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Abstract. With the advancement of computer technol-

ogy, highly concurrent systems are being developed. The

veri�cation of such systems is a challenging task, as their

state space grows exponentially with the number of pro-

cesses. Partial order reduction is an e�ective technique

to address this problem. It relies on the observation that

the e�ect of executing transitions concurrently is often

independent of their ordering. In this paper we present

the basic principles behind partial order reduction and

its implementation.

1 Introduction

One of the main problems in automatic veri�cation of

systems is the so-called state space explosion problem.

For many types of systems, the number of possible states

during system execution grows exponentially with the

size of the system and the number of its component parts.

This quickly leads to models whose size exceeds the cur-

rent capabilities of veri�cation tools.

Partial order reduction is a technique that addresses

this problem for concurrent asynchronous systems by

constructing a smaller state space that is searched by

the veri�cation (model checking) algorithms. In general,

asynchronous systems are described using an interleav-

ing model of computation. Concurrent events are mod-

eled by allowing their execution in all possible orders
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relative to each other, creating a large number of pos-

sible states and paths. However, speci�cations typically

do not distinguish between all di�erent orders. Partial

order reduction considers only a restricted set of behav-

iors of the system, while guaranteeing that the ignored

behaviors do not add any new information.

In this survey we will describe a method of partial

order reduction. The main goal of this paper is to provide

an intuitive description of the main ideas and present

some techniques that can be used for implementation.

Reducing the state space by using commutativity be-

tween concurrent transitions was suggested by several

researchers. In his Ph.D. thesis, Overman [20] suggested

a method to avoid exploring all the states of a concur-

rent system. However, this method was only applied to

systems without loops. Katz and Peled [16] suggested a

proof system for concurrent systems that takes the com-

mutativity between transitions into account. The core of

the deduction system was based on using proof rules that

asserted properties of sequences which are generated by

taking certain subsets of successors from each state.

In the last decade, several researchers have developed

methods to apply reduction principles in model checking.

These techniques include the stubborn sets method of

Valmari [24], the persistent setsmethod of Godefroid and

Wolper [12, 11], and the ample sets method of Peled [22].

These works contain similar ideas, although they di�er

with respect to the details of the suggested reduction.

We will present here the ample sets method.

The name partial order reduction re
ects a connec-

tion between the initial versions of these reductions and

partial order semantics. Roughly, a partially ordered ex-
ecution is represented by a set of events and a causality

relation between them. The causality relation indicates

that some events must precede others, while events that

are not constrained by this relation are independent and

can happen in any order. In contrast, in a total ordering

on events, any given event must either precede or follow
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any other event. Some versions of partial order reduction

guarantee that the reduced state space includes for each

such partially ordered execution at least one linearization

(completion into a total order). However, most current

methods do not maintain this relation anymore.

2 Fundamental Notions

The systems that we analyze are modeled as state tran-
sition graphs. If S is the set of states, a transition is a

relation � � S�S, i.e., it can be taken between di�erent

pairs of states. A state transition graph is then de�ned

as a tuple M = (S; S0; T; L), where S0 � S is a set of

initial states, T is a set of transitions � � S � S, and

L : S ! 2AP is a labeling function that assigns to each

state a subset of some set AP of atomic propositions.

A transition � 2 T is enabled in a state s if there

exists a state s0 such that (s; s0) 2 � (or in other words

�(s; s0) holds). If for any state s there is at most one state

such that �(s; s0), we call � a deterministic transition. In
this case we can view � as a partial function on states in-

stead of a relation and write s0 = �(s) instead of �(s; s0).

The following presentation considers only deterministic

transitions, without further explicit mention.

We reason about execution sequences of the system,

called paths. A path in a state-transition graph M is a

�nite or in�nite sequence � = s0
�0! s1

�1! : : : such that

si+1 = �i(si) for every i.

In asynchronous systems, the number of transitions

occurring between two events has no direct relationship

to the time delay between them. Furthermore, transi-

tions which are concurrent in the system appear seri-

alized in some order in the interleaving model. These

observations argue for a speci�cation which cannot dis-

tinguish between sequences of identically labeled states

on an execution path of the system.

