1912.00951v1 [cs.RO] 2 Dec 2019

arXiv

Augmented Reality for Human-Swarm Interaction in a Swarm-Robotic
Chemistry Simulation

Sumeet Batra, John Klingner and Nikolaus Correll

Abstract— We present a method to register individual mem-
bers of a robotic swarm in an augmented reality display while
showing relevant information about swarm dynamics to the user
that would be otherwise hidden. Individual swarm members
and clusters of the same group are identified by their color,
and by blinking at a specific time interval that is distinct
from the time interval at which their neighbors blink. We
show that this problem is an instance of the graph coloring
problem, which can be solved in a distributed manner in
O(log(n)) time. We demonstrate our approach using a swarm
chemistry simulation in which robots simulate individual atoms
that form molecules following the rules of chemistry. Augmented
reality is then used to display information about the internal
state of individual swarm members as well as their topological
relationship, corresponding to molecular bonds.

I. INTRODUCTION

Swarm robotics bears great promise in applications that
benefit from sampling the environment at high resolution
and with adaptive density such as environmental monitoring,
agriculture or surveillance [1], [2] or as model system for
natural swarming systems ranging from social insects to
chemistry [3]. Users usually interact with such systems
via spatial representations of data the swarm is collecting,
provide ensemble instructions, and let the swarm members
decide on their individual actions in some distributed way
[4]-[7]. In the absence of spatial information, it is not clear
how to communicate meaningful data and results of a swarm
beyond simple lights, motion patterns [8], or statistical
analysis of trajectories [9]. Thus, we propose combining our
custom built swarm implementation with modern techniques
from the emerging field of Augmented Reality (AR) to create
an AR framework that effectively communicates relevant
information about individual units of a swarm in a clear
and visualizable manner, thus revealing otherwise hidden
information about a swarm’s behavior [10], [11]. In addition,
we introduce key challenges involved in developing scalable
AR systems for scalable swarm implementations, and how
our novel AR framework addresses those challenges.

II. RELATED WORK
A. Robot Swarm Implementation

The basis of our swarm implementation are programmable
“Droplets” — small, round, cylindrical robots with locomo-
tion and range-and-bearing sensors [12] for communicating
and interacting with nearby Droplets that are engaged in

S. Batra is supported by the University of Colorado Undergraduate
Research Opportunities Program (UROP).

All authors are with the Department of Computer Science, University of
Colorado at Boulder, Boulder, CO 80309, USA.

Fig. 1. Five droplets forming an O, and a H>0 molecule. Augmented
Reality on a smart phone is used to show the actual bonds, electronegativity
and atomic number.

simulating molecular self-assembly [3]. Here, each robot
takes the role of a single atom that assembles into com-
plex molecules following the basic rules of chemistry using
concepts such as free electrons and electro-negativity. Due
to the complexity of the information involved, such as bonds
between atoms or the Gibbs’ free energy of a molecule, color
change alone is not sufficient to communicate information to
an user. In addition, information that is relevant for bonding
changes with the configuration the simulated atom currently
is in.

B. Relevant Chemistry

This section briefly describes the chemical model that the
Droplets implement as a tool to instruct high school students
on chemistry. The reader is referred to [3] for more details.

We replicate Bohr’s model for representing atoms and
atomic interactions. Given it’s simplicity, Bohr’s model suc-
ceeds in communicating basic atomic structures and funda-
mental chemistry concepts. The central positively charged
nucleus composed of protons and neutrons is surrounded by
orbiting electrons at various energy levels. Free spots on the

orbits determine which types of atoms can bond. This model
falls short once we cross into the realm of modern quantum
mechanics, however, and often leads to confusion as it is
difficult to explain why atoms as simple as Hydrogen and
Oxygen (Figure form a large variety of molecules not
limited to H»0 (albeit at much lower likelihood).

Indeed, since Bohr’s model was based solely on the
hydrogen atom, it loses accuracy when we begin discussing
larger atoms with many electrons at a wider range of energy
levels. In addition, the model violates Heisenberg’s Uncer-
tainty Principle, which states that we cannot know the exact
position and velocity simultaneously for a quantum particle.
We therefore also employ information about each atom’s
electronegativity and the molecules Gibbs’ free energy, mak-
ing the robotic simulation much more complex than a stick-
and-ball model, the go-to model for chemistry education.

C. Representing the Chemical Model with Droplets

Each Droplet represents one atom using Bohr’s model
to communicate relevant data about itself and performs a
random walk in the experimental arena. The atom represents
its energy levels and orbiting electrons as an electronegativity
value measured on the Pauling scale. We believe that elec-
tronegativity is the best measurement to communicate this
data due to its importance in other quantum mechanics such
as bond formation and molecular structures. An electronega-
tivity value is assigned to each Droplet. Once Droplets are in
proximity to each other, they exchange information and use
their electronegativity values to determine whether bonds can
form between, and if so, what the structure of the molecule is.
Here, the educational value is limited if the observer cannot
differentiate individual molecules, need to remember what
the different colors are, and look up statistical data for each
atom, such as its electronegativity or atomic number.

