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Abstract
Verifying arithmetic circuits and most prominently multiplier circuits is an important problem which in practice is still
considered to be challenging. One of the currently most successful verification techniques relies on algebraic reasoning. In
this article, we present AMulet2, a fully automatic tool for verification of integer multipliers combining SAT solving and
computer algebra. Our tool models multipliers given as and-inverter graphs as a set of polynomials and applies preprocessing
techniques based on elimination theory of Gröbner bases. Finally, it uses a polynomial reduction algorithm to verify the
correctness of the given circuit. AMulet2 is a re-factorization and improved re-implementation of our previous verification
toolAMulet1 and cannot only be used as a stand-alone tool but also serves as a polynomial reasoning framework.We present
a novel XOR-based slicing approach and discuss improvements on the data structures including monomial sharing.

Keywords Circuit verification · Multipliers · Computer algebra · SAT solving · Gröbner basis · Proof certificates

1 Introduction

Formal verification of arithmetic circuits is important to pre-
vent issues like the infamous Pentium FDIV bug [37]. Up to
now, there have been many attempts to verify these circuits,
but even today, the problem of fully automatic verification of
arithmetic circuits, and especially multipliers, is still consid-
ered to be hard.

Methods based on decision diagrams [6] rely on manual
structural decomposition of themultiplier. Approaches based
on satisfiability checking (SAT) do not scale [3]. Recently,
progress has been made using theorem provers [39]. How-
ever, the multipliers have to be given as hierarchical SVL
netlists, which rely on preservation of information of the
circuits. For flattened gate-level multipliers, the currently
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most successful technique is based on algebraic reason-
ing [8,17,23,34,35]. In this line ofwork, the circuit ismodeled
as a set of polynomials that generate a Gröbner basis and the
specification is then checked to be implied by the circuit
polynomials using a polynomial reduction algorithm.

In our approach [23], we apply a combination of SAT solv-
ing and computer algebra. Certain parts of the multiplier, i.e.,
complex final stage adders that are generate-and-propagate
adders [36] are hard to verify using computer algebra, but are
easy to verify using SAT solvers [29]. Therefore, we apply
adder substitution [23] and replace complexfinal stage adders
by simple ripple-carry adders that can be verified using com-
puter algebra. The equivalence of the adders is verified using
SAT solvers. The correctness of the simplified multiplier is
shown using computer algebra [23].

This article presents our tool AMulet2, a successor
of AMulet1 [23,26]. The version history of AMulet is
depicted inTable 1.AMulet2 readsmultipliers given as and-
inverter graphs [30] and fully automatically applies adder
substitution and verifies the (simplified) circuit. However,
the verification process might not be error-free. In order to
validate the verification results algebraic proof certificates
that monitor the verification process can be generated in
AMulet2, which can be checked using, e.g., Pacheck [19].
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Table 1 Version history of AMulet

Version Reference Features

AMulet1.0 [23,26]

AMulet1.5 [15] improved adder substitution

AMulet2.0 [22] modular re-implementation

AMulet2.1 This article reduced memory usage

AMulet2 is a modular C++ re-implementation of
AMulet1 (while AMulet1 consists of a single C file).
AMulet2 is not only a stand-alone tool but also serves as a
reasoning framework, i.e., parts can easily be integrated into
different workflows. AMulet2 still provides the same func-
tionality as AMulet1, but with improved algorithms, based
on the same theory [17,23]. In this article, we focus on the
novelties of AMulet2.

This article extends and revises work presented in a tool
demonstration paper at TACAS’21 [22]. We extend the pre-
liminaries in Sect. 2 and give a self-contained introduction
to bit-level verification using computer algebra follow-
ing [23]. Additionally, we expand our discussion on design
decisions in AMulet2 and present our novel XOR-based
slicing approach in Sect. 3 in more detail. Section 4 dis-
cusses AMulet2.1, which improves the memory usage of
AMulet2.0 [22]. We further extend the experimental eval-
uation in Sect. 6.

2 Circuit verification using computer algebra

In this section, we introduce multiplier circuits and their
architectural details. We present the algebraic concepts that
are needed in the technique of automated circuit verification
using computer algebra and discuss adder substitution and
proof certificates.

2.1 Multiplier circuits

A digital circuit implements a logical function and computes
binary digital values, given binary values at the inputs. Mul-
tipliers are circuits that compute the product of two-input bit
vectors. The computation is typically realized by logic gates,
such as NOT, AND,OR, andXOR. The specification of a cir-
cuit is the desired relation between its inputs and outputs. A
circuit fulfills a specification if for all inputs it produces out-
puts that match this desired relation. The goal of verification
is to formally prove that the circuit fulfills its specification.

In this article, we consider gate-level integer multi-
pliers without latches with 2n input bits a0, . . . , an−1,
b0, . . . , bn−1 ∈ {0, 1} and 2n output bits s0, . . . , s2n−1 ∈
{0, 1}. If the circuit represents multiplication of unsigned
integers, the multiplier is correct if and only if for all inputs
the specification Un = 0 holds, where

Un = −
2n−1∑

i=0

2i si +
(n−1∑

i=0

2i ai

)(n−1∑

i=0

2i bi

)

If the circuit represents signed multiplication, we have to
take into account that the integers in the specification Sn are
represented using two’s complement. A signed multiplier is
correct if and only if for all inputs the specification Sn = 0
holds, where

Sn = −22n−1s2n−1 +
2n−2∑

i=0

2i si

−
(
−2n−1an−1 +

n−2∑

i=0

2i ai

)(
−2n−1bn−1 +

n−2∑

i=0

2i bi

)
.