We call two in�nite paths stuttering equivalent if they
have identical state labelings after in each of them, any

�nite sequence of identically labeled states is collapsed

to a single state. In other words, two in�nite paths � =

s0
�0! s1

�1! : : : and � = r0
�0
! r1

�1
! : : : are stuttering

equivalent if one can de�ne two in�nite sequences of in-

tegers 0 = i0 < i1 < : : : and 0 = j0 < j1 < : : : such

that 8k � 0; L(sik ) = L(sik+1) = : : : = L(sik+1�1) =

L(rjk ) = L(rjk+1) = : : : = L(rjk+1�1). The indices ik
and jk are the starting points of identically labeled sub-

sequences of states in the two paths, respectively. The

stuttering equivalence relation between � and � is de-

noted by � �st �.

The temporal logic LTL [8] allows assertions about

the temporal behavior of a program. Given a �nite set

of propositions AP , the LTL formulas are de�ned induc-

tively as follows:

{ every member of AP is a formula,

{ if ' and  are formulas, then so are :', ' ^  , 
'

and ' U .
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Fig. 1. Stuttering equivalent paths

An interpretation of an LTL formula is an in�nite

word � = x0x1 � � � over the alphabet 2
AP , i.e. a mapping

from the naturals to 2AP . We write �i for the su�x of �

starting at xi. The semantics of LTL is as follows:

{ � j= p i� p 2 x0, for p 2 AP ,
{ � j= :' i� not � j= ',

{ � j= ' ^  i� � j= ' and � j=  ,

{ � j=
' i� �1 j= ',

{ � j= ' U i� there is an i � 0 such that �i j=  and

�j j= ' for all 0 � j < i.

Let false as an abbreviation for A ^ :A, and true be

an abbreviation for :false. We also use the following

abbreviations: ' _  = :((:') ^ (: )), 3' = true U',
2' = :3:'.

Given a state transition graphM and an LTL formula

', the model checking problem for M and ' is to verify

that for every initial state s0 2 S0 and every path �

starting in s0, it is true that � j= '. If this holds, we

write M j= '.

An LTL formula ' is invariant under stuttering if for
any two paths � and �0 such that � �st �

0, we have

� j= ' i� �0 j= '.

In general, an LTL formula can be sensitive to stut-

tering if it contains the next-time operator 
. Denote

by LTL
�X the subset of logic LTL that does not make

use of the next-time operator. Peled and Wilke show [23]

that an LTL property is invariant under stuttering i� it

can be expressed in LTL
�X .

The notion of stuttering equivalence can be extended

from paths to state transition graphs. Two state transi-

tion graphs M and M 0 are stuttering equivalent i� the

following two symmetric conditions hold:

{ for each path � from an initial state of M there is a

path �0 from an initial state ofM 0 such that � �st �
0.

{ for each path �0 from an initial state of M 0 there is a

path � from an initial state of M such that �0 �st �.

From the de�nition of stuttering equivalence of state

transition graphs and the theorem about stuttering in-

variance of LTL
�X formulas, one can deduce the follow-

ing result:

IfM andM 0 are state transition graphs which are

stuttering equivalent, then for any LTL
�X prop-

erty ', M j= ' i� M 0 j= '.
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This result justi�es the use of partial order reduction

by virtue of the fact that it produces a structure that

is stuttering equivalent to the original state transition

graph.

3 Principles of Partial Order Reduction

As mentioned in the introduction, one of the main rea-

sons for state space explosion in asynchronous systems

is that the interleaving model of computation must con-

sider all possible event orderings, in order to avoid the

omission of any particular one. However, since interleav-

ing is introduced to model concurrency, for independent

transitions this ordering is often irrelevant. On the other

hand, depending on the speci�cation language, it is pos-

sible that the property to be veri�ed is actually able to

discriminate between behaviors that only di�er by this

ordering. To be able to use partial order reduction, it

is necessary to have a speci�cation that does not dis-

tinguish between such behaviors and a procedure that

selects a set of behaviors that constitutes the reduced

model. If some behavior is not present in the reduced

model, an equivalent one has to be included in order to

guarantee correctness.

