β)
1
N . To derive Theorem 1

from Lemma 1, we choose the (sample-dependent) speci-
fication threshold λ(UN ) ≥ τ ∗ after solving the scenario
program. Then, Theorem 1 follows directly by observing
that F(MP, ϕ) ≥ Pr{u ∈ VM | solM(u) ≤ τ ∗}, since
λ(UN ) ≥ τ ∗. We provide the proof of Lemma 1, and thus of
Theorem 1, in Appendix A.

6.4 Treatment of violating samples

We now derive Theorem 2, which assumes a fixed threshold
λ. In this case, we cannot guarantee a-priori that λ ≥ τ ∗,
because some samples may induce a reachability probabil-
ity above λ, as in Fig. 6b. Recall that N¬ϕ is the number
of samples that violate the specification. Loosely speaking,
we relax the constraints for these N¬ϕ samples, and com-
pute the maximum probability over the remaining samples
UNϕ ⊆ UN , which we write as τ+ = maxu∈UNϕ

solM(u).
The following theorem is adapted from [15, Theorem 2.1]
and computes a high-confidence lower bound on the satis-
faction probability, using the values of N¬ϕ and τ+.

Lemma 2 Let uMDP MP, a specification ϕ with operator
≤, and the set UN of N ≥ 1 sampled parameters. Fix a
confidence probability β ∈ (0, 1). Then, it holds that

P
N
{
Pr{u ∈ VM|solM(u) ≤ τ+} ≥ t∗(N¬ϕ)

}
≥ β, (10)

where t∗(N ) = 0 for N¬ϕ = N, and for k = 0, . . . , N − 1,
t∗(k) is the solution of

1 − β

N
=

k∑

i=0

(
N

i

)

(1 − t)i t N−i . (11)

Lemma 2 asserts that with a probability of at least β, the
probability that solM(u) ≤ τ+ for the next sampled param-
eter u ∈ VM is at least t∗(N¬ϕ), given that N¬ϕ samples

violate the specification ϕ. Theorem 2 follows directly from
Lemma 2, by observing that by construction, τ+ ≤ λ. We
provide the proof of Lemma 2, and thus of Theorem 2, in
Appendix A..

We note that (11) is the cumulative distribution function
of a beta distribution with N¬ϕ + 1 and N − N¬ϕ degrees of
freedom [16], which can easily be solved numerically for t .
Moreover, we can speed up the computations at run-time, by
tabulating the solutions to (11) for all relevant values of N ,
β and N¬ϕ up front.

7 Numerical examples

We implemented our approach in Python using the model
checker Storm [25] to construct and analyze samples of
MDPs. Our implementation is available at https://doi.org/10.
5281/zenodo.6674059 All computations ran on a computer
with 32 3.7 GHz cores, and 64 GB of RAM.

First, we apply our method to the UAV motion planning
example introduced in Sect. 2. Thereafter, we report on a set
of well-known benchmarks used in parameter synthesis [36]
that are, for instance, available on the website of the tools
PARAM [30] or part of the PRISM benchmark suite [38].
We demonstrate that with our method, we can either specify
a lower bound η on the satisfaction probability and compute
with what confidence probability β we can guarantee this
lower bound, or we can do this in the opposite direction (i.e.,
specify η and compute β).

7.1 UAVmotion planning

SetupRecall the example from Sect. 2 of a UAVwhich needs
to deliver a payload while avoiding obstacles. The weather
conditions are uncertain, and this uncertainty is reflected in
the parameters of the uMDP.For the distributions over param-
eter values, that is, over weather conditions, we consider the
following three cases:

1. we assume a uniform distribution over the different
weather conditions in each zone;

2. the probability for a weather condition inducing a wind
direction that pushes the UAV northbound (i.e., into the
positive y-direction) is twice as likely as in other direc-
tions;

3. it is twice as likely to push the UAV westbound (i.e., into
the negative x-direction).

