
 1

Prime number generation using memetic

programming

Emad Mabrouk1, Julio César Hernández-Castro2 and Masao Fukushima3

1Dept. of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University,

Kyoto 606-8501, JAPAN.

1Dept. of Mathematics, Faculty of Science, Assiut University, Assiut, EGYPT.

 (hamdy@amp.i.kyoto-u.ac.jp)

2School of Computing, University of Portsmouth, Buckingham Building, Lion Terrace,

Portsmouth PO1 3HE, UK.

(Julio.Hernandez-Castro@port.ac.uk)

3Dept. of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University,

Kyoto 606-8501, JAPAN.

(Tel: +81-75-753-5519; Fax: +81-75-753-4756)

(fuku@i.kyoto-u.ac.jp)

 2

Abstract: For centuries, the study of prime numbers has been regarded as a subject of pure

mathematics in number theory. Recently, this vision has changed and the importance of prime

numbers increased rapidly especially in information technology, e.g., public key cryptography

algorithms, hash tables, and pseudorandom number generators. One of the most popular topics that

attract attention is to find a formula that maps the set of natural numbers into the set of prime

numbers. However, up to now there is no known formula that produces all primes. In this paper, we

use a hybrid evolutionary algorithm, called the Memetic Programming (MP) algorithm, to generate

mathematical formulas that produce distinct primes. Using the MP algorithm, we succeeded to

discover an interesting set of formulas that produce sets of distinct primes.

Key Words: Hybrid Evolutionary Algorithm, Iterated Local Search, Memetic Programming, Prime

Number

 3

1. INTRODUCTION

A natural number grater than 1 is called a prime if it is only divisible by 1 and itself. The study

of prime numbers and their properties have attracted mathematicians for several centuries.

Questions related to prime numbers have puzzled mathematicians for many years, e.g., “is there a

formula that maps the set of natural numbers into the set of primes?” Recently, several

applications in the field of information technology have increased the importance of prime

numbers, and changed the vision that classifies the study of primes as pure mathematics.

The Memetic Programming (MP) algorithm is a new evolutionary algorithm that hybridizes the

well-known Genetic Programming (GP) algorithm, Koza [1], with some local search procedures

over a tree space to intensify promising programs generated by the GP algorithm. The aim of this

paper is to use the MP algorithm to generate some mathematical formulas which produce distinct

primes for a set of consecutive integers.

The paper is organized as follows. In the next section, we introduce the MP algorithm briefly.

In Section 3, we report the results of three experiments for generating formulas which produce

distinct primes. Finally, conclusions make up Section 4.

2. MEMETIC PROGRAMMING

The MP algorithm is a hybrid evolutionary algorithm that searches for desirable computer

programs as outputs. Computer programs treated in the MP algorithm are represented as trees in

which leaf nodes are called terminals and internal nodes are called functions. Depending on the

problem at hand, the user defines the domains of terminals and functions. In the coding process,

 4

the tree structure of a solution should be transformed to an executable code. Fig. 1 shows two

examples of MP programs represented as trees, along with their executable codes.

The main loop of the MP algorithm consists of two phases; diversification phase and

intensification phase. In the diversification phase, the MP algorithm guarantees the diversity in the

current population by using the GP strategy. Specifically, the MP algorithm selects some programs

using a suitable selection strategy, and generates a new population from the current one by using

crossover and mutation operators.

Fig. 2 illustrates an example of applying the crossover and mutation operators for some trees.

In the intensification phase, the MP algorithm uses a set of local search procedures to intensify

elite programs of the current population. These local search procedures will be described in the

following subsection. Using these procedures, the Local Search Programming (LSP) algorithm

will be introduced in Subsection 2.2, which is used in the intensification phase of the MP

algorithm. Finally, the whole picture of the MP algorithm will be sketched in Subsection 2.3.

2.1 LOCAL SEARCHES OVER TREE SPACE

The local search procedures aim to generate new trees in a neighborhood of a given tree X. In

this subsection, we discuss two types of local searches; static structure search and dynamic

structure search, Mabrouk et al [2, 3]. Static structure search explores the neighborhood of a tree

by altering its nodes without changing its structure. On the other hand, dynamic structure search

changes the structure of a tree by expanding its terminal nodes or cutting its subtrees. Shaking

search is used as a static structure search procedure, while grafting and pruning searches are

 5

introduced as dynamic structure search procedures.