To illustrate the importance of reduction, consider a

system composed of n concurrent processes, P1 through

Pn. Each process Pi has a transition �i enabled in some

local state si, that changes the value of the labeling

function: �i(si) = s0i; L(si) = ;; L(s0i) = fpg, for some

p 2 AP . The concurrent transitions �i can be ordered in

n! possible ways, producing a total of 2n di�erent states.

Yet it is possible that the speci�cation only needs to

establish a property that links the initial global state

(s1; : : : ; sn) with the resulting state (s
0

1; : : : ; s
0

n), irrespec-

tive of the path taken between these. In this case, it is

much more e�cient to consider only one particular or-

dering and the corresponding n+ 1 states.

Typically, the reduced model is constructed by per-

forming a modi�ed depth-�rst search on an explicit state

representation of the system. Model checking is done in a

separate phase, on the resulting reduced state transition

graph. It is also possible to construct the reduced model

on the 
y, while performing model checking. Other varia-

tions are to use breadth-�rst search instead of depth-�rst

search, or to combine partial order reduction with sym-

bolic model checking. A common point for all variants

is that the reduced state space is constructed directly,

without ever building the full state graph. This would

be counter to the purpose of reduction, since it is likely

that the full state graph is too large to be constructed in

the �rst place.

Consider, for the purpose of illustration, the case of

depth-�rst search. A typical search that constructs the

entire reachable state space would follow all transitions

enabled at the current state in the search. With partial

order reduction, only a subset of the enabled transitions

is expanded at each state s. We will call this set ample(s).

To apply this method, we need a procedure to com-

pute a suitable set ample(s) for every state s. First, in

order to obtain a much smaller state graph, ample(s)
has to be signi�cantly smaller than enabled(s). On the

other hand, to ensure the correctness of the reduction,

ample(s) has to include enough transitions such that for

each behavior in the full state graph there is an equiv-

alent behavior in the reduced state graph. Finally, com-

puting an ample set should be done with a reasonably

small overhead so that veri�cation time is not increased

compared to full state space search.

Since the key issue in partial order reduction is to se-

lect only a restricted number of orderings between tran-

sitions for analysis, the concept of transitions that can

be reordered has to be formalized. This can be done by

de�ning the key concept of independence relation be-

tween transitions. Two transitions �; � 2 T are inde-
pendent if they satisfy the following two conditions for

each state s 2 S:
Enabledness:

If �; � 2 enabled(s) then � 2 enabled(�(s))
and � 2 enabled(�(s)).

Commutativity:
If �; � 2 enabled(s) then �(�(s)) = �(�(s)).

The enabledness condition expresses the fact that

two independent transitions that are enabled at a given

state cannot disable each other. Note that the de�nition

given here allows independent transitions to enable one

another. The commutativity condition states that the

execution of two independent transitions in any order

(which is guaranteed to be possible by the enabledness

condition) leads to the same state. Two transitions are

called dependent if they are not independent.
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Fig. 2. Independent transitions

Consider the simple fragment of a state transition

graph depicted in Figure 2. If transitions � and � are in-

dependent, a possible reduction would be consider only

the execution sequence s
�
! s1

�
! s0 and not the path

s
�
! s2

�
! s0. However, this reduction may not be nec-

essarily correct, either because the checked property can

distinguish between the intermediate states s1 and s2, or

because eliminating one of these states may cause some

of its successors (which are signi�cant for veri�cation)

not to be explored. Additional conditions for the cor-

rectness of the reduction are needed, and they will be

described in the following.
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To address the �rst of these two issues, we de�ne

what it means for a speci�cation to distinguish between

two states, by introducing a second key concept, of invis-
ible transitions. Recall that L : S ! 2AP is the labeling

function that assigns to each state a set of atomic propo-

sitions. The speci�cation does not necessarily refer to the

entire set of atomic propositions; let AP 0 � AP be the

subset of atomic propositions referenced in the speci�-

cation. We call a transition � invisible with respect to

some subset AP 0 � AP if its execution between any two

states does not change the labeling with atomic proposi-

tions from AP 0. Formally, the transition � 2 T is invis-

ible with respect to AP 0 if for any two states s; s0 2 S

such that s0 = �(s) we have L(s) \ AP 0 = L(s0) \ AP 0.

