Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Randomized reachability analysis in UPPAAL.: fast error detection in timed systems*

Kiviriga, Andrej; Larsen, Kim Guldstrand; Nyman, Ulrik

Published in:
International Journal on Software Tools for Technology Transfer

DOl (link to publication from Publisher):
10.1007/s10009-022-00681-z

Publication date:
2022

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Kiviriga, A., Larsen, K. G., & Nyman, U. (2022). Randomized reachability analysis in UPPAAL: fast error
detection in timed systems*. International Journal on Software Tools for Technology Transfer, 24(6), 1025-1042.
https://doi.org/10.1007/s10009-022-00681-z

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 19, 2024

https://doi.org/10.1007/s10009-022-00681-z
https://vbn.aau.dk/en/publications/f9ba9f59-7aae-4c29-8e19-2546583a41f6
https://doi.org/10.1007/s10009-022-00681-z

Springer Nature 2021 ETEX template

Randomized Reachability Analysis in Uppaal: Fast Error
Detection in Timed Systems*

Andrej Kiviriga, Kim Guldstrand Larsen and Ulrik Nyman
Department of Computer Science, Aalborg University, Street, Aalborg, 9220, Denmark.

*Corresponding author(s). E-mail(s): kivirigaQcs.aau.dk;
Contributing authors: kgl@cs.aau.dk; ulrik@cs.aau.dk;

Abstract

Randomized reachability analysis is an efficient method for detection of safety violations. Due to
the under-approximate nature of the method, it excels at quick falsification of models and can
greatly improve the model-based development process: using lightweight randomized methods early
in the development for the discovery of bugs, followed by expensive symbolic verification only
at the very end. We show the scalability of our method on a number of Timed Automata and
Stopwatch Automata models of varying sizes and origin. Among them, we revisit the schedula-
bility problem from the Herschel-Planck industrial case study, where our new method finds the
deadline violation three orders of magnitude faster: some cases could previously be analyzed by
statistical model checking (SMC) in 23 hours and can now be checked in 23 seconds. More-
over, a deadline violation is discovered in a number of cases that where previously intractable.
We have implemented the Randomized reachability analysis — and made it available — in the
tool UppaAL. Finally we provide an evaluation of the strengths and weaknesses of Random
reachability analysis exploring exactly which types of model features hamper method’s efficiency.

Keywords: model-checking, randomized, state space explosion, schedulability analysis, timed automata,

stopwatch automata

1 Introduction

The problem of state space explosion is the major
issue keeping formal verification of industrial sized
models from becoming a truly impactful tech-
nology. This paper presents a method, Random
Reachability Analysis, which can help to combat
state-space explosion in one particular way. The
method searches the state space using randomiza-
tion, the effect of this is a method that is very
efficient at finding bug in most systems, but can-
not prove the safety of a system. Throughout the
process of developing formal models, an array of
sanity queries can be used in the same way as

unit tests in software development. Verifying these
queries repeatedly between each addition to the
model can be prohibitively time consuming, espe-
cially for complex systems that often grow large
and become difficult to analyze. The method pre-
sented in this paper is exactly a solution to this
problem.

The main contribution of this paper is the
implementation of randomized reachability analy-
sis in the tool UrPPAAL. Randomized reachability
analysis is a non-exhaustive efficient technique for
the detection of errors (safety violations). The
work was inspired by [1] where similar random-
ized analysis was applied to refinement checking.

Springer Nature 2021 BTEX template

The method can analyse Timed Automata and
Stopwatch Automata models with the features
already supported by UpPPAAL. The randomized
approach is based on repeated exploration of the
model by means of random walks and was inspired
by [2]. It explores the state space in a light and
under-approximate manner; hence, it can only
perform conclusive verification when a single trace
can demonstrate a property. However, our ran-
domized method excels at reachability checking
and in many cases outperforms existing model-
checking techniques by up to several orders of
magnitude. The benefits are especially notable in
large systems where traditional model-checking is
often intractable due to the state space explosion
problem.

Randomized reachability analysis is particu-
larly useful for an efficient development process:
running cheap, randomized methods early in the
development to discover violations and perform-
ing an expensive and exhaustive verification at the
very end. Randomized reachability analysis sup-
ports the search for shorter traces which improves
the usability of discovered traces in debugging the
model. We have implemented randomized reach-
ability analysis — and made it available — in the
tool UPPAAL! [3]. Unfortunately, our randomized
methods are not a panacea and there are certain
types of model features that the method is not
well suited for exploring. These are discussed in
Section 11 on strengths and limitations, divided
into three categories. All categories relate to some
way in which a certain part of the state space is
potentially hard for the method to explore.

Timed Automata models can also be used in
the domain of schedulability, which deals with
resource management of multiple applications
ranging from warehouse automation to advanced
flight control systems. Viewing these systems as a
collection of tasks, schedulability analysis allows
to optimize usage of resources, such as proces-
sor load, and to ensure that tasks finish before
their deadline. A traditional approach in pre-
emptive priority-based scheduling is that of the
worst-case response time (WCRT) analysis [4, 5].
It involves estimating worst case scenarios for
both the execution time of a task and the block-
ing time a task may have to spend waiting for

Lhttps://uppaal.org/downloads/

a shared resource. Apart from certain applicabil-
ity limitations, classical response time analysis is
known to be over-approximate which may lead to
pessimistic conclusions in that a task may miss
its deadline, even if in practice such a scenario
could be unrealizable. Model-based approach is a
prominent alternative for verification of schedu-
lability [6-9] as it considers such parameters as
offsets, release times, exact scheduling policies,
etc. Due to this, the model-based approach is able
to provide a more exact schedulability analysis.

We continue the effort in using a model-
based approach and the model checker UPPAAL
to perform a Stopwatch Automata based schedu-
lability analysis of systems [10]. Specifically, we
re-revisit the industrial case study of the ESA
Herschel-Planck satellite system [9, 11]. The Dan-
ish company Terma A /S [12] developed the control
software and performed the WCRT analysis for
the system. The case we analyse consists of 32
individual tasks being executed on a single pro-
cessor with the policy of fixed priority preemptive
scheduling. In addition, a combination of pri-
ority ceiling and priority inheritance protocols
is used, which in essence makes the priorities
dynamic. Preemptive scheduling is encoded in the
model with the help of stopwatches which allow
to track the progress of each task and stop it
when the task is preempted. In UPPAAL, exist-
ing symbolic reachability analysis for models with
stopwatches is over-approximate [13], which may
provide spurious traces. In such models, our ran-
domized reachability analysis allows to obtain
exact, non-spurious traces to target states.

In the previous work of [9] the schedulability
of Herschel-Planck was “successfully” concluded,
but with an unrealistic assumption of each task
having a fixed execution time (ET). To improve
on this, the analysis of [11] was carried out
with each of the tasks given a non-deterministic
execution time in the interval of Best Case
and Worst Case ETs [WCET, BCET]. Unfortu-
nately, interval based execution times, preemption
and shared resources that impose dependencies
between tasks, makes schedulability of systems
like Herschel-Planck undecidable [14].

Even in the presence of unschedulability, two
model-checking (MC) techniques were used in [11]
to either verify or disprove schedulability for cer-
tain intervals of possible task execution times.
First, the symbolic, zone-based, MC was used.

https://uppaal.org/downloads/

Springer Nature 2021 BTEX template

Table 1 Summary of schedulability of the Herschel-Planck system.

f=8% | 0% 72-80% 81-86% 87-90% 90-100%
Symbolic MC: ‘ maybe maybe maybe n/a Safe

Statistical MC: ‘ Unsafe maybe maybe maybe maybe

Randomized MC: ‘ Unsafe @ Unsafe maybe maybe maybe

For stopwatch automata it is implemented as an
over-approximation in UPPAAL which still suf-
fices for checking of safety properties, e.g. if the
deadline violation can never be reached. How-
ever, this technique cannot be used to disprove
schedulability of the system as resulting traces
may possibly be spurious. Second, the statisti-
cal model-checking (SMC) technique was used
to provide concrete counterexamples witnessing
unschedulability of the model in cases where sym-
bolic MC finds a potential deadline violation and
cannot conclude on schedulability. The idea of
SMC [15, 16] is to run multiple sample traces
from a model and then use the traces for sta-
tistical analysis which, among all, estimates the
probability of a property to be satisfied on a ran-
dom run of a model. The probability estimate
comes with some degree of confidence that can
be set by the user among a number of other sta-
tistical parameters. Several SMC algorithms that
require stochastic semantics of the model have
been implemented in UppAaAL SMC [17].

Our contribution to the Herschel-Planck case
study is to use our proposed under-approximate
randomized reachability analysis techniques in
hope to witness unschedulability in places
where previously not possible. The summary
of (un)schedulability of Herschel-Planck that
includes the new results is shown in Table 1.
Symbolic MC finds no deadline violation with
over-approximate analysis and is able to conclude

schedulability for \%%%Eﬂ > 90%. SMC find a wit-

ness of unschedulability for \%%%?r < 71%. Finally,
our randomized reachability methods are able to
further “breach the wall” of undecidable problem
by discovering concrete traces proving unschedu-

lability for % < 80%. Moreover, for the same
BCET

wort randomized reachability finds the deadline
violation by three orders of magnitude faster than
SMC: the case that took 23 hours for SMC now
only takes 23 seconds with randomized methods.

To further verify the proposed efficient devel-
opment process, we look at several different
models of the Gossiping Girls problem made
by the Master’s thesis students — future model
developers — and explore the potential of our
randomized method. We also perform experi-
ments on a range of other (timed and stopwatch
automata) models and compare the performance
of our randomized reachability analysis in safety
violation detection to that of existing verifica-
tion techniques of UPPAAL: Breadth First Search
(BFS), Depth First Search (DFS), Random Depth
First Search (RDFS) and SMC. The results are
extremely encouraging - randomized reachability
methods perform up to several orders of mag-
nitude faster and scale significantly better with
increasing model sizes. Furthermore, randomized
reachability uses constant memory w.r.t. the size
of the model and typically requires only up to
25MB of memory. This is a notable improve-
ment in comparison to the symbolic verification
of upscaled and industrial sized models. Each of
the experiments in this study was given 16GB of
memory.

