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Abstract: For centuries, the study of prime numbers has been regarded as a subject of pure 

mathematics in number theory. Recently, this vision has changed and the importance of prime 

numbers increased rapidly especially in information technology, e.g., public key cryptography 

algorithms, hash tables, and pseudorandom number generators. One of the most popular topics that 

attract attention is to find a formula that maps the set of natural numbers into the set of prime 

numbers. However, up to now there is no known formula that produces all primes. In this paper, we 

use a hybrid evolutionary algorithm, called the Memetic Programming (MP) algorithm, to generate 

mathematical formulas that produce distinct primes. Using the MP algorithm, we succeeded to 

discover an interesting set of formulas that produce sets of distinct primes. 
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1. INTRODUCTION 

A natural number grater than 1 is called a prime if it is only divisible by 1 and itself. The study 

of prime numbers and their properties have attracted mathematicians for several centuries. 

Questions related to prime numbers have puzzled mathematicians for many years, e.g., “is there a 

formula that maps the set of natural numbers into the set of primes?” Recently, several 

applications in the field of information technology have increased the importance of prime 

numbers, and changed the vision that classifies the study of primes as pure mathematics.  

The Memetic Programming (MP) algorithm is a new evolutionary algorithm that hybridizes the 

well-known Genetic Programming (GP) algorithm, Koza [1], with some local search procedures 

over a tree space to intensify promising programs generated by the GP algorithm. The aim of this 

paper is to use the MP algorithm to generate some mathematical formulas which produce distinct 

primes for a set of consecutive integers.  

The paper is organized as follows. In the next section, we introduce the MP algorithm briefly. 

In Section 3, we report the results of three experiments for generating formulas which produce 

distinct primes. Finally, conclusions make up Section 4. 

2. MEMETIC PROGRAMMING 

The MP algorithm is a hybrid evolutionary algorithm that searches for desirable computer 

programs as outputs. Computer programs treated in the MP algorithm are represented as trees in 

which leaf nodes are called terminals and internal nodes are called functions. Depending on the 

problem at hand, the user defines the domains of terminals and functions. In the coding process, 
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the tree structure of a solution should be transformed to an executable code. Fig. 1 shows two 

examples of MP programs represented as trees, along with their executable codes. 

The main loop of the MP algorithm consists of two phases; diversification phase and 

intensification phase. In the diversification phase, the MP algorithm guarantees the diversity in the 

current population by using the GP strategy. Specifically, the MP algorithm selects some programs 

using a suitable selection strategy, and generates a new population from the current one by using 

crossover and mutation operators.  

Fig. 2 illustrates an example of applying the crossover and mutation operators for some trees. 

In the intensification phase, the MP algorithm uses a set of local search procedures to intensify 

elite programs of the current population. These local search procedures will be described in the 

following subsection. Using these procedures, the Local Search Programming (LSP) algorithm 

will be introduced in Subsection 2.2, which is used in the intensification phase of the MP 

algorithm. Finally, the whole picture of the MP algorithm will be sketched in Subsection 2.3. 

2.1 LOCAL SEARCHES OVER TREE SPACE 

The local search procedures aim to generate new trees in a neighborhood of a given tree X. In 

this subsection, we discuss two types of local searches; static structure search and dynamic 

structure search, Mabrouk et al [2, 3]. Static structure search explores the neighborhood of a tree 

by altering its nodes without changing its structure. On the other hand, dynamic structure search 

changes the structure of a tree by expanding its terminal nodes or cutting its subtrees. Shaking 

search is used as a static structure search procedure, while grafting and pruning searches are 
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introduced as dynamic structure search procedures.  

Shaking search generates a new tree X̃ from the current one X, by altering some nodes of X 

without changing its structure. The altered nodes are chosen randomly and replaced by alternative 

ones, i.e., a terminal node is replaced by a new terminal value and a function node is replaced by a 

new function of the same number of arguments as the original one. Grafting search generates a 

new tree X̃ from a tree X by replacing some of its terminals, chosen randomly, by branches of 

depth   1, where these branches are generated randomly. In contrast to grafting search, pruning 

search generates an altered tree X̃ from a tree X by cutting some of its branches of depth   1 and 

replacing them by new terminals, where these branches and terminals are chosen randomly. One 

may note that X and X̃ have different tree structures in case of applying the grafting or pruning 

procedures. Fig. 3 shows examples of generating a new tree X̃ from a tree X by applying shaking, 

grafting and pruning procedures. For more details see Mabrouk et al [2, 3]. 

2.2 LSP ALGORITHM 

In this subsection, we introduce the LSP algorithm to discover the best program in the 

neighborhood of a program X. This algorithm uses the local search procedures described in the 

previous subsection to generate trial programs in the neighborhood of the program X. This process 

iterates until the termination condition is satisfied, and then the algorithm returns the best program 

found. Fig. 4 shows the flowchart of the LSP algorithm, where it returns the original program X in 

case of no improvement. 

2.3 MP ALGORITHM 
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The main target of the MP algorithm is to improve the results of the GP algorithm by 

performing a local search for some promising programs. If the search process succeeds to reach 

the area near an optimal solution, then a simple local search algorithm can capture that optimal 

solution easily. Fig. 5 shows the flowchart of the MP algorithm that behaves like the GP algorithm 

if the LSP algorithm fails to improve the selected programs. However, in this case the MP 

algorithm will be more costly than the GP algorithm, because of the computational effort spent 

through the intensification phase.  

