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Abstract
As a particular case study of the formal verification of state-of-the-art, real software, we discuss the specification and verifi-
cation of a corrected version of the implementation of a linked list as provided by the Java Collection Framework.
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1 Introduction

Software libraries are the building blocks of millions of pro-
grams, and they run on the devices of billions of users every
day. Therefore, their correctness is of the utmost importance.
The importance and potential of formal software verifica-
tion as a means of rigorously validating state-of-the-art, real
software and improving it, is convincingly illustrated by its
application to TimSort, the default sorting library in many
widely used programming languages, including Java and
Python, and platforms like Android (see [1,2]): a crashing
implementation bug was found. The Java implementation of
TimSort belongs to the Java Collection Framework which
provides implementations of basic data structures and is
among the most widely used libraries. Nonetheless, over
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the years, 877 bugs in the Collections Framework have been
reported in the official OpenJDK bug tracker.

Due to the intrinsic complexity of modern software, the
possibility of interventions by a human verifier is indispens-
able for proving correctness. This holds in particular for the
Java Collection Framework, where programs are expected to
behave correctly for inputs of arbitrary size. As a particular
case study, we discuss the formal verification of a corrected
version of the implementation of a linked list as specified by
the classLinkedList of the Java Collection Framework in
Java 8. Apart from the fact that the data structure of a linked
list is one of the basic structures for storing and maintain-
ing unbounded data, this is an interesting case study because
it provides further evidence that formal verification of real
software can lead to major improvements and correctness
guarantees.

LinkedList is the only List implementation in the
Collection Framework that allows collections of unbounded
size. We found out that the Java linked list implementation
does not correctly take into account the Java integer overflow
semantics. It is exactly for large lists (≥231 items), that the
implementation breaks in many interesting ways and some-
times even oblivious to the client. This basic observation
gave rise to a number of test cases which show that Java’s
LinkedList class breaks the contract of 22 methods out
of a total of 25 methods of the List interface!

In this paper, we focus on the integer overflow bug that we
have discovered and on specifying and verifying an improved
version of the LinkedList class which avoids this bug.
We follow the general workflow (depicted in Fig. 1) that also
underlies the TimSort case study. The workflow starts with
a formalisation of the informal documentation of the Java

123

International Journal on Software Tools for Technology Transfer (2022) 24:783–802

/ Published online: 17   October 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-022-00679-7&domain=pdf
http://orcid.org/0000-0001-9677-6644
http://orcid.org/0000-0001-5003-598X


H. A. Hiep et al.

Fig. 1 Workflow

source code in the Java Modeling Language [3,4]. This for-
malisation goes hand in hand with the formal verification
process: failed verification attempts can provide information
about further refinements of the specifications. A failed ver-
ification attempt may also indicate an error in the code, and
can as such be used for the generation of test cases to detect
the error at run-time.

For our case studyweuse the state-of-the-artKeY theorem
prover [5], because it fully formalizes the integer overflow
semantics of Java and it allows to directly “load” Java pro-
grams. An archive of proof files and the KeY versions used
in this study is available on-line in the Zenodo repository [6].

This paper is an extended version of the earlier publi-
cation [7]. The main additions in this extended paper are
in-depth details about the integer overflow bug and itsmitiga-
tion, improvements to the specification to include properties
needed for client-side reasoning, and more details of the ver-
ification effort that also allows for reproduction of the proofs
using a later version of KeY. In particular, in this paper, we
now also specify properties of the LinkedList that are
needed for reasoning about the correctness of clients of the
linked list: clients of the linked list depend on properties that
express what the contents of the linked list are, and may be
oblivious to its internal structure. However, properties spec-
ifying the internal structure of the linked list are needed for
showing the absence of the integer overflow bug: otherwise,
client-side reasoning becomes unsound.
Plan of the paper Section 2 describes the LinkedList
class in the Java Collection Framework, explaining the origin
of the integer overflow bug and details on the reproduction
and mitigation thereof. Section 3 explains our methodology,
the reasons for choosing KeY as a verification system, and
the false dichotomy between non-functional and functional
verification. We describe our efforts of formally specifying

and verifying the correctness of an adapted LinkedList
class in Sect. 4, which shows the absence of the integer over-
flow. Section 5 discusses the main challenges posed by this
case study and related work.
Impact As our case study involves real software, we have
performed an analysis of existing Java code to estimate the
use of LinkedList and the potential impact of a bug. A
basic analysis of at least 140,000 classes1, found by sampling
Java packages onMavenCentral and in software distributions
such as RedHat Linux, reveals 1677 cases of direct use of the
LinkedList classwhere a constructor of LinkedList is
invoked. As an over-estimation of the potential reach of such
instances, we find at least 37,000 usage call sites where some
method of the Collection, List or Queue interface is
called. It is infeasible for us to analyze for each constructor
call site where its resulting instance will be used. However,
some usage of the LinkedList class occurs in potentially
security-sensitive contexts, such as the library for checking
certificates used by the Java secure socket implementation
and checking the authenticity of the source of dynamically
loaded bytecode.

We filed a security bug report to Oracle’s security team,
whichwas confirmed onOctober 31st, 2019. Therewas some
communications back and forth: first our bug report was clas-
sified as a security-in-depth issue on November 7th, 2019,
and later we received the notification that Oracle classified
the issue as not-a-security issue, but as a functional issue
(August 22nd, 2020):

The bug is functional and doesn’t cause any security
issue for the JDK.
We have examined the JDK and none of the instances
of LinkedList would cause a security issue under
the size overflow described. The class does not behave
per its specification but we view this as a functional
bug which should be reported [in the regular Java bug
tracker].
For an application to possibly have a security issue, it
would need to use the LinkedList in some sensitive
fashion. The number of elements of the LinkedList
would need to be directly affected by an attacker’s
action and the billions of operations to drive the
LinkedList into the overflow region would have to
go unnoticed. At that point the unexpected exceptions
would occur, but a well written program would handle
those gracefully (since runtime exceptions can occur
at any time). The index operations would fail but other
operations would continue to work as expected. Uses
of LinkedList that didn’t use the indexed methods

1 We have used the Rascal programming language [8] for loading
.jar-files and analyzing their class file contents that revealed method
call sites. We thank Thomas Degueule for his help setting up this exper-
iment.
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would never notice an issue. Additionally, traversing a
large LinkedListwould be too slow for most appli-
cations to consider using one.

Although it is true that billion operations have to go through
unnoticed, it is a realistic scenario when an attacker can
run code on a machine that processes big data, i.e. has a
large available memory. Not all such operations, especially
on Collection instances, are logged or can be detected
if the attack is spreading the operations over some larger
amount of time. Large time and memory requirements have
not been a hindrance in exploits of the past, e.g. to escape the
Java sandbox [9]. For example, adversarial clients in a cloud
computing environment could perform attacks-from-within.
Also, contrary to what is claimed above, there are possible
runs where no exception at all is thrown, breaking invariants
of client code that goes undetected.

We (twice) submitted a functionality bug report to the
regular Java bug tracker but never received any confirma-
tion of its reception: it remains unknown to us whether this
latter bug report is received or any action is taken upon it.
It seems good practice not to publicly acknowledge some
bug reports, since the bug tracker may otherwise be used
as a high-quality source of potential vulnerabilities [10].
Although our first security bug report was finally classified
as not-a-security issue, we have, in the mean time, observed
several issues2, that show a pattern in which systematically
the usage of LinkedList is eliminated from JDK’s source
code by replacing it with ArrayList. There are many
possible explanations why such pattern of elimination has
occurred, e.g. to improve run-time efficiency, and this pat-
tern is not necessarily related to our bug report.

2 LinkedList in OpenJDK

LinkedList was introduced in Java version 1.2 as part
of the Java Collection Framework in 1998. Fig. 2 shows
how LinkedList fits in the type hierarchy of this frame-
work: LinkedList implements the List interface, and
also supports all general Collection methods as well as
the methods from the Queue and Deque interfaces. The
List interface provides positional access to the elements of
the list, where each element is indexed by Java’s primitive
int type.

The structure of the LinkedList class is shown in List-
ing 1. This class has three attributes: a size field, which
stores the number of elements in the list, and two fields that
store a reference to the first and last node. Internally,
it uses the private static nested Node class to represent the
items in the list. A static nested private class behaves like

2 JDK-8246048, JDK-8253178, JDK-8253179, JDK-8263561

java.util

java.lang

Object
�interface�
Iterable

�interface�
Iterator

�interface�
ListIterator

AbstractCollection
�interface�
Collection

�interface�
List

AbstractList

AbstractSequentialList

�interface�
Queue

�interface�
Deque

LinkedList

Fig. 2 LinkedList within Java Collections framework

public class
LinkedList<E>↪→

extends
AbstractSequentialList<E>↪→

implements
List<E>,
Deque<E>,
... {

↪→
↪→
↪→

transient int size
= 0;↪→

transient Node<E>
first;↪→

transient Node<E>
last;↪→

private static
class Node<E> {↪→

E item;
Node<E> next;
Node<E> prev;
Node(Node<E> p, E

i, Node<E> n)
...

↪→
↪→

}
...

}

public boolean add(E e) {
linkLast(e);
return true;

}
void linkLast(E e) {

final Node<E> l = last;
final Node<E> newNode =

new Node<>(l, e, null);
last = newNode;
if (l == null) first = newNode;
else l.next = newNode;
size++;
modCount++;

}

Listing 1: The LinkedList class defines a doubly-linked
list data structure.

a top-level class, except that it is not visible outside the
enclosing class (LinkedList, in this case). Nodes are dou-
bly linked; each node is connected to the preceding (field
prev) and succeeding node (field next). These fields con-
tain null in case no preceding or succeeding node exists.
The data itself is contained in the item field of a node.

