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Abstract. In many real-life problems, we are often faced
with manipulating sets of combinations. In this arti-
cle, we study a special type of OBDDs, called Zero-
suppressed BDD (ZBDD). This data structure represents
sets of combinations more efficiently than using original
OBDDs. We discuss the basic data structures and al-
gorithms for manipulating ZBDDs in contrast with the
original OBDDs. We also present some practical appli-
cations of ZBDDs, such as solving combinatorial prob-
lems with unate cube set algebra, logic synthesis method,
Petri net processing, etc. We show that ZBDD is a useful
option in the OBDD techniques, suitable for a part of
practical applications.

1 Introduction

Ordered Binary Decision Diagrams (OBDDs), which are
reviewed in the overview article[9] of this special section,
are powerful means for computer processing of Boolean
functions. In many cases, this data structure requires
smaller memory space for storing Boolean functions and
calculates values of functions faster than with truth ta-
bles or logic expressions.

As our understanding of OBDDs has deepened, their
range of applications has broadened. In VLSI CAD prob-
lems, we are often faced with manipulating not only
Boolean functions but also sets of combinations. By map-
ping the data into Boolean space, a set of combina-
tions can be represented in an OBDD. This method en-
ables us to implicitly process a huge number of com-
binations, which has never been practical before. For
instance, Coudert, et al.[4,5] presented a fast method
for generating a huge number of prime implicant sets
involved in a Boolean function, which is one of the im-
portant results in two-level logic minimization problems.

For another instance, Lin, et al.[12] also used the OBDD-
based techniques for manipulating sets of combinations
in solving general covering problems.

Those implicit manipulation method is more efficient
than with the conventional data structures, however,
there is still room to improve the efficiency because OB-
DDs were originally designed for representing Boolean
functions, not completely fit to the sets of combinations.

In this article, we study a special type of OBDDs for
manipulating sets of combinations. This data structure,
called Zero-suppressed BDD (ZBDD )[16], represents sets
of combinations more efficiently than using original OB-
DDs. In the following sections, we discuss the basic data
structures and algorithms for manipulating ZBDDs in
contrast with the original OBDDs. We then present some
practical applications of ZBDDs.

This article is structured as follows: In Section 2,
first we review the way to represent sets of combina-
tions using original OBDDs. We then describe the data
structures of ZBDDs, followed by the basic algorithms
for manipulating them. We discuss the difference in ma-
nipulation methods of ZBDDs and original OBDDs, and
show the relationship between ZBDDs and OFDDs.

In Section 3, we discuss unate cube set algebra, which
is useful for manipulating sets of combinations. We show
that the operations of the algebra are efficiently imple-
mented by using ZBDDs. Several applications of unate
cube set manipulation are presented.

In Section 4, we present the ZBDD-based logic syn-
thesis method, which is the most successful application
of ZBDDs. This method is based on binate cube set al-
gebra, which is different from the unate one. We show
the fast method for generating compact cube set repre-
sentation for given Boolean functions. Those cube sets
can be factored into multi-level logic networks by using
a fast division algorithms.

In Section 5, we survey some other published works
of ZBDD applications, such as processing of Petri nets,
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)

) Node deletion.

) Node sharing.

Fig. 1. Reduction rules of original OBDDs.

F(abe): F(abed):
abc [ F abcd T F
000 0 0000 0
100 0 1000 0
010 0 0100 0
110 | 1 || 1100 | 1 F(abcd)
001 0 0010 0
101 | o || 1010 | 0 F(abe)
011 0 0110 0
111 1 1110 1
0001 0
1001 0
0101 0
1101 1
0011 0
1011 0
0111 0
1111 1

Fig. 2. OBDDs for Boolean functions.

Graph optimization problems, and manipulating poly-
nomial expressions.

Finally, the conclusions of this article are stated in
Section 6.

2 Zero-Suppressed BDDs

In this section, we describe the basic data structures and
algorithms of Zero-Suppressed BDDs for processing sets
of combinations, and compare them to ordinary OBDDs
as well as OFDDs.

2.1 Reduction Rules of OBDDs

Here we review the reduction rules of original OBDDs;,
and then show a problem which motivates us to develop
a new type of OBDDs. As mentioned in the overview ar-
ticle[9], OBDDs are based on the following two reduction
rules:

— S-deletion rule: Delete all redundant nodes whose two
edges point to the same node. (Fig. 1(a))

— merging rule: Share all equivalent subgraphs. (Fig. 1(b))

We know that the reduction rules make OBDDs com-
pact and canonical for Boolean functions under a fixed
variable ordering.

One may ask which reduction rule has more signif-
icant effects to make OBDDs compact? Liaw et al.[11]

functions, the merging rule makes a much more signif-
icant contribution to storage saving than the deletion
rule. However, here we show that the deletion rule is also
important in some practical environment. For example,
Fig. 2 illustrates the Boolean functions of (a A b) in dif-
ferent input domains F'(abc) and F'(abed). They require
the different representations in using truth tables, how-
ever, those OBDDs become the same form with only two
decision nodes. In other words, OBDDs are independent
of the input domains as long as the logic expressions are
the same. The irrelevant variables are automatically sup-
pressed by the node deletion rule. This property is very
important in some practical applications with a large
number of variables.

2.2 OBDDs for Sets of Combinations

Presently, there have been many works on OBDD ap-
plications. As mentioned in previous section, some kind
of applications use OBDDs not for simply representing
Boolean functions, but for processing sets of combina-
tions (e. g. [4,5,12]). Sets of combinations often appear
in solving combinatorial problems. The representation
and manipulation of sets of combination are important
techniques for many applications.

A combination of n items can be represented by an
n-bit binary vector, (z122 ... %), where each bit, x5 €
{1,0}, expresses whether or not the item is included in
the combination. A set of combinations can be repre-
sented by a list of the combination vectors. In other
words, a set of combinations is a subset of the power
set of n items.

A set of combinations can be mapped into Boolean
space by using n-input variables for each bit of the com-
bination vector. If we choose any one combination vec-
tor, a Boolean function determines whether the combina-
tion is included in the set of combinations. Such Boolean
functions are called characteristic functions. The set op-
erations such as union, intersection, and difference can
be performed by logic operations on characteristic func-
tions.

By using OBDDs for characteristic functions, we can
manipulate sets of combinations efficiently. Due to the
effect of node sharing, OBDDs compactly represent sets
of huge number of combinations. OBDDs can be gen-
erated and manipulated within a time roughly propor-
tional to the size of graphs, whereas the previous data
structures (such as arrays and sequential lists) require a
time proportional to the number of combinations.