A transition is visible if it is not invisible. If the subset

of atomic propositions AP 0 is clear from the context (it

is usually the set of atomic propositions contained in the

speci�cation), we will simply say that a transition is vis-

ible or invisible without explicitly mentioning that this

is with respect to AP 0.

4 Partial Order Reduction for LTL
�X

We have seen in the previous section that the properties

of independence and invisibility for transitions and stut-

tering invariance for LTL
�X formulas allow us to verify

the speci�cation for the given system on a reduced model,

and thus avoid the generation of all states. The reduced

model is constructed by selecting at each step a subset

ample(s) of the transitions which are enabled at the cur-

rent state s. We say that a node s is fully expanded if

ample(s) = enabled(s).

We need a procedure that will determine a suitable

set of ample transitions at each state. Rather than di-

rectly give an algorithm that solves this problem, in this

section we will characterize the set ample(s) using a set

of conditions. The next section continues by describing

various heuristics that can be used to �nd ample sets

that satisfy these conditions.

The �rst condition is trivial and guarantees that the

search algorithm with reduction will make progress if the

normal search algorithm would:

C0 Emptiness ample(s) = ; i� enabled(s) = ;.

The next constraint is introduced to ensure that any

path that is not included in the reduced state-transition

graph can be transformed, based on the properties of in-

dependent transitions, into a path in the reduced model,

and therefore the reduction does not omit any paths

which are essential for veri�cation.

C1 Ample decomposition In the full state graph, on
any path starting from some state s, a transition depen-
dent on a transition from ample(s) cannot appear before
some transition from ample(s) is executed.

To analyze the implications of C1, consider an ar-

bitrary sequence of transitions � = �0; �1 : : : that can

be taken from some state s0 in the full state transition

graph. We outline the basic ideas of a construction that

can be used to generate a path in the reduced model

that contains all transitions from �. More details of the

construction and a proof for its correctness are given by

Clarke, Grumberg and Peled [4].

(a) if �0 2 ample(s0), then �0 can be taken from s0 in the

reduced model, and the path pre�x s0
�0! s1 belongs

to the reduced model. The construction is continued

inductively from s1.

(b) if �0 62 ample(s0), consider �rst the case where the

transition sequence � contains some transition from

ample(s0). Let � be the �rst such transition appear-

ing in �, i.e. � = �k, with k � 1. Then by condi-

tion C1 all transitions �i with 0 � i < k must be

independent of �, and thus commute with it. There-

fore the transition sequence ��0�1 : : : �k�1�k+1 : : : is

also a transition sequence enabled in s0 in the orig-

inal model. Moreover, since � 2 ample(s0), the �rst

transition can also be taken in the reduced model and

the construction continues form s1 = �(s0).

(c) if �0 62 ample(s0) and the sequence � does not con-

tain any transition from ample(s0), let � be an ar-

bitrary transition from ample(s0). By condition C1,

none of the transitions in � can be dependent on �.

Therefore, if s1 = �(s0), the path s0
�
! s1 belongs to

the reduced model and the transition sequence � is

executable after s1.

��
��

s0

?
�

��
��

s00

��
��

s1

?
�

��
��

s01

��
��
sk�1

?
�

��
��
s0k�1

��
��

sk

?
�

��
��

s0k

-�0

-�0

-�1

-�1

-�k�2

-�k�2

-�k�1

-�k�1

Fig. 3. Reordering of transitions based on commutativity

Transforming a path � in the full state transition

graph into a path �0 including all transitions from � and

with a pre�x that belongs to the reduced model is not

su�cient. We still need to know that the constructed

path is stuttering equivalent to the initial one, so that

the truth value of the speci�cation will not be a�ected.

C2 Invisibility If a state s is not fully expanded, every
transition � 2 ample(s) has to be invisible.