LinkedList contains 57 methods. Due to space limi-
tations, we now focus on three characteristic methods: see
Listing 1 and Listing 2. Method add(E) calls method
linkLast(E), which creates a new Node object to store
the new item and adds the new node to the end of the list.
Finally the new size is determined by unconditionally incre-
menting the value of the size field, which has type int.
Method indexOf(Object) returns the position (of type
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public int indexOf(Object o) {
int index = 0;
if (o == null) {

for (Node<E> x = first; x != null; x = x.next) {
if (x.item == null)

return index;
index++;

}
} else {

for (Node<E> x = first; x != null; x = x.next) {
if (o.equals(x.item))

return index;
index++;

}
}
return -1;

}

Listing 2: The indexOf method searches for an element
from the first node on.

int) of the first occurrence of the specified element in the
list, or −1 if it’s not present.

Each linked list consists of a sequence of nodes. Sequences
are finite, indexing of sequences starts at zero, and we write
σ [i] to mean the i th element of some sequence σ . A chain is
a sequence σ of nodes of length n > 0 such that: the prev
reference of the first node σ [0] is null, the next reference
of the last node σ [n − 1] is null, the prev reference of
node σ [i] is node σ [i − 1] for every index 0 < i < n, and
the next reference of node σ [i] is node σ [i + 1] for every
index 0 ≤ i < n − 1. The first and last references of a
linked list are either both null to represent the empty linked
list, or there is some chain σ between the first and last
node, viz. σ [0] = first and σ [n − 1] = last. Figure 3
shows example instances. Also see standard literature such
as Knuth’s [11, Section 2.2.5].

We make a distinction between the actual size of a linked
list and its cached size. In principle, the size of a linked
list can be computed by walking through the chain from the
first to the last node, following the next reference,
and counting the number of nodes. For performance reasons,
the Java implementation also maintains a cached size. The
cached size is stored in the linked list instance.

Two basic properties of doubly-linked lists are acyclicity
and unique first and last nodes. Acyclicity is the statement
that for any indices 0 ≤ i < j < n the nodes σ [i] and σ [ j]
are different. First and last nodes are unique: for any index
i such that σ [i] is a node, the next of σ [i] is null if and
only if i = n − 1, and prev of σ [i] is null if and only if
i = 0. Each item is stored in a separate node, and the same
item may be stored in different nodes when duplicate items
are present in the list.

2.1 Integer overflow bug

The size of a linked list is encoded by a signed 32-
bit integer (Java’s primitive int type) that has a two’s

complement binary representation where the most signif-
icant bit is a sign bit. The values of int are bounded
and between −231 (Integer.MIN_VALUE) and 231 − 1
(Integer.MAX_VALUE), inclusive. Adding one to the
maximumvalue, 231−1, results in theminimumvalue,−231:
the carry of addition is stored in the sign bit, thereby changing
the sign.

Since the linked list implementation maintains one node
for each element, its size is implicitly bounded by the number
of node instances that can be created. Until 2002, the JVM
was limited to a 32-bit address space, imposing a limit of 4
gigabytes (GiB) of memory. In practice this is insufficient to
create 231 node instances. Since 2002, a 64-bit JVM is avail-
able allowing much larger amounts of addressable memory.
Depending on the available memory, in principle it is now
possible to create 231 ormore node instances. In practice such
lists can be constructed today on systemswith 64 gigabytes of
memory, e.g., by repeatedly adding elements. However, for
such large lists, at least 20 methods break, caused by signed
integer overflow. For example, several methods crash with a
run-time exception or exhibit unexpected behavior!

Integer overflow bugs are a common attack vector for
security vulnerabilities: even if the overflow bug may seem
benign, its presence may serve as a small step in a larger
attack. Integer overflow bugs can be exploited more easily
on large memory machines used for ‘big data’ applications.
Already, real-world attacks involve Java arrays with approx-
imately 232/5 elements [9, Section 3.2].

The Collection interface allows for collections with
over Integer.MAX_VALUE elements. For example, its
documentation (Javadoc) explicitly states the behavior of the
size() method: ‘Returns the number of elements in this
collection. If this collection contains more than Integer.
MAX_VALUE elements, returns Integer.MAX_VALUE’.
The special case (‘more than …’) for large collections is
necessary because size() returns a value of type int.

When add(E) is called and unconditionally increments
the size field, an overflow happens after adding 231 ele-
ments, resulting in a negative size value. In fact, as the
Javadoc of the List interface describes, this interface is
based on integer indices of elements: ‘The user can access
elements by their integer index (position in the list), …’.
For elements beyond Integer.MAX_VALUE, it is very
unclear what integer index should be used. Since there are
only 232 different integer values, at most 232 node instances
can be associated with an unique index. For larger lists,
elements cannot be uniquely addressed anymore using an
integer index. In essence, aswe shall see inmore detail below,
the bounded nature of the 32-bit integer indices implies that
the design of the List interfaces breaks down for large lists
on 64-bit architectures. The above observations have many
ramifications: it can be shown that 22 of 25 methods in the
List interface are broken. Remarkably, the actual size of

123

786



Verifying OpenJDK’s LinkedList using KeY (extended paper)

Fig. 3 Three example linked
lists: empty, with a chain of one
node, and with a chain of two
nodes. Items themselves are not
shown

the linked list remains correct as the chain is still in place:
most methods of the Queue interface still work.

2.2 Reproduction

We have run a number of test cases to show the presence of
bugs caused by the integer overflow.

The running Java version was Oracle’s JDK8 (build 1.8.0
201-b09) that has the sameLinkedList implementation as
in OpenJDK8. Before running a test case, we set up an empty
linked list instance. Below, we give an high-level overview of
the test cases. Each test case uses letSizeOverflow()
or addElementsUntilSizeIs0(): these repeatedly
call the method add() to fill the linked list with null ele-
ments, and the latter method also adds a last element (“this
is the last element”) causing size to be 0 again.

1. Directly after size overflows, the size() methods
returns a negative value, violatingwhat the corresponding
Java documentation stipulates: its value should remain
Integer.MAX_VALUE = 231 − 1.

letSizeOverflow();
System.out.println("linkedList.size() = " +

linkedList.size() + ", actual: " + count);↪→
// linkedList.size() = -2147483648, actual:

2147483648↪→

Clearly this behavior is in contradiction with the docu-
mentation. The actual number of elements is determined
in the test case by having a field count (of type long)
that is incremented each time the method add() is
called.

2. The query method get(int) returns the element
at the specified position in the list. It throws an
IndexOutOfBoundsException exception when
size is negative. From the informal specification, it is
unclear what indices should be associated with elements
beyond Integer.MAX_VALUE.
letSizeOverflow();
System.out.println(linkedList.get(0));
// Exception in thread "main"

IndexOutOfBoundsException: Index: 0, Size:
-2147483648

↪→
↪→
// at java.util.LinkedList.checkElementIndex
// (LinkedList.java:555) ...

3. The method toArray() returns an array containing
all of the elements in this list in proper sequence (from
first to last element). When size is negative, this
method throws a NegativeArraySizeException
exception. Furthermore, since the array size is bounded
by 231 − 1 elements3, the contract of toArray()
is unsatisfiable for lists larger than this. The method
Collections.sort(List < T >) sorts the speci-
fied list into ascending order, according to the natural
ordering of its elements. Thismethod callstoArray(),
and therefore also throws a NegativeArraySize
Exception.
letSizeOverflow();
Collections.sort(linkedList);
// Exception in thread "main" NegativeArraySizeException
// at

java.util.LinkedList.toArray(LinkedList.java:1050)...↪→

4. Method indexOf(Object o) returns the index of
the first occurrence of the specified element in this list,
or −1 if this list does not contain the element. However
due to the overflow, it is possible to have an element in
the list associated to index−1, which breaks the contract
of this method.
addElementsUntilSizeIs0();
String last;
System.out.println("linkedList.getLast() = " + (last

= linkedList.getLast()));↪→
// linkedList.getLast() = This is the last element
System.out.println("linkedList.indexOf(" + last + ")

= " + linkedList.indexOf(last));↪→
// linkedList.indexOf(This is the last element) = -1

5. Methodcontains(Object o) returns true if this list
contains the specified element. If an element is associated
with index−1, it will indicatewrongly that this particular
element is not present in the list.
addElementsUntilSizeIs0();
String last;
System.out.println("linkedList.getLast() = " + (last

= linkedList.getLast()));↪→
// linkedList.getLast() = This is the last element
System.out.println("linkedList.contains(" + last + ")

= " linkedList.contains(last));↪→
// linkedList.contains(This is the last element) =

false↪→

3 In practice, the maximum array length turns out to be 231−5, as some
bytes are reserved for object headers, but this may vary between Java
versions [9,12].
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6. Method descendingIterator() returns an
instance of DescendingIterator (line 3 on the left
of Listing 3). It asserts isPositionIndex(index),
meaning thatindex >= 0&&index <= sizeholds.
In case size overflows and becomes negative, it is clear
that this inequality is false (regardless of whether there
are actually more items to iterate over), and as a result
a NoSuchElement Exception exception is thrown
(line 20 on the right) when attempting to obtain the next
element.

letSizeOverflow();
Iterator<String> it =

linkedList.descendingIterator();↪→
String s = it.next();
// java.util.NoSuchElementException
// at java.util.LinkedList$ListItr.previous
// (LinkedList.java:905)
// at java.util.LinkedList$DescendingIterator.next
// (LinkedList.java:998)

7. Method spliterator() creates a Spliterator
over the elements in this list. See Listing 4. The con-
structor sets the field est, that represents the estimated
size, to −1 (line 2), but when the field is needed it takes
the value of size of LinkedList (line 24). When
size < 0 due to an overflow, getEst() will return a
negative value (line 32) which will cause trySplit()
to erroneously return null (line 37).

letSizeOverflow();
Spliterator<String> s = linkedList.spliterator();
Spliterator<String> t = s.trySplit();
System.out.println("t == " + t);
// t == null

8. Method isEmpty(), which is inherited from class
AbstractCollection, returns true if this collection
contains no elements (and false otherwise), according
to the Java documentation of this method of interface
Collection which is implemented by
AbstractCollection.
addElementsUntilSizeIs0();
System.out.println("linkedList.isEmpty(): " +

linkedList.isEmpty());↪→
// linkedList.isEmpty(): true

The isEmpty() method just returns size() == 0.
However, since size() itself does not conform to its
accompanying Java documentation (see test case 1), the
outcome of isEmpty() is faulty.