Despite the efficiency of OBDDs, there is one in-
convenience. For example, S(abc) and S(abed) shown in
Fig. 3 represent the same set of combinations {a, b} if
we ignore the irrelevant input variables ¢ and d. In this
case, the OBDDs for S(abe) and S(abed) are not identi-
cal. Here we can see that the forms of OBDDs depend
on the input domains when representing sets of combi-

and Wegener[30] show that, for general (or random) Boolean nations. This inconvenience comes from the difference
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S(abe): S(abed):
abc [ S abcd [ S
000 [ 0 |[ 0000 [0 S(abed)
100 1 1000 1
010 1 0100 1
110 | O 1100 | O
001 0 0010 [ O
101 0 1010 | O
011 0 0110 | O
111 0 1110 | O
0001 0
1001 0
0101 0
1101 0
0011 0
1011 0
0111 0
1111 0

Fig. 3. OBDDs for sets of combinations.

° Jump
0? 1 —-
Fig. 4. New reduction rule for ZBDDs.

in the model of default behavior. For sets of combina-
tions, we assume that irrelevant items never appear in
any combination, so those input variables must be zero
to satisfy the characteristic functions. Unfortunately, the
OBDD node deletion rule is not effective to such irrel-
evant variables, and many useless nodes are generated
when we manipulate sparse combinations. This is the
reason why we need another type of OBDDs for manip-
ulating sets of combinations.

2.8 Zero-Suppressed Reduction Rule

For representing sets of combinations efficiently, Minato[16]

introduced the following node deletion rule:

— Delete all nodes whose 1-edge points to the 0-terminal
node, and then connect the edges to the other sub-
graph directly as shown in Fig. 4.

This is also called pD-deletion rule[9]. Notice that we do
not delete the nodes whose two edges point to the same
node, which used to be deleted by the original rule. The
zero-suppressed deletion rule is asymmetric for the two
edges, as we do not delete the nodes whose 0-edge points
to a O-terminal node. We call this type of OBDDs Zero-
suppressed BDDs (ZBDDs).

Theorem 1. If the input domain and variable ordering
are fivred, a ZBDD uniquely represents a Boolean func-
tion.

(Proof): See Appendix.

S(abe): S(abed):

abc [ S abcd T S

000 | O 0000 | O

100 | 1 1000 | 1

010 | 1 0100 | 1

110 | O 1100 | O S(abcd)

001 | 0 || 0010 | 0 S(abc)

101 | O 1010 | O

011 | O 0110 | O

S0 Good | o
1001 | 0 (2)
s
0011 | 0 (b)
1011 | 0 A
0111 | O
1111 | 0 [0]

Fig. 5. ZBDDs for sets of combinations.

(#Node)
10000 [~
BDD

8000 -
6000 [~
4000 [~

ZBDD

2000

0O 10 20 30 40 50 60 70 80 90 100
Number of 1'sin acombination

0

Fig. 6. Comparison of ZBDDs and OBDDs.

Figure 5 shows the ZBDDs for the same sets of com-
binations shown in Fig. 3. The form of ZBDDs are inde-
pendent of the input domain. The ZBDD node deletion
rule automatically suppresses the variables which never
appear in any combination. This feature is important
when we manipulate sparse combinations.

For evaluating the ZBDD node deletion, we conducted
a statistical experiment. We generated one hundred pieces
of 100-bit vectors, each of which randomly selects k-
bit out of 100-bit. We then compared the sizes of the
ZBDDs and original OBDDs for the set of the hundred
random combinations!. The result in Fig. 6 shows that
ZBDDs are much more compact than original ones —
especially when £ 1s small. This means that ZBDDs are
particularly effective for representing sets of sparse com-
binations. The effect weakens for large k; however, we
can use complement combination vectors to make k less
than 50%. For example, the combination selecting 90-bit
out of 100 is equivalent to selecting the other 10-bit.

Another advantage of ZBDDs is that each path from
the root node to the 1-terminal node, which we call I-

1 We tried many times with different random seeds and show
the average.
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path, corresponds to each combination vector in the set.
In other words, the number of 1-paths in a ZBDD 1is
exactly equal to the number of combinations in the set.
This beautiful property is broken if we use the original
OBDD reduction rules.

From the above observations, we can conclude that
ZBDDs are more suitable for representing sets of com-
binations than original OBDDs are. On the other hand,
original OBDDs will be superior to ZBDDs when manip-
ulating ordinary Boolean functions. The difference is in
the models of default behaviors: “must be zero” in sets
of combinations, or “both the same” in Boolean func-
tions. We may choose one of the two types of OBDDs
according to the nature of applications.

2.4 Basic Operations of ZBDDs

In this section, we describe the algorithms of ZBDD ma-
nipulation. As well as original OBDDs for Boolean func-
tions, ZBDDs support many operations for sets of com-
binations. Here we show the most of basic operations.
In the following, P and @ indicate instances of sets of
combinations represented by ZBDDs, and v means an
input variables.

“o the empty set. (O-terminal node.)
“1” the set of only the null combination

{00...0}. (1-terminal node.)

P.top the variable at the root of the ZBDD.

P offset(v) selects the subset of the combinations
each of which does not include v.

P.onset(v) selects the subset of the combinations

including v, and then delete v from each
combination.

P.change(v)

inverts v on each combination. (swaps
onset and offset of P.)

rPuQ@ the union set of P and Q.

PNn@ the intersection set of P and Q.

P-qQ the difference set. (combinations in P
but not in Q.)

P.count the number of combinations in P.

Figure 7 shows an example of constructing ZBDDs.
Any set of combinations can be generated by a sequence
of those basic operations. Since ZBDDs give canonical
forms for sets of combinations, equivalence checking is
quite easily performed. Notice that we do not support
the unary complement operation, which is essential in
OBDDs. Its absence here 1s reasonable, as we need to
define a universal set U to compute complement set P.
We use the difference operation (I — P) to compute it.

We show here that those ZBDD operations can be
executed recursively, like the ones for original OBDDs.
First, to describe the algorithms simply, we define the
procedure Getnode(v, Py, P1), which generates (or makes
a reference to) a node with the variable v and two sub-
graphs Py, P;. The algorithm is shown in Fig. 8. In this

(ab):{01} (ab}:{00, 10}

01 ol 1

difference .l
[0] (ab):{10, 01} /

change(b)
(ab):{10} (ab):{00, 10, 01}
union Q
@00 < q
change(a) é

Fig. 7. Construction of ZBDDs for sets of combinations.

Getnode (v, Py, P1) {
if (P == 0) return Pp; /* node deletion */
P = search a node with (v, Py, P1) in unig-table;
if (P exist) return P; /* node sharing */
P = generate a node with (v, Py, P1);
append P to the unig-table;
return P;

Fig. 8. Algorithm of “Getnode”.

procedure, we use a hash table, called unig-table, to keep
each node unique. The node deletion and sharing process
is encapsulated in the Getnode procedure.

The algorithms of the ZBDD operations are shown in
Fig. 9. In the description, P.top < @.top means the root
node of P is higher (farther from the terminal nodes)
than the root of ). Py and P, means the two subgraphs
of the root node of P.

In these algorithms, we use a cache which stores the
results of recent operations, similarly to the OBDD oper-
ations. By referring to the cache before every recursive
call, we can avoid duplicate executions for equivalent
subgraphs. This enable us to execute these operations
in a time that is roughly proportional to the size of the
graphs.