A common representation of digital circuits is the encod-
ing as an and-inverter graph (AIG) [30]. An AIG is a directed
acyclic graph, which consists of two-input nodes represent-
ing logical conjunction. The edges may contain a marking
that indicates logical negation. The AIG usually contains
more nodes, than the gate-level representation, but has an
unequivocal syntax and semantics, and is very efficient to
manipulate. Since an AIG is a directed graph, we are able to
determine for each gate g in the circuit its input cone, i.e.,
the set of gates gi for which there exists a path from g to gi .

The space and time complexity of a multiplier depends on
its architecture. In general, a multiplier circuit can be divided
into three parts [36]. In the first component, partial product
generation (PPG), the partial products aib j for 0 ≤ i < n,
0 ≤ j < n, as contained in the specification, are generated.
This can for example be achieved by using simpleANDgates
or using a more complex Booth encoding [36].

In the second component, partial product accumulation
(PPA), the partial products are reduced to two layers bymulti-
operand addition using half adders (HA), full adders (FA),
and compressors. The well-known accumulation structures
are for example array or diagonal accumulation, Wallace
trees, or compressor trees [36].

In the final stage adder (FSA), the output of the circuit is
computed using an adder circuit. Generally, adder circuits
can be split into two groups: Either the carries are com-
puted alongside the sum bits or they are calculated before
the sums. Adders of the first group consist of a sequence
of half and full adders, giving them a simple but inefficient
structure. Examples are ripple-carry or carry-select adders.
In order to decrease the latency of carry computation, the
adder circuits of the second group compute the carry bits
alongside the sum bits using sequences of OR gates. They
are called generate-and-propagate (GP) adders. Examples
are carry-lookahead adders, Ladner-Fischer adders, Han-
Carlson adders, and Kogge–Stone adders [36].
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We call multipliers that can be fully decomposed into half
and full adders simple multipliers, all other architectures are
called complex multipliers.

2.2 Algebra

Let us now briefly summarize algebraic concepts. Our alge-
braic setting follows [9] and we assume 0 ∈ N.

• Let X denote the set of variables {x1, . . . , xl}. By Z[X ],
we denote the ring of polynomials in variables X with
coefficients in Z.

• A term τ = xd11 · · · xdll is a product of powers of variables
for di ∈ N. A monomial is a multiple of a term cτ with
c ∈ Z\{0} and a polynomial is a finite sum of monomials
with pairwise distinct terms.

• On the set of terms, an order ≤ is fixed such that for
all terms τ, σ1, σ2, it holds that 1 ≤ τ and further σ1 ≤
σ2 ⇒ τσ1 ≤ τσ2. One such order is the so-called lexi-
cographic term order, defined as follows. If the variables
of a polynomial are ordered x1 > x2 > . . . xl , then given
two distinct terms σ1 = xd11 · · · xdll , σ2 = xe11 · · · xell it
holds σ1 < σ2 if and only if there exists an index i with
d j = e j for all j < i , and di < ei .

• For a polynomial p = cτ + · · · , the largest term τ (w.r.t.
≤) is called the leading term lt(p) = τ . The leading
coefficient lc(p) = c and leading monomial lm(p) = cτ
are defined accordingly.

Definition 1 A set I �= {} ⊆ Z[X ] is called an ideal if
∀ p, q ∈ I : p+ q ∈ I and ∀ p ∈ Z[X ] ∀ q ∈ I : pq ∈ I . If
I ⊆ Z[X ] is an ideal, then a set P = {p1, . . . , pm} ⊆ Z[X ] is
called a basis of I if I = {q1 p1+· · ·+qm pm | q1, . . . , qm ∈
Z[X ]}. We say I is generated by P and write I = 〈P〉.

The theory ofD-Gröbner bases [2] offers a uniquedecision
procedure for the so-called ideal membership problem over
Z[X ], i.e., given q ∈ Z[X ] and a basis P = {p1, . . . , pm} ⊆
Z[X ], decide whether q belongs to the ideal generated by
P . We discuss in Sect. 2.3 why we choose the ring Z[X ],
instead of a polynomial ring where the coefficient domain is
a field, which would involve the standard theory of Gröbner
bases [7].

Let p, q, r ∈ Z[X ] and P ⊆ Z[X ]. Some facts about the
theory of D-Gröbner bases over Euclidean domains, such as
Z, are

• A basis P of an ideal I ⊆ Z[X ] is called a D-Gröbner
basis of I if and only if ∀q ∈ I ∃p ∈ P : lm(p) | lm(q).

• Every ideal of Z[X ] has a D-Gröbner basis, and there is
an algorithm [2, Thm 10.14] that, given an arbitrary basis
of an ideal, computes a D-Gröbner basis of it in finitely
many steps. It is based on repeated computation of so-

called S-polynomials spol and G-polynomials gpol. The
precise definition of spol and gpol is not important for
our application and thus is not included in this article.

• Wesayq D-reduces to r w.r.t. p if there exists amonomial
m′ in q with m′ = m lm(p) and r = q − mp. If m′ =
lm(q), we say top-D-reduction.

• The remainder r of the D-reduction of q by P is such that
q − r ∈ 〈P〉 and r is D-reduced w.r.t. P .
If r is calculated using only top-D-reductions, then we
say r is top-D-reduced w.r.t. P .

• (Cor. 10.12 in [2]) A set P ⊆ D[X ] is a D-Gröbner basis
of 〈P〉 if and only if for all pairs (p1, p2) ∈ P × P , the
remainder of D-reducing spol(p1, p2)w.r.t. P is zero and
gpol(p1, p2) top-D-reduces to zero w.r.t. P .