9. Method subList(int fromIndex, int
toIndex) is inherited from class AbstractList.
The Java documentation states: “Returns a view of the
portion of this list between the specified fromIndex,
inclusive, andtoIndex, exclusive.”, sosubList(0,0)
must give an empty list. Instead, an IndexOutOf
BoundsException exception is thrown.

letSizeOverflow();
linkedList.subList(0, 0);
// java.lang.IndexOutOfBoundsException: toIndex = 0

1 public Iterator<E>

2 descendingIterator()

{↪→
3 return new

Descending↪→
4 Iterator();

5 }

6 private class

DescendingIterator↪→
7 implements

Iterator<E> {↪→
8 private final

ListItr itr =↪→
9 new ListItr

10 (size());

11 public boolean

hasNext() {↪→
12 return itr.has

13 Previous();

14 }

15 public E next() {

16 return

itr.previous();↪→
17 }

18 public void

remove() {↪→
19 itr.remove();

20 }

21 }

1 private class ListItr

2 implements ListIterator<E> {

3 private Node<E> next;

4 private int nextIndex;

5 ...

6 ListItr(int index) {

7 // assert isPositionIndex
8 (index);

9 next = (index == size) ?

10 null :

11 node(index);

12 nextIndex = index;

13 }

14 ...

15 public boolean hasPrevious() {

16 return nextIndex > 0;

17 }

18 public E previous() {

19 ...

20 if (!hasPrevious())

21 throw

22 new NoSuchElement

23 Exception();

24 ...

25 }

26 ...

27 }

Listing 3: DescendingIterator. This class malfunctions when
an instance is created and size has overflowed to a negative
value.

// at java.util.SubList.<init>(AbstractList.java:622)
// at

java.util.AbstractList.subList(AbstractList.java:484)↪→

Specifically, method letSizeOverflow() adds 231

elements that causes the overflow of size. Method add
ElementsUntilSizeIs0() first adds 232 − 1 null val-
ues, after which size becomes −1. Then, it adds a final
non-null value so that size is 0 again. All elements
added are null, except for the last element. For test cases
4 and 5, we deliberately exploit the overflow bug to asso-
ciate an element with index −1. This means that method
indexOf(Object) for this element returns −1, which
according to the documentation means that the element is
not present.

For test cases 1, 2, 3, 6, 7 and 9 (the small test cases) we
needed 65 gigabytes of memory for the JRE on a VM with
67 gigabytes of memory. For test cases 4, 5 and 8 (the large
test cases) we needed 167 gigabytes of memory for the JRE
on a VM with 172 gigabytes of memory. All test cases were
executed on a super computer of a private cloud (SURFsara).

The minimal amount of memory for triggering the bug is
64 gigabyte of memory. The reason why this amount cannot
be reduced is quite intricate, but interesting enough towarrant
the following discussion. Java eventually stores objects in
physical memory that can be addressed by either 32-bit or
64-bit pointers, depending on the underlying architecture. As
we already discussed before, the overflow bug does not occur
on 32-bit architectures. However, on 64-bit architectures the
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1 public Spliterator<E> spliterator() {

2 return new LLSpliterator<E>(this, -1, 0);

3 }

4 static final class LLSpliterator<E> implements Spliterator<E>

{↪→
5 ...

6 final LinkedList<E> list; // null OK unless traversed
7 Node<E> current; // current node; null until initialized
8 int est; // size estimate; -1 until first needed
9 int expectedModCount; // initialized when est set
10 LLSpliterator(LinkedList<E> list, int est, int

expectedModCount) {↪→
11 this.list = list;

12 this.est = est;

13 this.expectedModCount = expectedModCount;

14 }

15 final int getEst() {

16 int s; // force initialization
17 final LinkedList<E> lst;

18 if ((s = est) < 0) {

19 if ((lst = list) == null)

20 s = est = 0;

21 else {

22 expectedModCount = lst.modCount;

23 current = lst.first;

24 s = est = lst.size;

25 }

26 }

27 return s;

28 }

29 ...

30 public Spliterator<E> trySplit() {

31 Node<E> p;

32 int s = getEst();

33 if (s > 1 && (p = current) != null) {

34 ...

35 return Spliterators.spliterator(a, 0, j,

Spliterator.ORDERED);↪→
36 }

37 return null;

38 }

39 ...

40 }

Listing 4: The method spliterator() creates a
Spliterator over the elements in this list.

Java virtual machine may sometimes still employ only 32-bit
for storing an object address, by using a pointer compression
technique and ensuring that objects in memory are aligned.

If objects are aligned on 8 byte boundaries, the three least
significant digits of each 64-bit address is known to be 000
and thus can be truncated. One may still use a 32-bit address,
but interpret it as a 64-bit memory location bymultiplying its
value by 8. Then the maximum amount of memory that a vir-
tualmachine can use is 2(32+3), being 32GiB. But, howmany
internal nodes in LinkedList can we fit in that amount?
That depends on the size of each object. The size of an object
consequently depends on an object header (which is 8 byte
for storing a hash code and object locking data and 4 byte for
a class pointer), and the fields (which is 4 byte per reference
field if we compress addresses, and we have three fields for
nodes): so for Node we require at least 24 bytes. But how
many nodes then fit within 32GiB of memory? That is less
than 231, so the overflow would never occur and instead an
OutOfMemoryError happens first.

If, however, objects are aligned on 16 byte boundaries and
we still use compressed 32-bit addresses (but multiplied by

1 public abstract class AbstractList<E> extends

AbstractCollection<E>↪→
2 implements List<E> {

3 ...

4 public List<E> subList(int fromIndex, int toIndex) {

5 return (this instanceof RandomAccess ?

6 new RandomAccessSubList<>(this, fromIndex,

toIndex) :↪→
7 new SubList<>(this, fromIndex, toIndex));

8 }

9 ...

10 }

11 class SubList<E> extends AbstractList<E> {

12 ...

13 private int size;

14 SubList(AbstractList<E> list, int fromIndex, int

toIndex) {↪→
15 ...

16 if (toIndex > list.size())

17 throw new IndexOutOfBoundsException("toIndex = " +

toIndex);↪→
18 ...

19 }

20 ...

21 }

Listing 5: Creates an instance of (non-public) type SubList
(line 7), and when the size is negative due to an overflow, an
IndexOutOfBoundsException is thrown in its con-
structor (line 17).

16 to obtain the 64-bit memory location), thenwe need to add
padding to each node object and that makes each node take
up 32 byte of space. Nowwe could make use of 2(32+4) bytes
of memory, being 64 GiB. However, since every object now
takes 32 bytes of space, this leaves us with at most 231 node
objects: but in practice we could never trigger the bug, as the
Java heap also contains a number of other objects. So also
here, we would trigger OutOfMemoryError first before
the overflow happens.

So, for our small test cases, we let objects be aligned on 32
byte boundaries (since the Node is already 32-byte aligned,
this does not cost more space than in the previous case) and
use compressed 32-bit addresses. This allows a heap of up
to 2(32+5) bytes, being 128 GiB. Then by actually using a
little bit more than 64 GiB of memory, we can trigger the
overflow to happen:we could nowconstruct 231 internal node
objects, and these objects can still be addressed by using 32-
bit compressed addresses. However, in the large test cases,
to reproduce the bug where the size would come back to zero
again we need more memory. No longer can we use 32-bit
compressed addresses, and now we need to make use of 64-
bit addresses directly. That means then that no longer we can
compress the addresses. So the total space required for an
internal node becomes 40 bytes: 16 bytes for the header, and
8×3 bytes for the fields. Creating 232 node objects then takes
roughly 160 GiB of memory.

2.3 Mitigation

Amitigation of the problem described above is to change the
linked list implementation to avoid the problems as encoun-
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tered. There are different directions for mitigation, but there
are different trade-offs to be made. One could compare each
mitigation direction by the following aspects: its correct-
ness with respect to the (informal) contract, compatibility
with existing client code, completeness in the sense of being
future-proof, and run-time efficiency.

We have considered the following directions for mitigat-
ing the overflow bug:

– do not fix but change the specification in the Java docu-
mentation to reflect the existing behavior,

– fail fast by raising a runtime exception as soon as an
overflow is detected,

– long cached size avoids the overflow by keeping the
actual size and the cached size in sync. However, the
interface would still use int indices and not all objects
can be retrieved by index. It avoids the overflow, since on
a 64-bit JVM no more objects can exists than addresses
for themachine are available, an OutOfMemoryError
would occur before any overflow may happen;

– long indices and size change the interface and make the
implementation no longer backwards compatible,

– BigInteger indices and size change the interface and
ensure the implementation is future-proof in case the
JVM is ported to machines with a word size even larger
than 64-bit.

We first discuss an approach based on BigIntegers.
Although this solution solves the issue, it is not compatible
with the existing List and LinkedList types at the com-
pilation level, as we shall see. We then describe the fail fast
solution. At the compilation level, this latter solution is com-
patible with the existing LinkedList and thus can serve
as a drop-in replacement.