2.5 Using Attributes in ZBDD Fdges

In many OBDD packages, the complement edges are com-
monly used to reduce the computation time and memory
requirement. Minato[16] presented a similar technique
for ZBDDs, called 0-element edge, but the function of
the attribute is slightly different from conventional ones.
This attribute indicates that the pointing subgraph in-
cludes the null combination vector “00...0” in the set
of combinations.

Similarly to the complement edges, we have to place
a couple of constraints in using 0-element edges to keep
the uniqueness of the graphs:

— Use the 0-terminal only.
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P offset(v) {
if (P.top = v) return F;
if (P.top > v) return P;
R — cache[P.offset(v)]; if(R exists) return R;
R — Getnode(P.top, Py.offset(v), Pi.offset(v));
cache[P.offset(v)] — R;
return R;

}

P.onset(v) {
if (P.top = v) return Py;
if (P.top > v) return §;
R — cache[P.onset(v)]; if(R exists) return R;
R — Getnode(P.top, Pp.onset(v), P;.onset(v));
cache[P.onset(v)] — R;

return R;

}
P.change(v) {
if (P.top = v) return Getnode(v, P1, P);
if (P.top > v) return Getnode(v, 0, P);
R — cache[P.change(v)]; if( R exists) return R;
R — Getnode(P.top, Py.change(v), Py.change(v));
cache[P.change(v)] — R;

return R;

procedure(P U @) {
if (P =0) return @;
if (@ =0or P=Q) return P,
R — cache[P U Q]; if( R exists) return R;
if (P.top < Q.top) R — Getnode(P.top, Po UQ, P);
if (P.top > Q.top) R — Getnode(Q.top, PU Qo, Q1);
if (P.top = Q.top) R — Getnode(P.top, Po UQo, PL UQ1);
cache[P U Q] «— R;

return R;

}
procedure(P N Q) {
if (P=0or @=0) return §;
if (P = Q) return P;
R — cache[P N Q]; if( R exists) return R;
if (P.top < Q.top) R — Py N
if (P.top > Q.top) R — P N Qo;
if (P.top = Q.top) R — Getnode(P.top, Po NQo, P N Q1);
cache[P N Q] — R;
return R;
}
procedure(P — @) {
if (P=0or P=Q) return 0,
if (@ =0) return P;
R — cache[P — Q); if( R exists) return R;
if (P.top < Q.top) R — Getnode(P.top, Po — Q, P1);
if (P.top > Q.top) R — P — Qo;
)

if (P.top = Q.top) R — Getnode(P.top, Po — Qo, Pr — Q1);

cache[P — Q] — R;
return R;
}
P.count {
if (P = 0) return 0;
if (P =1) return 1;
sum — cache[P.count]; if(sum exists) return sum;
sum — Py.count + Pj.count;
cache[P.count] «— sum;
return sum;

Fig. 9. Algorithm of the basic operations.

b AR AR

Fig. 10. Rules in using 0-element edges.

ab+acd {00+, 0700}

Fig. 11. Comparison of OBDD and ZBDD.

— Do not use O-element edges at the 0-edge on each
node.

If necessary, O-element edges can be carried over as shown
in Fig. 10. The constraint rules can also be encapsulated
in the Getnode procedure.

0-element edges accelerate operations on ZBDDs. For
example, the result of (P U {00...0}) depends only on
whether or not P includes the null combination. In such
a case, we can get the result in a constant time when
using 0-element edges; otherwise we have to repeat the
expansion until P becomes a terminal node.

2.6 Comparison of OBDD and ZBDD Construction

Someone may easily consider that we can improve the
performance of an OBDD application program just by
replacing OBDDs by ZBDDs when the target OBDDs
are reduced by using ZBDDs. However, if we construct
ZBDDs in the same way as original OBDDs, we some-
times fail to have the benefit of ZBDDs. For example,
suppose an OBDD and a ZBDD for the same Boolean
function (or set of combinations) shown in Fig. 11. This
function is expressed as (@ b+a ¢ d), and its OBDD can
be constructed in the way as Fig. 12. Since OBDDs and
ZBDDs have one-to-one mapping, a ZBDD can be con-
structed in the same way as OBDDs, as shown in Fig. 13.
In this example, we can see that the intermediate results
of ZBDDs are not efficiently represented although the fi-
nal ZBDD is more compact than the original one. For
taking the full of benefit of ZBDDs, we had better use
another sequence of operations as shown in Fig. 14. This
example shows that the efficient operation sequences are
different in using ordinary OBDDs and ZBDDs.

In general, ZBDDs are more efficient than original
OBDDs when manipulating the sets of “sparse combina-
tions” (it is different from “sparse sets” of combinations.)
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a

Fig. 12. Ordinary OBDD construction.
{*0**} {0***}

Fig. 13. ZBDD construction in the same way as OBDD.

{0001} {0017}

Ol
o][1]

change(c)
0l {00**}

Change(d) union ’ 1 —( -
Oy 1\

{0100}

union
{0000}

i change(b) 0

Fig. 14. Good ZBDD construction.

Anyway, the improvement of ZBDDs from OBDDs is at
most n times (n: number of input variables) in terms
of time and space. For some practical applications it is
remarkably effective, but would be negligible in dealing
with small n for exponentially large OBDDs.

2.7 Relationship between ZBDDs and OFDDs

As described in the overview article[9], there is another
type of OBDD based on AND-EXOR, logic operations.
OFDDs (Ordered Functional Decision Diagrams), pre-
sented by Kebschull et al.[10], are based on the following
expansion:

[ = fa=0) @2 (flz=0) D fla=1))

This expansion is called (positive)} Davio’s expansion. An
OFDD is derived by reducing a binary tree graph, shown

(a) Non-reduced
OFDD tree.

Fig. 15. OFDDs for (ab @ ac & ¢).

(b) Ordinary (c) Zero-sup.

reduction. reduction.

in Fig. 15(a). Each node of this binary tree represents
Davio’s expansion, i.e. the O-edge points to f(=¢), and
the l-edge points to (fz=0) ® flz=1))

The first paper of OFDD used the same deletion
rule as OBDDs, but later[8] it is understood that Zero-
suppressed (pD-deletion) rule is more fit to OFDDs. For
example, the binary tree is reduced to Fig. 15(b) by the
ordinary reduction rules, and more reduced to Fig. 15(c)
by the Zero-suppressed rule.

OFDD has another property that each 1-path (the
path from the root node to a 1-terminal node) is corre-
sponding to a product term in the AND-EXOR two-level
expression, called (positive polarity) Reed-Muller expres-
ston. For example, the OFDD shown in Fig. 15 has three
1-paths: (abe):{110,101,001}. They corresponds to the
product terms in the Reed-Muller expression: (ab® ac &
¢). In other words, the OFDDs can also be regarded as
the ZBDDs representing sets of product terms in the
Reed-Muller expressions. This observation explains why
the complement edge used in OFDDs[1] follows the same
rule as the O-element edge used in ZBDDs.