D. Augmented Reality for Robotics

Other works have proposed AR frameworks for tracking
individual robots in swarm robotics applications [13] [14].
Augmented Reality for Kilobots (ARK), for example, imple-
ments a flexible AR interface for tracking swarms of Kilobot
robots [15]: small, inexpensive robots that can be used for
swarm robotic applications. One downside of these proposed
methods is that they rely on fixed, overhead cameras that
introduce a degree of inflexibility in that the implementation
is not easily transferable to different environments. Our AR
framework has been implemented so that it may run in
real-time on commercially available, low-cost cameras, such
as those that come equipped on smartphones. This allows
for greater mobility, allows for experiments and learning
to occur in different environments, and makes our method
very accessible. In addition, our swarm robotics platform
is implemented in a way such that object persistence is
possible, thus allowing our AR application to track and
maintain unique information for each robot present in the
experimental area.

III. TANGIBLE ROBOTICS AND AUGMENTED REALITY
FOR HUMAN-SWARM INTERACTION

Tangible interfaces have shown to be more successful
in enhancing learning than digital systems [16]. Studies
have shown that students who interact with tangible systems
are more likely to be engaged in the learning process and
that physical, three-dimensional objects are perceived and
understood better than two-dimensional representations [17].
Thus, we believe our swarm robotics platform is an excellent
gateway for students to physically interact with molecular
representations that would otherwise be unavailable to them.
Combined with our novel AR framework, students will also
be able to visualize the interactions occurring between atoms
and molecules in real-time.

A. Augmented Reality Implementation

We have developed a novel Augmented Reality framework
that, with few adaptations, works with our swarm robotics
platform that allows us to visually communicate otherwise
complex, abstruse concepts regarding molecular interactions.
The framework utilizes color information to determine ele-
ment information and blinking patterns of groups of Droplets
to determine molecular subgroups. Here, we describe the
framework in more detail and address several challenges in-
volved in creating a scalable AR framework for our scalable
swarm robotics platform.

The key challenge in using augmented reality for human-
swarm interaction is to efficiently communicate information
to the augmented reality tool. In other words, how can
information be encoded in a scalable way? In this paper,
we propose to use synchronous blinking to indicate robots
that are part of the same molecule and colors to indicate
atom type. This requires neighboring molecules to coordinate
on the blinking time interval, which is an instance of the
distributed graph coloring problem [18]. Specifically, no
neighboring molecule can blink during the same time slots,
which are the equivalent of colors in the graph coloring
problem. As the bandwidth of color change and blinking
is limited, some information still needs to be reconstructed
by analyzing the local topology of the robots.

We propose to use augmented reality to augment a dis-
play of the swarm in a cell phone display with additional
information about the swarm.

The augmented reality tool was developed using
OpenCV4Android with OpenCV 3.1.0, an open source com-
puter vision library for mobile application development. Due
to the limitations of mobile computing and the demands
of image processing, we decided that the best approach
to utilizing OpenCV on an Android device was to write
a majority of the application in C++ and have the device
run the image processing natively. Using a Java Native
Interface (JNI), the Java code can directly call OpenCV
C++ functions as they are needed. This effectively allows
the image processing functions to bypass the Java Virtual
Machine (Dalvik VM) and run directly on the Linux Kernel.
While this approach requires recompiling the native code for

Fig. 2. From left to right: First stage of CHy bonding. Carbon first bonds with a Hydrogen. Second stage of CH4 bonding. Carbon bonds with an additional

Hydrogen. Third stage of CH4 bonding. Carbon bonds with all 4 Hydrogens.

different hardware architectures, a significant performance
boost is noticeable during runtime.

Since the Droplets visually communicate their element
type to users by color, we decided that a combination of
color based tracking and contour detection was appropriate
to identify, track, and correctly label each Droplet. Thus, on
an abstract level, atomic information of each Droplet and
molecular states of groups of Droplets are stored in their
color and blinking pattern.

The Droplets are first isolated in grayscale due to the
simplicity of detecting high light intensity that each Droplet’s
LEDs produce. Proceeding a number of checks to verify a
Droplet was found including contour shape and contour area,
we discover the color of each Droplet by calculating each
Droplet’s average hue, saturation, and value. Each Droplet is
then assigned to its respective element while its bond status
and location are constantly updated.

If a subset of Droplets are bonded in a molecule, the
molecular structure is determined by the preferred shape of
the molecule in three dimensional space. This is primarily de-
termined by the AR application, which takes into account the
electronegativity assigned to each Droplet and the number of
Droplets involved in the bonding process. In this application,
this process is reduced to looking up a possible configuration
for a group of atoms and the total Gibbs’ free energy in a
look-up table.