BigInteger indices solution. To avoid overflow and bounded-
ness problems, onemay use theBigInteger or long type
to refer to indices of elements and the size of the list. As
long as the chosen integer type contains more values than the
number of objects that can be created4, all items in a list can
be associated with a unique index. However, this approach
does have amajor drawback. It is impossible to retrofit such a
class it in the existing Java Collections Framework: the class
cannot implement the existing List interface because the
signatures of the methods in that interface use int rather
than BigInteger. Changing the List interface to use
BigInteger would break all existing client classes that
use List or any class that implements it (in the sense that
those would not compile anymore!). Clearly this is a deal
breaker, so this approach cannot supply a drop-in replace-
ment of the existing LinkedList. Furthermore, changing

4 This is bounded by the architecture onwhich the virtualmachine runs.
For current machines it is typically 32-bit or 64-bit.

public interface List<E> extends Collection<E> {
BigInteger size();
boolean isEmpty();
boolean contains(Object o);
Iterator<E> iterator();
Object[] toArray();
<T> T[] toArray(T[] a);
boolean add(E e);
boolean remove(Object o);
boolean containsAll(Collection<?> c);
boolean addAll(Collection<? extends E> c);
boolean addAll(BigInteger index, Collection<? extends

E> c);↪→
boolean removeAll(Collection<?> c);
boolean retainAll(Collection<?> c);
void clear();
boolean equals(Object o);
int hashCode();
E get(BigInteger index);
E set(BigInteger index, E element);
void add(BigInteger index, E element);
E remove(BigInteger index);
BigInteger indexOf(Object o);
BigInteger lastIndexOf(Object o);
ListIterator<E> listIterator();
ListIterator<E> listIterator(BigInteger BigInteger

index);↪→
List<E> subList(BigInteger fromIndex, BigInteger

toIndex);↪→
}

Listing 6: List interface with BigInteger.

the argument from a primitive type int to a reference type
such as BigInteger likely has a negative effect on the
run-time performance.

To implement this solution, one could create a separate
List type hierarchy, which, as stated, is incompatible with
the existing collection framework type hierarchy. Listing 6
highlights the necessary changes for this new List inter-
face. In addition to the highlighted changes, both overloaded
methods toArray() can no longer be part of this inter-
face, as these methods ought to return all elements of the
collection, but arrays are inherently bounded (the declared
maximum capacity when creating an array must be a primi-
tive int integer, and as such, is bounded and the elements of
an array are addressed by a primitive (bounded) int index).

The next step would be to implement a LinkedList
BigInteger class, along the lines of Listing 7. Clients
that (may) truly need unbounded linked lists, or lists
with more than 2.147.483.647 items, should then use this
class. Other index-based components of the Java col-
lection framework would then have to be cloned too,
e.g. AbstractSequentialList, AbstractList,
AbstractCollection,List,Collection, andDeque.
In addition, other classes of the collection framework like
Arrays, Collections, ArrayList, Map, etc., need
to be changed as well.

Fail fast solution. In this solution, we ensure that the over-
flow of size never occurs by using a form of failure
atomicity. In particular, whenever an operation is performed
that would cause the size to overflow, the operation instead
throws an exception and leaves the list unchanged. An excep-

123

790



Verifying OpenJDK’s LinkedList using KeY (extended paper)

import java.math.BigInteger;

public class LinkedListBigInteger<E> {

transient BigInteger size =

BigInteger.ZERO;↪→
transient Node<E> first;

transient Node<E> last;

private static class Node<E> {...}

public void add(BigInteger index, E

element) {↪→
checkPositionIndex(index);

if (index.equals(size))

linkLast(element);↪→
else linkBefore(element, node(index));

}

Node<E> node(BigInteger index) {

// assert isElementIndex(index);
if

(index.compareTo(size.divide(BigInteger.TWO))

< 0) {

↪→
↪→

Node<E> x = first;

for (BigInteger i = BigInteger.ZERO;

i.compareTo(index) < 0;↪→
i = i.add(BigInteger.ONE)) { x =

x.next; } return x;↪→
} else {

Node<E> x = last;

for (BigInteger i =

size.subtract(BigInteger.ONE);

i.compareTo(index) > 0;

↪→
↪→

i = i.subtract(BigInteger.ONE)) { x =

x.prev; } return x;↪→
}

}

void linkLast(E e) {

... size = size.add(BigInteger.ONE); ...

}

void linkBefore(E e, Node<E> succ) {

... size = size.add(BigInteger.ONE); ...

}

private boolean isElementIndex(BigInteger

index) {↪→
return index.compareTo(BigInteger.ZERO)

>= 0 && index.compareTo(size) < 0;↪→
}

private boolean isPositionIndex(BigInteger

index) {↪→
return index.compareTo(BigInteger.ZERO)

>= 0 && index.compareTo(size) <= 0;↪→
}

private String outOfBoundsMsg(BigInteger

index) {↪→
return "Index: "+index+", Size: "+size;

}

private void checkPositionIndex(BigInteger

index) {↪→
if (!isPositionIndex(index))

throw new

IndexOutOfBoundsException(outOfBoundsMsg(index));↪→
}

...

}

Listing 7: BigInteger indices solution.

tion is triggered right before the overflow would otherwise
occur, so the value of size is guaranteed to be bounded by
Integer.MAX_VALUE, i.e. it never becomes negative.

This solution requires a slight adaptation of the imple-
mentation: formethods that increase thesizefield, only one
additional check has to be performed before a LinkedList
instance is modified. This checks whether the result of
the method causes an overflow of the size field. Under
this condition, anIllegal-StateException is thrown.
Thus, only in states where size is less than Integer.
MAX_VALUE, it is acceptable to add a single element to the

list. This additional check may have a negative effect on the
run-time efficiency of the code.

To summarize, this solution is closest to the original
implementation, and does not break existing clients that use
LinkedList as long as they use at most 231 − 1 elements
of LinkedList. In contrast to the existing LinkedList,
the behaviour of the methods is specified clearly and unam-
biguously for large collections.

Weshallwork in a separate class calledBoundedLinked
List: this is the improved version that does not allow
more than 231 − 1 elements. Compared to the original
LinkedList, four methods are added:

private boolean isMaxSize() {
return size == Integer.MAX_VALUE;

}
private void checkSize() {

if (isMaxSize())
throw new IllegalStateException("Not enough space");

}
private boolean enoughSpace(int s) {

return 0 <= s && s <= Integer.MAX_VALUE - size();
}
private void checkSize(int s) {

if (!enoughSpace(s))
throw new IllegalStateException("Not enough space");

}

These methods implement an overflow check. The method
checkSize() is called before anymodification occurs that
increases the size byone, and themethodcheckSize(int)
is called before a modification occurs that increases the
size by any non-negative quantitiy. These methods ensure
that size never overflows. Some methods now differ when
compared to the original LinkedList, as they involve an
invocation of the checkSize() or checkSize(int)
method.

3 Methodology

In this section we describe the overall methodology that
underlies the specification and verification effort of ourwork.
What is the purpose of formal specification and verification
in the first place? Our goal is to show the absence of the
integer overflow bug in the aforementioned fail fast solu-
tion. After this particular goal has been accomplished, what
improvements can still be made that affects the specification
and consequently the verification process?

The purpose of our specification and verification effort
is to verify whether our formalization of the given infor-
mal Javadoc specifications (stated in natural language) of the
LinkedList holds. Given that we already identified the
overflow issue in the previous section, here we restrict our
attention only to the revised BoundedLinkedList. Fur-
ther, to simplify matters, we restrict ourselves only to the
linked list and ignore the rest of the collection framework
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and other Java classes: methods that involve parameters of
interface types, serialization, and reflection are considered
out of scope.

We focus on two aspects of program correctness: func-
tional and non-functional requirements. It is commonly
understood that these two classes of requirements form a
dichotomy, so that we can separate our concerns. On the
one hand, functionality requirements are expressed by ascer-
taining an input/output relation, formulating in the assertion
language how the output is obtained in terms of the input.
On the other hand, non-functional requirements impose
e.g. absence of crashing, termination of the program, or
limitations on its effects. In our case study, we initially
focused on the latter class, viz. establishing the absence
of integer overflow. This suggests that we only need to
formalize the non-functional requirements. Although the
dichotomy between functional and non-functional require-
ments is clear superficially, it is a false dichotomy when one
also considers establishing the veracity of formal specifica-
tions by the means of verification. Namely, to show, during
the verification process, that a non-functional property holds
(e.g. absence of crashing), it is often necessary to also specify
additional functional properties (e.g. those required in class
invariants and loop invariants).

We have clearly seen this false dichotomy as we followed
along the workflow (depicted in Fig. 1), where we refined the
specifications in multiple iterations, each time revisiting the
formulation of specifications after getting stuck in the verifi-
cation process. Each time we were stuck, it was necessary to
formalize additional properties, e.g. describing the internal
structure of the linked list. At one point in time, we were
able to establish the absence of overflow for all our methods
considered in scope. By taking this approach, we have thus
specified certain aspects of the functionality of the program
too, as could be seen from the class invariant we obtained
at that point that clearly describes the internal structure of a
linked list.

However, there was still room for improvement: we
then shifted our focus on a different purpose of the for-
mal specification. Namely, the properties needed from a
implementation-side perspective are not sufficient for estab-
lishing properties from a client-side perspective. In the latter
case one would also need a description of the contents of
the linked list. In our last iteration of the workflow, we have
refined the specification to furthermore include a description
that relates the contents of the linked list before and after each
method call. This allows for the verification of a client-side
property that e.g. after adding objects by multiple calls to the
add(Object) method, the contains(Object) must
return true for precisely those objects that were added in the
first place. Without specifying the relationship between the
contents of the linked list before and after each method, such
client-side property cannot be verified.

