Skip to main content
Log in

Separation of pedestrian counter flows with an array of obstacles

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

In the present paper, we investigate pedestrian counter flows in a straight corridor by means of a molecular dynamics approach with the social force model. We demonstrate that the flow rate of two groups of people walking in the opposite directions is improved by means of an array of geometrically asymmetric obstacles, as a result of flow separations. That is, the obstacles separate groups of pedestrians walking in the opposite directions so that they spontaneously keep to their right or left. In addition, we show that even geometrically symmetric obstacles possess the same ability to induce the self-organization of pedestrian flow if the interaction force between the people and the obstacles is asymmetric. The appropriately designed geometry or interaction force is fully capable of controlling the filtering direction. The present results potentially provide a guideline for industrial design to improve daily human mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barbosa H, Barthelemy M, Ghoshal G, James CR, Lenormand M, Louail T, Menezes R, Ramasco JJ, Simini F, Tomasini M (2018) Human mobility: models and applications. Phys Rep 734:1–74

    Article  MathSciNet  Google Scholar 

  2. Teknomo K, Takeyama Y, Inamura H (2016) Review on microscopic pedestrian simulation model. arXiv preprint arXiv:1609.01808

  3. Helbing D, Molnár P, Farkas IJ, Bolay K (2001) Self-organizing pedestrian movement. Environ Plann B Plann Des 28(3):361–383

    Article  Google Scholar 

  4. Helbing D, Johansson A, Al-Abideen HZ (2007) Dynamics of crowd disasters: an empirical study. Phys Rev E 75(4):046109

    Article  Google Scholar 

  5. Johansson A, Helbing D, Al-Abideen HZ, Al-Bosta S (2008) From crowd dynamics to crowd safety: a video-based analysis. Adv Complex Syst 11(04):497–527

    Article  Google Scholar 

  6. Moussaïd M, Helbing D, Garnier S, Johansson A, Combe M, Theraulaz G (2009) Experimental study of the behavioural mechanisms underlying self-organization in human crowds. Proc R Soc B Biol Sci 276(1668):2755–2762

    Article  Google Scholar 

  7. Jelić A, Appert-Rolland C, Lemercier S, Pettré J (2012) Properties of pedestrians walking in line: fundamental diagrams. Phys Rev E 85(3):036111

    Article  Google Scholar 

  8. Zhang J, Klingsch W, Schadschneider A, Seyfried A (2012) Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. J Stat Mech Theory Exp 2012(02):P02002

    Article  Google Scholar 

  9. Garcimartín A, Pastor JM, Martín-Gómez C, Parisi D, Zuriguel I (2017) Pedestrian collective motion in competitive room evacuation. Sci Rep 7(1):10792

    Article  Google Scholar 

  10. Feliciani C, Murakami H, Nishinari K (2018) A universal function for capacity of bidirectional pedestrian streams: filling the gaps in the literature. PLoS One 13(12):e0208496

    Article  Google Scholar 

  11. Helbing D, Molnár P (1995) Social force model for pedestrian dynamics. Phys Rev E 51(5):4282

    Article  Google Scholar 

  12. Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407(6803):487–490

    Article  Google Scholar 

  13. Parisi DR, Dorso CO (2007) Morphological and dynamical aspects of the room evacuation process. Phys A Stat Mech Appl 385(1):343–355

    Article  Google Scholar 

  14. Oliveira CLN, Vieira AP, Helbing D, Andrade JS Jr, Herrmann HJ (2016) Keep-left behavior induced by asymmetrically profiled walls. Phys Rev X 6(1):011003

    Google Scholar 

  15. Sticco IM, Cornes FE, Frank GA, Dorso CO (2017) Beyond the faster-is-slower effect. Phys Rev E 96(5):052303

    Article  Google Scholar 

  16. Lakoba TI, Kaup DJ, Finkelstein NM (2005) Modifications of the Helbing-Molnár-Farkas-Vicsek social force model for pedestrian evolution. Simulation 81(5):339–352

    Article  Google Scholar 

  17. Yu W, Johansson A (2007) Modeling crowd turbulence by many-particle simulations. Phys Rev E 76(4):046105

    Article  Google Scholar 

  18. Mehran R, Oyama A, Shah M (2009) Abnormal crowd behavior detection using social force model. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp 935–942

  19. Zanlungo F, Ikeda T, Kanda T (2011) Social force model with explicit collision prediction. Europhys Lett 93(6):68005

    Article  Google Scholar 

  20. Kang Z, Zhang L, Li K (2019) An improved social force model for pedestrian dynamics in shipwrecks. Appl Math Comput 348:355–362

    Article  MathSciNet  Google Scholar 

  21. Vissers T, van Blaaderen A, Imhof A (2011) Band formation in mixtures of oppositely charged colloids driven by an ac electric field. Phys Rev Lett 106(22):228303

    Article  Google Scholar 

  22. Vissers T, Wysocki A, Rex M, Löwen H, Royall CP, Imhof A, van Blaaderen A (2011) Lane formation in driven mixtures of oppositely charged colloids. Soft Matter 7(6):2352–2356

    Article  Google Scholar 

  23. Tarama S, Egelhaaf SU, Löwen H (2019) Traveling band formation in feedback-driven colloids. Phys Rev E 100(2):022609

    Article  Google Scholar 

  24. Kogler F, Klapp SHL (2015) Lane formation in a system of dipolar microswimmers. Europhys Lett 110(1):10004

    Article  Google Scholar 

  25. Sütterlin KR, Wysocki A, Ivlev AV, Räth C, Thomas HM, Rubin-Zuzic M, Goedheer WJ, Fortov VE, Lipaev AM, Molotkov VI, Petrov OF, Morfill GE, Löwen H (2009) Dynamics of lane formation in driven binary complex plasmas. Phys Rev Lett 102(8):085003

    Article  Google Scholar 

  26. Sarma U, Baruah S, Ganesh R (2020) Lane formation in driven pair-ion plasmas. Phys Plasmas 27(1):012106

    Article  Google Scholar 

  27. Ikeda K, Kim K (2017) Lane formation dynamics of oppositely self-driven binary particles: effects of density and finite system size. J Phys Soc Jpn 86(4):044004

    Article  Google Scholar 

  28. Koyama S, Inoue D, Okada A, Yoshida H (2020) Membranes for spontaneous separation of pedestrian counterflows. Europhys Lett 129(5):50005

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. K. Kidono of Toyota Central R&D Labs., Inc. and M. Shimada of the University of Tokyo for the useful discussions. This research was conducted using the SGI Rackable C2112-4GP3 (Reedbush-U) in the Information Technology Center, The University of Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Yoshida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was presented in part at the 3rd International Symposium on Swarm Behavior and Bio-Inspired Robotics (Okinawa, Japan, November 20–22, 2019).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyama, S., Inoue, D., Okada, A. et al. Separation of pedestrian counter flows with an array of obstacles. Artif Life Robotics 25, 529–536 (2020). https://doi.org/10.1007/s10015-020-00648-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-020-00648-w

Keywords

Navigation