Shaking search generates a new tree X̃ from the current one X, by altering some nodes of X

without changing its structure. The altered nodes are chosen randomly and replaced by alternative

ones, i.e., a terminal node is replaced by a new terminal value and a function node is replaced by a

new function of the same number of arguments as the original one. Grafting search generates a

new tree X̃ from a tree X by replacing some of its terminals, chosen randomly, by branches of

depth   1, where these branches are generated randomly. In contrast to grafting search, pruning

search generates an altered tree X̃ from a tree X by cutting some of its branches of depth   1 and

replacing them by new terminals, where these branches and terminals are chosen randomly. One

may note that X and X̃ have different tree structures in case of applying the grafting or pruning

procedures. Fig. 3 shows examples of generating a new tree X̃ from a tree X by applying shaking,

grafting and pruning procedures. For more details see Mabrouk et al [2, 3].

2.2 LSP ALGORITHM

In this subsection, we introduce the LSP algorithm to discover the best program in the

neighborhood of a program X. This algorithm uses the local search procedures described in the

previous subsection to generate trial programs in the neighborhood of the program X. This process

iterates until the termination condition is satisfied, and then the algorithm returns the best program

found. Fig. 4 shows the flowchart of the LSP algorithm, where it returns the original program X in

case of no improvement.

2.3 MP ALGORITHM

 6

The main target of the MP algorithm is to improve the results of the GP algorithm by

performing a local search for some promising programs. If the search process succeeds to reach

the area near an optimal solution, then a simple local search algorithm can capture that optimal

solution easily. Fig. 5 shows the flowchart of the MP algorithm that behaves like the GP algorithm

if the LSP algorithm fails to improve the selected programs. However, in this case the MP

algorithm will be more costly than the GP algorithm, because of the computational effort spent

through the intensification phase.

Each program treated in the MP algorithm consists of one or more gene(s), where a gene

represents a sub-tree consisting of terminal and function nodes. Genes in a program are linked

together by using a suitable linking function. The addition function “+” is used as the linking

function in this paper. To generate a gene in the initial population, we generate a temporary

random gene consisting of two parts, head (functions and terminals) and tail (terminals only).

Then, we adjust the final form of the gene by deleting unnecessary elements, based on the

functions and terminals that are generated randomly within the gene. For more details see

Mabrouk et al [2, 3].

Once the initial population is generated, it will be evolved and improved using the MP

operations; i.e., crossover, mutation, shaking, grafting and pruning. For each problem to solve, the

function set, the terminal set, the set of representation parameters, the set of search parameters,

and the fitness function must be determined before calling the algorithm. The set of representation

parameters contains the head length hLen of an initial gene, the maximum length MaxLen of a

 7

gene, the number of genes nGenes of each program. On the other hand, the set of search

parameters, which guide the algorithm during the search process, consists of the population size

nPop, the number of generations nGnrs, the number of programs nLs that are selected to apply

local search procedures, the number of trial programs nTrs that are generated in the neighborhood

of a program using a local search procedure, and the maximum number of non-improvements

nFails. In particular, nFails is used to terminate the LSP algorithm. For more details about these

parameters see Mabrouk et al [2, 3].

3. NUMERICAL EXPERIMENTS

In this section we report the results of three different experiments for the MP algorithm to

generate formulas that produce primes. The parameter values for the MP algorithm during all

experiments are hLen = 3, MaxLen = 40, nGenes = 3, nLs = 4, nTrs = 4, nFails = 1, nPop = 100

and nGnrs = 100. In addition, the selection strategy for the diversification phase is the tournament

selection of size 4. The fitness value for each program is computed as the maximum number of

consecutive integers in the interval [100, 100] for which the program produced distinct primes.

3.1 POLYNOMIALS

In this experiment, we used the set of binary functions    as the function set, i.e., each

program generated by the MP algorithm represents a polynomial. In addition, we used x 2 3 5

7 9 as the terminal set, where x is an integer. We performed 1000 independent runs for the MP

algorithm, and we got a number of polynomials with the fitness values up to 40.