• (Thm. 10.23 in [2]) Let P be a D-Gröbner basis. Then,
q ∈ 〈P〉 ⇔ q D-reduces to 0 w.r.t. P.

In general, the construction of D-Gröbner basis is very
expensive. However, there exist some results which state
when the computation of spol and gpol is superfluous when
computing a D-Gröbner basis. We will heavily use the fol-
lowing lemma in our application.

Lemma 1 (Thm. 11 in [31]) Let p1, p2 ∈ Z[X ] be such that
lcm(lt(p1), lt(p2)) = lt(p1) lt(p2). If lc(p1) | lc(p2) then
spol(p1, p2) and gpol(p1, p2) top-D-reduce to zero.

2.3 Circuit verification using computer algebra

As discussed previously let a0, . . . , an−1, b0, . . . , bn−1,
s0, . . . , s2n−1 ∈ {0, 1} denote the input and output bits of the
given multiplier and let l1, . . . , lk ∈ {0, 1} denote the inter-
nal AIG nodes. Hence, X = {a0, . . . , an−1, b0, . . . , bn−1,
l1, . . . , lk , s0, . . . , s2n−1}.

The semantics of each AIG node, cf. Fig. 1, implies a
polynomial relation among the input and output variables,
such as the following ones:

u = v ∧ w implies −u + vw = 0
u = v ∧ ¬w implies −u − vw + v = 0
u = ¬v ∧ ¬w implies −u + vw − v − w + 1 = 0

v w

u

u = v ∧ w

v

u

w

u = v ∧ ¬w

v w

u

u = ¬v ∧ ¬w

Fig. 1 Polynomial encodings implied by AIG nodes
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The polynomials are chosen such that the Boolean roots
of the polynomials are the solutions of the node constraints
and vice versa. Let G(C) ⊆ Z[X ] be the set of polyno-
mials that contains for each AIG node its corresponding
polynomial relation. All variables x ∈ X are Boolean and
we enforce this property by the set of Boolean value con-
straints B(X) = {x(1 − x) | x ∈ X} ⊆ Z[X ]. As the right
side of all polynomial equations is always zero, we write f
instead of f = 0.

The polynomials in G(C) are ordered according to a lex-
icographic order, based on a variable ordering such that the
output variable of a node is always greater than the inputs of
the gate [32]. This ordering is also called reverse topological
term ordering.

Definition 2 Let P ⊆ Z[X ]. If for a certain term order, all
leading terms of P only consist of at most a single variable
with exponent 1 and are unique and further lc(p) ∈ {−1, 1}
for all p ∈ P , then we say P has unique monic leading
terms (UMLT). Let X0(P) ⊆ X be the set of all variables
that do not occur as leading terms in P . We further define
B0(P) = B(X0(P)).

Example 1 The set P = {−x − y + 1,−y + z} ⊆ Z[x, y, z]
has UMLT for the lexicographic term order x > y > z.
Correspondingly, X0(P) = {z} and B0(P) = {−z2 + z}.

In the following, these X0(P) will represent inputs of a
circuit, and accordingly, B0(P) are the Boolean value con-
straints only on its inputs. Let J (C) = 〈G(C) ∪ B0(X)〉 ⊆
Z[X ] be the ideal generated by G(C) ∪ B0(X).

Additionally,we add the constant 2n to the ideal generators
of J (C), because this admits modular reasoning and allows
us to eliminate monomials with too large coefficients from
polynomials [23]. Adding constants is only possible inZ[X ].
If wewould choose the ringQ[X ] as our polynomial domain,
we are able to deduce from 2n ∈ J (C), that 1

2n 2
n = 1 ∈

J (C), thus making any verification attempt obsolete. In the
ringZ[X ], this deduction is not possible, because 1

2n /∈ Z[X ].
The circuit fulfills its specification if and only if we can

derive that L ∈ J (C) [23]. The following theorem shows
that we do not have to compute a D-Gröbner basis for J (C).

Theorem 1 (Thm. 5 of [23]) Let J (C) = 〈G(C) ∪ B0(C) ∪
{2n}〉 ⊆ Z[X ]. Then, G(C) ∪ B0(C) ∪ {2n} is a D-Gröbner
basis of J (C) w.r.t. to a fixed reverse topological term order-
ing.

Proof Since G(C) has UMLT, G(C) ∪ B0(C) ∪ {2n} has
UMLT and thus it holds by Lemma 1, top-D-reduction of
spol(p, q) and gpol(p, q) by {p, q} gives the remainder zero
for any choice p, q ∈ G(C) ∪ B0(C) ∪ {2n}.

Hence, the correctness of the circuit can be established by
D-reducing L by the polynomials G(C) ∪ B0(X) ∪ {2n} and

checking whether the result is zero. Because of the UMLT
property, D-reduction actually boils down to simple substi-
tutions of the leading terms.

The considered logical gates are functional, given values
of the inputs a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1}, all values
of l1, . . . , lk, s0, . . . , s2n−1 are either 0 or 1. Thus, we derive
that B(X) ⊆ J (C).

Hence, after each D-reduction step of L by a polynomial
g ∈ G(C),we reduce the result by B(X)∪{2n}, i.e., reduce all
exponents greater than one to one and reduce all monomials
with coefficients that are greater than 2n − 1. This step helps
to reduce the size of the intermediate reduction results.