To analyze the e�ect of this condition, consider cases

(b) and (c) discussed previously in conjunction with C1

(there is no need to discuss (a), since it did not imply

any change to the path). For case (b), denote the ith

edge on � by si
�i! si+1, and let s0i = �(si). Since � com-

mutes with �i for i < k, it follows that s00s
0

1 : : : s
0

k�1sk+1
is exactly the state sequence obtained by executing the

transition sequence ��0 : : : �k�1. Since � 2 ample(s0)

but �0 62 ample(s0), it follows by C2 that s0 is not
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fully expanded, therefore � has to be invisible. Conse-

quently, L(s0i) = L(si) 8i � k. and therefore the se-

quences s0s1 : : : sksk+1 : : : and s0s
0

0s
0

1 : : : s
0

k�1sk+1 : : : are

stuttering equivalent. Case (c) is similar: Here too, � has

to be invisible and L(�(si)) = L(si) for any i, therefore

the two state sequences are stuttering equivalent.

Together, C1 and C2 still do not guarantee that a

stuttering equivalent path in the reduced model can be

found for any path in the original model. To see this,

we note that the recursive condition we have outlined

is not guaranteed to produce a path that contains all

transitions in the original path �. For case (c), none of

the original transitions in � is \consumed". Instead, an

auxiliary transition � 2 ample(s0) is appended to the be-
ginning of �. If � does not contain any ample transition

from �(s0) either and this step is repeated su�ciently of-

ten, a cycle consisting of inserted ample transitions will

be closed. Therefore, the expansion of state s0 will ter-

minate without ever considering the transition �0 which

is enabled in that state. If �0 is a visible transition, the

speci�cation may have di�erent truth values in the origi-

nal and reduced models. To avoid this case, it is necessary

to introduce a third condition:
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Fig. 4. Cycle-closing condition

C3 Cycle closing condition If a cycle contains a state
in which some transition � is enabled, then it also con-
tains a state s such that � 2 ample(s).

With C3, the set of conditions that have to be sat-

is�ed by ample sets is complete. The next section shows

how sets of transitions satisfying these conditions can be

computed in practice.

5 Calculating Ample Sets

To obtain an e�cient reduction procedure, it is neces-

sary to determine values for the ample sets at each state

that result in a signi�cantly smaller number of successor

states and are at the same time easy to compute with

small overhead. We describe in the following how this

can be done for each of the given conditions.

Checking that an ample set is nonempty (condition

C0) is trivial. Likewise, to verify condition C2 it su�ces

to examine each transition in the ample set of a state.

Condition C1 however, is more di�cult. One reason is

that C1 is stated as a property of the full state transition

graph, which the reduction technique attempts to avoid

in the �rst place. Second, the formulation of C1 refers

to future states that may not have been yet examined in

the search. It can be shown [4] that in general checking

C1 is at least as hard as checking reachability for the full

state transition graph.

Consequently, rather than using an algorithm that

needs to check C1 for an arbitrary set of transitions,

in general we will exploit the structure of the system to

produce sets of ample transitions for which condition C1

is guaranteed to hold. The following exposition discusses

such algorithms for two di�erent classes of concurrent

systems. Common to both is the modeling of the system

as a set of processes, each with a set of transitions (that

may be common in several processes). A process has a set

of local variables that can be changed only by transitions

performed by that process. These variables are part of

the local state of the process, and the product of the local
states forms the global state of the system. A transition

that only changes the local variables of a process is called

an internal transition.

The synchronous communication model requires the

sender and the receiver to coordinate, such as for instance

in Communicating Sequential Processes [13] or the ren-

dezvous model of ADA. Since the sending and the re-

ceiving transitions happen simultaneously, they can be

considered as a common transition shared by the two

processes. We call such a transition a communication
transition. Assume for the following that a system has

only local and synchronous communication transitions.

When a process Pi arrives at a communication point (a

send or receive action), the corresponding communica-

tion transition is enabled by Pi. It will only be enabled

globally when the communication partner of Pi arrives

at its corresponding transition point. A communication

transition between two processes Pi and Pj is said to be

locally enabled by Pi at state s if it can be executed from

some state s0 that has the same local state of Pi as s.

A conservative de�nition of the dependence relation

considers all local transitions within a process to be pair-

wise dependent. Therefore, a communication transition

will be dependent on local transitions from both pro-

cesses. A suitable selection of ample sets that will satisfy

C1 is the following:

For a state s, select a subset P of processes, such

that for any Pi 2 P there is no communication locally

enabled by Pi with a process outside of P . Then select

all transitions enabled in state s and belonging to some

process in P as the set ample(s).