The main contributions of the paper are:

® A new randomized reachability analysis tech-
nique implemented in UPPAAL.

® Detection of safety violations up to several
orders of magnitude faster than with other
existing model-checking techniques.

® Possibility to analyze previously intractable
models, including particular settings for the
Herschel-Planck case study.

e Searching for shorter or faster traces with ran-
domized reachability analysis.

® Analysis of strengths and weaknesses of the
method based on empirical evidence.

The rest of the paper is structured as fol-
lows: In Section 2 we give formal definition of
Stopwatch Automata models and in Section 3

Springer Nature 2021 BTEX template

we describe the different randomized methods we
tried in this study. In Section 4 we show the user
interface of UPPAAL. Section 5 gives the experi-
mental setting. Section 6 presents the new results
on the Herschel-Planck industrial case study and
Section 7 provides more experimental results on
other schedulability models. Section 8 demon-
strates the efficiency of our randomized method
applied on student models of the Gossiping Girls
problem and Section 9 gives the results on other
upscaled models. Finally, Sections 12 and 13 give
conclusions and future work.

This paper is an extended version of the
paper published at FMICS 2021. The major novel
sections of this extension in comparison to the
original paper are the following (in reading order):

® Section 2 with formal definitions,

® Section 3 with the pseudocode for the random-
ized reachability algorithm and its respective
mentions,

® Section 4 that demonstrates the features of the
UPPAAL graphical interface w.r.t. our random-
ized methods,

® Section 5 with experimental setting,

® Section 10 with experiments on research oper-
ating system models, and

® Section 11 with discussions about strengths and
limitations of our methods.

2 Stopwatch Automata

Timed Automata (TA) are automata extended
with real-valued clocks whose values grow uni-
formly at any state [18]. TA are ideal for describing
time-dependent behaviors of systems; however,
for preemptive scheduling it is needed to mea-
sure the accumulated time the system spends in
a certain state. An example would be measur-
ing the progress of a task and stopping it when
the task is preempted. To accommodate the need
for stopping clocks, an extension that supports
derivatives (rates of progression) for clocks being
either 1, meaning the clock progresses as per
usual, or 0, where the clock is stopped, has been
introduced as a Stopwatch Automata (SWA)[13].
Unlike Timed Automata, the reachability analy-
sis of Stopwatch Automata is undecidable. In this
section, we present the key definition for Stop-
watch Automata based on the formalism from

[13].

Let C be a finite set of clocks and V be a finite
set of integer variables. Let u(z) define a valuation
of x € C'UV such that there is a mapping from
C to R>¢ and from V to N. Let LC(C,V) be a
set of linear constraints. A guard g € LC(C,V) is
represented as a finite conjunction of expressions
of the form ¢ < n, v < n or v < ¢ where ¢ € C
and v € V, n € N, and < is a relational operator
(<, <, >, >,=,#). A set of such guards over C and
V is denoted as B(C, V'), whereas P(C, V) is used
to denote a powerset. We can change the value of
clocks and variables with an assignment operation
r(u) € (P(C,V)) where assignments are restricted
to be ¢ = 0, effectively resetting the clock, and
v=mn, where ce C, v €V and n € N.

Definition 1 (Stopwatch Automaton[13]). A
Stopwatch Automaton (SWA) is represented as a
tuple A = (L,ly,C,V,E, Act, I, D) where:

L is a finite set of locations,

lo € L is the initial location,

C' is a finite set of clocks that represent time,
V' is a finite set of integer variables,
ECLxB(C,V)xAct x P(C,V)x L is a set
of edges,

Act is a finite set of actions,

I: L — B(C,V) is a set of location invariants,
and

D: L xC w~ {0,1} is a set of rates at which
clocks can evolve at given location.

An edge e = (l,g,a,r,1') € E represents an
edge from location [to location !’ with the guard
g, action a, and an assignment (reset) r. Semantics
of SWA is given in terms of the Timed Transition
System that we now define.

Definition 2 (Timed Transition System). A
Timed Transition System (TTS) is a tuple T =
(S, s0, 2, —) where:

e S is an infinite set of states,

® so €S is the initial state,

® X is a set of labels, and

* -C S x X xRso xS is a transition relation.
We write s = s' whenever (s,a,s') €.

For SWA a state s € S is defined as a pair
(I,u) with [€ L being a location and u being a
valuation over clocks C' and variables V. There are

Springer Nature 2021 BTEX template

Idle
c'==

Fig. 1 Stopwatch Automaton example.

two types of transitions: delay and action transi-
tions. Action transitions are the result of following
an edge. Delay transitions allow the time to pass
and result in the increase of clock valuations such
that their valuations after delay d in location [
happen w.r.t. the derivative of the clock in the cur-
rent location defined as u(c+d) = u(c)+D(l,c)-d.
We now formally define the semantics of SWA.

Definition 3. The semantics of a SWA A =
(L,ly,C,V,E, Act,1,D) is given by a TTS
[A]lsem = (S, 80,2, —), where S = L x u(C,V),
so = (lo,u0), & = Act xRx>g and — is a transition
relation defined as:

o (s,u') S () iff A, g,a,7,1') € E, s.t.
ulEgand v =r(u) and v E I(l)

o (s,u') 4, (s, u) iff l=1" and
Ve e C(D(l,¢) =0=u(c) =u(c)) and
Ve € C(D(l,e) = 1 = u/(c) = u(c) + d) and
Vo e V(u/'(v) = u(v)) and v = I(l").

An example of an arbitrary Task SWA is shown
in Figure 1 which, behind the scenes, is controlled
by some arbitrary scheduler (not shown here).
Task contains a clock t that represents the global
time, a clock c that tracks the total time the
automaton occupies CPU for, and a variable i
that is used to count the amount of times Task

has been preempted. The automaton consists of
four locations - Start (initial), Idle, Run and Done
. Once Task is released by traversing the edge with
action r?, the location Idle is reached where the
CPU time clock is paused (c’==0). From there,
Task can be either started (s?) and preempted
afterwards (p?), with the latter action only avail-
able if the task has not been completed yet, i.e.
ran for less than 9 time units (c<9). Each time

the task is preempted we increase our preemp-
tion counter with i++. Note that in UPPAAL clock
derivatives are defaulted to 1 for all clocks in
all locations, unless specified otherwise. Below we
show two example traces for the Task automaton:

?
71 = (Start,t = 0,c= 0,5 = 0) — (Idle,t = 0,c = 0,i = 0)
?
2L Run,t=0,c=0,i=0) > (Run,t = 9,c =9,i = 0)
|
9, (Done,t = 9,¢c = 9,7 = 0)
?
7y = (Start,t =0,c=0,i = 0) —> (Idle,t = 0,c = 0,i = 0)
?
I (Idle,t =7,¢=0,i=0) =5 (Run,t = 7,c = 0,i = 0)
2 . p? .
= (Run,t =9,¢=2,i=0) — (Idle,t =9,c=2,i=1)
?
3 (Tdle,t =12,c=2,i=1) 25 (Run,t = 12,c = 2,i = 1)

?
S Run,t =18,c=8,i=1) 25 (Idle,t = 18,c = 8, = 2)

)
2 (Tdle,t = 27,c=8,i =2) =5 (Run,t = 27,c = 8,i = 2)

L (Run,t = 28,c=9,i = 2) L5 (Done, t = 28,c = 9,i = 2)

Among the infinitely many traces that reach
location Done, m; has the minimum total time,
that is equal to the CPU time, and does not
get preempted. In practice, a number of SWA
are usually composed (executed in parallel) and
altogether function as a single system. For simplic-
ity we skip formal definition of composition as it
depends on the exact model types and extensions
used. We refer the interested reader to [3, 16, 19]
for more details.

3 Randomized Reachability
Analysis

The purpose of the randomized methods is to
explore the state space quickly and be less affected
by the state space explosion. The general pseu-
docode for the randomized reachability analysis is
given in Algorithm 1. The method is based on a
repeated execution of concrete state-based random
walks through the system. Each random walk is
quick and lightweight as it avoids expensive com-
putations of symbolic zone-based abstractions.
Moreover, to preserve memory our method does
not store any information about already visited
states except for the trace of the currently exe-
cuted random walk. If the target state is found,
the concrete trace (e.g. such as trace m from
Section 2) is returned (line 6); otherwise, the mem-
ory is released before a new random walk is issued.

Springer Nature 2021 BTEX template

Table 2 Randomized reachability analysis heuristics.

Acronym Name Origin Status
SEM Semantic exploration New Implemented in UPPAAL
RET Random Enabled Transition 1] Implemented in UPPAAL
RLC Random Least Coverage New Implemented in UPPAAL
RLC-A Random Least Coverage New Implemented in UPPAAL

Accumulative

The starting depth of the random walk (line 2) is
chosen arbitrarily as a sufficiently small number of
steps that is reasonable to explore in the model.

The flaw of such an analysis is its under-
approximate nature of exploration which does
not allow to conclude on reachability if the tar-
get state has never been found. However, the
results of [1] hint that randomized reachability
analysis has a potential to provide substantial per-
formance improvements in comparison to existing
model-checking techniques.

An already existing method — SMC — tries
to give valid statistical predictions based on
the stochastic semantics. SMC is very simi-
lar to the randomized method as it performs

Algorithm 1 Randomized Reachability

1: function RRA (maxSteps, s¢)

2 steps + 2%

3: while within time budget do

4 s <~ DORANDOMWALK(s, steps)
5 if s is terminal then

6 return concrete trace

7: end if

8 steps < min(steps * 2, maxSteps)
9 end while

10: end function

11: function DORANDOMWALK(s, steps)

12: 1+ 0

13: while ¢ < steps and s is non-terminal do
14: t <~ SELECTTRANSITION(s)

15: d < SELECTDELAY ()

16: s < DODELAY(d)

17: s < FIRETRANSITION(t)

18: 141 =+ 1

19: end while

20: return s

21: end function

cheap, non-exhaustive simulations of the model. In
cases where symbolic model-checking techniques
of UPPAAL are expensive or even inconclusive (for
stopwatch automata), SMC is often used as a rem-
edy to provide concrete traces to target states. The
stochastic semantics SMC operates on allows for
a model to mimic the behavior of a real system;
however, this may not be efficient for reachability
checking. Consider the timed automaton model in
Figure 2 with the Goal location representing the
target state we want to discover. The guard x<=1
on the edge leading to Goal requires clock x to be
at most of 1 time unit. According to the stochas-
tic semantics, at the starting location Init SMC
would select a delay uniformly in range [0, 1000],
which is bounded by the invariant x<=1000. This
leaves a probability of ﬁ to discover Goal in 1
step; Alternatively, the “loop” edge is taken which
resets clock x with the update x=0 thus resetting
all the progress back to the initial state.

x>=901 .
x=0 Init -1

Xx<=1000 Goal
Fig. 2 Timed Automaton model with a Goal target state.