Trajectories We depict example trajectories of the UAV
for these three cases in Fig. 1. The trajectory depicted by
the black line represents a simulated trajectory for the first
case (uniform distribution), taking a direct route to reach the
target area. Similarly, the trajectories shown by the dotted
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Table 1 Lower bounds η on the (un)satisfaction probability for the UAV benchmark with N = 5 000 samples

Confidence probability β = 0.9 β = 0.99 β = 0.999 β = 0.9999

Weather condition η, sat η, unsat η, sat η, unsat η, sat η, unsat η, sat η, unsat

1. Uniform distribution 0.91138 0.0583 0.90928 0.0567 0.90735 0.05528 0.90555 0.05398

2. Stronger northbound wind 0.77878 0.17483 0.77577 0.17217 0.77302 0.16978 0.77048 0.1676

3. Stronger westbound wind 0.7768 0.17664 0.77378 0.17397 0.77103 0.17157 0.76847 0.16938

purple and dashed blue lines are simulated trajectories for the
second (stronger northbound wind, i.e., positive x-direction)
and third cases (stronger westbound wind, i.e., positive y-
direction), respectively. Under these two weather conditions,
the UAV takes different paths toward the goal in order to
account for the stronger wind. In particular, for the case with
northboundwind, we observe that theUAV is able to fly close
to the obstacle at the right bottom. By contrast, for the case
with westbound wind, the UAV avoids to get close to this
obstacle, as the wind may push the UAV into the obstacles,
and then reaches the target area.

Bounds on satisfaction probabilities We sample N =
1000 parameters for each case and consider different con-
fidence probabilities β between 0.9 and 0.9999. Specifically,
we consider the specification ϕ = P≥0.9(♦T ), which is satis-
fied if the probability to safely reach the goal region is at least
90%. For all three weather conditions, we compute the lower
bounds η on both the satisfaction probability F(MP, ϕ) and
the unsatisfaction probability F(MP,¬ϕ), using Theorem
2.

The results are presented in Table 1. The highest lower
bound on the satisfaction probability is given by the first
weather condition, and is η = 0.911 (for β = 0.9) and
η = 0.906 (for β = 0.9999). In other words, under a
uniform distribution over the weather conditions, the UAV
will (with a confidence of at least β = 0.9999) satisfy the
specification on at least 90.6% of the days. The second and
third weather conditions lead to η = 0.770 and η = 0.768
(for β = 0.9999), respectively, showing that it is harder to
navigate around the obstacles with non-uniform probability
distributions over the parameters. The average time to run a
full iteration of our approach on this uMDPwith 900 parame-
ters and around 10 000 states (i.e., performing the sampling,
model checking, and computing the lower bounds η) with
5 000 parameter samples is 9.5 minutes.

7.2 Parameter synthesis benchmarks

Setup In our second set of benchmarks, we adopt parametric
MDPs andpMCs from [49].Weadapt theConsensusprotocol
[3] and the Bounded Retransmission Protocol (brp) [22,34]
to uMDPs; theCrowds Protocol (crowds) [52] and theNAND
Multiplexing benchmark (nand) [31] become uMCs. Essen-

tially, the PLA technique from [49] allows to approximate
the percentage of instantiations that satisfy (or do not satisfy)
a specification, while assuming a uniform distribution over
the parameter space. Table 2 lists the specification checked
(ϕ) and the number of parameters, states, and transitions
for all benchmarks. Note that the satisfying regions reported
in Table 2 approximate F(MP, ϕ), while the unsatisfying
regions approximate F(MP,¬ϕ). We provide these num-
bers as a baseline only: the computation via PLA cannot
scale to more than tens of parameters [49] and cannot cope
with unknown distributions. For all benchmarks, we assume
a uniform distribution over the parameters.