4 Specification and verification of
BoundedLinkedList

(Bounded)LinkedList inherits fromAbstractSequ-
entialList, but we consider its inherited methods out
of scope. These methods operate on other collections such
as removeAll or containsAll, and methods that have
other classes as return type such as iterator. However,
the implementation of these inherited methods themselves
call methods overridden by (Bounded)LinkedList, and
can not cause an overflow by themselves.

We have made use of KeY’s stub generator to generate
dummy contracts for other classes that BoundedLinked
List depends on, such as for the inherited interfaces and
abstract super classes: these contracts are the most gen-
eral possible and specify that every method may arbitrarily
change the heap. In other words, the generated stub contracts
are satisfied by any method, no assumptions are made about
the behavior of stubmethods. This (conservative assumption)
ensures that if a method that calls these stubs can be proven,
this proof is sound. The stub generator moreover deals with
generics, roughly by replacing generic type parameters with
the Object type. For exceptions we modify their stub con-
tract to assume that their constructors are pure, viz. leaving
existing objects on the heap unchanged. An important stub
contract is the equality method of the absolute super class
Object, which we have adapted: we assume every object
has a side-effect free, terminating and deterministic imple-
mentation of its equality method5 and formalize this in the
post-condition:

public class Object {
/*@ public normal_behavior

@ requires true;
@ ensures \result == self.equals(param0);
@*/

public /*@ helper strictly_pure @*/ boolean
equals(/*@ nullable */ Object param0);

...
}

4.1 Specification

Following our workflow, we have iterated a number of times
before the specifications we present here were obtained. This
is a costly procedure, as revising some specifications requires
redoing most verification effort. Until sufficient information
is present in the specification, proving for example termina-
tion of a method is difficult or even impossible: from partial,

5 In reality, there are Java classes for which equality is not terminating
normally, that is, with an infinite stack space the execution diverges. A
nice example is LinkedList itself, where adding a list to itself leads
to a StackOverflowError when testing equality with a similar
instance. We consider the issue out of scope of this study as this stack
overflow behavior is explicitly described by the Javadoc.
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failed verification attempts, and the (formulas in) the corre-
sponding open goal in KeY, one can get an intuitive idea of
why a proof is stuck and revise the specification accordingly.

Ghost and model fields. We use JML’s ghost fields and
model fields: these are logical fields (a form of auxiliary
variables) that associate a value to each object in the heap.
These fields are only used for specification and verifica-
tion purposes. The value of ghost fields is determined by
set-statements that the user can add (in the form of JML
annotations) inside method bodies, in all methods where the
value should be updated. The value of a model field is deter-
mined by a single represents clause, that describes the value
by its relation to the underlying fields (or ghost fields) of the
class. At run-time, neither ghost fields nor model fields are
present and cannot affect the course of execution. We anno-
tate our improved class with two ghost fields: nodeList,
nodeIndex.We also annotated our classwith amodel field:
itemList.

The type of the nodeList ghost field is an abstract data
type of sequences, a KeY built-in type. It has standard con-
structors and operations that can be used in contracts and in
JML annotations. A sequence has a length, which is finite but
unbounded. The type of a sequence’s length is \bigint. In
KeY a sequence is unityped: all its elements are of the any
sort, which can be any Java object reference or primitive, or
built-in abstract data type. One needs to apply appropriate
casts and track type information for a sequence of elements
in order to cast elements of the any sort to any of its sub-
sorts. As such, we restrict nodeList to be a sequence of
references to internal Node objects.

The nodeIndex ghost field is used as a ghost param-
eter with unbounded but finite integers as type. This ghost
parameter is only used for specifying the behavior of the
methods unlink(Node) and linkBefore(Object,
Node). The ghost parameter tracks at which index the Node
argument is present in the nodeList. This information is
implicit and not needed at run-time.

Althoughusingghost fieldsnodeList andnodeIndex
is sufficient for showing the absence of the integer over-
flow, there is still room for improvement of the specification
to make it suitable for client-side reasoning as well. The
itemList is a model field that is directly related to
nodeList: it is a sequence of the items (not wrapped in
enclosing Node instances, in contrast to nodeList) stored
in the linked list. This model field is important for clients
thatmake use of linked lists: clients have no knowledge of the
internal and encapsulated Node type, they are only interested
inwhat items contained by the linked list and their order. This
is exactly the information that itemList exposes. Listing 8
shows the relation between itemList and nodeList. In
particular, the represents clause ensures that the value of the
itemList is exactly the sequence of items that are cur-

//@ public model \seq itemList;
//@ represents itemList = (\seq_def \bigint i; 0;

nodeList.length; ((Node)nodeList[i]).item);↪→

Listing 8: Definition of the model field itemList in
terms of the ghost field nodeList.

1 //@ private ghost \seq nodeList;

2 //@ private ghost \bigint nodeIndex;

3 /*@ invariant

4 @ nodeList.length == size &&

5 @ nodeList.length <= Integer.MAX_VALUE &&

6 @ (\forall \bigint i; 0 <= i < nodeList.length;

7 @ nodeList[i] instanceof Node) &&

8 @ ((nodeList == \seq_empty && first == null && last

== null)↪→
9 @ || (nodeList != \seq_empty && first != null &&

10 @ first.prev == null && last != null &&

11 @ last.next == null && first ==

(Node)nodeList[0] &&↪→
12 @ last == (Node)nodeList[nodeList.length-1]))

&&↪→
13 @ (\forall \bigint i; 0 < i < nodeList.length;

14 @ ((Node)nodeList[i]).prev ==

(Node)nodeList[i-1]) &&↪→
15 @ (\forall \bigint i; 0 <= i < nodeList.length-1;

16 @ ((Node)nodeList[i]).next ==

(Node)nodeList[i+1]);↪→
17 @*/

Listing 9: The class invariant expressed using the
nodeList ghost field.

rently stored in the item field of the Node objects in the
nodeList.

Class invariant The ghost field nodeList is used in the
class invariant of the bounded linked list, see Listing 9. We
relate the fields first and last that hold a reference to a
Node instance, and the chain between first and last, to
the contents of the sequence in the ghost field nodeList.
This allows us to express properties in terms of nodeList,
where they reflect properties about the chain on the heap.One
may compare this invariant with the description of chains as
given in Sect. 2. The actual size of a linked list is the length
of the ghost field nodeList, whereas the cached size is
stored in a 32-bit signed integer field size. On line 4, the
invariant expresses that these two must be equal. Since the
length of a sequence (and thusnodeList) is never negative,
this implies that the size field never overflows. On line 5, this
is made explicit: the real size of a linked list is bounded by
Integer.MAX_VALUE. Line 5 is redundant as it follows
from line 4, since a 32-bit integer never has a value larger
than thismaximumvalue. The condition on lines 6–7 requires
that every node in nodeList is an instance of Nodewhich
implies it is non-null.

A linked list is either empty or non-empty. On line 8, if the
linked list is empty, it is specified that first andlastmust
be null references. On lines 9–12, if the linked list is non-
empty, we specify that first and last are non-null and
moreover that the prev field of the first Node and the next
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1 // implements java.util.List.set
2 /*@

3 @ also

4 @ public normal_behavior

5 @ requires

6 @ 0 <= index < nodeList.length;

7 @ ensures

8 @ ((Node)nodeList[index]).item == element &&

9 @ nodeList == \old(nodeList) &&

10 @ \result == \old(((Node)nodeList[index]).item);

11 @ public exceptional_behavior

12 @ requires

13 @ index < 0 || index >= nodeList.length;

14 @ signals_only IndexOutOfBoundsException;

15 @ signals (IndexOutOfBoundsException e) true;

16 @*/

17 public /*@ nullable @*/ Object

18 set(int index, /*@ nullable @*/ Object element) {

19 checkElementIndex(index);

20 Node x = node(index);

21 Object oldVal = x.item;

22 x.item = element;

23 return oldVal;

24 }

Listing 10: Method set(int, Object) annotated with
JML.

field of the last Node are null. The nodeListmust have
as first element the node pointed to by first, and last
as last element. In any case, but vacuously true if the linked
list is empty, the nodeList forms a chain of nodes. Lines
13–16 capture this: for every node at index 0 < i < size,
the prev field must point to its predecessor, and similar for
successor nodes.

We note three interesting properties that are implied by
the above invariant: acyclicity and unique first and last nodes.
These properties can be expressed as JML formulas as fol-
lows:

(\forall \bigint i; 0 <= i < nodeList.length - 1;

(\forall \bigint j; i < j < nodeList.length;

nodeList[i] != nodeList[j])) &&

(\forall \bigint i; 0 <= i < nodeList.length;

nodeList[i].next == null <==> i = nodeList.length - 1) &&

(\forall \bigint i; 0 <= i < nodeList.length;

nodeList[i].prev == null <==> i = 0)

These properties are not literally part of our class invariant,
but their validity is proven interactively in KeY as a conse-
quence of the class invariant. Otherwise, we would need to
reestablish also these properties each time we show the class
invariant holds.

Methods. All methods within our scope are given a JML
contract that specifies their normal behavior (i.e. the cases
where themethod terminates normally without an exception)
and their exceptional behavior. As an example contract, con-
sider the lastIndexOf(Object) method in Listing 12:
it searches through the chain of nodes until it finds a node
with an item equal to the parameter. This method is interest-
ing due to a potential overflow of the result value.