We aim to improve the efficiency of detect-
ing safety violations with our new randomized
method by experimenting with several different
randomized heuristics and examining their effi-
ciency through an extensive experimental eval-
uation. A heuristic in this case dictates how a
random walk is performed, i.e. how delays and
transitions are chosen. The summary of the heuris-
tics and their status is given in Table 2. We
emphasize attention on the fact that in our algo-
rithm the order in which delays and transitions
are selected is reversed from that of SMC: we

Springer Nature 2021 BTEX template

. Init < —
== j>=7 :
=0, j++ [g Goal

Fig. 3 Timed Automaton model of a difficult case for the
RET heuristic.

require selecting a target transition first (line 14).
The exact delay is then chosen only from that tar-
get transition’s range of available delays (line 15).
Selecting a transition first makes exploration of
the state space more uniform and removes a bias
towards transitions with larger availability range.
The mechanism for choosing delays is common
between the heuristics presented below and will
be described later in this section. We now explain
each heuristic in detail.

SEM An intuitive heuristic we tried, denoted
as SEM, is based on the natural semantic explo-
ration of the system. Note that this heuristic is an
exception from the delay and transition selection
order that was proposed earlier: here, similarly to
SMC, delay is selected first, meaning that lines
14 and 15 are switched. In SEM, a meaningful
delay, i.e. a delay that leads to an enabled tran-
sition, is selected uniformly at random and then
a transition is picked uniformly from those avail-
able after the chosen delay has been made. In the
model from Figure 2, SEM would choose a delay
uniformly from two ranges — [0, 1] and [901, 1000],
thus having a probability of ﬁ to reach Goal
in 1 step. Overall, we believe this heuristic will
struggle the most in systems where certain spe-
cific delays are required to reach a target state,
e.g. delaying exactly the lower or upper bound of
the transition’s availability range.

The remaining three heuristics differ only in
the implementation of the transition selection
method (line 14) which we now explain.

RET As a continuation of our work on ran-
domized techniques from [1] we implement them
in UppAAL for both Timed and Stopwatch
Automata. The study proposed two different
heuristics for selecting a target transition. A
heuristic denoted as RET (Random Enabled Tran-
sition) selects one of the eventually enabled tran-
sitions, i.e. transitions that are either currently
enabled or will become such after a delay, uni-
formly at random. This means that at each step
each transition is equally likely to be selected.

When used in the model from Figure 2, RET
would first choose one of the two transitions at
random, having a probability of % to reach the
Goal location in 1 step.

RLC, RLC-A Here we introduce a heuris-
tic denoted as RLC that chooses an eventually
enabled transition with the least coverage for the
sending edge, the least coverage being an integer
counter that increments every time an edge is tra-
versed. If there is more than one transition with
the same least coverage, RLC picks one uniformly
at random. In systems that are cyclic or con-
tain multiple loops, RLC provides a more uniform
exploration of the state space which may be useful
for some models. Consider the model from Figure
3 that uses two integer variables i and j. The only
initially available edge is the bottom loop edge at
the Init location which increments the variable i
by 1 upon each traversal. Once i==2, the leftmost
loop edge can be taken, resulting in a reset of i
and increment of j (i=0, j++). Crucially, if the
variable i is incremented above the value 2, the
leftmost loop edge becomes permanently unavail-
able. Hence, to reach Goal the leftmost edge has
to be taken as soon as it becomes available and
at least 7 times (j>=7) in one run. Since the cov-
erage of the leftmost edge is always lower, the
probability for RLC heuristic to discover Goal in 1
random walk is 100% while for RET it is less than
1%. The coverage counters, however, are reset at
the start of a random walk, making each subse-
quent run independent of the previous one. We
also experiment with a similar heuristic that does
not reset the coverage counters and instead keeps
them shared among all of the random walks. We
denote such accumulative heuristic as RLC-A.

Other randomized methods investigated

A number of tokenized heuristics, inspired by [20],
have been attempted with the intent of storing a
small, fixed number of tokens in a clever way to
increase the likelihood of reaching the target state
faster. Unfortunately, as no considerable improve-
ments have been observed we decided to exclude
these heuristics and leave them as future work.
We have also tried using traces of sym-
bolic MC of UprPAAL from verification of the
Herschel-Planck model to guide the random walks
towards the target state. However, even with
the RDFS search strategy, all of the symbolic

Springer Nature 2021 BTEX template

Table 3 Delay probability distributions used for RET, RLC and RLC-A.

Sequence 1 2 3 4) 6 7 8 9 10 11
Lower bound | 60% | 70% | 80% | 90% | 100% 0% 10% | 20% | 30% | 40% | 40%

Uniform 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 20%
Upper bound | 40% | 30% | 20% | 10% 0% 100% | 90% | 80% | 70% | 60% | 40%

traces have appeared to be spurious due to the
over-approximate analysis of stopwatch automata.
Hence, we could not gain any useful insights with
this approach.

To reduce resource demands for the most
expensive operation in a random walk — computa-
tion of eventually enabled transitions — an alter-
native heuristic to RET was used in [1] denoted as
RCF (Random Channel First). Instead of comput-
ing all eventually enabled transitions, RCF first
randomly picks a channel and only computes tran-
sitions labeled with that channel. However, during
implementation of these techniques in UPPAAL it
became clear that the RCF does not give perfor-
mance advantages over RET due to the differences
in the underlying data structures of UPPAAL and
the Java prototype from [1]. Therefore, we got rid
of the RCF heuristic.

Choosing delay

A naive way of choosing delays — uniformly at
random from a given range — is likely to not be
very efficient. While in some systems that are
either small or not sensitive to specific delay val-
ues reaching a target state can be doable, in
more complex models such a strategy may not be
optimal. In [1] we experimented with a few differ-
ent strategies for choosing delay values, such as
1) uniformly at random, 2) based on predefined
probability distribution and 3) based on chang-
ing (adapting) delay probability distributions. The
experiments have shown the first strategy to be
the least efficient, whereas the third one has shown
the most potential. Hence, we reuse the third
strategy here with slight modifications for RET,
RLC and RLC-A heuristics in the implementation
of the SELECTDELAY method at line 15.

The idea behind the adaptive delay choice
algorithm is the following: the delays are drawn in
accordance to some predefined delay probability
distribution which changes with each unsuccess-
ful random walk. Such distribution, in this case,
defines probability for lower bound (LB), upper
bound (UB) or the values in between the bounds

to be chosen. For example, a distribution of
40% LB/40% UB means that it is equally prob-
able that either LB or UB will be selected as a
delay, while leaving 20% chance for intermediate
delay to be chosen uniformly at random from the
range that excludes the bounds. Table 3 shows
the sequence delay probability distributions used
in this study. Upon reaching the last distribution
in the sequence, the next random walk starts from
the first one.

Previously, the cycle of delay probability dis-
tributions did not leave any room for interme-
diate time delays, considering only LB or UB
values. The downside is that for some systems
it means that parts of the state space become
unreachable by the algorithm; however, experi-
ments have shown this strategy to be surprisingly
efficient. To eliminate the flaw of intermediate
delay values never being chosen, here we add a
40% LB/40% U B probability distribution, leaving
20% chance to select an intermediate time value.
As a result, a target state, if one exists, will be
eventually found in any system.

Random walk depth

To explore the state space gradually and reduce
the risk of a random walk being stuck in an
isolated part of the state space with no target
state, we increase the random walk depth dynami-
cally as the exploration continues. Specifically, the
first batch of random walks at most can perform
2% steps. After the full cycle of delay probabil-
ity distributions is completed, the random walks
in the next cycle have their maximum allowed
depth doubled, but no further than 2'8 steps. This
approach is similar to a well-known approach of
periodically restarting random walks to increase
the performance. Should one have some apri-
ori knowledge of the system, it is also possible
to manually set the maximum allowed depth in
UPPAAL that is a constant value used for all of the
conducted random walks.

Springer Nature 2021 BTEX template

File Edit View Tools Engine Options Engine Help
¥ r O @ 8 |3 @ ﬂg} /\/

5 = = N
Concrete Simulator Verifier

Editor | Symbolic Simulator

id, const time_t Offset, const time_t Period, const BSWFlow_t flow, const time_t WCET, const time_t Deadline

1=0, ready[id]=1

~ W Project Mame: = BSW Parameters:
J Declarations
» ¥ Scheduler
b ¥ IdleTask x=0ffset y—0Ffset
b ¥ MainCycle enqueve! _ engueue? .
» TG ASW add(taskgueve, id), add(taskqueve, id),
@ Bow x=0, job[id]=0, WCRT[id]=8, ready[id]=1 x=0, job[id]=®, WCRT[i
» % GlobalPlal 0ffset=8
4 gﬁlgbgt o @ initialize? O
: x=Period
J System declarations starting ldle

x<0ffset x<Period

ine
RI!