3 Unate Cube Set Algebra Based on ZBDDs

In this section, we discuss unate cube set algebra[l7]
based on ZBDD manipulation. A cube set consists of a
number of cubes, each of which is a combination of liter-
als. Unate cube sets allow us to use only positive literals,
not the negative ones. We sometimes use cube sets to
represent Boolean functions, but they are usually binate
cube sets containing both positive and negative literals.
Those binate cube sets are discussed in Section 4.

3.1 Basic Operations

Unate cube set expressions consist of trivial sets and
algebraic operators as follows.



Shin-ichi Minato: Zero-Suppressed BDDs and Their Applications 7

0 (empty set),

1 (unit set),

var (single literal set),

N (intersection),

+ (union),

— (difference),

* (product),

/ (quotient of division),
% (remainder of division).

The unit set “1” includes only a “null” cube which con-
sists of no literal. A single literal set var includes only
a cube which consists of one literal. In the rest of this
section, a lowercase letter denotes a literal, and an upper-
case letter denotes a cube set expression. We sometimes
omit “x” for the simplicity.

Here are examples of calculating unate cube sets by
those operations.

{ab,b,e} N {ab,1} = {ab}
{ab,b,c} + {ab,1} = {ab,b,¢, 1}
{ab,b,c} — {ab,1} = {b,c}
{ab,b e}« {ab, 1} = (ab*ab) + (abx 1) +
+(b*)+(cxab)+
= {ab,abe, b, c}

(b*ab)
(ex1)

The product operation “x” generates all possible con-

catenations of two cubes in respective cube sets.
The following equations are observed in the unate
cube set calculation:

P+P=P Pxl1l=P
axa=a (P+P#DP
Px@Q=0QxP,
(P+xQ)*R=Px*(Qx*R),
Px(Q+R)=(PxQ)+(P*R),
P—-Q=@Q—P ifandonlyif P=0Q.

Dividing P by @ acts to seek out the two cube sets P/Q
(quotient) and P%Q (remainder) under the equality:

P = Q+(P/Q) + (PIQ).

In general this solution is not unique. Here we apply the
following rules to fix the solution with reference to the
weak-division method[2].

1. When @ includes only one cube, (P/Q) is obtained
by extracting a subset of P, which consists of the
cubes including all the literals in @)’s cube, and then
eliminating @)’s literals. For example,

{abe, be,ac}/{be} = {a, 1}.

2. When @ consists of multiple cubes, (P/Q) is the in-
tersection of all the quotients dividing P by respec-
tive cubes in (). For example,

in general),

{abd, abe, abg,cd, ce,ch}/{ab, c}
= ({abd, abe, abyg, cd, ce,ch}/{ab})

N ({abd, abe,abg, cd,ce,ch}/{c})
={d,e,g}N{d e, h}
={d,e}.
3. (P%Q) can be obtained by calculating P—Q*(P/Q).

In Section 2, we defined three operations — P.offset(v),
P.onset(v), and P.change(v) — as the basic methods of
manipulating ZBDDs. Now the three operations can be
regarded as the special cases of the division operation in
the unate cube set algebra. P.offset(v) can be described

s (P%v), and P.onset(v) becomes (P/v). P.change(v)
is also be written as (P%v) * v 4+ (P/v).

3.2 Algorithms

We show here that the basic operations of unate cube
set algebra can be efficiently calculated using ZBDDs.
The empty set “0” corresponds to the O-terminal, and
the unit set “1” is the 1-terminal node. A single literal
set @y corresponds to the single-node graph pointing di-
rectly to the 0- and 1-terminal node. The intersection,
union, and difference operations are the same as the ba-
sic ZBDD operations shown in Section 2. The other three
operations — product, quotient, and remainder — are
not included in the basic ones. If we calculate those op-
erations by processing each cube one by one, the com-
putation time will depend on the length of expressions.
Such a procedure is impractical when we deal with very
large numbers of cubes. Minato[17] presented the fast
algorithms for computing them.

The algorithms are based on the divide-and-conquer
method. We first explain the multiplication algorithm.
When v is the highest one between P.top and Q.top, P
and @ are then factored into the two parts:

P=vx P+ P, Q=vxQ1+ Qo
The product (P * @) can be expanded as:

(P+xQ)=v+(Pr*Q1+ P+ Qo+ PoxQ1)+ Po*Qo.

Each sub-product term can be computed recursively.
The expressions are eventually broken down into triv-
1al ones and the results are obtained. By referring to
the cache storing recent results of the operations, we
can avoid duplicate executions for equivalent subgraphs.
Consequently, the execution time depends on the size of
ZBDDs rather than on the number of cubes and literals?.
This algorithm is described in detail in Fig. 16.

Division is computed in the same recursive manner.
Suppose v = @.top (here we do not use P.top), and that
Py, P, Qo,and@)q are the subsets of cubes factored by v.
(Notice that Q1 # 0, since v is chosen from (.) Then
the quotient (P/Q) can be described as

(P/Q) = (P1/Q1), when Qo =0.
(P/Q) = (P1/Q1) N (Po/Qo),

2 We have not known the exact complexity of this algorithm,
but empirically, about square of graph size in many cases.

otherwise.
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procedure( P x Q)
{ if (P.top > Q.top) return (Q * P) ;
if (@ =0) return 0 ;
if (@ =1) return P ;
R — cache(“P* Q") ; if (R exists) return R ;
v «— P.top ; /* the highest variable in P */
(P, P1) < factors of P by v ;
(Qo, Q1) — factors of @ by v ;
R—v(PixQi+Pi+xQo+ PoxQr)+ Po*Qo;
cache(“P+ Q") — R ;

return R ;
}
Fig. 16. Algorithm for multiplication.
procedure(P/Q)

{ if (@ =1) return P ;
if (P=0or P=1) return 0 ;
if (P=Q) return 1 ;
R — cache(“P/Q”) ; if (R exists) return R ;
v «— Q.top ; /* the highest variable in @ */
(P, P1) «— factors of P by v ;
(Qo, Q1) — factors of @ by v ; /* (Q1 #0) */
R—Pi/Q:;
i (R#£0)if (Qo£0) R—R N Po/Qo;
cache(“P/Q”) — R ;

return R ;

Fig. 17. Algorithm for division.

Each sub-quotient term can be computed recursively.
Whenever we find that one of the sub-quotients (P /Q1)
or (Py/Qp) results in 0, (P/Q) = 0 becomes obvious
and we no longer need to compute it. Using the cache
technique avoids duplicate executions for equivalent sub-
graphs. This algorithm is described in Fig. 17. The re-
mainder (P%Q) can be determined by calculating P —

P+ (P/Q).
3.8 Application of Unate Cube Set Calculation

In this section, we present several examples using unate
cube set algebra for describing and solving combinatorial
problems.