If the final remainder r ofD-reducingL byG(C)∪B(X)∪
{2n} is not zero, we know that the circuit contains an error
and we are able to derive at least one concrete counter exam-
ple for which the circuit computes wrong results. By the
choice of the term order, r only contains input variables
a0, . . . , an−1, b0, . . . , bn−1, and none of them appears with
degree greater than one. Let m be a monomial of r with a
minimal number of variables, which includes the case where
m is constant. Since exponents are at most one, the set of
variables of monomials in r differ by at least one variable.

Now choose ai (b j ) to evaluate to 1 if and only if ai ∈
m (b j ∈ m). By this choice, all monomials of r except m
vanish (evaluate to zero). Thus, r evaluates to the (nonzero)
coefficient of m, contradicting the specification.

Variable Elimination Several experiments have shown that
simply reducing the specification by G(C) ∪ B(X) ∪ {2n}
leads to large intermediate results [17,33]. Hence, we elim-
inate variables in G(C) prior to reduction to yield a more
compact D-Gröbner basis [23]. In the preprocessing step, we
repeatedly select and remove variables v ∈ X \ X0 from
G(C). Let pv ∈ G(C) such that lt(pv) = v. Since G(C)

has UMLT and v /∈ X0, such a pv exists. All polynomials
g �= pv ∈ G(C) that contain v are being D-reduced by pv ,
thus only pv will contain v. Since v = lt(pv), we can safely
remove pv fromG(C)without violating the D-Gröbner basis
property [23].

Example 2 Let G(C) = {−x − y + 1,−y + z} ⊆ Z[x, y, z]
and we remove v, i.e., pv := −y+ z. D-reducing−x− y+1
by pv gives−x+z−1.We remove pv fromG(C) and obtain
G(C) = {−x − z + 1} ⊆ Z[x, z].

2.4 Adder Substitution

Certain parts of the multiplier, i.e., when the FSA is a
GP adder, are hard to verify using computer algebra, even
with prior variable elimination. In a GP adder with inputs
x0, . . . , xm, y0, . . . , ym, cin and outputs s′

0, . . . , s
′
m, cout the

output bits s′
i are calculated as s

′
i = pi⊕ci , with pi = xi⊕yi .

The carries ci are recursively generated using the equation
ci = (xi−1 ∧ yi−1) ∨ (ci−1 ∧ pi−1) with cm+1 = cout and
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c0 = cin . The precise derivation of the carries ci (recur-
sively, unrolled or mixed) depends on the architecture of the
adders, but is generally computed using sequences of OR
gates. These sequences of OR gates make the GP adders
hard to verify using the algebraic approach as the following
example shows.

Example 3 Let o = x1 ∨ x2 ∨ . . . ∨ xn represent a sequence
of n OR gates. Since o = x1 ∨ x2 ∨ . . . ∨ xn ⇔ ¬o =
¬x1∧¬x2∧. . .∧¬xn , we derive the corresponding algebraic
representation o = 1−(1−x1)(1−x2) . . . (1−xn) consisting
of 2n − 1 monomials.

In AMulet, we identify whether the FSA is a GP adder,
using the equations s′

i = pi ⊕ ci and pi = xi ⊕ yi . If we
detect that the FSA is a GP adder, we substitute the FSA by
a simple RC adder, which has the same inputs as the original
FSA. The first two stages, PPG and PPA, are not changed.We
generate a bit-level miter in conjunctive normal form (CNF)
to prove that the ripple-carry adder is equivalent to the GP
adder. The miter is verified by a SAT solver. However, if the
FSA is not a GP adder, we do not apply adder substitution.
After substitution, we verify the rewritten AIG in AMulet
using computer algebra.

2.5 Proof certificates

The verification process itselfmight not be error-free.A com-
mon technique to guarantee the correctness of the result is to
generate simple proof certificates, which monitor the steps
of the verification process and enable reproducing the proof.
These certificates canbe checkedby stand-aloneproof check-
ers.

Algebraic proof systems reason about polynomial equa-
tions. Given a set of polynomials G, the aim is to show
that an equation f = 0 is implied by G, i.e., f ∈ 〈G〉,
using a sequence of proof steps. In our application, f is
the specification L of a multiplier, and the polynomials gi
are the gate constraints G(C) and Boolean value constraints
B(X). AMulet2 supports the practical algebraic calculus
(PAC) [27], like AMulet1, but now also Nullstellensatz
proofs [1,21]. Examples for both formats are depicted in
Example 4.

PAC proofs consist of a sequence of steps that either
encode polynomial addition or multiplication. During proof
checking in, e.g., Pacheck [27], each proof step is checked
for correctness. Thus, PAC proofs allow the user to localize
possible errors. The Boolean value constraints are handled
implicitly, i.e., the proof checker internally calculates x · x =
x .

In the Nullstellensatz proof format, co-factors αi ∈ Z[X ]
are provided such that there exist β j ∈ Z[X ] with L =∑

gi∈G(C) αi gi + ∑
h j∈B(X) β j h j + γ 2n . This proof format

is very concise, as only the ordered list of co-factors αi , γ is

printed as a proof certificate. The Boolean value constraints
are treated implicitly during proof checking, thus it is not
necessary to provide co-factors β j . However, proof checking
consists of calculating one huge linear combination, making
it nearly impossible to locate a possible error in the certificate.