- I R]!
ic=8, job[id]=@,
WCRT[id]=0, readyl

x=8,
Al'.‘EI‘RT[i
id]=o

x>Deadline

x>Deadline

error=1 add(taskqueve, ifl)

error=1

joblid] <W
runs[id] [sETEEXP
END="F"ow
gadlige

L_"Ia.l‘EF,[_”wcpu add(taskqueve, id £
BIGEXP ’ .
release[flowllic].

schedulelid]? blocked[id]=

la

il(flowlic].res)|

x>neadf THE
error=1 S

_/
Error
Next
b'=runs[id]
sub£@

BIGEXP

sul
&6

runs[id] &

Yo

sub=0

releaselCPU Vs
& blocked[id]=1, \J
.ne:

(]

1. cmd Ay
-CldtpyLock . .
boostPrio(flow[ic]
avail(flow[ic].res) }O?ix;
_ lockInh(flow[ic].res, iai‘,'
e, |sub=o

w

id)

Suspended
sub <

flow[ic].delgy
ic].délay

Computing suk
1 sub'=runs[id] &&n
sub=Flow[ic].celdy :
enqueue? sUb < Flow[ic] . de@dg(taskqueve, id),
add(taskqueue, id), susplid]=false, xoDeadline
cucnlidl-falea de4r cub-p ic++, Jsub=0 R
s I T error=1

Fig. 4 The concrete simulator in UrPPAAL

Shorter or Faster trace

Since our techniques cannot disprove reachabil-
ity of a target state due to under-approximate
analysis, searching for errors in large systems,
where symbolic techniques struggle, is one of the
main expected applications. To aid the devel-
oper in analyzing error traces and fixing systems,
we implement an option to search for an opti-
mal trace being the either shortest, in the size of
steps, or the fastest, in the amount of total delay.
With either one of these options selected, the
algorithm searches for the initial trace and after-
wards restricts all subsequent random walks to
either the current smallest amount of steps or total
delay taken, respectively. The exact delay and
action transitions taken are recorded in DODELAY
(line 16) and FIRETRANSITION (line 17) functions,
respectively. Every randomized heuristic can be
used with the shortest or fastest option and we
refer to those by appending “-S” or “F”, e.g.
RET-S.

In symbolic model-checking, searching for an
optimal trace requires an exhaustive exploration
of the state space. Thus, for larger systems, it often
drastically increases time and memory demands
up to an extent where it becomes impractical.
As opposed to that, our randomized techniques
do not require more memory as the old trace is
being discarded as soon as the new, more opti-
mal one is discovered. On the down side, being a
non-exhaustive technique the randomized search
cannot guarantee that any discovered trace is
indeed the most optimal, endlessly continuing the
search. In UPPAAL we let the user provide a time-
out value (in seconds) which is defaulted to 300
seconds and used as a budget for the main loop at
line 3.

4 Usage in the tool UPPAAL

This section gives an overview of some features of
the UpPAAL GUI w.r.t. to our randomized meth-
ods. Many orthogonal features of the tool are not

Springer Nature 2021 BTEX template

File Edit View Tools Engine Options Engine Help
W Search Order

=
= W =

ol

Exploration * Exhaustive (Symbolic)

Editer Symbolic Simule State Space Reduction

Overview State Space Representation

Diagnostic Trace

Reset value

@ Randomized (Concrete

_ e

A[l 'error Back-propagation Order @ nsertabove
Search priority Insert below
Strategy
Remove
Extrapolation Comments
Hashtable size cl It
earresults
Learning filter
Query Learning method Randomized parameters
E< error L . .
SIS [P E = oo Heuristic: | Random Enabled Transition v | Reset o
Statistical parameters. . et
REs e e » Maximum exploration depth: 262144 | Reset
CEmmELE *Reset options Timeout (in seconds): 300 | Reset
@ Cancel [oIS

Status

E<>error

Verification/kernel/elapsed time used: 1.561s / 0s / 1.564s.
Resident/fvirtual memeory usage peaks: 17,744KB [55,344KB.
Property is satisfied.

Fig. 5 The concrete simulator in UppaAL

covered here and we refer the reader to [3] for a
comprehensive presentation.

Figure 4 shows the editor tab of UPPAAL. This
is the view used to create and edit the model of the
system that is going to be analysed. On the left
under the Project folder one can see all the tem-
plates that are part of the current model. In the
right pane one of the templates, in this case the
task template BSW from the Herschel-Planck case
study, is open for editing. Finally the model also
contains global declarations, declarations local
to each template and System Declarations that
define the composition of templates into the com-
plete system. Apart from the editor tab there are
also three other tabs visible in this version of
UprPAAL. The Symbolic Simulator tab will not
be shown in this paper as it is not used for the
randomized reachability analysis. The two other
tabs are explained in the following.

UPPAAL supports a subset of the Timed Com-
putation Tree Logic (TCTL) as its specification
language. This includes liveness, reachability and
leads-to queries. The methods described in this
paper supports only reachability queries of the
form either Invariantly p (A[1 p) or Possibly p
(E<> p), where p is a formula over locations, vari-
ables and clocks. For formulas of the type A[] p

finding a trace represents a proof that the prop-
erty p does not hold for all states of the system,
while for E<> p a trace represents a proof that p
can be true in some state of the system.

Figure 5 shows the Verifier tab of UPPAAL.
In the Engine Options menu the Exploration

technique can be selected. By choosing
Randomized (Concrete) here the techniques from
this paper are activated. By selecting Randomized
parameters the small pop-up shown on top of
the screen will appear. The first drop down selects
the heuristic to use, while the last field sets a time-
out for the random exploration. The middle field
sets the maximum depth used for the randomized
exploration, with a pre-filled default value of 2'8.

Apart from setting these option globally for all
queries, it is also possible to set them individually
for each query. This makes it possible to operate
with a set of queries that can be used as a set of
unit test or sanity checks that can be performed
quickly after changes to the model.

Figure 6 show the concrete simulator of
UPPAAL, where concrete traces obtained from run-
ning Algorithm 1 (line 6 can be displayed if the
Diagnostic Trace option is set to search for some
trace. There is also a symbolic simulator, but the
traces generated by our randomized methods are

11

Springer Nature 2021 BTEX template

File Edit View Tools Engine Options Engine Help
W r QO @ L I B/ A

S w2 , @
Editor Symbolic Simulator | Concrete Simulator | Verifier

Jol

Transition chooser ¥ Globals
ctask = 21
.0 1.0 20 3.0 4.0 b taskqueue = {25,31,32,0,0
enqgueue: RTEMS_RTC - SchedulerBc1553_I: b runs = 40,8,0,0.8,0,8.0.0
enqueue: Bc1553_Isr — SchedulerRTEMS_RT b ready = {1,0,9,0,0,8,0,8,
¥ blocked = {0,0,0,0,08,0,8,
¥ susp = {0,0,0,0,0,0,0,0,0
¥ cprio = {0,33,32,31,30,29

owner
cycle
usedTime = 711753.0
idleTime = 619797.0
globalTime = 1331550.0
job = {619797.0,0.0,0.0,0
WCRT = {1331550.0,0.0,0.0
ASWclock = 61550.0

» % RTEMS_RTC

» ?% AswSync_SyncPulselsr

» ?Q\ Hk_SamplerIsr

» ?Q, SwCyc_CycStartIsr

» 9% SwCyc_CycEndIsr

» 9% Rt1553_Tsr

» 9 Bc1553_Tsr

14 ?% Spw_Isr

» ¥4 Obdh_Tsr

{0,0,8,0,0,8,0}

0.0 : primaryF

Earliest Latest| Shrink Expand

Simulation Trace

Delay: 0.0; schedule[ctask] Scheduler -

(Running, Idle, Idle, Idle, Idle, Idle, Idle, Idle,
Delay: 0.0; release[CPU_R]: HkSampler_P_"

(Preempt, Idle, Idle, Idle, Idle, Idle, Idle, Idle

Delay: 0.0; schedule[ctask] Scheduler -+

AswSync_SyncPulselsr

sdd(taskgueve, 2),
x=B, job[2]=8, WCRT[2]=B, ready[2]=1 x=B, job[2]=8, WCRT[Z]]

sdd(taskgueve,),

, reacylz]=1

. adn(%skqv i[ﬂf'

MCRT[2:

o1 "R x=0, Job[2;

dc=, JobI2]=0, geenNetUT o
Pm‘r[zlggﬁr[d\,s. Pésuy[‘],
— T

add(taska,

release WCET_If
blocked[2]=0

res, 2)

o1 cabusplZ=troe,
sub=0

sifCGekkaueue, 2
suspL4]=false,
- ige Jub=d

error=1

» T4 RtSdh_P_1
» 4 RtSdh_P_2
» T4 RtSdb_P_3

(Running, Idle, Idle, Idle, Idle, Idle, Idle, Idle,

[Hk Samplerlsr |
Scheduler

RTEMS_RTC AswSync SyncPulselsr Hk_Samplerlsr SwiCyc

Delay: 1541.0; primaryF » 9 FdirEvents

3 ?73 NominalEvents_1
» ?73 mainCycle

» ?% HkSampler_P_2
» ?Q\ HkSampler_P_1
b 9% Ach_P

» 9% ToCyc_P

— » ?% primaryF

» 9% rcScontrolF

» 15 ont_P

» 5 HK_P

» ?7.3 StsMon_P

» ?73 TmGen_P

10 » TG san_P

» ?73 TcRouter_P

» % Cnd_P

|
Fast » T4 NominalEvents_2
o -

(Running, Idle, Idle, Idle, Idle, Idle, Idle, Idle,

Delay: 0.0; primaryF

Random & Open| | & Save

1
Slow

Fig. 6 The concrete simulator in UppaaL

concrete traces and can as such only be loaded
into the concrete simulator. The ability to view
the traces in lower left corner of the simulator
and to step forwards or backwards through such
a trace is important in order to understand the
trace and the model. The graphical representation
of the model shows the active locations while the
middle pane shows the values of all clocks and
other variables. The options for finding shorter or
faster traces are especially relevant when trying
to manually debug a model by looking at a trace.
As an illustrative example we show a trace where
error = 1 for the Herschel-Planck case study,
thus indicating that a deadline violation has hap-
pened. The message sequence chart in the bottom
right corner can help in getting an overview of
the communication between different parts of the
model.

5 Experimental Setting

All experiments have been conducted on var-
ious Timed and Stopwatch Automata models
to demonstrate the efficiency of our methods.
Sections 6 to 10 give more details about each type
of the model. The experiments were ran on a clus-
ter with each instance given 16GB of memory. In
tables, we write ‘oom’ for experiments that ran
out of memory and ‘nf’ for cases where concrete
witnessing traces were not found within the given
time. All of the models used in this study can be
found online at github, except for the models of
an operating system from Section 10.

Symbolic, SMC and randomized methods are
available in the newest release of UPPAAL STRAT-
EGO and can be found at https://uppaal.org/
downloads/. The release comes with the exe-
cutable and the GUI, the latter of which can be

https://github.com/DEIS-Tools/uppaal-models/tree/master/CaseStudies/RandomizedReachability2021
https://uppaal.org/downloads/
https://uppaal.org/downloads/

Springer Nature 2021 BTEX template

used to open models, change them and perform
verification as shown in Section 4.