The partitioning of the processes in two sets guaran-

tees that by executing transitions outside the ample set

it is not possible that a transition dependent on an am-

ple transition will become globally enabled and therefore

executed before a transition in the ample set. This is ex-

actly the constraint imposed by C1. The new rule can

be applied in practice by initially selecting P to consist

of a single process. If the constraint is not satis�ed, other

processes are added to P until it holds. In the worst case,
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P is the set of all processes, which corresponds to a fully

expanded state and no reduction at all.

In the asynchronous communication model, in ad-

dition to the local variables of each process, there are

shared message queues through which the communica-

tion between processes is performed. A process executing

a send operation does not have to wait for the destina-

tion process to execute the appropriate receive, unless

the message queue that would be used for communica-

tion is full (we assume a �nite-state system and therefore

�nite queues). Likewise, a receiving process consumes a

message from its input queue and does not block unless

this queue is empty. We call a send and a receive op-

eration matching if they share the same message queue.

For this discussion we assume the existence of a message

queue for each pair of communicating processes; di�erent

rules can be given for other cases (e.g. one input queue

per process).

Note that a send operation can enable a matching

receive (if the queue was previously empty) and con-

versely, a receive operation can enable a matching send

(if the queue was previously full). Both of these scenar-

ios are allowed for the de�nition of transition indepen-

dence, which merely requires that transitions do not dis-

able each other. Consequently, we consider the following

constraint:

For a given state s, select as the set ample(s) the

set of all enabled transitions from a set of processes P
satisfying the following two conditions:

{ No send transition of a process in P is blocked only

because a process outside of P has the corresponding

queue full.

{ No receive transition of a process in P is blocked only

because a process outside of P has the corresponding

queue empty.

The above �rst condition guarantees that the following

scenario does not happen:

A sequence of transitions from processes outside

of P is executed from the current state. Among

these transitions, which are independent of those

selected, there is eventually a receive transition 
.

Its execution enables a send transition � of some

process in P , as its queue is no longer full. But

� is dependent on some transition in the selected

ample set, contradicting C1.

With the �rst condition above, such a transition 
 cannot

exist. A similar scenario that justi�es the second condi-

tion can also be shown.

As in the previous case, we can implement this rule

by starting with P consisting of an arbitrary process Pi
and selectively adding other processes until the commu-

nication conditions are satis�ed.

The original formulation of C1 requires knowledge

about transitions that can be executed in the future. Ad-

ditional information gathered through preliminary static

analysis may allow more 
exibility in choosing ample

sets. For instance, the condition given above for the case

of synchronous communication can be weakened. A pro-

cess from P is allowed to have a locally enabled commu-

nication transition with a process outside P if one can

determine that this communication cannot actually take

place in any state reachable from the current state.

However, checking that from a given state a transi-

tion is disabled in the future is as hard as the model

checking problem itself. Again, the solution is to use an

analysis that will identify some of the transitions that

can no longer become enabled starting from the current

state, rather than all of them. This can be done by per-

forming a separate reachability analysis for each process

and taking advantage of the fact that the state space of

a single process is much smaller than the global state

space. In the example given above for synchronous com-

munication one could check whether the matching com-

munication transition can be reached in the other process

starting from its local state. This analysis assumes that

all communication transitions which are joint with other

processes are enabled by those processes, and is therefore

conservative. Moreover, it is also possible to ignore data

values (selectively or completely) and perform in the sim-

plest case only a static analysis of the control 
ow graph

of the process.

This search can be done in a preliminary stage of the

reduction algorithm. It can identify unreachable transi-

tions among those transitions that have possible depen-

dencies (synchronous/asynchronous communication, use

of global variables, etc.). During the subsequent state

search, this information can be used to identify more

subsets as ample sets and thus improve the e�ciency of

the reduction.

6 Experience with Partial Order Reduction

Various systems that use partial order reduction algo-

rithms have been implemented. Our experience is mainly

related to the SPIN implementation described by Holz-

mann and Peled [15]. In this section we will describe

various lessons learned about the di�culty of implemen-

tation and the e�ciency of the partial order reduction.