8-Queens Problem

First we show an application to the 8-Queens problem,
which is a commonly known combinatorial problem. We
define 64 input variables to represent the squares on a
chessboard. Each variable denotes whether or not there
is a queen on that square. The problem can be described
with the variables as follows:

— In a particular column, only one variable is “1.”
— In a particular row, only one variable is “1.”

— On a particular diagonal line, one or no variable is
((1 ”

Table 1. Results on N-queens problems.

: OBDD [ZBDD

N |Lit.| Sol. | V57|70 (B2 | (2/9)
4] 16 2 29 8] 36| 4.0
51 250 10 166 40| 42| 40
6| 36 4 129 24| 54| 6.0
7| 49| 40| 1098| 186| 5.9 4.65
8| 64| 92| 2450 373| 6.6| 4.05
9| s1| 352 9556| 1309| 7.3| 3.72
10100 724| 25944| 3120|| 83| 4.31
11]121] 2680 94821 10503| 9.0| 3.92
12| 14414200 435169 45833| 9.5| 3.23
13]169| 73712 2044393 | 204781 || 10.0| 2.78

(B/Z): OBDD nodes / ZBDD nodes
(Z/S): ZBDD nodes / Sol.

We can describe this constraints by using logic expres-
sions, and the problem can be solved by constructing
OBDDs. (See the article[20] for ones interested in this
topic.) The 8-Queens problem is one of the instances
where ZBDDs are more efficient than using OBDDs.

As discussed in Section 2.6, the sequence of ZBDD
construction should be different from OBDD’s one. By
using unate cube set calculation, the construction se-
quence is described in the following way.

St =z +x24+ ...+ 28

So — 291 (S1%T11%212) + 229(S1%T11%T12%213)
+ . A was(S1%E17%T18)

Sz — w31 (S2hr11%r13%hear hres)
+ 232(Sa%r12%hw 4% hashres)
+ ...+ x35(S2%hr16hE18hT oL ag)

Sq — ...

The ZBDD is constructed in step by step from S; to Ss.
Each step 1s the following meaning.

S1: Represents all choices of putting a queen at the first
rOW.

So: Represents all choices of putting a queen at the
second row so as not to violate the first queen.

Ss3: Represents all choices of putting a queen at the
third row so as not to violate the first and second
queens.

Ss: Represents all choices of putting the eighth queen
so as not to violate the other queens.

The ZBDD for Sg contains all possible solution of the
8-Queens problem.

Okuno[25] reported experimental results for N-Queens
problems to compare the efficiencies of ZBDDs and con-
ventional OBDDs. In Table 1, the column “Sol.” shows
the number of solutions. “OBDD nodes” and “ZBDD
nodes” show the size of OBDDs using Boolean algebra
and ZBDDs using unate cube set algebra, respectively.
We can see that ZBDDs are about N times fewer than
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OBDDs. The result of ZBDD represents all the solutions
at once within a storage space roughly proportional to
the number of solutions.

The N-Queens problem is one of the instances of
CSP (Constraint Satisfaction Problems). To solve such
problems efficiently, Okuno, et al.[26] defined the special
operations for ZBDDs, called restriction, exclusion, and
permission. Those operations are implemented with the
basic operations of ZBDDs and executed efficiently us-
ing the cache technique. They improved the perfomance
of solving N-Queens problem up to 4.5 times faster than
using only the basic operations. They also reported that
4 x4 Magic Square problem can be solved within 83,852
nodes of ZBDDs, which is 6 times smaller than using the
basic operations.

Knight’s Tour Problem

Knight’s Tour problem is the other famous combinato-
rial chess problem, which has 400 years long history.
The knight’s graph contains n? vertices representing the
squares of the chessboard and the edges describe the le-
gal moves of a knight. A knight’s tour is a closed path vis-

iting each square of the chessboard exactly once. M. Lobbing

and I. Wegener[13] attacked the problem to compute the
number of knight’s tours on 8x8 chessboard. They as-
signed a Boolean variable for each edge in the knight’s
graph, in total 156 variables to represent all the edges. A
solution of knight’s tour is represented by a 156-bit com-
bination vector. If we succeed in constructing a ZBDD
for the set of all solutions, the number of knight’s tour
can easily be counted. Unfortunately, the ZBDD is still
too large to solve it straightforwardly. They divided the
problem into two parts of the chessboad, and then con-
structed a kind of OBDDs for each sub-space. After
minute discussion for connecting the two sub-problems,
they succeeded in counting the exact number of 8 x 8
knight’s tour.

In this application, each solution contains 64 edges
from the 156 edges. The ratio is about 40%, not very
sparse. We can expect that the benefit of ZBDDs is not
so remarkable here.

Fault Simulation

Takahashi et al.[29] proposed a fault simulation method
considering multiple faults by using OBDDs. it is a de-
ductive method for multiple faults, that manipulates sets
of multiple stuck-at faults. It propagates the fault sets
from primary inputs to primary outputs, and eventually
obtains the detectable faults at primary outputs. Taka-
hashi et al. used ordinary OBDDs, but we can compute
the fault simulation more simply by using ZBDDs based
on unate cube set algebra.

First, we generate the whole set of multiple faults
that 1s assumed in the simulation. The set F} of all the

x0(s-a-0)
x1(s-a-1)
net x '/ X, netx net z
— —e — -
X NG Y nety YA

(a) At the net. (b) At the gate.

Fig. 18. Propagation of fault sets.

single stuck-at faults is expressed as
F1 = (ao—|—al—|—b0—|—b1+60—|—cl—|—...),

where ag and a; represent the stuck-at-0 and -1 faults,
respectively, at the net a. Other literals are expressed
similarly. We can represent the set F% of double and sin-
gle faults as (F} * Fy). Further more, (Fy * Fy) gives
the set of three or fewer multiple faults. If we assume
exactly double (not including single) faults, we can cal-
culate (F5 — F). In this way, the whole set U can easily
be described with unate cube set expressions.

After computing the whole set U/, we then propagate
the detectable fault set from the primary inputs to the
primary outputs. As illustrated in Fig. 18(a), two faults
zy and x; are assumed at a net z. Let X and X’ be
the detectable fault sets at the source and sink, respec-
tively, of the net-x. We can calculate X’ from X with
the following unate cube expressions:

X' = (X 4 (U/z1) * z1)%zo, when net-x is normally 0.
X' = (X 4+ (U/xo) * 20)%x1, when net-x is normally 1.

The first expression means that: if net-x should be 0 in
the normal circuit, the multiple faults with 2y (stack-
at-1 at z) are detectable but the multiple faults with
zg (stack-at-0 at ) cannot be detected hereafter. The
second expression shows the other case similarly.

On each gate, we calculate the fault set at the output
of the gate from the fault sets at the inputs of the gate.
Let us consider a NAND gate with two inputs z and y,
and one output z, as shown in Fig. 18(b). Let X, Y, and
Z be the fault sets at x,y, and z. We can calculate 7
from X and Y by the simple unate cube set operations
as follows:

Z =XNY, whenz =0,y =0,z = 1 in normal circuit.
Z =X-Y, whenz =0,y =1,z = 1 in normal circuit.