Reproducibility
In order to facilitate reproducibility of experi-
ments, we now explain the procedure of obtaining
the experimental results presented in this study.
The tables were produced by running the UPPAAL
executable from a terminal and measuring the exe-
cution time. Since both the SMC and randomized
methods may significantly vary in execution times
among different replicas of the same experiment,
the data shown for these methods in each cell of
Tables 4, 6-10 is the average of 100 runs. There-
fore, an exact reproduction of the tables is very
unlikely. Table 5 is an exception where each cell
constitutes a single run. For symbolic, determin-
istic algorithms we perform only 1 execution.

While the UppAaAL GUI automatically takes
care of passing necessary instructions to the engine
based on selected options, directly running the
engine executable accepts a number of arguments
that will determine which methods and under
which settings will be executed. The engine exe-
cutable is named verifyta and is contained in
the bin folder of the UPPAAL release. All of the
possible arguments can be viewed in the help
menu accessible by running the executable with -h
argument. The usage of the engine is the follow-
ing: verifyta [OPTION]... MODEL QUERY, where
OPTION is a space separated list of arguments
and MODEL is a path to the model file. QUERY is
an optional argument specifying the path to the
query file; however, the necessary query is already
specified inside each model file in github and there-
fore no query files are provided. We now provide
the arguments necessary to re-run the experiments
from this study.

Selecting the search order (BFS, DFS or
RDFS) for symbolic methods is determined by the
-0 arg where arg is one of the following:

e 0: BFS (Breadth First Search) (Default)
e 1: DFS (Depth First Search)
e 2: RDFS (Random Depth First Search)

To select the randomized state space explo-
ration it is necessary to specify the exploration
type with --exploration arg where arg is:

¢ 0: Exhaustive (Symbolic) (Default)
¢ 1: Randomized (Concrete)

Altering the randomized heuristic is achieved
with --rand-heur arg where arg is:

0: RET (Random Enabled Transition) (Default)
1: RLC (Random Least Coverage)

2: RLC-A (Random Least Coverage Acc.)

4: SEM (Naive Semantic Exploration)

The depth of the random walks and the
timeout for randomized exploration is controlled
with --rdepth arg and --rtimeout arg argu-
ments, respectively, where arg is a positive integer.
Finally, to enable generation of the diagnostic
trace, pass the -t arg argument with arg being:

® 0: Some (first trace found)
® 1: Shortest
® 2: Fastest

The procedure of running experiments on dif-
ferent platforms (Linux/MacOS/Windows) is the
same in regards to the argument usage. Here
are two example commands for running experi-
ments on Linux, assuming the engine executable
verifyta and the model being in the same folder:

® . /verifyta -o 2 model.xml
Runs RDFS on “model.xml”.
e . /verifyta --exploration 1 --rand-heur 4
--rdepth 1000 model.xml
Runs SEM with a fixed exploration depth of
1000 on “model.xml”.
e . /verifyta --exploration 1 --rand-heur 0
--rtimeout 3600 -t 1 model.xml
Runs RET with 1 hour timeout, searching for
the "shortest" trace in “model.xml”.

In order to use SMC methods, it is necessary to
verify SMC specific queries [17]. The models with
those queries are available at github in the folders
with "SMC" prefix. It is also possible to specify
options for SMC search (e.g. confidence interval
for probability estimation), however in this study
we use SMC only for simulation until a single
counterexample trace is found and thus no options
are required.

Figure 7 can be reproduced by running RET-
S method on the Herschel-Planck model with f =
75% and a timeout of 20 minutes and plotting the
output data from the UPPAAL engine. Each time
a shorter trace is found, a corresponding printout
is issued by the executable with the new, smaller
depth and the time it took to find that trace.

https://github.com/DEIS-Tools/uppaal-models/tree/master/CaseStudies/RandomizedReachability2021
https://github.com/DEIS-Tools/uppaal-models/tree/master/CaseStudies/RandomizedReachability2021

13

Springer Nature 2021 BTEX template

Table 4 Average time to detect non-schedulability in Herschel-Planck (in seconds). SMC search is limited to 160, 640 or
1280 cycles of 250ms. Each cell shows an average of 100 runs, each with a timeout of 48 hours.

| /(%) | SMC(160) | SMC(640) | SMC(1280) || SEM | RET | RLC[RLC-A |
68 3378.82 3656.0 2626.11 nf 14.1 | 14.35 14.48
69 6087.64 3258.13 3565.49 nf 1591 | 14.32 13.7
70 19408.04 | 16875.89 24322.69 nf 17.59 | 14.47| 14.77
71 85837.23 nf nf nf 22.54 | 16.56 16.75
72 nf nf nf nf 27.81 | 18.42 18.96
73 nf nf nf nf 31.56 | 20.66 20.68
74 nf nf nf nf 52.53 | 38.08 40.31
75 nf nf nf nf 72.16 | 61.98 68.35
76 nf nf nf nf 83.12 | 328.03 | 327.32
77 nf nf nf nf 375.08 nf nf
78 nf nf nf nf| 1155.50 nf nf
79 nf nf nf nf| 2009.01 nf nf
80 nf nf nf nf | 11194.43 nf nf
81 nf nf nf nf nf nf nf

6 New Results on
Herschel-Planck

According to the previous results on Herschel-
Planck model [11], symbolic MC confirmed
schedulability for f = SCEL > 90%. How-
ever, symbolic MC cannot be used for disproving
schedulability due to over-approximate analysis
of automata with stopwatches, used to encode
preemption. Thus, SMC was used to generate con-
crete counterexamples, disproving schedulability
for f < 71%. For the rest of f € (71%,90%)
both symbolic and statistical MC were inconclu-
sive either due to over-approximation or due to
burden in computation time, respectively.

In our experiments we compare SMC to our
randomized reachability analysis techniques in

Table 5 Trace length comparison.

£(%) | RET | RET-S Timeout
68 6882 560 1h
69 7619 568 1h
70 8285 572 1h
71 10411 570 1h
72 12394 571 1h
73 15937 578 1h
74 26605 1549 1h
75 41003 1546 1h
76 40154 1529 1h
7 97258 1536 1h
78 119939 1540 5h
79 129387 1536 5h
80 145493 6455 20h

an attempt to detect non-schedulability in the
Herschel-Planck model with varying execution
times in the interval of [f - WCET, WCET]. The
results are shown in Table 4 with each test case
given 48 hours. As the f value gets higher we see
the expected growth in computational demands
with f = 71% requiring just under 24 hours
for SMC to disprove schedulability, confirming
results of [11]. On the other hand, 3 out of 4
of our randomized heuristics were able to detect
an error for the same setting of f = 71% in
less than 23 seconds, improving on performance
of SMC by three orders of magnitude. Further-
more, the RET heuristic appeared to give the best
results, witnessing unschedulability for values of
f up to and including 80%. We have also tried
running longer experiments of up to 7 days for
f = 81%, but no errors were discovered which

T
35%103 | AD
30%103 |
25%103 |- &

20%103 |

Trace length

15+103 -

10%103 -

. "qg L]
ﬁ/ 12 N 7 — ——— -
X F4

P—ro—t t T Ar

0 200 400 600 800 1000
Time (in sec)

Fig. 7 10 runs of RET-S for Herschel with f = 75%.

Springer Nature 2021 BTEX template

Table 6 Average time of 100 runs to find target state in stopwatch automata models, with a timeout of 2 hours for each

run. Symbolic MC techniques provide potentially spurious traces.

[Model | #loc | BFS | DFS | RDFS || SMC [[SEM [RET | RLC | RLC-A |
IMAOptim-0 8810.09| 01| 0.07| 0.04| 007 01| 0.1 0.08
IMAOptim-1 8810.21| 0.2| 0.08{ 0.05| 0.05| 0.08| 0.08 0.06
IMAOptim-2 8810.21| 0.26| 0.09| 0.06| 0.08| 0.11| 0.11 0.1
md5-jop 594 | 0.25| 10.8| 6.53|| n/a|| 0.15| 0.18| 0.18 0.12
md5-hvmimp | 476 | 0.41 | 0.85| 0.49| n/a 0.1] 0.14| 0.14 0.09
md5-hvmexp | 11901 | oom | oom | oom || n/a || 14.17 | 19.85 | 20.18 8.71
MP-jop 3711 0.39| 0.14| 0.12| n/a|l 0.08| 0.12| 0.12 0.09
MP-hvmimp 3711 0.35| 0.14| 0.12| n/a|l 0.08| 0.12| 0.12 0.09
MP-hvmexp | 4388 | oom | oom | oom || n/a || 13.49|22.95 | 21.99 8.59
simplerts-opt 409 | oom | oom | oom || n/a|| 2.43| 1.48 nf nf

hints at the possibility of the Herschel-Planck sys-
tem being schedulable for f > 80%. The SEM
heuristic turned out to be the least efficient one,
failing to discover any errors, which is likely due
to the exponentially small probability of hitting
the “right” time windows with the chosen delays.
Overall, these experiments showcase the strength
of the randomized reachability analysis being fit
as a part of an efficient development process that
speeds up falsification of models.

Once a trace leading to an error is discov-
ered, it might be in the interest of a developer
to analyze it to find the cause for the error. The
trace, however, can be arbitrarily long, especially
for larger systems, making its analysis difficult in
practice. In our next experiment we look at the
average length of traces found for the Herschel-
Planck system and compare the RET heuristic
from experiments in Table 4 against the version
of RET with the shortest trace option enabled -
RET-S. In order for a non-exhaustive exploration
of RET-S to terminate, we specify the timeout
value and increase it w.r.t. to the average time
required by RET to find an error. The results are
shown in Table 5. With the given timeout, RET-S
shortens the length of the trace by a factor of 12 at
minimum. Note that for f € [75%, 79%)] the length
of the shortest discovered trace is approximately
the same — just under 1600 — while the effort to
discover such trace is roughly proportional to the
average time to detect the first trace (as shown in
Table 4).