One noticeable fact about partial order reduction is

that it is usually given as a set of principles rather than

an algorithm, which calls for an open-ended list of heuris-

tics. In particular, condition C1 can be satis�ed by a

trivial implementation that selects all the enabled tran-

sitions from any given state. A better implementation

performs an analysis which is based e.g., on the types

of transitions that are enabled or disabled from the cur-

rent state. By making the analysis more involved, and

taking more cases into consideration, one can obtain a

better reduction. On the other hand, the overhead may

also grow when using a more complicated analysis.

In the SPIN implementation [15], the initial deci-

sion was to provide an adequate reduction for the asyn-

chronous communication case. SPIN uses the strategy
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for calculating ample sets presented in Section 5. In par-

ticular, Spin looks for a singleton set P , i.e., one process
that satis�es these conditions. When systems that use

other concurrency mechanisms such as shared variables

or synchronous communication are veri�ed, the reduc-

tion might be far from optimal. Even with this restric-

tion, the size of the SPIN code roughly doubled when

the partial order reduction was �rst added to it.

The e�ectiveness of the reduction obtained using the

partial order techniques varies considerably among dif-

ferent examples. It is immediately observable that the

method is e�ective only for asynchronous systems, where

commutativity between concurrent transitions can be ex-

ploited. Thus, for most hardware systems, which are usu-

ally synchronous, there is little, if any reduction. Con-

current systems, and in particular distributed programs,

which exhibit a lot of parallelism and independency, are

the main focus of the partial order reduction. For cer-

tain examples, e.g., the distributed sieve of Eratosthenes

for calculating prime numbers, a version of concurrent

sorting and a leader election in a ring of processes, the

reduction was shown to improve exponentially with the

number of processes. Some other, more typical examples

show reduction by one order of magnitude.

A factor that greatly in
uences the e�ectiveness of

the reduction is based on the following observation: when

two transitions that are independent can both change the

truth value of predicates that appear in the checked prop-

erty (i.e., the transitions are visible), the order between

them becomes relevant, even if they may be independent.

Speci�cally, Condition C2 forces visible transitions to

be selected into an ample set only with all other visible

transitions. A closer look shows that as a result, if an ex-

ecution is not present because of the reduction, another

execution with the same order of visible transitions will

be present in the reduced state graph. Experimentally,

the e�ectiveness of the reduction diminishes quickly with

the number of predicates used in the speci�cation. For

this reason, it is useful to try to simplify the checked

properties, e.g., checking separately for 3p and for 3q,

rather than 3p ^3q.

In Table 1, we present some experimental results of

using partial order reduction. The experiments where

performed on a SGI Challenge machine with 12 proces-

sors and 1.28 Gigabytes of memory. The checked algo-

rithms were as follows:

sieve The distributed Sieve of Eratosthenes

algorithm for �nding prime numbers.

dtp A data transfer protocol.

snoopy A cache coherence protocol.

pftp A �le transfer protocol.

These examples are included in the standard bench-

mark that is distributed with the SPIN model checking

system [14]. The SPIN system, including its standard ex-

ample protocols, can be obtained from the web page

http://netlib.bell-labs.com/netlib/spin/whatispin.html.

Algo- Reduc- States Transi- Memory Time

rithm tion tions

sieve No 10,878 35,594 2,315 1.68

Yes 157 157 1,078 0.08

dtp No 251,409 648,467 34,540 32.2

Yes 16,459 17,603 3,582 1.47

snoopy No 164,258 546,805 19,979 33.57

Yes 29,796 44,145 4,614 3.58

pftp No 514,188 1,138,750 70,004 123.34

Yes 125,595 191,466 18,057 18.59

Table 1. Experimental results for partial order reduction

For each of these algorithms, the property that was

checked asserted that some variable, initialized with 0,

eventually becomes 1.