Another concrete example that shows the use of our
ghost field nodeList is the set method. The method

1 static boolean exampleClient(BoundedLinkedList ll, int

n, int m) {↪→
2 Object o1 = ll.get(n);

3 ll.set(m, new Object());

4 Object o2 = ll.get(n);

5 return o1 == o2;

6 }

Listing 11: A client of a linked list that calls set(int,
Object). If n and m are different but in-bound indices,
then we expect that the result of the get(int) call after
the set(int, Object) call results in the same item as
the call before.

set(int, Object) replaces an item at the specified
position with a given element, and returns to the caller the
element that was originally present at that position. We here
demonstrate how contracts have evolved over time following
our workflow, and how we later discovered that itemList
is needed in the specification. Listing 10 shows the method
set(int, Object) annotated with a JML contract. This
contract is sufficient from the implementation perspective,
where our goal is to show absence of overflow. Before modi-
fication of the item field, the old item is temporarily stored
and later returned to ensure the postcondition of the contract
holds (see lines 10, 21 and 23). Although a Node is mod-
ified, the state of nodeList stays unaffected (line 9), as
nodeList only refers to the nodes themselves in a particu-
lar order and has the same reference value even after updates
to the item field of each node.

Anexample client of LinkedList that callsset(int,
Object) is shown in Listing 11. What if (an incorrect)
implementation of the set() method would secretly clear
the item field of all other nodes? The contract as given in
Listing 10 would still be valid, simply because its ensures
clause, which specifies the postcondition of a method call,
does not say anything about the item fields of those nodes.
Further, type Node class is not publicly visible, since it is an
internal construct that is only needed to link nodes to each
other. So, from a client perspective, we cannot reason about
the item fields of the nodes. This not only applies to the
set() method, but also to other methods that change the
state of an instance of LinkedList as well. We might say
that from a client perspective all state changing methods are
underspecified if itemList is omitted.

Listing 13 shows a contract of the set() method where
items are taken into account. This contract is now specified
without refering to nodeList at all, and it specifies the
contents of the linked list. Thus, this contract is suitable from
the client perspective. For example, to verify the client code
in Listing 11, we could now infer that the itemList for
all other indices than the supplied one remains the same, and
thus the boolean condition returned must be true if n and m
are different in-bound indices.
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/*@
@ also
@ ...
@ public normal_behavior
@ requires
@ o != null;
@ ensures
@ \result >= -1 && \result < nodeList.length;
@ ensures
@ \result == -1 ==>
@ (\forall \bigint i; 0 <= i < nodeList.length;
@ !o.equals(((Node)nodeList[i]).item));
@ ensures
@ \result >= 0 ==>
@ (\forall \bigint i; \result < i <

nodeList.length;↪→
@ !o.equals(((Node)nodeList[i]).item)) &&
@ o.equals(((Node)nodeList[\result]).item);
@*/

public /*@ strictly_pure @*/ int
lastIndexOf(/*@ nullable @*/ Object o) {

int index = size;
if (o == null) {

...
} else {

/*@
@ maintaining
@ (\forall \bigint i; index <= i <

nodeList.length;↪→
@ !o.equals(((Node)nodeList[i]).item));
@ maintaining
@ 0 <= index && index <= nodeList.length;
@ maintaining
@ 0 < index && index <= nodeList.length ==>
@ x == (Node)nodeList[index - 1];
@ maintaining
@ index == 0 <==> x == null;
@ decreasing
@ index;
@ assignable
@ \strictly_nothing;
@*/

for (Node x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))

return index;
}

}
return -1;

}

Listing 12: Method lastIndexOf(Object) annotated
with JML. Searches the list from last to first for an ele-
ment. Returns −1 if this element is not present in the list;
otherwise returns the index of the node that was equal to
the argument. Only the contract and branch in which the
argument is non-null is shown due to space restrictions.
Methods such asindexOf,removeFirstOccurrence
and removeLastOccurrence are very similar.

All the specifications we have produced are present in the
on-line artifact [6]. The specifications, as they were part of
the original publication [7], that focus on the implementation-
side perspective are stored in the folder implementation.
To enable client-side reasoning, we updated the contracts for
several methods and their proofs using itemList. These
can be found in the folder clientfriendly.

/*@
@ also
@ public normal_behavior
@ requires
@ 0 <= index < itemList.length;
@ ensures
@ itemList[index] == element &&
@ (\forall \bigint i; 0 <= i <

itemList.length && i != index;↪→
@ itemList[i] == \old(itemList[i])) &&
@ \result == \old(itemList[index]);
@ public exceptional_behavior
@ ...
@*/

Listing 13: Item-based JML contract of set(int,
Object).

4.2 Verification

We now discuss the verification of the method contracts as
they are specified above. We start by describing the general
strategy we have used to verify proof obligations. We also
describe inmore detail how to produce a single proof, and for
that we consider the method lastIndexOf(Object).
This gives a general feel how proving in KeY works. This
method is neither trivial, nor very complicated to verify. In
a similar way, we have produced proofs for each method
contract that we have specified.

Overview of verification steps.When verifying a method,
we first instruct KeY to perform symbolic execution. Sym-
bolic execution is implemented by numerous proof rules that,
roughly speaking, reduce the size of the program fragments
in the modal operators in JavaDL. During symbolic execu-
tion, the goal sequent is automatically simplified, potentially
giving rise to multiple branches. Since our class invariant
contains a disjunction (either the list is empty or not), we
must take care not to split early in the symbolic execution:
this would lead to a duplication of work in the proof effort.
Thus we instruct KeY to delay unfolding the class invariant.
When symbolic execution is finished, goals may still con-
tain updated heap expressions that must be simplified further.
After this has been done, one can compare the open goals to
the method body and its annotations, and see whether the
open goals in KeY look familiar and check whether they are
true.

In the remaining part of the proof the user must find an
appropriate mix between interactive and automatic steps. If a
sequent is provable, there may be multiple ways to construct
a closed proof tree. At (almost) every step the user has a
choice between applying steps manually or automatically. It
requires some experience in choosing which rules to apply
manually: clever rule application decreases the size of the
proof tree. Certain rules are never applied automatically, such
as the cut rule. The cut rule splits a proof tree into two parts
by introducing a lemma, but suitably chosen lemmata may
significantly reduce the size of a proof and thus the effort
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required to produce it. For example, the acyclicity property
can be introduced using cut.

Understanding the proof on an intuitive, conceptual level
can be hard. This can be especially the case when the proof
is done with little interactive steps while having a some-
what large proof tree. The challenge is to find a good balance
between interactive and automatic steps, such that on the one
hand there are not too many unnecessary manual steps while
on the other hand the proof still remains understandable.

Instead of introducing lemmas by using the cut rule, KeY
also allows to add lemmas through the use of so-called taclets
[13,14]. Taclets are a formalism in KeY for extending its
built-in logic by declaring additional sorts, functions, axioms
and proof rules. KeY also allows users to create their own
user-defined taclets. Let us consider the acyclicity property
as an example. This property is expressed in JML as follows:

(\forall \bigint i; 0 <= i < nodeList.length - 1;

(\forall \bigint j; i < j < nodeList.length;

nodeList[i] != nodeList[j]))

But we can also formulate is as a taclet, as follows:

\rules {

nodeList_equal{

\schemaVar \variable int i;

\schemaVar \variable int j;

\schemaVar \term Heap h;

\schemaVar \term Field nodeList;

\add( \forall i; \forall j;(0 <= i& i < j & j <

seqLen(Seq::select(heap, self,nodeList)) ->

! any::seqGet(Seq::select(heap, self, nodeList),j)=

↪→
↪→
any::seqGet(Seq::select(heap, self, nodeList),i)) ==> )

};

}

The formalization of lemmas as taclets has the advantage
over proof cuts that every time one needs the lemma, one
can apply the taclet without having to repeat its proof. This
is particularly useful for properties, such as acyclicity, that
are used in multiple methods. By applying the cut rule, at
each point in each method where a cut is done, the user has
to reprove the property, e.g. that the acyclicity property is
implied by the class invariant. With taclets, the proof is done
only once and the lemma can then be used wherever the user
wants. However, it is then still necessary to ensure the taclet
is sound. In general KeY does not provide a mechanism that
guarantees the soundness of user-defined taclets. Thus, their
use risks the consistency of the system and the user has to
be careful. Although KeY does supports the verification of
soundness for a limited subset of taclets [15].

Verification example. The method lastIndexOf has
two contracts: one involves a null argument, and another
involves a non-null argument. Both proofs are similar.
Moreover, the proof for indexOf(...) is similar but
involves the next reference instead of the prev reference.
This contract is interesting, since proving its correctness
shows the absence of the overflow of the index variable.

Proposition lastIndexOf(Object)as specified inList-
ing 12 is correct.

Proof We describe how to proof can be constructed in KeY.
Set strategy to default strategy, and set max. rules to 5,000
with the setting to delay expanding the class axiom. Finish
symbolic execution on the main goal. Set strategy to 1,000
rules and select DefOps arithmetical rules. Automatically
close all provable goals under the root. One goal remains.
Perform update simplification macro on the whole sequent,
perform propositional with split macro on the sequent, and
close provable goals on the root of the proof tree. There is a
remaining open goal:

– index − 1 = 0 ↔ x .prev = null: split the equiva-
lence. First case (left implies right): suppose index−1 =
0, then x = self .nodeList[0] = self .first and
self .first.prev = null: solvable through unfolding
the invariant and equational rewriting. Now, second case,
suppose x .prev = null. Then, either index = 1 or
index > 1 (from splitting index ≥ 1). Thefirst ofwhich is
trivial (close provable goal), and the second one requires
instantiating quantified statements from the invariant,
leading to a contradiction. Since we have supposed
x .prev = null, but x = self .nodeList[index − 1]
and self .nodeList[index − 1].prev = self .
nodeList[index − 2] and
self .nodeList[index − 2] �= null.

��
Interesting verification conditions. The acyclicity prop-

erty is used to close verification conditions that arise as a
result of potential aliasing of node instances: it is used as a
separation lemma. For example, after a method that changed
thenextfield of an existing node,wewant to reestablish that
all nodes remain reachable from the first through next
fields (i.e., “connectedness”): one proves that the update of
next only affects a single node, and does not introduce a
cycle.Weprove this by using the fact that two nodes instances
are different if they have a different index in nodeList,
which follows from acyclicity. Below, we sketch an argu-
ment why the acyclicity property follows from the invariant.
We have a video in which we show how the argument in KeY
goes, see [16, 0:55–11:30].