Example 4 Let z = x ∧ y, x = a ∧ b, and y = a ⊕ b, with
the specification z = 0. The algebraic encoding of the gates
is

1 -z+xy;
2 -x+ab;
3 -y+a+b-2ab;

A proof in PAC is as follows, using labels:

4 * 3, -ab, yab; //(-y+a+b-2ab)*(-ab)= yab
5 * 2, -y, xy-yab; //(-x+ab)*(-y)= xy-yab
6 + 4, 5, xy; //(yab)+(xy-yab)= xy
7 * 1, -1, z-xy; //(-z+xy)*(-1)= z-xy
8 + 6, 7, z; //(xy)+(z-xy)= z

A proof in Nullstellensatz is -1, -y, -ab. Because
(−1)(−z+ xy)− y(−x +ab)−ab(−y+a+b−2ab) = z,
after reducing all exponents.

3 AMULET2

We present the architecture of AMulet2 and discuss novel
optimizations. The published version of our tool AMulet2
including its artifact is available at [16]. The maintained ver-
sion is available at [18] and is published as open source under
the MIT license.

The architecture of AMulet2 is shown in Fig. 2. The
blue arrows outside the box reflect inputs and outputs of
AMulet2. The gray arrows inside the box depict the depen-
dencies of the individual modules within AMulet2.

In contrast to AMulet1, which consists of a single C
file, AMulet2 is split into components, which allows inte-
grating only parts in different workflows. For example, the
artifact [16] contains two demos, where (i) the Polynomial
Library is used for simple polynomial calculations and (ii)
the Polynomial Solver is used for verification of multipliers
that are not given as AIGs.

AMulet2 is implemented in C++11 and consists of
around 3800 lines of code. It relies on the AIGER library [5]
to process the given AIG and the GMP library [11] to repre-
sent large integers.

AMulet2 supports three modes, substitute, verify, and
certify. The mode of AMulet2 is triggered by the command
line input, see also the usage demo in Sect. 5. In substitution
mode, AMulet2 parses the AIG, allocates the internal gate
structure, and invokes the substitution engine for adder sub-
stitution. In verification mode, AMulet2 reads the AIG and
initializes the gate structure. Afterward, the circuit is verified
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138 D. Kaufmann, A. Biere

Fig. 2 Tool architecture of AMulet2

in the polynomial solver using polynomial operations of the
polynomial library. In certification mode, proofs are gener-
ated in addition. All heuristics and optimizations presented in
Sects. 2.3 and 2.4 can only lead to an increase in the runtime
of our tool, but do not affect its soundness and completeness.

In the following, we present the individual compo-
nents of AMulet2 and summarize the improvements over
AMulet1.

3.1 Parser module

AMulet2 checks whether the given AIG circuit fulfills the
requirements described in Sect. 2, i.e., the AIG circuit has
an even number of inputs and an equal number of outputs
and does not contain any latches. The AIG module wraps
functions of the external AIGER library that are needed to
process the input file.

3.2 Gate library

After parsing,AMulet2 allocates a gate for each AIG node,
which includes structural information of the node, such as
dependencies, or whether the gate represents an input/output
or anXORgate. Each gate is linked to a unique variable. If the
given AIG is verified or certified, AMulet2 also initializes
the gate constraints and creates the specification polynomial
L ∈ Z[X ].

3.3 Substitution engine

In substitution mode, AMulet2 applies heuristic pattern
matching to identify GP adders [23]. The algorithms in the
substitution engine are almost the same as in AMulet1 [26]
and highly relate on the structure of GP adders, cf. Sect. 2.4.
In particular, we use the fact that the outputs of GP adders are
always outputs of XOR gates, but the carries are never out-
puts of XOR gates. This allows us within one iteration over

the output bits to mark the carries ci (including the carry out-
put cout ) and propagate bits pi of the GP adder and we are
further able to identify and mark all inputs xi , yi of the GP
adder using the relation pi = xi ⊕ yi .

In a second step, we mark all gates that belong to the
FSA. We start at the carry output cout resp. sum outputs and
follow all paths in the input cones until we either reach a
marked input xi , yi , or cin . We mark the visited variables. If
at some point we reach one of the input variables ai , b j of the
multiplier, the FSA is not a GP adder, i.e., we were not able
to clearly identify the boundaries of the FSA. Consequently,
adder substitution was not successful and the initially given
AIG is returned without generating a bit-level miter. If on the
other hand all paths stop at the marked inputs or at cin , we
have successfully identified and marked all gates belonging
to a GP adder and apply adder substitution.

In AMulet2, we enhanced the identification heuristics
and cover special cases, e.g., in some architectures, we have
xi = xi+1, that are not considered in AMulet1. Thus,
AMulet2 is able to detect more GP adders. After a posi-
tive GP pattern match, AMulet2 replaces the GP adder by
an equivalent RC adder. A bit-levelmiter is generated in CNF
to verify the equivalence of the adders. The rewritten mul-
tiplier and the CNF miter are printed to the provided output
files.

3.4 Polynomial solver

The polynomial solver is a modernized version of the solv-
ing engine of AMulet1 [26] and is used to verify or
certify the given multiplier. In a nutshell, the polynomial
solver first applies preprocessing by eliminating selected
variables.Afterward, the remaining variables are ordered into
column-wise slices, such that we can apply our incremental
verification algorithm [25],wherewe split the specificationL
into multiple polynomials and verify the multiplier by deriv-
ing the correctness of each slice using polynomial reduction.
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Fig. 3 XOR-skeletons in a simple 4-bit multiplier

The necessary polynomial operations are implemented in our
Polynomial Library described below.

In AMulet2, we eliminate variables before ordering
them, whereas in AMulet1, it is the other way around. In a
first step, we eliminate all internal gates of the XOR struc-
tures and all single-parent nodes in the AIG. Thus, fewer
variables are considered for ordering, which improves com-
putation time of AMulet2.

