Skip to main content

Advertisement

Log in

Analysis of seasonal variability of methane over global land area

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

In this study, we determine the global emission concentration of methane using the scanning imaging absorption spectrometer for atmospheric chartography data. We analyzed land and sea area to investigate the 9-year changes in methane concentrations from 2003 to 2011. Moreover, by subtracting the concentration of methane from land and sea, we can found the methane emission concentration of land. As a result, it is cleared that a big amount of CH4 emission concentration was found not only in the northern Hemisphere paddy fields but also in the southern Hemisphere broadleaf evergreen areas (central Africa and south America). We also found that the global land CH4 growth rate is 3–5 ppb/year during 9 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Braga do Carmo J, Keller M, Dias JD, de Camargo PB, Crill P (2006) A source of methane from upland forests in the Brazilian Amazon. Geophys Res Lett 33:L04809. doi:10.1029/2005GL025436

    Google Scholar 

  2. Conway TJ (1994) Evidence for interannual variability of the carbon cycle from the NOAA/CMDL sampling network. J Geophys Res 99(D11):22831–22855

    Article  Google Scholar 

  3. De Dils BM, Mazière JF, Müller T, Blumenstock M, Buchwitz R et al (2006) Comparisons between SCIAMACHY and ground-based FTIR data for total columns of CO, CH4, CO2 and N2O Atmos. Chem Phys 6:1953–1976

    Google Scholar 

  4. Frankenberg C, Meirink JF, van Weele M, Platt U, Wagner T (2005) Assessing methane emissions from global space-borne observations. Science 308:1010–1014

    Article  Google Scholar 

  5. Frankenberg C, Bergamaschi P, Butz A, Houweling S, Meirink JF et al (2008) Tropical methane emissions: a revised view from SCIAMACHY onboard ENVISAT. Geo Res Lett 35(15)

  6. IPCC (2001) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge. http://www.grida.no/publications/other/ipcc_tar/

  7. IPCC (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge. http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html

  8. Keeling CD, Whorf TP, Wahlen M, van der Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670

    Article  Google Scholar 

  9. Keeling RF, Piper SC, Heimann M (1996) Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381:218–221

    Article  Google Scholar 

  10. Keppler F, Hamilton JTG, Brass M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  Google Scholar 

  11. Keppler F, Hamilton JTG, McRoberts WC, Vigano I, Brass M, Röckmann T (2008) Methoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuterium labelling studies. New Phytol 178:808–814

    Article  Google Scholar 

  12. Langenfelds RL et al (2002) Interannual growth rate variations of atmospheric CO2 and its delta C-13, H-2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochem Cycles 16(3):1048. doi:10.1029/2001GB001466

  13. Lelieveld J (2006) Climate change: a nasty surprise from the greenhouse. Nature 443:405–406

    Article  Google Scholar 

  14. Lelieveld J, Butler TM, Crowley JN, Dillon TJ, Fischer H, Ganzeveld L, Harder H, Lawrence MG, Martinez M, Taraborrelli D, Williams J (2008) Atmospheric oxidation capacity sustained by a tropical forest. Nature 452:737–740

    Article  Google Scholar 

  15. Marland G, Boden TA, Andres RJ (2006) Global, regional, and national CO2 emissions. In: Trends: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN, http://cdiac.esd.ornl.gov/trends/emis/tre_glob.htm

  16. Miller JB, Gatti LV, d’Amelio MTS, Crotwell AM, Dlugokencky EJ, Bakwin P, Artaxo P, Tans PP (2007) Airborne measurements indicate large methane emissions from the eastern amazon basin. Geophysiol Res Lett 34:L10809. doi:10.1029/2006GL029213

    Article  Google Scholar 

  17. Nakazawa T, Moromoto S, Aoki S, Tanaka M (1997) Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the Western Pacific region.J. Geophys Res 102:1271–1285

    Article  Google Scholar 

  18. Nisbet R, Fisher R, Nimmo R, Bendall D, C PM, Gallego-Sala A, Hornibrook E, L′opez-Juez E, Lowry D, Nisbet P, Shuckburgh E, Sriskantharajah S, Howe CJ, Nisbet EG (2009) Emission of methane from plants. Proc R Soc 276:1347–1354. doi:10.1098/rspb 2008.1731

    Article  Google Scholar 

  19. Prentice IC et al (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT et al (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, pp 184–238

    Google Scholar 

  20. Warwick NJ, Bekki S, Law KS, Nisbet EG, Pyle JA (2002) The impact of meteorology on the interannual growth rate of atmospheric methane. Geophys Res Lett 29:1947. doi:10.1029/2002GLO15282

    Article  Google Scholar 

  21. Zhi-pingwang Xing-guohan, Geoffwang G, Yangsong, Jaygulledge (2008) Aerobic methane emission from plants in the inner mongolia steppe. Environ Sci Technol 42:62–68

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (C) and the Research project of Tokyo University of Information Sciences for the sustainable development of economic and social structure dependent on the environment in eastern Asia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonggeol Park.

About this article

Cite this article

Park, J., Park, S., Kwak, Y. et al. Analysis of seasonal variability of methane over global land area. Artif Life Robotics 19, 40–46 (2014). https://doi.org/10.1007/s10015-013-0128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-013-0128-7

Keywords

Navigation