Each program treated in the MP algorithm consists of one or more gene(s), where a gene 

represents a sub-tree consisting of terminal and function nodes. Genes in a program are linked 

together by using a suitable linking function. The addition function “+” is used as the linking 

function in this paper. To generate a gene in the initial population, we generate a temporary 

random gene consisting of two parts, head (functions and terminals) and tail (terminals only). 

Then, we adjust the final form of the gene by deleting unnecessary elements, based on the 

functions and terminals that are generated randomly within the gene. For more details see 

Mabrouk et al [2, 3].  

Once the initial population is generated, it will be evolved and improved using the MP 

operations; i.e., crossover, mutation, shaking, grafting and pruning. For each problem to solve, the 

function set, the terminal set, the set of representation parameters, the set of search parameters, 

and the fitness function must be determined before calling the algorithm. The set of representation 

parameters contains the head length hLen of an initial gene, the maximum length MaxLen of a 
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gene, the number of genes nGenes of each program. On the other hand, the set of search 

parameters, which guide the algorithm during the search process, consists of the population size 

nPop, the number of generations nGnrs, the number of programs nLs that are selected to apply 

local search procedures, the number of trial programs nTrs that are generated in the neighborhood 

of a program using a local search procedure, and the maximum number of non-improvements 

nFails. In particular, nFails is used to terminate the LSP algorithm. For more details about these 

parameters see Mabrouk et al [2, 3]. 

3. NUMERICAL EXPERIMENTS 

In this section we report the results of three different experiments for the MP algorithm to 

generate formulas that produce primes. The parameter values for the MP algorithm during all 

experiments are hLen = 3, MaxLen = 40, nGenes = 3, nLs = 4, nTrs = 4, nFails = 1, nPop = 100 

and nGnrs = 100. In addition, the selection strategy for the diversification phase is the tournament 

selection of size 4. The fitness value for each program is computed as the maximum number of 

consecutive integers in the interval [100, 100] for which the program produced distinct primes. 

3.1 POLYNOMIALS 

In this experiment, we used the set of binary functions    as the function set, i.e., each 

program generated by the MP algorithm represents a polynomial. In addition, we used x 2 3 5 

7 9 as the terminal set, where x is an integer. We performed 1000 independent runs for the MP 

algorithm, and we got a number of polynomials with the fitness values up to 40.  
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Table 1 shows some of polynomials which generated by the MP algorithm. The first three 

polynomials in Table 1 have already been found in the literature. Specifically, the first two 

polynomials are the Euler and Legendre polynomials, and the third one is the polynomial 

generated by the Cartesian GP (CGP) algorithm, Walker [4]. During our experiments, these three 

polynomials were found frequently. To the best of the authors’ knowledge, the other polynomials 

seem to be new polynomials.  

In the literature, researchers consider the first three polynomials in Table 1 to be different 

polynomials. However, all of these polynomials produce the same set of primes for different 

values of the independent variable x. Specifically, one can generate those entire polynomials one 

after another by using x  x   for some integers . On the other hand, the last three polynomials 

in Table 1 produce different sets of distinct primes for different sets of consecutive integers. 

Therefore, we consider these three polynomials to be the best results for the current experiment 

since all of them are different and independent. 

3.2 RATIONAL FUNCTIONS 

We performed another experiment to find formulas that produce primes with fitness values 

greater than 40. In this experiment, we modified the function set in the previous experiment to 

include the protected division operator , where x  y  1 if y  0, and x  y  x  y otherwise. In 

this case, programs of the MP algorithm will produce real values. Therefore, we let the nearest 

integer less than or equal to the produced real value be the output of the program. Using the new 

function set, we got several new formulas that produce up to 42 distinct primes for a set of 
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consecutive integers, for example, (8x3  69x2  461x  176) / (8x  3), with the fitness value 

42.  

3.3 COMPOSITION FUNCTIONS 

Since we have already got new independent polynomials that can generate different sets of 

distinct primes, we can use these polynomials to composite new formulas. In this experiment, the 

output of a program evolved by the MP algorithm is expressed as a linear composition of its genes 

with some independent polynomials that produce distinct primes. Suppose that G1, G2 and G3 are 

the genes of a program evolved by the MP algorithm. Then, the output formula of this program is 

composed as f x  G1  P1  G2  P2 G3  P3, where P1, P2 and P3 are independent 

polynomials. Using this strategy, we got new formulas that produce distinct primes up to 59, for 

example, 7 / (81x  27)  (x2  x  41) + 9 / (5  45x) (8x2  22x  647), with the fitness value 

59. 

4. CONCLUSIONS 

The MP algorithm has succeeded to generate several new formulas that produce sets of distinct 

primes. Some of the new formulas are polynomials that are able to produce up to 40 distinct 

primes for a set of consecutive integers. Other rational functions are also generated and they are 

able to produce up to 59 distinct primes for a set of consecutive integers. 
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Polynomial Fitness x 

x2  x  41 40 {1,…,40} 

x2  x  41 40 {0,…,39} 

x2  3x  43 40 {2,…,41} 

9x2  33x  71 40 {-28,…,11} 

4x2  50x  197 40 {-13,…,26} 

8x2  22x  647 40 {-19,…,20} 

 

 

 

 

 Fig.1 Examples of MP representation 

Table1 Polynomials generated by the MP 

algorithm to produce distinct primes 
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Fig.2 Generating a new offspring using 

mutation and crossover operators 

Fig.3 Generating new trees using shaking, 

grafting and pruning procedures 
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Fig.4 The flowchart of the LSP algorithm 

Fig.5 The flowchart of the MP algorithm 