The exact value of the timeout has to be
decided on by the user which may not be an
easy parameter to estimate in the setting of ran-
domized and unpredictable exploration. To better

understand how RET-S behaves, we plot 10 runs
of RET-S for the Herschel-Planck system with
f = 75% in Figure 7. In average it took 263.14
seconds to find a trace of sub 1600 steps, while the
longest run took 970 seconds.

7 More Schedulability

As already stated, application of symbolic tech-
niques to stopwatch models may provide spuri-
ous traces due to over-approximate analysis of
UprpPaAL. If the target state in these models is
potentially reachable, we can use SMC to gen-
erate concrete and exact traces witnessing the
reachability of the goal state. However, SMC can
only be applied to systems with broadcast chan-
nels as required by the stochastic semantics SMC
operates on. In stopwatch models that use hand-
shake channels, our randomized methods become
the only solution that can perform a more exact
reachability analysis.

We consider more schedulability systems mod-
elled as stopwatch automata. Table 6 shows
experiments for two different sets of schedulabil-
ity problems: ARINC-653 partition scheduling of
integrated modular avionics systems [21] (denoted
as IMAOptim) and Java bytecode systems, orig-
inating from TetaSARTS project [22], that are
encoded as networks of automata and represent
the original layered structure of Java bytecode
systems. Our randomized methods discover the
target state within 20 seconds even for a huge sys-
tem with almost 12 thousands of locations, where
other techniques either are not applicable or run
out of memory.

15

Springer Nature 2021 BTEX template

Table 7 Gossiping Girls with 8 nodes. Each cell represents the average time of 100 runs in seconds, with each run limited

to 2 hours. Searching for a state with all secrets shared within a certain time.

Model BFS DFS | RDFS SEM RET RLC | RLC-A
Gosgirls-1 oom oom | 697.13 nf 0.39 | 6949.95 nf
Gosgirls-2 oom oom 0.02 nf 0.04 0.04 0.04
Gosgirls-3 oom oom 44.49 nf 0.02 0.02 0.09
Gosgirls-4 oom oom 28.35 nf 0.03 0.03 nf
Gosgirls-5 oom oom | 229.98 nf 0.02 0.02 0.02
Gosgirls-6 oom oom 64.00 nf 3.71 167.44 | 1530.99
Gosgirls-7 oom oom 55.61 nf 0.17 15.16 15.6
Gosgirls-8 oom oom 13.96 nf 0.04 0.03 0.03
Gosgirls-9 oom oom 2.08 nf 0.08 0.07 0.08
Gosgirls-10 oom oom | 598.64 nf 0.24 1.72 nf

Table 8 Gossiping Girls with 6 nodes. Each cell represents the average time of 100 runs in seconds, with each run limited

to 2 hours. Searching for a particular configuration of secrets known.

Model BFS DFS RDFS SEM RET RLC | RLC-A
Gosgirls-1 16.98 oom oom 2.17 1.35 1.60 0.23
Gosgirls-2 0.04 oom 360.43 0.04 0.04 0.04 0.04
Gosgirls-3 77.96 oom oom nf 1.44 0.19 0.10
Gosgirls-4 oom oom oom nf 0.03 0.02 nf
Gosgirls-5 oom oom oom nf 0.02 0.02 0.02
Gosgirls-6 oom | 244.66 | 2596.62 5.92 7.10 nf nf
Gosgirls-7 oom oom oom nf 0.14 75.44 | 141.20
Gosgirls-8 32.63 oom oom nf 0.11 3.24 | 505.99
Gosgirls-9 oom oom 199.77 0.10 13.04 3.65 2.07
Gosgirls-10 oom oom 209.36 nf 0.02 0.03 0.04

8 Gossiping Girls

As claimed earlier, the randomized reachability
analysis can serve as a useful tool particularly for
an efficient development process. It can be used
early in the development, as well as in late stages,
for a quick falsification of models, i.e. discovery of
safety violations as reachability of error states.
To test the efficiency of our randomized meth-
ods and challenge them with different model devel-
opment styles, we look at models of the same
problem created by different developers. Specifi-
cally, we consider the Gossiping Girls problem,
where a number of girls n each know a distinct
secret and wish to share it with the rest of the
girls. They can do so by calling each other and
exchanging either only their initial or all of cur-
rently known secrets. The girls are organized as
a total graph, allowing them to talk with each
other concurrently, but with a maximum of 2 girls
per call. Some variations of the problem have spe-
cific time constraints on the duration of the call

or exhibit a different secret exchange pattern, but
all with the same final goal of all the girls dis-
covering all of the secrets. This is a combinatorial
problem with each girl having a string of n bits
which can at most take 2™ values. For a total of n
girQIS this amounts to a string of n? with at most
2™ values. This makes it an incredibly hard com-
binatorial problem which, when scaled up, quickly
exposes the limits of symbolic model-checking due
to the state space explosion problem.

We have gathered 10 models of the Gossiping
Girls problem made by Master’s thesis students
as the final assignment for the course on model-
checking at Aalborg University in Denmark. These
students represent potential future model develop-
ers and we use their model to further experiment
on applicability of the randomized methods. The
implementation details vary from model to model,
including timing constraints and secret exchange
patterns. We leave the models unchanged and only

Springer Nature 2021 IXTEX template

Table 9 Average time of 100 runs in seconds to find target state in Timed Automata within 2 hours per run.

| Model | BFS| DFS|[RDFS] SEM| RET| RLC|RLC-A]
csma-cd-20N 20.2 oom 0.02 0.03 0.07 0.06 0.21
csma-cd-22N 37.48 oom oom 0.03 0.08 0.08 0.31
csma-cd-25N 91.0 oom oom 0.05 0.09 0.1 0.55
csma-cd-30N 313.54 oom oom 0.05 0.12 0.19 1.43
csma-cd-50N oom oom oom 0.46 0.84 1.19 15.29
Fischer-10N 0.9 22.84 4.3 0.04 0.05 1.21 nf
Fischer-15N 8.35| 6037.63 | 9038.96 0.09 0.09 5.06 nf
Fischer-20N 72.61 oom oom 0.3 0.28 17.28 nf
Fischer-25N 452.45 oom oom 0.64 0.73 36.93 nf
Fischer-50N oom oom 90.01 21.78 23.79 233.67 nf
FischerME-10N 7.15 0.14 0.02 0.01 0.02 0.01 0.02
FischerME-15N oom 11.45 0.05 0.04 0.04 0.03 0.16
FischerME-20N oom 970.33 0.4 0.11 0.09 0.05 0.04
FischerME-25N oom oom 83.29 0.25 0.21 0.08 0.07
FischerME-50N oom oom 174.32 14.87 15.26 0.49 4.04
LE-Chan-3N 0.03 0.35 0.04 0.01 0.01 0.01 0.01
LE-Chan-4N oom oom 107.7 0.95 0.54 4.36 0.07
LE-Chan-5N oom oom | 1167.41 53.21 31.38 102.08 nf
LE-Hops-3N 0.02 0.02 0.02 0.01 0.01 0.01 0.01
LE-Hops-4N oom oom oom 49.40 14.57 428.96 | 1588.33
LE-Hops-5N oom oom | 1108.15 63.44 35.15 36.49 49.00
Milner-N100 0.45 0.16 2.72 nf 0.11 0.11 0.12
Milner-N500 44.44 10.56 | 1619.75 nf 1.19 1.2 1.43
Milner-N1000 | 488.41 110.35 | 36455.73 nf 4.44 4.45 4.59
Train-200N oom 5.64 6.06 5.91 5.4 | 16699.98 nf
Train-300N oom 28.19 30.28 25.62 26.53 nf nf
Train-400N oom 85.22 90.66 67.91 70.87 nf nf
Train-500N oom 210.89 223.13 181.99 188.9 nf nf
Train-1000N nf | 3461.17 | 3542.08 || 2192.12 | 2541.57 nf nf
Train-2000N nf | 71286.92 oom || 19229.02 | 23233.21 nf nf

scale them up to a certain amount of nodes to
challenge both symbolic and randomized methods.

We first experiment on the models scaled up
to 8 girls and look for a state with of all the girls
having exchanged their secrets, while bounded
by a certain global time constraint. The results
are shown in Table 7 where each cell represents
the average time of 100 runs, with the timeout
of 2 hours for each run. For 9 out of 10 of the
models our randomized heuristic RET shows a
massive improvement in performance compared
to symbolic methods, whereas in 1 model the
performance is on the same level. Since the prob-
lem is time constrained, the worst performance
is that of SEM heuristic which fails to find the
target state due to an inefficient way of select-
ing delays. Importantly, for some models some of

the RDFS runs were “lucky” to discover the target
state almost immediately, while other “unlucky”
tries instead ran out of memory (oom). The oom
attempts of RDFS contribute to the performance
by noticeably dragging up the average time to find
the goal state. Another important factor is mem-
ory: unlike symbolic methods, that are given 16GB
of memory, our randomized techniques do not run
out of memory as its usage is constant w.r.t to the
size of the model and amounts to at most 14MB
for any of the heuristics for this set of experiments.

Discovery of the state where all the secrets are
known is arguably an easy target as such state
will eventually always appear as we traverse the
state space. This also explains why RDFS was
sometimes “lucky” to detect the searched state
before it ran out of memory. We now experiment

17

Springer Nature 2021 BTEX template

Table 10 Average time of 100 runs in seconds to find the target state in SWA models of the MCSmartOS research
operating system with 1 hour timeout per run. The numbers in italic represent cases where some of the experiments have
not produced any results (within 1 hour) and are excluded from that average. The suffix -1k represents randomized

methods limited to 1000 depth. Symbolic MC techniques provide potentially spurious traces.