 8

Table 1 shows some of polynomials which generated by the MP algorithm. The first three

polynomials in Table 1 have already been found in the literature. Specifically, the first two

polynomials are the Euler and Legendre polynomials, and the third one is the polynomial

generated by the Cartesian GP (CGP) algorithm, Walker [4]. During our experiments, these three

polynomials were found frequently. To the best of the authors’ knowledge, the other polynomials

seem to be new polynomials.

In the literature, researchers consider the first three polynomials in Table 1 to be different

polynomials. However, all of these polynomials produce the same set of primes for different

values of the independent variable x. Specifically, one can generate those entire polynomials one

after another by using x  x   for some integers . On the other hand, the last three polynomials

in Table 1 produce different sets of distinct primes for different sets of consecutive integers.

Therefore, we consider these three polynomials to be the best results for the current experiment

since all of them are different and independent.

3.2 RATIONAL FUNCTIONS

We performed another experiment to find formulas that produce primes with fitness values

greater than 40. In this experiment, we modified the function set in the previous experiment to

include the protected division operator , where x  y  1 if y  0, and x  y  x  y otherwise. In

this case, programs of the MP algorithm will produce real values. Therefore, we let the nearest

integer less than or equal to the produced real value be the output of the program. Using the new

function set, we got several new formulas that produce up to 42 distinct primes for a set of

 9

consecutive integers, for example, (8x3  69x2  461x  176) / (8x  3), with the fitness value

42.

3.3 COMPOSITION FUNCTIONS

Since we have already got new independent polynomials that can generate different sets of

distinct primes, we can use these polynomials to composite new formulas. In this experiment, the

output of a program evolved by the MP algorithm is expressed as a linear composition of its genes

with some independent polynomials that produce distinct primes. Suppose that G1, G2 and G3 are

the genes of a program evolved by the MP algorithm. Then, the output formula of this program is

composed as f x  G1  P1  G2  P2 G3  P3, where P1, P2 and P3 are independent

polynomials. Using this strategy, we got new formulas that produce distinct primes up to 59, for

example, 7 / (81x  27)  (x2  x  41) + 9 / (5  45x) (8x2  22x  647), with the fitness value

59.

4. CONCLUSIONS

The MP algorithm has succeeded to generate several new formulas that produce sets of distinct

primes. Some of the new formulas are polynomials that are able to produce up to 40 distinct

primes for a set of consecutive integers. Other rational functions are also generated and they are

able to produce up to 59 distinct primes for a set of consecutive integers.

REFERENCES

[1] Koza JR (1992) Genetic programming: On the programming of computers by means of natural

selection. MIT Press, Cambridge

 10

[2] Mabrouk E, Hedar A, Fukushima M (2008) Memetic programming with adaptive local search

using tree data structures. In: Chbeir R et al (eds.) Proceedings of the 5th International Conference

on Soft Computing as Transdisciplinary Science and Technology (CSTST08), Cergy-Pontoise,

Paris, France, October 27–31, 2008, pp. 258–264

[3] Mabrouk E, Hedar A, Fukushima M (2010) Memetic programming algorithm with

automatically defined functions. Technical Report 2010-015, Department of Applied Mathematics

and Physics, Kyoto University, Japan

[4] Walker JA, Miller JF (2007) Predicting prime numbers using Cartesian genetic programming.

In: Ebner M et al. (eds.), Proceedings of the 10th European Conference on Genetic Programming

(EuroGP), Valencia, Spain, April 11–13, 2007, pp. 205–216

 11

Polynomial Fitness x

x2  x  41 40 {1,…,40}

x2  x  41 40 {0,…,39}

x2  3x  43 40 {2,…,41}

9x2  33x  71 40 {-28,…,11}

4x2  50x  197 40 {-13,…,26}

8x2  22x  647 40 {-19,…,20}

 Fig.1 Examples of MP representation

Table1 Polynomials generated by the MP

algorithm to produce distinct primes

 12

Fig.2 Generating a new offspring using

mutation and crossover operators

Fig.3 Generating new trees using shaking,

grafting and pruning procedures

 13

Fig.4 The flowchart of the LSP algorithm

Fig.5 The flowchart of the MP algorithm