Furthermore, we include a novel XOR-based slicing
approach in AMulet2, which relies on the fact that many
multiplier architectures use XOR-skeletons to compute the
output bits. We identify these skeletons as follows. We start
from the output bits of the given multiplier and follow all
paths as long as the gates are identified as (internal) XOR
gates or encode partial products, i.e., both children are inputs
of the AIG. All nodes of a skeleton are assigned to the same
slice. Figure 3 shows the AIG of a simple 4-bit multiplier.
We uniquely colored for each output bit the corresponding
XOR-skeleton. Gates occurring between XOR-skeletons are
assigned to the smaller (less significant) slice. Hence, after
two iterations, all slices are fixed, which improves slicing
compared to AMulet1. All variables that are not assigned
to slices, e.g., gates used to compute the partial products in
Booth encoding [36], are eliminated from the gate structure.

In few cases, we cannot identify XOR-skeletons, e.g., in
multipliers containing a carry-select adder, and we fall back
on the slicing approach of AMulet1 [26]:We slice based on
input cones and eagerly move gates between slices to reduce
the number of carries, by iterating multiple times over the
variables.

After assigning gates to slices, AMulet2 reduces the
slice-wise specifications incrementally by the sliced gate
constraints and checks whether the final result is zero, similar

to the implementation of AMulet1. If the final remainder
is not zero, AMulet2 detects counter examples, i.e., input
assignments for which the multiplier circuit computes an
incorrect result.

In certificationmode,AMulet2 tracks polynomial opera-
tions in the selected proof format and prints gate constraints,
the generated proof, and the specification L to the provided
files.

3.5 Polynomial library

The polynomial library implements the arithmetic operations
for addition andmultiplicationof polynomials (by constants),
and division by terms. Since all variables represent Boolean
values, we always reduce exponents greater than one auto-
matically to one, i.e., we assume x · x = x . All algorithms
for polynomial operations are optimized accordingly.

Polynomials are represented as sorted linked lists of
monomials. Each monomial consists of a coefficient, rep-
resented using the GMP library, and a term. Terms are linked
lists of variables, which are internally shared using a hash
table.

In AMulet1, we do not share monomials and make hard
copies in the few occasions when a monomial needs to
be copied. This has the benefit that we can simply modify
coefficients of the monomials, e.g., during addition. In our
experiments, we observed that allocating newGMPobjects is
actually quite time consuming, and therefore, we now share
monomials in AMulet2, using reference counting, which
decreases verification time by a factor of two.

3.6 Improvements overAMULET1

AMulet2 contains some major improvements over
AMulet1, which can be clearly seen in the experimental
evaluation. At this point, we summarize the major improve-
ments of AMulet2 over AMulet1 that are scattered in this
section in one place:

• Modular re-implementation inC++,which allows reusing
single components.

• Consideration of corner cases during adder substitution
has the effect that more GP adders are detected.

• Restructuring the order of variable elimination and slic-
ing to reduce the amount of gates that have to be ordered.

• Novel XOR-based slicing approach, which leads to faster
verification time.

• Sharing of monomials in the data structure, which speeds
up verification time.

• Invoking multiple proof formats.
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4 AMULET2.1

Our experimental evaluation, cf. Sect. 6 shows that
AMulet2.0 needs more memory than AMulet1 for 64-bit
multipliers. We have addressed this issue and enhanced the
algorithms and used data structures to reduce the memory
usage. The improvements are published inAMulet2.1 [18],
which further contains somebug-fixes on the slicing approach.

First of all,AMulet2.0 generates all gate constraints dur-
ing the initialization phase. These polynomials are kept in
memory through the whole verification process, although
they might only be used in the final reduction steps. In
AMulet2.1, we now generate the gate constraints on the
fly. Whenever an original gate constraint is required during
variable elimination or during reduction, we generate the cor-
responding polynomial encoding that is implied by the AIG.
These polynomials will be deleted again after the elimina-
tion or the reduction step and we only keep the rewritten
polynomials that are generated during variable elimination
in memory, which reduces the size of the hash table used for
sharing the terms/monomials significantly.

Although the deletion of gate constraints means that we
sometimes have to generate the same polynomial equation
multiple times, our experimental evaluation shows that this
is less costly than maintaining a large hash table.

Second, we optimized the data structure of the polynomi-
als inAMulet2.1. InAMulet2.0, we store the polynomials
as a linked list of monomials using std::deque. Using
deques proved to be faster than std::vector, but they
have a higher minimal memory cost. Using an array for stor-
ing the monomials in AMulet2.1 decreased the memory
usage by around 10%without affecting the verification time.

As a third modification, we changed the format of the
proof certificates inAMulet2.1. InAMulet2.0, certificates
can be generated in theNullstellensatz proof format [21] or in
PAC [27] to validate the verification results. For proof check-
ing, two different proof checkers are necessary, depending
on which proof calculus is selected. Recently, we developed
LPAC (PAC + linear combinations) that unifies both proof
formats [28]. LPAC proofs consist of a sequence of linear
combination rules, cf., Example 5. It is possible to simulate
Nullstellensatz by writing down only a single linear com-
bination step, as well a PAC proofs by simulating single
addition and multiplication steps. Furthermore, it is possible
to generate certificates on an intermediate density level, i.e., a
sequence of linear combinations. These proofs are more con-
cise than pure PAC proofs, but still allow to localize errors.
AMulet2.1 supports LPAC proofs on three density levels,
which is demonstrated in the following Sect. 5.