[Model [BFS| DFS|RDFS][SEM| RET| RLC |[SEM-1k [RET-1k [RLC-1k]
OS-4T2R-Q1| 3.75] 4.13] 0.81[492.77] 326.49[1,161.65 435] 347 954
OS-4T2R-Q2| 13.02| 4.14| 0.46| 160.85| 184.23| 280.97| 420 1.85| 1.99
OS-4T2R-Q3| 12.90| 3.99| 0.45| 222.72| 158.55| 250.33 291| 146| 154
OS-4T2R-Q4 | 434 325| 0.27| 54.34| 4549| 89.87 L1 072] 0.70
OS-5T3R-QL | 63.32|550.49 | 33.12 || 1,571.20 | 1,428.50 | 1,273.75 || 69.47| 49.69| 85.56
0S-5T3R-Q2 | 337.89 | 550.74 | 20.58 || 1,708.53 | 1,360.02 | 1,824.89 || ~ 99.94| 47.53| 79.29
0S-5T3R-Q3 | 337.16 | 368.22 | 18.08 || 1,504.52 | 1,575.52 | 1,370.58 || 94.31| 42.90| 76.22
OS-5T3R-Q4 | 73.08|157.79 | 8.63 | 942.57 | 1,074.10 | 1,314.6/ | 28.81| 11.85| 27.68

with searching for a particular configuration of
secrets in models with 6 girls and show results
in Table 8. Concretely, we divide the 6 girls into
two clusters of 2 and 4 girls, and search for a
state where each girl knows all the secrets of the
other girls in the same cluster, but none from the
other cluster. Such a state occurs less often in the
state space and is easy to miss, making it a more
challenging problem; hence, only 6 girls are con-
sidered. Unlike in the previous experiments, the
most efficient symbolic search strategy is different
for each individual model due to the variance in
model implementations. The randomized methods
appear largely superior in almost all cases, with
the RET heuristic being the most consistent and
efficient across all the models. Note that even for 6
girls in a lot of the cases symbolic techniques still
run out of memory, whereas our random methods
use less than 15MB.

9 Scalability Experiments

We further investigate the efficiency of our ran-
domized methods on a set of standard UPPAAL
timed automata models. The models are scaled up
in order to challenge both symbolic and random-
ized techniques and the data are provided in Table
9. The results are truly impressive — randomized
methods perform up to 4 orders of magnitude
faster and scale significantly better.

Even though the SEM heuristic shows the best
performance on many models, its inefficient way
of selecting delays causes it to completely miss
target states on some models as demonstrated by
all of the experiments in this study. Moreover,

due to under-approximation, it is possible to con-
struct “evil” examples for any heuristic, rendering
it inefficient. Therefore, we make all of the heuris-
tics available in UPPAAL and provide a discussion
on strengths and limitations of the randomized
reachability analysis in Section 11.

10 Operating System models

To further validate the strengths and weaknesses
of our proposed methods, we perform experiments
on a large model of a research operating system
MCSmartOS [23] which is based on a micro-kernel
architecture and provides a set of features to the
higher system layers. The UPPAAL models for the
operating system have been developed by [24] as
a network of Stopwatch Automata (to model pre-
emption). The models are limited to include a
feature set consisting of preemptive multitasking,
priority-driven scheduling, task synchronization,
resource management, and time management. For
more details, including the models themselves, we
refer the interested reader to the mentioned paper.

Running symbolic and randomized methods
produces the results shown in Table 10. SMC is
not applicable due to presence of handshake com-
munication between the components and RLC-
ACC is not included in the Table as it produced
no results in given time. For larger models, e.g.
with 5 tasks and 3 resources (5T3R), randomized
methods sometimes fail to discover the target state
within the time budget (denoted with italic font);
such runs are excluded from the average, indicat-
ing only the potential best-case average. Overall,
the performance of our randomized methods is sig-
nificantly worse than that of symbolic methods,

Springer Nature 2021 BTEX template

especially of a clearly dominant RDFS. We assume
two potential reasons for that: (1) spurious traces
of SWA automata that are found quickly, but do
not exist in the actual state space, and (2) the
randomized methods stumbling upon combination
locks that we describe in Section 11. In the first
case (1) and similarly to Section 7, our methods
yield concrete and non-spurious traces, guaran-
teeing their existence in the model. To improve
against potential combination locks (2), we per-
form experiments with randomized methods lim-
ited to a predefined depth of a 1000, denoting each
heuristic with a suffix -1k. This greatly increases
performance and now all experiments find the goal
state. However, the performance is still worse than
that of symbolic counterparts. Randomized meth-
ods are clearly not a panacea and we now discuss
their limitations.

11 Strengths and limitations

In this section we elaborate on limitations and
strengths of our randomized reachability analysis
that we have observed during various phases of
experiments. Note that the list may not be com-
plete, but should give a good idea on expectations
when using methods.

“Hitting” exact delay

One of the main weaknesses for all of the pre-
sented heuristics are models where a “wrong” delay
choice in one state influences the availability of
transitions in the following steps. Consider the
automaton in Figure 8 that has two clocks - x
and y. Regardless of the previous delay choices,
the maximum possible delay at location Mid will
always be exactly 1 due to update y=0 and invari-
ant y<=1. Since the transition leading to the Goal
requires clock x € [3; 4] (x>=3 && x <= 4), it is
obvious that the delay choice made at location
Init must be in range [2; 4] for the Goal to be
discoverable.

However, none of our heuristics are able to
deduce this information before getting to the
location Mid. The probability for RET, RLC or
RLC-ACC to detect Goal in a single run then
amounts to & - 0.2 - ﬁ = 0.364%, where the
first fraction comes from only 1 out of 11 random
walks being allowed to do a uniform delay choice,
but only at a 20% probability. This would require

Init -0 Mid Goal
Y= @& x>=3&&x<=4
©0—0O

y<=1

x<=10

Fig. 8 Timed Automaton model of a difficult case for any
heuristic.

an average of 275 random walks to detect the goal.
For SEM this probability constitutes 20% as each
random walk is guaranteed to perform a uniform
choice of delay; nonetheless, with large possible
delay value intervals and potentially large number
of such choices on the way, the probability to dis-
cover the target state can become so small that it
will be practically infeasible. In such cases, run-
ning symbolic methods with sufficient memory is
likely to detect the goal state faster.

This indicates that the way of modelling the
problem can severely affect the efficiency of the
methods to find concrete witnessing traces. We
believe this can be a reason why different mod-
els in Table 8 have been successfully verified
by seemingly random methods (both symbolic
and concrete), without any of the methods being
clearly dominant.

In order to maximize the performance of ran-
domized methods one should focus on creating
models such that the invariants on the location
would not be able to limit time progression that
disallows delaying “enough” to enable an edge. An
easy solution for Figure 8 would be to introduce
an extra edge from Init to Mid, such that the
allowed ranges for clock x would be [0; 2) on one
and (4; 10] on the other edge. This would reduce
the problem to selecting the right combination
of delaying either LB or UB, which is what our
randomized heuristics are designed to be good at.

Combination locks

The general disadvantage of randomized and
under-approximate methods is their weakness to
combination locks - cases where only a particular
sequence of delays and transitions leads to the tar-
get state, while any deviation from that sequence
potentially resets the whole progress. Storing no
passed states means that the probability of each
separate random walk to detect the goal state does
not increase over time.

A hard combination lock will typically require
not only a consistently accurate choice of delays

19

Springer Nature 2021 BTEX template

(as described above) and/or transitions, but also
a “correct” configuration of discrete variables,
enabling transitions that lead to the target state.
Achieving such “correct” configuration of discrete
variables can in itself be considered a combination
lock, and so on. In such cases, our randomized
methods will be easily surpassed by symbolic
methods, as long as sufficient amount of memory
is provided.

Depth of exploration

Just like with any other method, limiting the
depth of exploration significantly reduces resource
demands for verification. This is particularly rele-
vant for randomized heuristics as they do not store
passed states.

The main advantage of our methods lays in
conducting large amounts of state space traversals
in a short time, such that even the very unlikely
events eventually are discovered. This is likely
the main reason why the simplest heuristics (like
SEM) often show surprisingly good performance
— they are much cheaper and therefore can be
executed more times in the same time period.

In large cyclic systems, randomized methods
suffer from spending a substantial amount of time
in unpromising parts of the state space, e.g. after
some “wrong” choice was made that prevents the
discovery of the target state. Iterative deepening
of the search, described in Section 3, is a par-
tial solution to this problem that lets the model
be explored with limited depth of the search
before committing to long and demanding random
walks. An easy way to improve the performance
of randomized methods for large systems is to
specify a rough (over-approximated) estimate of
the search depth. Such an estimate could come
from the depth of previously detected errors dur-
ing iterative model development. In many of our
experiments we have observed the performance
benefit of specifying an estimate of the search
depth as can be seen in the results of Table 10.
We also note that even though it is (currently)
not possible to directly limit the search depth for
symbolic methods in UPPAAL, one may use a mod-
elling trick e.g. a local step counter or an extra
component that halts the model after the desired
amount of steps.

We emphasize that our randomized reachabil-
ity methods should be used as a supplemental

method to symbolic verification and as a con-
venient tool for quick checking of the model’s
intended behavior. The advantage of our methods
is most prominent for models with a very large
state space where the potential benefits of sav-
ing time and memory are the highest or where
traditional symbolic methods do not terminate.

There are models where detection of target
states can be practically nearly infeasible for our
methods. However, we believe that such “difficult”
models are not frequent in practice and that our
non-uniform sampling of the automata language
is “guided” towards safety violation states that are
often modelled to be at LB or UB of transition
availability ranges.

12 Conclusion

We have presented a new method of randomized
reachability analysis in the domain of model-
based verification. The method excels at detec-
tion of safety violation states, by means of quick
and lightweight random walks through the sys-
tem. Randomized reachability analysis explores
the state space in an under-approximate manner
and can only conclude on reachability if the tar-
get state is discovered. However, in many cases
this method significantly outperforms other exist-
ing techniques at reachability checking. Unfortu-
nately, our randomized methods are not a panacea
and for some models reachability checking may be
impracticable due to e.g. combination locks. Ran-
domized reachability analysis should therefore be
treated as a very useful addition to the process of
model development: it provides an efficient way of
checking models for potential bugs or violations
during the development and can be followed by
exhaustive and expensive symbolic verification at
the very end. The randomized method also sup-
ports the search for either shorter or faster trace
to the target state, which improves the process of
debugging the model. The randomized reachabil-
ity analysis is implemented and made available for
use in the model checker UPPAAL.

To validate the efficiency of our method, we
have performed extensive experiments on mod-
els of varying size and origin. The results are
extremely encouraging: randomized reachability
analysis discovers safety violations up to several
orders of magnitude faster. In particular, a case
that could previously be analyzed by SMC in

Springer Nature 2021 BTEX template

23 hours now only takes 23 seconds. Moreover,
our randomized methods discover traces to target
states in cases that were previously intractable by
any of the existing techniques either due to state
space explosion or inconclusiveness in verification
of stopwatch models.