Z=X+4Y, whenz =1,y =1,z = 0 in normal circuit.

The first expression means that: if z = 0,y = 0, and z =
1 in the normal circuit, both x and y must be inverted
to make z = 0. Therefore, only the faults commonly
included in X and Y can survive in Z. The second and
third expressions shows the other cases.

In this way, we can compute the detectable fault sets
by calculating those expressions for all the gates in the
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circuit. Using unate cube set algebra, we can simply de-
scribe the fault simulation procedure and can execute it
directly by using ZBDD operations.

Unate cube set expressions are suitable for repre-
senting sets of combinations, and they can be efficiently
manipulated using ZBDDs. For solving some types of
combinatorial problems, ZBDDs are more efficient than
those using original OBDDs. We expect the unate cube
set calculation is useful in developing VLSI CAD systems
and in various other applications.

4 Multi-Level Logic Synthesis Using ZBDDs

Logic synthesis and optimization techniques have been
used successfully for practical design of VLSI circuits in
recent years. Multi-level logic, Optimization is impor-
tant in logic synthesis systems and a lot of research in
this field has been undertaken[23,14]. In particular, the
algebraic logic minimization method, such as MIS[2], is
the most successful and prevalent way to attain this opti-
mization. It is based on cube set (or two-level logic) min-
imization and generates multi-level logic from cube sets
by applying a weak-division method. This approach is ef-
ficient for functions that can be expressed in a feasible
size of cube sets, but we are sometimes faced with func-
tions whose cube set representations grow exponentially
with the number of inputs. Parity functions and full-
adders are examples of such functions. This is a problem
of the cube-based logic synthesis methods.

As noted in previous sections, the OBDD-based tech-
nique[4] provided a break-through for that problem. The
implicit cube set manipulation method greatly reduces
the computation time and memory requirement. For such
applications, ZBDDs are especially suitable.

In this section, we discuss an application of ZBDDs
for multi-level logic synthesis. We first define the opera-
tions of binate cube sets, and show a fast method[15] for
generating irredundant cube sets for given Boolean func-
tions. We also describe the fast factorization method[19]
of the cube sets. These algorithm can be computed in a
time almost proportional to the number of nodes in ZB-
DDs, which are usually much smaller than the number
of literals in the cube set. In this method, we can quickly
generate multi-level logic from cube sets even for parity
functions and full-adders, that have not been possible to
handle when using the conventional algebraic methods.

4.1 Implicit Cube Set Representation

Cube sets (also called covers, PLAs, sum-of-products
forms, and two-level logic) are used to represent Boolean
functions in many problems in the design and testing of
digital systems. In a cube set, each cube is formed by
a combination of positive and negative literals for input
variables. (We are speaking here of a binate cube set, dif-
ferent from the unate cube set discussed in Section 3.)

(a + chE)
(cube) aabbceddee
a 1000000000
bede [0001101001

a+bcdé

at+bcdée

ZBDD

Fig. 19. ZBDD and OBDD for representing a cube set.

Figure 19 illustrates ZBDD-based representation of
a cube set of positive and negative literals. In this rep-
resentation, we use twice number of input variables for
the two kind of literals. var and var never appear to-
gether in the same cube, and at least one should be 0.
The 0’s are automatically suppressed by using ZBDDs.
This is the main advantage of using ZBDDs comparing
to ordinary OBDDs.

The basic operations for the binate cube set repre-
sentation are the following:

“o the empty set. (O-terminal node.)
“1” the set of only the tautology cube. (1-
terminal node.)

P.top the input variable of the literal at the
root node.

P.and0(v) appends literal ¥ for each cube.

P.and1(v) appends the literal v for each cube.

PfactorO(v)  selects the cubes including 7, and then
delete 7 from each combination.

Pfactorl(v) selects the cubes including v, and then
delete v from each combination.

PfactorD(v) selects the cubes not including v, .

P+@Q the union set of P and ).

PNn@ the intersection set of P and Q.

P—-qQ the difference set. (cubes in P but not
in Q.)

P.cubes the number of cubes in P.

P literals the number of total literals in P.
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GetISOP(f(X)): /* f(X):{0,1}" — {0,1,d}*/
if (f(X) always returns 0 or d) isop — 0
else if (f(X) always returns 1 or d)
else {
v — one of variable in X
/* choose top variable in BDD. */
J(X) = f(X|ozt)  [* X' = X — {o}. %/
Jo(X') — f(X|o=0) /* f1, fo are cofactors of f. */
; d f(AXY=DA(fo(X)#£0
fr(X7) = {fl(X') otl(lergvise) )1 (el )
/* fp must be covered by cubes with v. */
isopp — GetISOP(fp(X'))
/* generates isopp recursively. */
; d f(fo(X)=DA(fia(X)£0
fn(XT) = {fo(X') otﬁergvise) I )
/* f~n must be covered by cubes with 7. */
isopy — GetISOP(fn (X))
/* generates isopy recursively. */
- d if already covered by isopp
HXT) = { £ (X') otherwise
PP d if already covered by tsopn
fo(X") = { Jfo(X') otherwise

1sop — 1

0if (fi(X')=0)V (fo(X') =0)
fo(X') < {d if (fi(X) =d) A (fo(X') =d)

1 otherwise

/* fp must be covered by cubes without v, 7. */
isopp +— GetISOP(fp(X"))
/* generates isopp recursively. */
180p «— v - 1S0pp + U - 1S0PN + 1S0pD
}

return ¢sop

Fig. 20. Algorithm for generating prime-irredundant cube sets

Any cube can be generated by applying a number of
“and0” or “andl” to the 1-terminal node. Notice that the
intersection 1s different from the logical AND operation,;
it extracts only the common cubes in the two cube sets.
These operations are simply composed of ZBDD opera-
tions, and their execution time is roughly proportional
to the size of the graphs.

4.2 Generation of Prime-Irredundant Cube Sets

Cube set representation does not give unique forms of
Boolean functions, and 1t is very important issue to find
the minimal or nearly minimal form for a given Boolean
function.

Minato[15] presented a fast algorithm to generate a

prime-irredundant® cube set directly from a given OBDD.

This algorithm is based on recursive operator shown by
Morreale[21], and we call it Minato-Morreale algorithm.
The procedure is described in Fig. 20.

This algorithm i1s summarized in the expansion:

1SOp = U - 180pg + VU - tsopy + 1sopy

3 Any one literal or cube cannot be deleted to keep the function.
Not always the minimum set but nearly minimum in most cases.

(b) Final cube set network.

(a) Initial cube sets.

Fig. 21. Factorization of cube sets.

where isop represents the prime-irredundant cube set,
and v is one of the input variables. This expansion re-
veals that isop can be divided into three subsets con-
taining v, v, and the others. When v and v are excluded
from each cube, the three subsets of isopi,isopg and
1sopg should also be prime-irredundant. Based on this
expansion, the algorithm generates a prime-irredundant
cube set recursively.