Specifications with variable thresholds λ Wedemonstrate
Theorem 1 on brp (16,5) with a variable threshold λ∗(UN )

in specification ϕ = E≤λ∗(U)N )(♦T ). We use either N =
1 000 or 10 000 parameter samples and compute the tightest
threshold λ∗(UN ) such that all samples are satisfying. As
explained in Example 5, this tightest threshold is λ∗(UN ) =
maxu∈UN solM(u). We repeat both cases ten thousand times
and showahistogramof the obtained thresholds in Fig. 9. The
corresponding lower bounds on the satisfaction probability
(which only depend on N and β) are η = 0.9954 (for N =
1 000) and η = 0.9995 (for N = 10 000). We observe from
Fig. 9 that for a higher number of samples, the thresholds
are, on average, higher and their variability is lower. These
results are explainable, since the threshold is computed as
the maximum of all solutions.

Computing β for a given η We use Theorem 2 to compute
the confidence probabilities β that the approximate satisfy-
ing regions in Table 2 are indeed a lower bound on the actual
satisfaction probability F(MP, ϕ) (and on F(MP,¬ϕ) for
the unsatisfying regions). Thus, we let η be the approximate
(un)satisfying regions in Table 2, and sample a desired num-
ber of parameters (between N = 1 000 and 25 000). For
every instance, we then compute the confidence probability
β using Theorem 2.

For every benchmark and sample size, we report the aver-
age confidence probabilities β over 10 full iterations of the
same benchmark in Table 3. Furthermore, we list the run
time (in seconds) per 1 000 samples for each instance. The
results in Table 3 show that we can conclude with high con-
fidence that the (un)satisfying regions are indeed a lower
bound on the actual (un)satisfaction probabilities. In partic-
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Table 2 Information for the benchmark instances and the approximate (un)satisfaction probabilities taken from [49]

Benchmark Instance ϕ #pars Model size Approximate (un)satisfying regions
#states #trans Satisfying region Unsatisfying region

brp (256,5) P≤0.5(♦T ) 2 19720 26627 0.055 0.898

(16,5) E≤3(♦T ) 4 1304 1731 0.275 0.676

(32,5) E≤3(♦T ) 4 2600 3459 0.232 0.718

crowds (10,5) P≤0.9(♦T ) 2 104512 246082 0.537 0.413

(15,7) P≤0.9(♦T ) 2 8364409 25108729 0.411 0.539

nand (10,5) P≥0.05(♦T ) 2 35112 52647 0.218 0.733

(25,5) P≥0.05(♦T ) 2 865592 1347047 0.206 0.744

consensus (2,2) P≥0.25(♦T ) 2 272 492 0.280 0.669

(4,2) P≥0.25(♦T ) 4 22656 75232 0.063 0.888

(a) (b)

Fig. 9 Histograms of the obtained thresholds λ∗(UN )

ular for N = 25 000 samples, most confidence probabilities
are very close to one. For example, for the crowds benchmark,
instance (10,5) with N = 25 000, we obtain a confidence
probability of β = 0.99943 on the unsatisfying region of
size 0.413. Thus, the probability that the approximate unsat-
isfying region of 0.413 in Table 2 is not a lower bound on
the actual unsatisfaction probability F(MP,¬ϕ) is less than
1 − β = 0.00057. Moreover, in line with Remark 2, larger
models do not (in general) lead to worse confidence bounds
(although model checking times do typically increase with
the size of the MDP, cf. Table 3).

The instance for which we obtained the worst confidence
probability is the unsatisfying probability of nand (10,5),
namely β = 0.975. Recomputing the results of [49] with a
much smaller tolerance revealed that the approximate unsat-
isfying region of 0.733 was already a very tight lower bound
(the best boundwewere able to computewas 0.747).As such,
we could only conclude with a confidence of β = 0.975 that
η = 0.733 is a correct lower bound (as shown in Table 3, for
N = 25 000).

Computing η for a given β Conversely, we can also
use Theorem 2 to compute the best lower bound η on
the (un)satisfaction probability that holds with at least a
confidence probability β. For each benchmark, we sample
N = 25 000 parameters and apply Theorem 2 for increasing
confidence probabilities β. We report the resulting bounds

η in Table 4. We observe that the obtained values of η

are slightly more conservative (i.e., lower) for higher val-
ues of β. This observation is indeed intuitive: to reduce
our chance 1 − β of obtaining an incorrect bound on the
(un)satisfaction probability, the value of ηmust be more con-
servative. Moreover, increasing the confidence probability β

only marginally reduces the obtained lower bound η. For
example, the obtained lower bound on the satisfaction prob-
ability for brp (256,5)withβ = 0.9 is η = 0.07244,while for
β = 0.9999, it is only reduced to η = 0.07036 (a reduction of
only 0.21%). This observation confirms the important result
of Corollary 1: a high confidence probability β can typically
be obtained without sacrificing the tightness of the obtained
lower bound η.

