Skip to main content
Log in

Markov chain analysis of Leading Ones problem

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

Evolutionary algorithms (EAs) are randomized optimization search techniques, and the theoretical study of the first hitting time is very important in the practical applications of EA. We investigate the first hitting time of Leading Ones (LO) problem theoretically on Random Local Search (RLS) algorithm and (1 + 1)EA by absorbing Markov chain. This paper reports the calculation method of the first hitting time on LO problem with (1 + 1)EA and RLS. We found that the results only depend on the length of string, and the hitting times can be given approximately by the quadratic function. In the numerical experiments, we showed the agreement between the results of the practical calculation and the theoretical results. Our results give the good example to predict the running time of the practical EA calculations by Markov chain method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Auger A, Doerr B (2011) Theory of randomized search heuristics. World Scientific, Singapore

    Book  MATH  Google Scholar 

  2. Wegener I (2001) Methods for the analysis of evolutionary algorithms on pseudo-Boolean functions. In: Sarker R, Mohammadian M, Yao X (eds) Evolutionary optimization. Kluwer Academic Pubishers, Dordrecht, pp 349–369

    Google Scholar 

  3. Iosifescu M (1980) Finite Markov chain processes and their applications. Wiley, New York

    MATH  Google Scholar 

  4. Levin DA, Peres Y, Wilmer EL (2008) Markov chains and mixing times. American Mathematical Society, Providence

    Book  Google Scholar 

  5. Furutani H, Tagami H, Sakamoto M, Du Y (2014) Markov chain analyses of random local search and evolutionary algorithm. J Robot Netw Artif Life 1(3):220–224

    Article  Google Scholar 

  6. Furutani H, Sakamoto M, Du Y, Aoki K (2015) Analysis of asymmetric mutation model in random local search. J Robot Netw Artif Life 2(1):1–4

    Article  Google Scholar 

  7. Du Y, Aoki K, Sakamoto M, Yamamori K, Furutani H (2016) Asymmetric mutation model in genetic algorithm. Artif Life Robot 22:17–23

    Article  Google Scholar 

  8. Jansen T, Sudholt D (2010) Analysis of an asymmetric mutation operator. Evolut Comput 18(1):1–26

    Article  Google Scholar 

  9. Doerr B, Hebbinghaus N, Neumann F (2007) Speeding up evolutionary algorithms through asymmetric mutation operators. Evolut Comput 15(4):401–410

    Article  Google Scholar 

  10. Droste S, Jansen T, Wegener I (2002) On the analysis of the (1 + 1) evolutionary algorithm. Theor Comput Sci 276:51–81

    Article  MATH  MathSciNet  Google Scholar 

  11. Du Y, Ma Q, Zhang Y, Sakamoto M, Furutani H (2014) Runtime analysis of OneMax problem in genetic algorithm. J Robot Netw Artif Life 1(3):225–230

    Article  Google Scholar 

  12. Du Y, Ma Q, Zhang Y, Aoki K, Sakamoto M, Furutani H (2015) Hitting time analysis of OneMax problem in genetic algorithm. J Robot Netw Artif Life 2(2):131–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihito Yamamori.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Aoki, K., Sakamoto, M. et al. Markov chain analysis of Leading Ones problem. Artif Life Robotics 22, 443–448 (2017). https://doi.org/10.1007/s10015-017-0381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-017-0381-2

Keywords

Navigation