At first the program is implemented with linear list
representation of cube sets, but later it is remarkably
accelerated by using ZBDDs. The key technique is the
hash-based cache to store the results of each recursive
call. By checking this cache, we can avoid duplicate ex-
ecution for the shared subgraphs in the ZBDD. The ex-
perimental result in the paper[19] demonstrates that the
practical benchmark circuits are flattened into cube sets
with billions of literals in only several minutes. Those
Boolean functions have never been flattened by using
previous data structures. Since cube set is a basic math-
ematical model, ZBDD-based simplification method will
be useful not only for VLSI CAD but also for many other
problems in computer science.

4.8 Factorization of Cube Sets

In general, two-level logics can be factorized into more
compact multi-level logics. The initial two-level logics
are represented with large cube sets for primary output
functions, as shown in Fig. 21(a). When we determine
a good intermediate logic, we make a cube set for it
and reduce the other existing cube sets by using a new
intermediate variable. Eventually, we construct a multi-
level logic that consists of a number of small cube sets,
as illustrated in Fig 21(b). The multi-level logic consists
of hundreds of cube sets, each of which is very small. On
the average, less than 10 variables out of hundreds are
used for each cube set. They yield so sparse combinations
that the use of ZBDDs is quite effective. Another benefit
of ZBDDs is that we do not have to fix the number of
variables beforehand. We can use additional variables
whenever an intermediate logic is found.

Weak-division (or algebraic division) is the most suc-
cessful and prevalent method for generating multi-level
logics from cube sets. For example, the cube set expres-
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procedure(F/P)
{ if (P =1) return F ;
if (F=0or F=1) return 0 ;
if (F = P) return 1 ;
Q — cache(“F/P”) ; if (Q exists) return @ ;
v «— P.top ; /* the highest variable in P */
(Fo, F1, Fy) — factors of F by v ;
(P, P1, Py) — factors of P by v ;
QP
if (Po #0) Q — Fo/ By
if (@ =0) return 0 ;
if (P, #0)
Hf(Q=P)Q— Fi/P;
else @ — QN (F/P);
if (@ =0) return 0 ;
if (Py # 0)
if(Q=P)Q+— Fqf/Pq;
else Q@ — QN (Fa/Pa) ;
cache(“F/P") — @ ;

return @ ;

Fig. 22. Implicit weak-division algorithm.

procedure(F - G)

{ if (F.top < G.top) return (G - F) ;
if (G =0) return 0 ;
if (G=1) return F ;
H — cache(“F - G”) ; if (H exists) return H ;
v «— F.top ; /* the highest variable in F' */
(Fo, F1, Fq) — factors of F by v ;
(Go, G1, Gq) — factors of G by v ;
H—9(Fy-Go+ Fy - Ga+ Fa-Gy)

+o(Fy - Gi+ F-Ga+ Fq-G1)+ Fa-Ga ;

cache(“F-G”) — H ;

return H ;

Fig. 23. Implicit multiplication algorithm.

sion
F=abd+abet+abgtcd+ce+ch

can be divided by (a b + ¢). By using an intermediate
variable p, we can rewrite the expression:

FP=pd+pe4+abg+ch p=ab+ec.

In the next step, f will be divided by (d+€) in a similar
manner.

Weak-division does not exploit all of Boolean prop-
erties of the expression and is only an algebraic method.
In terms of result quality, it is not as effective as other
stronger optimizing methods, such as the transduction
method[23]. However, weak-division is still important be-
cause it 1s used for generating initial logic circuits for
other strong optimizers, and is applied to large-scale log-
ics that cannot be handled by strong optimizers.

(Non-optimized)
Multi-level circuit

Variableordering

ER

M-M algorithm

Prime-irredundant
implicit cube sets

Fast weak-division

(Optimized)
Multi-level circuit

Fig. 24. Basic flow of multi-level logic synthesizer.

As described in previous sections, the weak-division
operation can efficiently be executed by using ZBDDs.
The algorithm for unate cube sets is already shown in
Section 3. Here we explain the division algorithm for
binate cube sets. The procedure is described in Fig. 22.
The basic idea is summarized as follows.

For the variable v = P.top (not use F.top), the cube
sets F' and P are factored into three parts as:

FIUFo—i—UFl—i—Fd
PIUP0—|—UP1—|—Pd.

The quotient (f/p) can then be written as
(F/P) = (Fo/Fo) N (F1/P1) N (Faf Pa).

Each sub-quotient term can be computed recursively.
The procedure is eventually broken down into trivial
problems and the results are obtained. If one of the val-
ues for Py, Pp, or Py is zero, we may skip the term. For
example, if P = 0, then (F/P) = (Fo/Py) N (Fa/Pa).
Whenever we find that one of the values for (Fy/P),
(F1/Py) and (Fq/Pg) becomes zero, (F//P) = 0 becomes
obvious and we no longer need to continue the calcula-
tion.

In the same way as for the Minato-Morreale algo-
rithm, we prepared a hash-based cache to store results
for each recursive call and avoid duplicate execution. Us-
ing the cache technique, we can execute this algorithm
in a time nearly proportional to the size of the graph,
regardless of the number of cubes and literals.

To obtain the remainder of division (F%P) = F —
P (F/P), we need to compute the algebraic multipli-
cation between two cube sets. This procedure can also
be described recursively and executed quickly using the
cache technique, as illustrated in Fig. 23.

4.4 Implementation and Fvaluation

Based on the above methods, Minato[19] implemented a
multi-level logic synthesizer illustrated in Fig. 24. Start-
ing with non-optimized multi-level logics, the OBDDs
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_-token place

( ) * transition

Fig. 25. A Petri net.

P1 P2 P3 P4 Ps
pl p3 p5 11000
01100
00110
p2 p4 00011

(a) Initial marking. (b) Reachable marking set.

Fig. 26. Reachable marking set for a Petri net.

Fig. 27. ZBDD and OBDD for the reachable marking set.

for the Boolean functions of primary outputs are con-
structed under a heuristic ordering of input variables.
Next the OBDDs are transformed into prime-irredundant
implicit cube sets. The cube sets are then factorized
into optimized multi-level logics by using the fast weak-
division method. The experimental results in the pa-
per[19] show that we can quickly flatten and factorize
circuits, even for large-scale parity functions and adders,
that have never been flattened with other methods. The
program runs much faster than using previous methods,
and the difference is remarkable (10 or 100 times faster)
when large cube sets are factorized. This result demon-
strates the effect of the implicit cube set representation.
ZBDD-based method greatly accelerates the logic syn-
thesis process and enlarges the scale of the circuits to
which these systems are applicable.

There is still room to improve the results. The strat-
egy of choosing divisors is another hard problem as well
as performing division. In addition, more strong division
method for implicit cube sets is worth investigating to
improve the optimization quality.