Recall that, based on Table 3, we can only confirm the
validity of the lower bound η = 0.733 on the unsatisfy-
ing region for nand (10,5) with a confidence probability of
β = 0.975. Interestingly, Table 4 shows that we can guar-
antee a marginally weaker lower bound of η = 0.73271
with a confidence probability β = 0.9999. In other words,
by weakening our lower bound η by an almost negligible
amount of 0.0003, we increase the confidence on the results
from 97.51% to a remarkable 99.99%. This highlights that
the confidence probability β is extremely sensitive for the
lower bound η, especially for high sample sizes N .

8 Discussion and related work

The so-called parameter synthesis problem considers com-
puting parameter values such that the induced nonparametric
MDP satisfies the specification for some strategy. Most
works on parameter synthesis focus on finding one parameter
value that satisfies the specification. The approaches involve
computing a rational function of the reachability probabili-
ties [6,23,27,30], utilizing convex optimization [20,21], and
sampling-based methods [18,41]. The problem of whether
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Table 3 Average confidence probabilities β for different sample sizes N , and run times per 1 000 samples

# samples Instance 1000 2500 5000 10000 25000
Benchmark β, sat β, unsat β, sat β, unsat β, sat β, unsat β, sat β, unsat β, sat β, unsat Time (s)

brp (256,5) 0.42586 0.14955 0.91278 0.53890 0.99927 0.91447 1.00000 0.99957 1.00000 1.00000 1.296

(16,5) 0.05699 0.03247 0.22192 0.10293 0.62397 0.35332 0.95612 0.92778 1.00000 1.00000 0.341

(32,5) 0.05126 0.07365 0.21862 0.27669 0.50731 0.64205 0.89816 0.91258 1.00000 1.00000 0.344

crowds (10,5) 0.04770 0.03339 0.22113 0.07921 0.58451 0.31034 0.94009 0.65727 1.00000 0.99943 0.119

(15,7) 0.06568 0.02839 0.15451 0.05446 0.51860 0.31260 0.95223 0.71819 1.00000 1.00000 0.174

nand (10,5) 0.18263 0.01101 0.62057 0.02775 0.97510 0.07370 1.00000 0.37567 1.00000 0.97509 4.097

(25,5) 0.02938 0.20327 0.14312 0.51272 0.40151 0.82369 0.62267 0.99994 0.99884 1.00000 156.654

consensus (2,2) 0.06282 0.02833 0.23683 0.14101 0.65357 0.44217 0.98990 0.93097 1.00000 1.00000 0.450

(4,2) 0.13668 0.41820 0.48546 0.90556 0.86663 0.99999 0.99998 1.00000 1.00000 1.00000 26.575

Table 4 Lower bounds η on the (un)satisfaction probability for N = 25 000 samples

Confidence probability Instance β = 0.9 β = 0.99 β = 0.999 β = 0.9999
Benchmark η, sat η, unsat η, sat η, unsat η, sat η, unsat η, sat η, unsat