Proposition Acyclicity follows from the linked list invariant.

Proof By contradiction: suppose a linked list of size n > 1
is not acyclic. Then there are two indices, 0 ≤ i < j < n,
such that the nodes at index i and j are equal. Then it must
hold that for all j ≤ k < n, the node at k is equal to the
node at k − ( j − i). This follows from induction. Base case:
if k = j , then node j and node j − ( j − i) = i are equal
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by assumption. Induction step: suppose node at k is equal to
node at k − ( j − i), then if k + 1 < n it also holds that node
k + 1 equals node k + 1− ( j − i): this follows from the fact
that node k+1 and k+1−( j− i) are both the next of node
k < n − 1 and node k − ( j − i). Since the latter are equal,
the former must be equal too. Now, for all j ≤ k < n, node
k equals node k− ( j − i) in particular holds when k = n−1.
However, by the property that only the last node has a null
value for next, and a non-last node has a non-null value
for its next field, we derive a contradiction: if nodes k and
k− ( j − i) are equal then all their fields must also have equal
values, but node k has a null and node k − ( j − i) has a
non-null next field! ��

Summary of verification effort The total effort of our case
study was about 7 man months. The largest part of this
effort is finding correct and sufficiently complete specifica-
tions. KeY supports various ways to specify Java code: pure
observer methods, model fields, and ghost fields. For exam-
ple, using pure observer methods, contracts are specified by
expressing the content of the list before/after a method by
using the pure method get(i), which returns the item at
index i . This led to rather complex proofs: essentially it led to
reasoning in terms of relational properties on programs (i.e.
get(i) before vsget(i) after themethod under consider-
ation). After 2.5 man months of writing partial specifications
and partial proofs in these different formalisms, we decided
to gowith ghost fields as thiswas the only formalism inwhich
we succeeded to prove non-trivial methods.

It then took ≈ 4 man months of iterating in our workflow
through (failed) partial proof attempts and refining the specs
until they were sufficiently complete. In particular, changes
to the class invariant were “costly”, as this typically caused
proofs of all the methods to break (one must prove that all
methods preserve the class invariant). The possibility to inter-
act with the prover was crucial to pinpoint the cause of a
failed verification attempt, and we used this feature of KeY
extensively to find the right changes/additions to the specifi-
cations.

In general there seems to be a hierarchy of specification
levels: ghost fields, class invariants, method contracts, and
loop invariants. Amodification of a specification higher up in
the hierarchy typically requires revisiting the specifications
lower in the hierarchy. For example, without proper ghost
fields it is difficult to express a useful class invariant. Method
contracts implicitly depend on the class invariant. For a cou-
ple ofmethods, loop invariants had to be added as annotation.
We almost always needed some iterations before finding a
loop invariant that was sufficient. Moreover, a change in the
method contract often implies its nested loop invariant need
to be changed as well, to maintain the properties needed to
show the contract is valid.

After the introduction of the field nodeList, several
methods could be proved very easily, with a very low
number of interactive steps or even automatically. Methods
unlink(Node) and linkBefore(Object, Node)
could not be provenwithout knowing the position of the node
argument. We introduced a new ghost field, nodeIndex,
that acts like a ghost parameter. Luckily, this did not affect
the class invariant, and existing proofs that did not make use
of the new ghost field were unaffected.

Once the specifications were (sufficiently) complete, we
estimate that it only took approximately 1 or 1.5 man weeks
to prove all methods. This can be reduced further if infor-
mal proof descriptions are given that describe the overall
approach or outline of a proof. Moreover, we have recorded
a video of a 30 minute proof session where the method
unlinkLast is proven correct with respect to its contract
[16]. Finally,we introduced client-friendly specifications and
simplified the verification effort by introducing a taclet. We
then reverified the most difficult methods only with respect
to the new contracts and by applying taclets.

Proof statistics. As mentioned in Subsection 4.1, we first
proved contracts that focus on correctness of the linked list
from the implementation perspective. In our artifact [6] those
can be found in theimplementation folder. These proofs
were constructed with KeY version 2.6.3. Subsequently, we
added for several methods contracts that allow for client-
side reasoning, using the previously mentioned itemList.
By this time, KeY 2.8.0 was available so the proofs of those
contracts (in folder clientfriendly of our artifact)were
constructedwith this new version. In the tables with the proof
statistics below, wewill clearlymark this distinction between
versions. Table 1 summarizes the main proof statistics for all
methodswith contracts from the implementation perspective.

We found the most difficult proofs were for the method
contracts of: clear(), linkBefore(Object,Node),
andunlink(Node). Table 2 shows the proof statistics. The
number of interactive steps seem a rough measure for effort
required. But, we note that it is not a reliable representation
of the difficulty of a proof: an experienced user can produce a
proof with very few interactive steps, while an inexperienced
usermay takemanymore steps. The proofswehave produced
are by no means minimal.

Initially, our main goal was to prove as many methods
correct as possible, without striving to have proofs with a
low number of interactive steps. After that goal was accom-
plished, we have recreated proofs for some methods with the
goal to minimize the number of interactive steps. Table 3
shows the results for three methods. A first sight, surpris-
ingly, the client-friendly contracts required less interactive
steps (last column),while the contracts thatwere provenwere
stronger as they included the item list. The main reasons are
that those proofs used the acyclicity taclet rather than proof
cuts (so they do not include the proof of the acyclicity prop-
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Table 1 Summary of proof statistics. Rules is the number of rules
applied during the verification process, Branches is the number of
branches in the proof tree, I.step is the number of interactive proof
steps, Q.inst is the number of quantifier instantiation rules, O.Contract

is the number of method contracts applied, and Loop inv. is the number
of loop invariants. The last two columns are not metrics of the proof,
but they indicate the total lines of code (LoC) and the total lines of
specifications (LoS)

Rules Branches I.step Q.inst O.Contract Loop inv. LoC LoS

375,839 2477 9609 2322 79 12 440 756

Table 2 Proof statistics of method contracts clear, linkBefore and unlinkFirst. The rows that are marked with † are of the client-friendly
contracts. The other rows show the statistics for the proofs of the implementation-oriented contracts

Method Rules Branches I.step Q.inst O.Contract Loop inv. LoC LoS

clear 16,340 130 1068 35 0 1 12 42

clear† 11,921 73 92 26 0 1 12 48

linkBefore 28,146 222 531 109 0 0 10 13

linkBefore† 50,661 338 233 131 0 0 10 22

unlinkFirst 11,186 114 276 30 0 0 13 7

unlinkFirst† 15,611 108 70 50 0 0 13 16

Table 3 Total and interactive steps for methods lastIndexOf(),linkFirst() and addFirst() for the original proofs (first column),
re-proofs (second column) and client-side friendly contracts (third column)

Method Rules/I.step Rules/I.step (reproof) Rules/I.step (taclets†)

lastIndexOf(Object) 4571/23 4880/18 5194/9

linkFirst(Object) 33,650/665 13,974/24 10,933/22

addFirst(Object) 1863/31 612/0 3929/0

erty itself), and that the involved person doing the proofs was
different and had more experience with KeY.

We now discuss the differences between two proof ses-
sions as shown in the second column and third column of
Table 3. For lastIndexOf(Object), the difference in
the number of interactive steps is negligible. This is since the
proofs only differ in the choice of some specific low-level
rules. For linkFirst(Object) the story is different: the
number of interactive steps has decreased significantly (from
665 to 24). Unfolding the class invariant has been delayed
until the terms it contains are really needed. Largely because
of that, in the reproof the number of branches has decreased
from180 to 108 (not shown in the table). Thenumber of quan-
tifier instantiations went down from 277 to 47 (not shown in
the table). The first two of the 24 interactive steps are both
unpacking the class invariant; the first time as antecedent of
the sequent, the second time as succedent of the sequent.
The rest of the interactive steps is a mix of the following
rules (each applied at least once):

– Splitting up the proof tree into two parts by applying

• (A cleverly chosen instantiation of) a cut rule;
• The impLeft rule;
• The orLeft rule;

– Removing quantifiers (skolemization) by applying the
allRight rule;

– Dividing a succedent partially as antecedent by applying
the impRight rule;

– Applying substitutions by using the allLeft rule.