5 Other ZBDD Applications

5.1 Processing of Petri nets

Pelri nets[22] have been used to model various concur-
rent systems such as network protocols, asynchronous
circuits, finite state machines, etc. As shown in Fig. 25,
a Petri net consists of a finite set of places, a finite set
of transitions representing the flow relation, and a num-
ber of tokens representing the current state. A pattern
of tokens is called a marking.

Yoneda, et al.[31] proposed a method of manipulat-
ing the marking set of a Petri net using ZBDDs. Fig-
ure 26(a) shows the initial marking of an example of
Petri net. There are some choices of transitions, and
thus a number of markings are possible from this initial
state. The set of all reachable markings® are enumerated
in Fig.26(b). This is a kind of set of combinations, and
it can be represented by ZBDDs. Figure 27 shows the
ZBDD and OBDD representation for the same reach-
able marking set. Since the marking sets often include
sparse combinations of tokens, ZBDDs are useful in this
applications. In the paper they present the algorithms
of computing the reachable marking sets using ZBDDs.
Their experimental results show that the reachable set
containing 900 million of markings can be represented
with 500k nodes of ZBDDs. The size ZBDDs are 2 or 3
times smaller than using original OBDDs, and the com-
putation time can be reduced up to 30 times less.

5.2 Framework for Graph Optimization

O. Coudert[7] presented a framework for general graph
optimization problems based on ZBDD manipulation.
The framework can be used for the problems as follows.

— Maximal cliques

— Maximum k-cover

— Minimum a-covering

— Maximum independent set

— Minimum vertex cover

— Minimum coloring

— Minimum clique partition

— Minimum clique cover

— Minimum dominant set

— Minimum edge dominating set

In the paper, he defined a special operations of ZBDDs,
called NotSupSet, NotSubSet, AllEdge, MazSet, and Maz-
Dot, to improve the performance of solving these prob-
lems. These operations can be implemented with the ba-
sic operations of ZBDDs and executed efficiently using
the cache technique. He also presented an example of
application to the routing problem in LSI CAD. This
framework will be useful for many combinatorial prob-
lems in various areas.

4 Here we consider only one-safe Petri nets, where at most one
token can exist at a place.
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(c) 502 + 2xy

(b) 2% 4 2% 4 2% 422

(a) $5 +$1y3

Fig. 28. ZBDD-based polynomial representation.

5.8 Manipulation of Polynomeal Formulas

A polynomial formula is a basic model in mathematics.
Minato[18] presented a method for representing polyno-
mials using ZBDDs. It is similar to the cube set represen-
tation, except that they include higher degree variables
and numerical coefficients.

The basic idea 1s based on binary coding of higher
degrees and coefficients. A variable 2* can be broken
down into:

k_ x(k1+k2+...+km) ka km

x =aFighe g ,

where ki, ko, ..., k, are different powers of 2. In this
way, we can represent ¥ as a combination of z*, 22, z*,
z8, - ~~,x2n_1(0 < k < 2™). Such combinations can be
dealt with efficiently using ZBDDs. For example, a poly-
nomial 2° 4+ 24> can be written as zt2* 4+ zlyty?. It can
be regarded as a cube set over z',z% y', and y?. The
formula, then, can be represented by using a ZBDD, as
shown in Fig. 28(a).

Numerical coefficients can also be represented sim-
ilarly. An integer ¢ (> 1) can be written as a sum of
powers of 2:

C= 29 42 4 2o,

where ¢q,¢s,..., ¢, are different nonnegative integers.
Then, regarding “2” as a variable, just like z, y, z, etc., it
can be represented as a polynomial of variables with de-
grees. Consequently, we can represent a constant number
¢ as a cube set over 21 2% 2% 28 22n_1(0 <c< 22n)
using ZBDDs. For example, the constant number 300 =
284925423492 can be written as 2842121 4+2122492 and
represented by a ZBDD as Fig. 28(b). When the num-
ber is used for a coefficient with other variables, we can
regard the symbol “2” just as one sort of variable in the
formula. Figure 28(c) shows an example for ba? + 2ry,
which is decomposed into 22 + 2%22% + 21zty!.

In this method, we can compactly and uniquely rep-
resent large-scale polynomials with millions of terms,
and can manipulate them in practical time. Construct-
ing canonical forms of polynomials immediately leads to
equivalence checking of arithmetic expressions.

Axy+3x+2y+1
Axy+3x+2y+1

(a) Coeflicients are higher. (b) Coeflicients are lower.

Fig. 29. Comparison of ZBDD-based method and BMD.

BMDs]3], also discussed in the overview paper[9], can
also represent polynomials. One big difference is that
BMDs assume binary-valued variables, so BMDs can-
not deal with the higher-degree variables. Except for
this difference, the two representations are similar to
each other. Fig. 29(a) shows the ZBDD-based represen-
tation for (4zy + 3= + 2y + 1). If we change the vari-
able order such that the coefficient variables move from
higher to lower position, the ZBDD becomes as shown in
Fig. 29(b). In this graph, the sub-graphs with the coef-
ficient variables correspond to the terminal nodes in the
BMD. This observation indicates that the ZBDD-based
representation and the BMD can be transformed into
each other by changing the variable order.

6 Conclusion

In this article, we discussed the basic data structures
and algorithms of ZBDDs, and surveyed their applica-
tions. The ZBDD programs are now widely implemented
in many publicly available BDD packages, such as the
CUDDI28], CAL-2.0[27], and the TiGeR[6] library.

Here we summarize the four check points for using
ZBDDs effectively.

— Dealing with many input variables.

(Reduction factor is bounded by the number of in-
puts.)

Variables are regarded as zero in default.

— Representing sets of “sparse” combinations.

(This is different from “sparse” sets of combinations.)
Containing a large number of combinations.
(Otherwise, linear-list representation is enough to use.)

ZBDDs are suitable to the applications which satisfy the
above conditions. We should determine the property of
data before choosing a type of OBDDs. Even for the
case where ZBDDs are suitable, just replacing the data
structure is not enough to have the benefit of ZBDDs.
We should consider a better sequence of operations for
ZBDDs.
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When we use ZBDDs considering the above prop-
erties, the performance of programs can be improved in
terms of time and space, and programming will be easier
than using ordinary OBDDs. We conclude that ZBDD
is a useful option in the OBDD techniques, suitable for
some kinds of practical applications.
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Appendix: Proof of Theorem 1

For a given (ordinary) OBDD, we reversely apply the
node deletion (S-deletion) rule to re-insert all redundant
nodes. After that, only the merging rule is effective in
the OBDD. This type of OBDD is called quasi-reduced
OBDDI[24,30]. Tt is known that the quasi-reduced OB-
DDs are still canonical for Boolean functions under a
fixed input domain and variable ordering. We then ap-
ply the zero-suppressed (pD-deletion) rule to the quasi-
reduced OBDD, and obtain the completely reduced ZBDD.
In this process, we never create two identical nodes in the
same variable level because the merging rule is always
effective. This implies that a ZBDD uniquely represents
a Boolean function if the input domain and variable or-

dering are fixed. (Q.ED)