brp (256,5) 0.07244 0.91221 0.07168 0.91135 0.07099 0.91056 0.07036 0.90982

(16,5) 0.28787 0.68619 0.28653 0.68481 0.28531 0.68353 0.28417 0.68234

(32,5) 0.24356 0.73176 0.24229 0.73044 0.24113 0.72922 0.24005 0.72808

crowds (10,5) 0.55106 0.42091 0.54957 0.41945 0.54821 0.41810 0.54695 0.41685

(15,7) 0.42397 0.54798 0.42250 0.54650 0.42115 0.54514 0.41990 0.54387

nand (10,5) 0.23909 0.73637 0.23783 0.73506 0.23668 0.73384 0.23561 0.73271

(25,5) 0.20979 0.76673 0.20858 0.76546 0.20748 0.76430 0.20647 0.76321

consensus (2,2) 0.29383 0.68009 0.29248 0.67870 0.29125 0.67742 0.29010 0.67622

(4,2) 0.07367 0.91086 0.07291 0.91000 0.07221 0.90921 0.07157 0.90846

there exists a value in the parameter space that satisfies a
reachability specification is ETR-complete5 [56], and find-
ing a satisfying parameter value is exponential in the number
of parameters.

The work in [4] considers the analysis of Markov mod-
els in the presence of uncertain rewards, utilizing statistical
methods to reason about the probability of a parametricMDP
satisfying an expected cost specification. This approach is
restricted to reward parameters and does not explicitly com-
pute confidence bounds. Thework in [46] obtains data-driven
bounds on the parameter ranges and then uses parameter
synthesis techniques to validate properties for all param-
eter values in this range. Paper [39] computes bounds on
the long-run probability of satisfying a specification with
probabilistic uncertainty for Markov chains. Other related
techniques include multi-objective model checking to maxi-
mize the average performance with probabilistic uncertainty
sets [51], sampling-basedmethodswhichminimize the regret
with uncertainty sets [1], and Bayesian reasoning to com-
pute parameter values that satisfy a metric temporal logic

5 The ETR satisfiability problem is to decide if there exists a satisfying
assignment to the real variables in a Boolean combination of a set of
polynomial inequalities. It is known that NP ⊆ ETR ⊆ PSPACE.

specification on a continuous-time Markov chain (CTMC)
[10]. Sampling-based methods similar to ours for verifying
CTMCs with uncertain rates are developed in [5]. Finally,
the work in [2] considers a variant of the problem in this
paper where parameter values cannot be observed and thus
must be learned. The paper formulates the strategy synthe-
sis problem as a computationally harder partially observable
Markov decision process (POMDP) synthesis problem and
uses off-the-shelf point-based POMDP methods [17,44].

The works [47,57] consider the verification ofMDPs with
convex uncertainties. However, the uncertainty sets for dif-
ferent states in an MDP are restricted to be independent,
which does not hold in our problem setting where we have
parameter dependencies.

Uncertainties inMDPs have received quite some attention
in the artificial intelligence and planning literature. Inter-
val MDPs [29,47] use probability intervals in the transition
probabilities. Dynamic programming, robust value iteration
and robust strategy iteration have been developed for MDPs
with uncertain transition probabilities whose parameters are
statistically independent, also referred to as rectangular, to
find a strategy ensuring the highest expected total reward
at a given confidence level [42,57]. The work in [55] relaxes
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this independence assumption a bit and determines a strategy
that satisfies a given performance with a pre-defined confi-
dence provided an observation history of theMDP is given by
using conic programming. State-of-the art exact methods can
handle models of up to a few hundred of states [35]. Multi-
modelMDPs [53] treat distributions over probability and cost
parameters and aim at finding a single strategy maximizing a
weighted value function. This problem is NP-hard for deter-
ministic strategies and PSPACE-hard for history-dependent
strategies.

9 Conclusion

We have presented a new sampling-based approach to ana-
lyze uncertainMarkovmodels. Theoretically, we have shown
how to effectively and efficiently bound the probability
that any randomly drawn sample satisfies a temporal logic
specification. Furthermore, we have shown the computa-
tional tractability of our approaches bymeans of well-known
benchmarks and a new, dedicated case study. In the future,
we plan to exploit our approaches for more involved mod-
els such as Markov automata [32]. Another line of future
work will be a closer integration with a parameter synthesis
framework.
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A Proofs

In this section, we provide the proofs of our main theoretical
contributions. Since our theorems and lemmas are tailored
to specifications ϕ with comparison operator ≤, we also use
these assumptions throughout the proofs. The proofs for the
case where we have a specification ϕ with comparison oper-
ator ≥ are analogous to the difference between LPs (6b)
and (7b): we use maximize instead of minimize, and the
operator in the constraint changes sign.