13 Future Work

Further investigations into tokenized, coverage-
based and guided methods can be done to improve
the efficiency of the method. Some combinations
of static analysis of the models with either fixed
or dynamic look-ahead for the random walk could
result in better performance of the method.

One future goal is to perform a more thorough
and independent user evaluation of the bene-
fits of the randomized reachability analysis. This
could indicate the need for more parameters to be
manually set by the user, such as custom delay
probability distribution, or could highlight other
areas for improvement of randomized methods.

Even though heuristics like RET aim at the
equal probability of traversing transition of a cur-
rent state, by disregarding “width” of guards, they
give no guarantees regarding the uniformity of the
exploration with respect to the language inclusion
measurement. This, however, has been demon-
strated possible by [25] and could be an interesting
direction for the future work as to guide the search
towards the least explored areas of the state space
as a mean of discovering the target states hidden
behind combination locks.

Automatic sanity checks is another improve-
ment that can noticeably enhance the user expe-
rience and aid during model development. An
implementation [26] for UPPAAL of such sanity
checks has been undertaken as a master thesis
project [27] in the Formal Methods & Tools group
at University of Twente. This report demonstrates
the usefulness of such sanity checks and high-
lights the need for quick feedback to the tool user.
Our randomized method is highly suitable for this
purpose.

14 Acknowledgments

This project is supported by the ERC Advanced
Grant Project: LASSO: Learning, Analysis, Syn-
thesis and Optimization of Cyber-Physical Sys-
tems, and by the Villum Investigator project

S408: Synthesis of Safe, Small, Secure and Opti-
mal Strategies for Cyber-Phyiscal Systems.

References

[1] Kiviriga, A., Larsen, K.G., Nyman, U.: Ran-
domized Refinement Checking of Timed I/0
Automata. In: Pang, J., Zhang, L. (eds.)
Dependable Software Engineering. Theories,
Tools, and Applications, pp. 70-88. Springer,
Cham (2020)

[2] Grosu, R., Smolka, S.A.: Monte Carlo Model
Checking. In: Halbwachs, N., Zuck, L.D.
(eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems, pp. 271-286.
Springer, Berlin, Heidelberg (2005)

[3] Behrmann, G., David, A., Larsen, K.G.: A
tutorial on uppaal. In: Formal Methods for
the Design of Real-time Systems, pp. 200-236
(2004). Springer

[4] Joseph, M., Pandya, P.: Finding Response
Times in a Real-Time System. The Com-
puter Journal 29(5), 390-395 (1986)
https://academic.oup.com/comjnl/article-
pdf/29/5/390/1314410/290390.pdf.
https://doi.org/10.1093/comjnl/29.5.390

[5] Burns, A.: Preemptive Priority-Based
Scheduling: An Appropriate FEngineering
Approach, pp. 225-248. Prentice-Hall, Inc.,
USA (1995)

[6] Boudjadar, A., David, A., Kim, J., Larsen,
K., Mikucionis, M., Nyman, U., Skou, A.:
Statistical and exact schedulability analysis
of hierarchical scheduling systems. Science
of Computer Programming 127, 103-130
(2016). https://doi.org/10.1016/j.scico.2016.
05.008

[7] Boudjadar, A., David, A., Kim, J., Larsen,
K., Mikucionis, M., Nyman, U., Skou, A.: A
reconfigurable framework for compositional
schedulability and power analysis of hier-
archical scheduling systems with frequency
scaling. Science of Computer Programming
113(3), 236-260 (2015). https://doi.org/10.
1016/j.scico.2015.10.003

https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/29/5/390/1314410/290390.pdf
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/29/5/390/1314410/290390.pdf
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1016/j.scico.2016.05.008
https://doi.org/10.1016/j.scico.2016.05.008
https://doi.org/10.1016/j.scico.2015.10.003
https://doi.org/10.1016/j.scico.2015.10.003

21

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

Springer Nature 2021 BTEX template

Brekling, A., Hansen, M.R., Madsen, J.:
Moves — a framework for modelling and ver-
ifying embedded systems. In: 2009 Interna-
tional Conference on Microelectronics - ICM,
pp. 149-152 (2009). https://doi.org,/10.1109/
ICM.2009.5418667

Mikucionis, M., Larsen, K.G., Rasmussen,
J.I., Nielsen, B., Skou, A., Palm, S.U., Peder-
sen, J.S., Hougaard, P.: Schedulability analy-
sis using uppaal: Herschel-planck case study.
In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verifica-
tion, and Validation, pp. 175-190. Springer,
Berlin, Heidelberg (2010)

David, A., Illum, J., Larsen, K.G., Skou,
A.: Model-based framework for schedulability
analysis using uppaal 4.1. Model-based design
for embedded systems 1(1), 93-119 (2009)

David, A., Larsen, K.G., Legay, A., Mikuéio-
nis, M.: Schedulability of Herschel-Planck
Revisited Using Statistical Model Checking.
In: Margaria, T., Steffen, B. (eds.) Leveraging
Applications of Formal Methods, Verification
and Validation. Applications and Case Stud-
ies, pp. 293-307. Springer, Berlin, Heidelberg
(2012)

Palm, S.: Herschel-planck acc asw: sizing,
timing and schedulability analysis. Technical
report, Tech. rep., Terma A/S (2006)

Cassez, F., Larsen, K.: The impressive power
of stopwatches. In: Palamidessi, C. (ed.)
CONCUR 2000 — Concurrency Theory, pp.
138-152. Springer, Berlin, Heidelberg (2000)

Fersman, E., Krcal, P., Pettersson, P., Yi, W.:
Task automata: Schedulability, decidability
and undecidability. Information and Compu-
tation 205(8), 1149-1172 (2007). https://doi.
org/10.1016/j.i¢.2007.01.009

Sen, K., Viswanathan, M., Agha, G.: Statisti-
cal Model Checking of Black-Box Probabilis-
tic Systems. In: Alur, R., Peled, D.A. (eds.)
Computer Aided Verification, pp. 202-215.
Springer, Berlin, Heidelberg (2004)

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Legay, A., Delahaye, B., Bensalem, S.: Sta-
tistical model checking: An overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B.,
Havelund, K., Lee, 1., Pace, G., Rosu, G.,
Sokolsky, O., Tillmann, N. (eds.) Runtime
Verification, pp. 122-135. Springer, Berlin,
Heidelberg (2010)

David, A., Larsen, K.G., Legay, A., Mikucio-
nis, M., Poulsen, D.B.: Uppaal SMC tutorial.
International Journal on Software Tools for
Technology Transfer 17(4), 397-415 (2015)

Alur, R., Dill, D.: The theory of timed
automata. In: de Bakker, J.W., Huizing,
C., de Roever, W.P., Rozenberg, G. (eds.)
Real-Time: Theory in Practice, pp. 45-73.
Springer, Berlin, Heidelberg (1992)

Behrmann, G., Larsen, K.G., Rasmussen,
J.I.: Priced timed automata: Algorithms and
applications. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) For-
mal Methods for Components and Objects,
pp. 162-182. Springer, Berlin, Heidelberg
(2005)

Larsen, K., Peled, D., Sedwards, S.: Memory-
Efficient Tactics for Randomized LTL Model
Checking. In: Paskevich, A., Wies, T.
(eds.) Verified Software. Theories, Tools, and
Experiments, pp. 152-169. Springer, Cham
(2017)

Han, Pujie and Zhai, Zhengjun and Nielsen,
Brian and Nyman, Ulrik: Model-based opti-
mization of arinc-653 partition scheduling.
International Journal on Software Tools for
Technology Transfer (2021). https://doi.org/
10.1007/s10009-020-00597-6

See Luckow, K., Bggholm, T., Thomsen,
B.: A Flexible Schedulability Analysis Tool
for SCJ Programs. http://people.cs.aau.dk/
“boegholm /tetasarts/. Accessed: 2021-05-07

Martins Gomes, R., Baunach, M., Batista
Ribeiro, L.: MCSmartOS: A Dependable
OS for Compositional Embedded Systems.
(2017). FoE-Tag des Field of Expertise
"Information, Communication and Comput-
ing" ; Conference date: 28-03-2017

https://doi.org/10.1109/ICM.2009.5418667
https://doi.org/10.1109/ICM.2009.5418667
https://doi.org/10.1016/j.ic.2007.01.009
https://doi.org/10.1016/j.ic.2007.01.009
https://doi.org/10.1007/s10009-020-00597-6
https://doi.org/10.1007/s10009-020-00597-6
http://people.cs.aau.dk/~boegholm/tetasarts/
http://people.cs.aau.dk/~boegholm/tetasarts/

[24]

[25]

[26]

[27]

Springer Nature 2021 BTEX template

Batista Ribeiro, L., Lorber, F., Nyman,
U., Larsen, K.G., Baunach, M.: A model-
ing concept for formal verification of os-
based compositional software. In: Currently
Under Review. UnderReview’22. Association
for Computing Machinery, New York, NY,
USA (2022)

Barbot, B., Basset, N., Beunardeau, M.,
Kwiatkowska, M.: Uniform sampling for
timed automata with application to lan-
guage inclusion measurement. In: Agha, G.,
Van Houdt, B. (eds.) Quantitative Evalua-
tion of Systems, pp. 175-190. Springer, Cham
(2016)

Onis, R.: UrPal. https://github.com/
utwente-fmt /UrPal. Accessed: 2021-05-18

Onis, R.: Does your model make sense?
: Automatic verification of timed systems
(2018). http://essay.utwente.nl/77031/

https://github.com/utwente-fmt/UrPal
https://github.com/utwente-fmt/UrPal
http://essay.utwente.nl/77031/

	Introduction
	Stopwatch Automata
	Randomized Reachability Analysis
	Other randomized methods investigated
	Choosing delay
	Random walk depth
	Shorter or Faster trace

	Usage in the tool Uppaal
	Experimental Setting
	Reproducibility

	New Results on Herschel-Planck
	More Schedulability
	Gossiping Girls
	Scalability Experiments
	Operating System models
	Strengths and limitations
	Conclusion
	Future Work
	Acknowledgments