Example 5 Let the setting be as in Example 4. A possible
proof in LPAC is as follows, using the same labels for the
given polynomials:

4 $\%$ 3*(-ab) + 2*(-y), xy;
5 $\%$ 4 + 1*(-1), z;

5 Usage

In this section, we demonstrate the usage of our tool
AMulet2.1. The usage for AMulet2.0 is almost identi-
cal, only the options in the certification mode differ, cf.
Sect. 5.3, due to the change in the proof formats.AMulet2.1
relies on the AIGER library [5] and the GMP library [11].
The AIGER library is provided together with the source
code of AMulet2.1, the GMP library needs to be pre-
installed by the user. AMulet2.1 is compiled executing
“./configure.sh && make.”

In a complete workflow, one should first apply adder sub-
stitution, using the substitution mode, to make sure that a
potential complex FSA is replaced by a simple RC adder.
Afterward, one of the two modes, the verification mode or
certification mode, can be applied to verify the (simplified)
multiplier, which we will call in the following rewritten
multiplier. If it is known that the final stage adder is not
a complex GP adder, the substitution step can be omitted.
Figure 4 shows our tool chain used for verifying (left side)
and certifying (right side) multiplier circuits. We present a
complete demonstration for the unsigned 64-bit multiplier
<bpwtcl.aig>, which is included in the complemen-
tary material [16]. The output of AMulet2.1 can be seen
in the corresponding log-files that are also included in the
artifact [16].

5.1 Adder substitution

First, we apply adder substitution by running

./amulet -substitute bpwtcl.aig miter.
cnf rewritten.aig [options]

If the multiplier computes multiplication of signed inte-
gers, the option “-signed” has to be involved, because
the signedness is part of the circuit specification.

Fig. 4 Tool chain for verification (left) or certification and checking
(right)
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If adder substitution can be applied successfully, the gen-
erated miter is written to <miter.cnf> and the rewritten
multiplier to <rewritten.aig>. Otherwise, a trivial
unsatisfiable CNF is written to <miter.cnf> and the
given multiplier will be written to <rewritten.aig>.
The file <miter.cnf> has to be given to a SAT solver,
e.g., Kissat [4], which is then expected to return unsatis-
fiable. The rewritten multiplier can be verified or certified
using AMulet2.1.

5.2 Verification

Verification is executed by

./amulet -verify rewritten.aig [options]

As for adder substitution, one has to invoke the option
“-signed” for verification of signed multipliers. Further-
more, the option “-no-counter-examples” is avail-
able, which turns off generation and saving of counter exam-
ples, in the case when the circuit in <rewritten.aig>

is incorrect.

5.3 Certification

Certification is applied using

./amulet -certify rewritten.aig out.pol
out.prf out.spc [-pN] [options]

In this mode, AMulet2.1 verifies the multiplier and auto-
matically generates proof certificates, which can be checked
by corresponding proof checkers. AMulet2.1 supports the
LPAC proof format on three different density levels, which
can be selected using options “-p1”, “-p2” or “-p3”. The
option “-p1” selects the most expanded proof, which gen-
erates a proof step for every single polynomial operation.
Typically, for each D-reduction step, a multiplication and
addition are applied, thus two proof steps are generated for
each reduction step. These proof certificates are close to PAC
proofs.

The option “-p2” combines the multiplication and addi-
tion steps of each D-reduction, into a single proof step. Thus,
the proof files typically have only 50% of the size of “-p1”-
proofs, but we are still able to associate errors in the proofs
to single D-reduction steps. The option “-p2” is the default
proof format in AMulet2.1.

The option “-p3” is the most concise proof format and
only generates a single proof rule, i.e., a single linear com-
bination. Proofs with option “-p3” simulate Nullstellensatz
proofs. All options of the verification mode are available too.

The proof is stored in the provided files <out.pol>,
<out.prf>, and <out.spc>. The file <out.pol>

contains the gate constraints, the second file <out.prf>

the core proof in the selected proof format and the third file

<out.spc> the specification of the multiplier. The gen-
erated proofs can be given to the proof checkers Pacheck
2.0 [19], or Pastèque 2.0 [10].

The involved SAT solver for checking adder equivalence
produces a proof certificate in the DRUP format [12]. Since
two different proof formats are involved, the generated cer-
tificates can only be trusted up to compositional reasoning.
Thus, we generated a method to translate DRUP proofs into
PAC [24],which can be applied on top to generate a combined
proof certificate in a single proof format, see for example the
experimental evaluation in [28].

6 Evaluation

In our experiments, we use an Intel Xeon E5-2620 v4 CPU at
2.10 GHz (with turbo-mode disabled) with a memory limit
of 128 GB. The time is listed in seconds (wall-clock time).
We compare AMulet2 to our previous tool AMulet1 and
to the most recent related work RevSCA-2.0, RevSCA [34],
DyPoSub [35], and ABC-based work [8] on multiplier veri-
fication using computer algebra, where circuits are given as
AIGs.