A.1 Proof of Lemma 1 and Theorem 1

We first prove Lemma 1, and then show that Theorem 1 fol-
lows directly. Let us rewrite LP (8) in a more compact way.

To this end, for a parameter sample u ∈ UN , letCu denote
the interval of values for τ , for which constraint (8b) is satis-
fied. Note that for a specification ϕ with comparison operator
≤, we haveCu = [solM(u), +∞), i.e.,Cu is lower bounded
by the solution solM(u). Using Cu , we reformulate the sce-
nario program (8) as the equivalent program

minimize
τ≥0

τ

subject to τ ∈
⋂

u∈UN

Cu .
(12)

Note that (12) is exactly in the form of the scenario program
formulated in [13]. Let τ ∗ denote the optimal value to the
scenario program with respect to sample set UN , and let u be
an independently sampled parameter from VM according to
P. Then, Theorem 2.4 of [13] states that the cumulative dis-
tribution function of the probability for the set Cu associated
with sampled parameter u to violate the optimal solution τ ∗,
that is τ ∗ /∈ Cu , is written as follows:

P
N
{
Pr{u ∈ VM | τ ∗ /∈ Cu} > ε

}

≤
d−1∑

i=0

(
N
i

)

εi (1 − ε)N−i ,
(13)

where ε ∈ (0, 1) bounds the violation probability, and d is the
number of decision variables of (12). Since we have d = 1,
and we are after the satisfaction probability (rather than the
violation probability), we simplify (13) as

P
N
{
Pr{u ∈ VM | τ ∗ ∈ Cu} < 1 − ε

}
≤ (1 − ε)N (14)

P
N
{
Pr{u ∈ VM | τ ∗ ∈ Cu} ≥ 1 − ε

}
≥ 1 − (1 − ε)N .

(15)

Let β = 1− (1− ε)N , which implies that ε = 1− (1−β)
1
N .

Moreover, the event that τ ∗ ∈ Cu is equivalent to solM(u) ≤
τ ∗, so (15) reduces to

P
N
{
Pr{u ∈ VM | solM(u) ≤ τ ∗} ≥ (1 − β)

1
N

}
≥ β, (16)

which equals the desired expression in (9) for Lemma 1.
Finally, we show that Theorem 1 follows from Lemma 1.

Because τ ∗ ≤ λ∗(UN ), with λ∗(UN ) the sample-dependent
threshold of specification ϕ, the inner probability in (16) is a
lower bound on the satisfaction probability F(MP, ϕ):

F(MP, ϕ) ≥ Pr(u ∈ VM | τ ∗ ∈ Cu). (17)

By combining (16) with (17), we find that

P
N
{
F(MP, ϕ) ≥ (1 − β)

1
N

}
≥ β, (18)
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and thus, the claim in Theorem 1 follows.

A.2 Proof of Lemma 2 and Theorem 2

We first prove Lemma 2, and then show that Theorem 2
follows directly. We modify the scenario program (8) as a
scenario programwith discarded samples [15], which allows
for the removal of undesirable constraints:

minimize
τ≥0

τ (19a)

subject to solM(u) ≤ τ ∀u ∈ UN\Q, (19b)

where we introduced the sample removal set Q, which
accounts for a subset of samples whose constraints have been
discarded. We explicitly write the dependency of the optimal
solution τ ∗

|Q| on the number of discarded samples |Q|. Criti-
cally, samples are removed based on the following rule:

Lemma 3 The sample removal set Q ⊆ {1, . . . , N } is
obtained by iteratively removing the active constraints
from (19), i.e., the samples u ∈ UN for which solM(u) =
τ ∗
|Q|.
Note that the active constraint may not be unique, e.g., if

the solution solM(u1) = solM(u2) for u1 �= u2. In that case,
a suitable tie-break rulemay be used to select a constraint to
discard, as discussed in [14].