In addition, the following interactive steps have been
applied: a rule that was needed for casting an expression
(ineffectiveCast rule), a rule used for induction (auto_induc-
tion rule), and a rule to rewrite the≤ operator (leq_to_gt_alt
rule). The acyclicity propertywas needed andwas introduced
by applying a cut rule. The reason for the improvement of
addFirst(Object) is the same as for linkFirst
(Object): delaying the unfolding of the class invariant. It
is clear that this measure applies as a means to keep the num-
ber of interactive steps as low as possible. Not only for the
methods mentioned here, but for the other methods as well.
When the class invariant is unfolded too early, i.e., before the
containing terms are actually needed, the proof tree too early
grows too big unnecessarily. From that moment on it takes
many steps, including interactive ones, to ‘repair the dam-
age’, viz. closing all the unnecessary extra branches that are
the result of the premature unfolding of the class invariant.
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5 Discussion

In this sectionwediscuss someof themain challenges of veri-
fying the real-world Java implementationof aLinkedList,
as opposed to the analysis of an idealized mathematical
linked list.Many of these challenges are also relevant beyond
our case study and apply to real-world library/program veri-
fication in general.
Challenge 1: Extensive use of Java language constructs
The LinkedList class uses a wide range of Java lan-
guage features. This includes nested classes (both static and
non-static), inheritance, polymorphism, generics, exception
handling, object creation and for each loops. To load and rea-
son about the real-world LinkedList source code requires
an analysis tool with high coverage of the Java language,
including support for the aforementioned language features.
However, since the Java language is a moving target and,
more recently, new feature releases are published every 6
months (!), it is becoming more and more challenging for
analysis tools to keep up [17]. For example, KeY already
does not fully support generics, a relatively old feature that
was added in Java 1.5. Even newer features, such as lambdas,
functional interfaces and streams, typically build on top of
older features such as generics.
Challenge 2: Support for intricate Java semantics The Java
List interface is position based, and associates with each
item in the list an index of Java’s int type. The bugs
described in Sect. 2.1 were triggered on large lists, in which
integer overflows occurred. Thus, while an idealized math-
ematical integer semantics is much simpler for reasoning, it
could not be used to analyze the bugs we encountered! It
is therefore critical that the analysis tool faithfully supports
Java’s semantics, including Java’s integer (overflow) behav-
ior.
Challenge 3: Collections have a huge state spaceA Java col-
lection is an object that contains other objects (of a reference
type). Collections may grow to an arbitrary size (but in prac-
tice is bounded by available memory). By their very nature,
collections thus intrinsically have a large state. To make this
more concrete: triggering the bugs inLinkedList requires
at least 231 elements (and 64 GiB of memory), and each ele-
ment, since it is of a reference type, has at least 232 values.
Challenge 4: Interface specifications Several of the Linked
List methods contain an interface type as parameter. For
example, the addAllmethod takes two arguments, the sec-
ond one is of the Collection type:

public boolean addAll(int index, Collection c) {
...
Object[] a = c.toArray();
...

}

AsKeY follows the design by contract paradigm, verifica-
tion of LinkedList’s addAllmethod requires a contract
for each of the other methods called, including the toArray
method in the Collection interface. How can we spec-
ify interface methods, such as Collection.toArray?
KeY features a stub generator that can automatically create
conservative, default contracts: themethod forwhich the con-
tract is generated is specified to arbitrarily modify the heap
and return any array. The default contract can then be made
more precise manually. Simple conditions on parameters or
the return value are easily expressed, but meaningful con-
tracts that relates the behavior of the method to the contents
of the collection require some notion of state to capture all
mutations of the collection, so that previous calls to methods
in the interface that contributed to the current contents of the
collection are taken into account.

Model fields/methods [5, Section 9.2] are a widely used
mechanism in KeY for abstract specification. A model field
or method is represented in a concrete class in terms of the
concrete state given by its fields. In this case, as only the
interface type Collection is known rather than a con-
crete class, such a representation cannot be defined. Thus the
behavior of the interface cannot be captured by specifications
in terms of its state, which makes specification of methods
such as Collection.toArray difficult. Ghost variables
cannot be used either, since ghost variables are updated by
adding set statements in method bodies, and interfaces do
not contain method bodies. This raises the question: how to
specify behavior of interface methods?6

Challenge 5: Verifiable code revisionsWe fixed the Linked
List class by explicitly bounding its maximum size to
Integer.MAX_VALUE elements, but other solutions are
possible. Rather than using integers indices for elements, one
could change to an index of type long or BigInteger. Such
a code revision is however incompatible with the general
Collection and List interfaces (whose method signa-
tures mandate the use of integer indices), thereby breaking
all existing client code that uses LinkedList. Clearly this
is not an option in a widely used language like Java, or any
language that aims to be backwards compatible.

It raises the challenge: can we find code revisions that are
compatible with existing interfaces and their clients?We can
take this challenge even further: can we use our workflow
to find such compatible code revisions, and are they also
amenable to formal verification?
Challenge 6: Proof reuse Section 4.2 discussed the proof
effort (in personmonths). It revealed thatwhile the total effort
was 6-7 person months, once the specifications are in place

6 Since the representation of classes that implement the interface is
unknown in the interface itself, a particularly challenging aspect here
is: how to specify the footprint of an interface method, i.e.: what part
of the heap can be modified by the method in the implementing class?
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after many iterations of the workflow, producing the actual
final proofs took only 1-2 weeks! But minor specification
changes often require to redo nearly the whole proof, which
causes much delay in finding the right specification. Other
program verification case studies [2,5,18,19] show similarly
that the main bottleneck today is specification, not verifica-
tion. This calls for techniques to optimize proof reuse when
the specification is slightly modified, allowing for a more
rapid development of specifications.
Challenge 7:Codewrittenwithout verification inmind Exist-
ing code in general is not designed to be easily suitable for
verification. For example, the LinkedList class exposes
several implementation details to classes in the java.util pack-
age: i.e., all fields, including size, are package private (not
private!), which means they can be assigned a new value
directly (without calling any methods) by other classes in
that package. This includes setting size to negative values.
As we have seen, the class malfunctions for negative size
values. In short, this means that the LinkedList itself
cannot enforce its own invariants anymore: its correctness
now depends on the correctness of other classes in the pack-
age. The possibility to avoid calling methods to access the
fields may yield a small performance gain, but it precludes a
modular analysis: to assess the correctness of LinkedList
one must now analyze all classes in the same package (!) to
determine whether they make benign changes (if any) to the
fields of the list. Hence, we recommend to encapsulate such
implementation details, including making at least all fields
private.

5.1 Status of the challenges

The KeY system covers the Java language features (Chal-
lenge 1) sufficiently to load and statically verify the
LinkedList source code. KeY also supports various inte-
ger semantics, allowing us to analyze LinkedList with
the actual Java integer overflow semantics (Challenge 2). As
KeY is a theorem prover (based on deductive verification),
it does not explore the state space of the class under consid-
eration, thus solving the problem of the huge state space of
Java collections (Challenge 3). We could not find any other
analysis tools that solved these challenges, so we decided at
that point to use KeY.

Concerning interface specifications (Challenge4), progress
has been made in [20,21]. This challenge can be addressed
by specifying interfaces using an abstract state in terms of
trace specifications, which consists of user-defined functions
that map a sequence of calls to the interface methods to a
value. This approach is very likely applicable in the con-
text of LinkedList, however it does require rewriting
the currently state-based specifications. It would be use-
ful to investigate in future work whether a combination of

trace-based and state-based specifications can be used so that
existing state-based assertions can still be leveraged.

The challenges related to code revisions (Challenge 5) and
proof reuse (Challenge 6) are compounded for analysis tools
that use brittle proof representations. For example, proof files
in KeY consist of actual rule applications (rather than higher
level macro/strategy applications), and proof rule applica-
tions explicitly refer to the indices of the (sub)formulas the
rule is applied to. This results in a fragile proof format, where
small changes to the specifications or source code (such as
a code refactoring) break the proof. Other state-of-the-art
verification systems such as Coq, Isabelle and PVS support
proof scripts. Those proofs are described at a higher level
when compared to KeY. It would be interesting to see to
what extent logics for verifying Java programs by means of
symbolic execution can be handled in (extensions of) such
higher-level proof script languages.

Finally, we challenge other existing static analysis tools
to the (functional) verification of the Java Collection Frame-
work, and techniques like model-checking for detecting the
bugs we have found in the LinkedList implementation.
We strongly believe that analysis of actual software as used
in practice will provide a strong impetus to the further devel-
opment of competing tools and techniques.

5.2 Related work

Knüppel et al. [12] provided a report on the specification and
verification of some methods of the classes ArrayList,
Arrays, and Math of the OpenJDK Collection Framework
using KeY. Their report is mainly meant as a “stepping stone
towards a case study for future research.” To the best of our
knowledge, no formal specification and verification of the
actual Java implementation of LinkedList as part of the
JavaCollectionFrameworkhas been investigatedbefore: oth-
erwise, the integer overflow bug would have been discovered
before.

Gladisch and Tyszberowicz [22] have investigated the
specification of linked data structures using JML, and focus
onproviding specifications in termsof pure observermethods
instead of ghost fields. They define their own data structures,
and do not specify and verify parts of the actual Java Col-
lection Framework: the challenge in the latter is that it is
not formally specified, nor specifically designed to be suit-
able for formal verification. One of their goals is to give
specifications in JML that are suitable for both verification
and testing. Ghost fields cannot be used for testing, as ghost
fields are present only in comments at the source code level
and are not affecting the execution. As we alreadymentioned
in Sect. 4.2, verifying the linked list methods with respect to
specifications given in terms of pure observer methods was
too difficult for us and we decided to use ghost fields instead,
which proved successful.
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Zee et al. [23] have investigated full functional verifica-
tion of several linked data structures in Java making use of
specifications formulated in a classical higher-order logic.
Also they define their own data structures, and do not spec-
ify and verify parts of the actual Java Collection Framework.
Compared to our work, they are limited by their support of
the Java language, e.g. lacking support for exceptions and
they “currently model numbers as algebraic quantities with
unbounded precision”. Since our work involves showing the
absence of integer overflow, it is crucial to have a realistic
correspondence between the program semantics as employed
during verification and the actual run-time behavior. Other
formalizations of Java in higher-order logic also exists, such
as Bali [24] and Jinja [25] (using the general-purpose theo-
rem prover Isabelle/HOL), with similar limitations. The tools
OpenJML[26] andVerCors [27] support verifying real-world
Java programs. However, also these formalizations do not
have a complete enough Java semantics to be able to ana-
lyze the bugs presented in this paper. In particular, the latter
tool seems not to have built-in support for integer overflow
arithmetic, although that can be added manually.

In general, the data structure of a linked list has been
studied mainly in terms of pseudo code of an idealized math-
ematical abstraction (e.g., see [28] for an Eiffel version and
[29] for a Dafny version). Lahiri and Qadeer [30] describe in
general a technique for formalizing linked lists, and is related
to our discussion of acyclicity. A comprehensive survey of
the literature on specification and verification of linked lists
is out of scope for this paper, but a good start are the related
work sections within the above references.
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