The toolRevSCAand its successorRevSCA-2.0 [34] use a
preprocessing technique that aims to detect converging gate
cones and atomic blocks, such as half and full adders, in
the given AIG. For each converging gate cone and atomic
block, a vanishing-free specification polynomial is gener-
ated, i.e., a polynomialwhere allmonomials are removed that
will reduce to zero later in the reduction process. This helps
to compress the Gröbner basis before reduction is applied.
DyPoSub is a follow-up work of [34] and explicitly tries
to tackle the problem of verifying multiplier circuits, where
logic synthesis and technologymapping is applied. Themain
idea in DyPoSub is to use a dynamic substitution order that
allows to keep the size of the intermediate reduction results on
amoderate level. The preprocessing steps inDyPoSub are the
same as in its predecessor RevSCA-2.0. In ABC-based work
of [8], a method called function extraction is used to verify
circuits. Function extraction is a similar algebraic approach
to Gröbner basis reduction as presented in Sect. 2. The dif-
ference to Gröbner basis reduction is that it is not required to
provide the complete specification polynomial of the circuit
for reduction. Instead the word-level output of the circuit,
i.e., the bit vector

∑2n−1
i=0 2i si for unsigned numbers resp.

−22n−1s2n−1 + ∑2n−2
i=0 2i si for signed number representa-

tion is reduced by the gate constraints of the given circuit.
This method returns a unique polynomial representation of
the functionality of the circuit in terms of the circuit inputs. In
order to verify correctness of a circuit, the remainder polyno-
mial needs to be compared to the desired circuit functionality.

In our experiments, we consider two versions of our
tool AMulet1: (i) AMulet1.0 as published in [23], (ii)
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AMulet1.5 a slightly improved version [15] with new
heuristics for detecting GP adders. For AMulet2, we con-
sider the version AMulet2.0 as published in [22] as well as
its derivative AMulet2.1, which we discussed in Sect. 4.

For allAMulet versions,wemeasure and sumup the time
of adder substitution, verification and the time the SAT solver
Kissat needs, i.e., all steps that are included in the rectangle
on the left side of Fig. 4. All experimental data, benchmarks
and the source code of AMulet2.1 are available at [20].

In our first experiment, we consider the comprehensive
AOKI benchmark set [14] that provides 384 signed and
unsigned integer multiplier architectures up to input bit-
width 64. TheAOKI benchmark set combines awide range of
PPGs, PPAs, and FSAs, including Booth encoding, Wallace
tree accumulation, and carry-lookahead adders. We consider
all 384 possible architectures of bit-width 64. The time limit
in our experiments is set to 300 seconds. The results are
shown in Figs. 5 and 6, where it can be seen that AMulet2
is the only tool that is able to verify the complete bench-
mark set within the given time limit. ABC-based work of [8]
uses an optimization, which only works for simple multi-
plier architectures. Enabling this optimization on the more
involved AOKI benchmarks leads to incompleteness. With-
out enabling it [8] either produces a segmentation fault or
exceeds the time limit. Thus, there are no results for [8] in
Figs. 5 and 6. It can be seen in Fig. 5 that AMulet2.0 and its
derivatives are faster than the predecessor AMulet1.0 and
clearly outperforms related work. Figure 6 shows the mem-
ory usage of the tools and it can be seen that all versions of
AMulet use less memory than tools of related work. How-
ever,AMulet2.0 is less memory efficient than AMulet1.0,
and AMulet1.5. This flaw has been fixed in AMulet2.1,
which needs significantly less memory than AMulet2.0.

In our second experiment, we generate benchmarks of
simple multipliers up to input size 2048, using scripts by
Arist Kojevnikov [13]. The time limit is set to 86400 seconds
(24 h) and the results are shown in Figs. 7 and 8. Since we
are considering simple multiplier architectures, we can make
use of the optimization in ABC-based work of [8]. It can be
seen that AMulet2 outperforms all competitor tools and is
an order of magnitude faster on large multiplier circuits. The
memory usage is shown in Fig. 8, where it can be seen that
ABC-based work of [8] is the most memory efficient.

In our third experiment, we generate large benchmarks
of complex multipliers up to input size 1024 using Mult-
Gen [38]. We choose the architecture “bp-wt-lf” that uses a
Booth encoding to generate the partial products, which are
then accumulated using a Wallace tree. The final stage adder
is a Ladner-Fischer adder. The time limit is again set to 86400
seconds (24 h), and the results are shown in Fig. 9 and 10.
Since “bp-wt-lf” is a complex architecture, we had to disable
the optimization in the ABC-based work, which leads to seg-
mentation faults. The tool RevSCA exceeded the time limit

Fig. 5 Verification time of AOKI multipliers, 384 instances

Fig. 6 Maximum memory usage of AOKI benchmark set

for all multipliers. Furthermore, an error in the XOR-based
slicing approach of AMulet2.0 leads to incorrect results.
This bug is fixed in later versions. Thus, we only show the
results of AMulet2.1.

It can be seen in Fig. 9 that AMulet2.1 is more
than an order of magnitude faster than related tools, how-
ever, AMulet2.1 requires twice as much memory than
AMulet1.0 resp. AMulet1.5, cf. Fig. 10. The cause is
currently unclear and investigating why AMulet2 is more
memory hungry thanAMulet1 on large complexmultipliers
is an interesting future work.
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Fig. 7 Verification time of large simple multipliers

Fig. 8 Maximum memory usage of large simple multipliers

7 Conclusion

We presented AMulet2, a fully automatic tool for ver-
ifying multiplier circuits given as AIGs. AMulet2 is a
re-factorization and re-implementation of our previous ver-
ification tool AMulet1 [23,26] and successfully verifies a
large set of multiplier architectures. We further discussed
novelties in the maintained version AMulet2.1, which help
to reduce the memory usage of AMulet2.0 significantly. In
the future, we want to directly integrate a SAT solver into
AMulet2 and provide language bindings, e.g., for Python.

Funding Open access funding provided by TU Wien (TUW).

Fig. 9 Verification time of large complex multipliers

Fig. 10 Maximum memory usage of large complex multipliers
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