The Sieve of Eratosthenes shows the best reduction

among the four protocol listed above. Furthermore, when

checking this protocol with a growing number of pro-

cesses, one can measure an exponential blowup in the the

number of states when the reduction is not applied, and

a linear growth with the reduction. This demonstrates an

exponential reduction. The reason for this is that all this

protocol's executions are essentially equivalent up to re-

ordering of independently executed transitions, as there

are no nondeterministic choices in the code. The expo-

nential explosion in the state space follows entirely from

di�erent arrangement of these transitions. In the other

checked protocols, a more typical reduction is achieved,

as they exhibit both concurrency and nondeterminism.

7 Other Partial Order Reduction Methods

The ample sets algorithm, and similarly the persistent

sets and stubborn sets algorithms are based on calculat-

ing a subset of successors that generates enough paths

to preserve the checked property. This is done by ana-

lyzing the current state and the enabled and disabled

transitions of the checked system.

A di�erent reduction principle has been suggested by

Godefroid [10]. The sleep set method, originally devel-

oped for detecting deadlocks, generates a reduced state

graph by observing the transitions that were already ex-

plored. For each node s expanded by the algorithm, a

set of transitions sleep(s) is kept. This is the set of tran-

sitions that one does not need to explore from s. The

intuition behind the sleep sets algorithm is as follows:

If a transition � is already explored from some node s,

then when any transition s
�
! t, with � independent

of � is explored, there is no need to explore the transi-

tion � from t and � is added to sleep(t). This follows

from the fact that when the expansion of � is �nished,

enough representatives for transitions following the ex-

ecution of � (including �) are explored, and exploring

� after � would lead to the same state as exploring �

after �. Moreover, consider the case when � need not be
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explored from some node s (i.e., � 2 sleep(s)) and an

edge s


! r with 
 independent of � is explored. Then

� is added to sleep(r), since the occurrences of � im-

mediately following 
 can be commuted to represent an

already unnecessary sequence.

When a node is reached again during expansion, a

new sleep set is calculated for it, and is compared with

the one it had before. If the old sleep set contained some

operations that are not included in the new sleep set,

the node is expanded again with a sleep set which is

the intersection of the new and the old sleep set. This

guarantees that if the node is reached from two or more

directions, it will provide enough successors for all of

them.

Whereas the sleep sets represents a di�erent approach

for global states based model checking, McMillan's un-

folding principle [19] is based directly the partial order

model of execution. It constructs a structure of partially

ordered local states. The order between events represents

the causal order on their execution. The unfolding algo-

rithm generates a representation of the checked system

which is sometimes called an event structure. It thus

avoids generating the global states of the system alto-

gether. The original unfolding algorithm was designed for

�nding deadlocks. Extensions of this algorithm, e.g., by

Esparza [7], were developed for checking di�erent prop-

erties.

In cases where partial order methods fail, other tech-

niques for reducing the state space may be more e�ec-

tive. Composing di�erent methods may result in the abil-

ity to verify more diverse systems, or even obtaining a

more signi�cant reduction than can be achieved by each

method separately. However, the combination does not

always follow trivially from the joint application of sep-

arate techniques. Partial order reduction has been com-

bined with various other model checking methods as fol-

lows:

{ Partial order can be performed with on-the-
y model

checking [17], i.e., generating the reduced state space

at the same time as checking for counterexamples for

the checked property. The construction can result in

such a counterexample before completing the gener-

ation of the entire state graph [22, 24].

{ Symmetry reduction can be used to obtain a smaller

state space when dealing with systems of identical

components. Partial order reduction and symmetry

were combined in [6].

{ Symbolic model checking is a very e�ective method,

which uses the BDD data structure for manipulat-

ing and storing the states. Although it is generally

used for synchronous hardware systems, where par-

tial order reduction is not e�ective, symbolic model

checking was shown to give very good results for asyn-

chronous systems, including software as well. One

way of combining this method with the partial or-

der reduction was suggested in [1], where a reduction

based on breadth �rst search was used [2]. A di�erent

way of combining these methods is suggested in [18],

based on statically resolving possible cycles of the

constructed reduced state space.

Partial order reduction can also be applied to branching

temporal logic and process algebra [9], and be used under

fairness assumptions [21]. Ongoing research on partial or-

der reduction seeks improved versions of the reduction,

applications for additional models, and speci�cation for-

malisms for which reduction is more e�ective.
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