The main difference between programs (19) and (8) is
that instead of enforcing the constraint for every sample
u ∈ UN , we only enforce the constraint for a subset of sam-
ples u ∈ UN\Q. Based on the solution to (19), Theorem 2.1
of [15] bounds the cumulative distribution function of the
violation probability, in a similar manner as the guarantees
given by (13):

P
N
{
Pr{u ∈ VM | τ ∗

|Q| /∈ Cu} > ε
}

≤
(Q + d − 1

Q
) |Q|+d−1∑

i=0

(
N
I

)

εi (1 − ε)N−i

=
|Q|∑

i=0

(
N
I

)

εi (1 − ε)N−i ,

(20)

where ε ∈ (0, 1) bounds the violation probability, d = 1 is
the number of decision variables of (19), and |Q| is the car-
dinality of the sample removal set. As our goal is to bound
the satisfaction probability (rather than the violation proba-
bility), we define t = 1 − ε, and rewrite (20) as

P
N
{
Pr{u ∈ VM | τ ∗

|Q| ∈ Cu} < 1 − ε
}

≤
|Q|∑

i=0

(
N
I

)

εi (1 − ε)N−i
(21)

P
N
{
Pr{u ∈ VM | τ ∗

|Q| ∈ Cu} ≥ t
}

≥ 1 −
|Q|∑

i=0

(
N
I

)

(1 − t)i t N−i .

(22)

We equate the right-hand side of (22) to 1 − 1−β
N , where

β ∈ (0, 1) is a confidence probability (typically close to
one):

P
N
{
Pr{u ∈ VM | τ ∗

|Q| ∈ Cu} ≥ t∗(|Q|)
}

≥ 1 − 1 − β

N
,

(23)

where t∗(|Q|) is the solution to

1 − 1 − β

N
= 1 −

|Q|∑

i=0

(
N
I

)

(1 − t)i t N−i . (24)

We divide the confidence level by N to account for all N
possible values for |Q|, ranging from 0 to N−1. The value of
|Q| that is actually needed depends on the sample set at hand,
and is, therefore, not known a-priori (i.e., before observing
the actual samples). For brevity, denote byAn the event that

Pr{u ∈ VM | τ ∗
n ∈ Cu} ≥ t∗(n). (25)

The probability for this event to hold is P
N {An} ≥ 1− 1−β

N ,

and its complementA′
n has a probability of P

N {A′
n} ≤ 1−β

N .
Based on Boole’s inequality, it holds that

P
N
{ N−1⋃

i=0

A′
n

}
≤

N−1∑

i=0

P
N{A′

n

} ≤ 1 − β

N
N = 1 − β. (26)

Thus, the probability of the intersection of all events is

P
N
{ N−1⋂

i=0

An

}
= 1 − P

N
{ N−1⋃

i=0

A′
n

}
≥ β. (27)

In other words, the bounds on the satisfaction probability
given by (23) hold simultaneously for all values |Q| =
0, . . . , N − 1 with a confidence probability of at least β.

After observing the samples at hand, we determine the
actual value of N¬ϕ and plug it as |Q| into (23). The proba-
bility that this expression holds cannot be smaller than that
of the intersection of all events in (27). Hence, we obtain

P
N
{
Pr{u ∈ VM | solM(u) ≤ τ ∗

|Q|} ≥ t∗(N¬ϕ)
}

≥ β. (28)

Recall from Sect. 6.4 that τ+ = maxu∈UNϕ
solM(u), which

is, by construction, equivalent to τ ∗
|Q| under |Q| removed
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samples. Thus, (28) is equivalent to (10), and the definition of
t∗(|Q|) in (24) equals (11), so the claim in Lemma 2 follows.

Finally, to show that Theorem 2 follows directly from
Lemma 2, we note that τ+ = τ ∗

|Q| ≤ λ, so it must hold
that

F(MP, ϕ) ≥ Pr{u ∈ VM | solM(u) ≤ τ+}. (29)

By combining (28) with (29), we find that

Pr
{
F(MP, ϕ) ≥ t∗(N¬ϕ)

}
≥ β, (30)

and thus, we conclude the proof of Theorem 2.
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