In addition, a central atom(s) is determined by the elec-
tronegativity of each atom within the molecule. For most
cases, the central atom(s) is the element with the high-
est electronegativity; some special cases such as diatomic
molecules are also recognized by the AR application thanks
to the property that atoms within a diatomic have the
same electronegativity, thus encompassing a wide range of
practical molecular structures for this simulation.

Bonded Droplets that blink red synchronously indicate
to the AR interface that this subset of Droplets belong in
a molecule. Using the electronegativity of each Droplet in
the subset, the AR interface determines the orientation and
bond pattern that each Droplet is making and displays this
information to the user. In addition, a user can tap a Droplet
on the display to toggle supplemental hidden information
about each Droplet’s atomic representation, including atomic
mass, electronegativity, atomic number, etc.

Preventing neighboring molecules or other atoms from
blinking at the same interval is another key challenge in

this approach, and is addressed by reducing the problem to
the distributed graph coloring problem and implementing a
distributed implementation thereof.

IV. SWARM COMMUNICATION (GRAPH
COLORING)

Droplets broadcast to the user that they are in a molecule
by having every member of that molecule periodically flash
red at the same time. However, we cannot guarantee that
as the number of molecules present grows large, that each
adjacent set of molecules flashes red at unique time intervals.
Thus, it is important to prevent molecules with the same
flashing period to be adjacent to each other. If we associate
each unique time interval a molecule can flash red with a
(virtual) color, then the problem is equivalent of not having
any neighboring molecules with the same color. Assuming
molecules are nodes of a graph and physically close cor-
responds to being edges between nodes, this problem is
equivalent to the graph coloring problem.

The graph coloring problem itself is NP-Complete; how-
ever, in a distributed setting, the solution can be approxi-
mated [19]. Let the center Droplet of each molecule represent
a node in an undirected graph; an edge exists between two
nodes if their respective center Droplets, and thus molecules,
are adjacent. Given such a graph G(V,E), and A+ 1 colors
available to each node, where A is the highest vertex degree
of the graph, the algorithm will complete in O(log(n))
rounds with high probability [19]. A single round consists of
two steps. First, each uncolored node randomly picks a color
from its color palette, initially consisting of all A+ 1 colors.
These nodes then compare their colors with their neighbors in
the graph. If the chosen color is unique, the node is assigned
that color and no longer participates. Otherwise, the node
proceeds to the next round with its previously chosen color
removed from its color palette. This process is illustrated
in Figure [3] and the algorithm in pseudocode is provided in
Algorithm 1.

We simulated this algorithm in C++ by first generating
random graphs using the Erdos-Renyi model [20]. These
graphs were then used to run the algorithm until all nodes
in the graph were assigned a unique color relative to its
neighbors. Under the assumption that each node is an in-
dependently functioning machine, thus allowing for parallel
execution of the algorithm by each node, we found that
the algorithm indeed completes in in O(log(n)) rounds with
high probability. The simulation consisted of five iterations

Rounds Until Completion vs. Nodes in Graph

Each node selects a color G B

from its color palette at
random T~
R,G,B,0,P

R, G,B,0,P

R P
R,G,B,0, P R, G,B,0,P
Max Vertex Degree : 4
A:5
0]
G,B,0,P

Nodes that picked non- [
unique colors proceed to
the next round with
reduced color palettes G,B,0,P

This process repeats until
every node is uniquely
colored with respect to
adjacent nodes

Max Vertex Degree : 4
A:5

Fig. 3. Example progression of the graph coloring algorithm. The top
left, top right, and bottom right nodes chose unique colors relative to their
neighbors, so their colors are fixed and they no longer participate. ,

Algorithm 1 Distributed Graph Coloring Algorithm
1: procedure GRAPHCOLOR
2: G < ErdosRenyiGraph(n,c) > Create random
graph G with n vertices and average vertex degree ¢

3: A + MaxVertexDegree(G,n)

4 for each vertex v in G do

5: v.cp < ColorPalette(A+ 1)

6: end for

7: while numColored < n do

8: for each uncolored vertex v do

9: v.randColor < V'.cp.RandColor()

10: if v V' in V.adjList, Vv'.randColor +#
V' .randColor then

11: V' .color <V .randColor

12: numColored++

13: else Vv'.cp.Remove(randColor)

14 end for

of creating random graphs from 100 nodes to 10,000 nodes
with step sizes of 100 and running the prescribed algorithm
on each graph.

—log(n)
=2log(n)

3log(n)
——Average # Rounds

Rounds until Completion

100
500
900
1300
1700
2100
2500
2900
3300
3700
5_ 4100
2 4500
g 4900
3 5300
5 s700
2 6100
6500
6900
7300
7700
8100
8500
8900
9300
9700

Fig. 4. Average rounds until completion of the algorithm plotted with
log(n), 2log(n), and 3log(n) curves for reference. The data was collected
and averaged over 5 iterations of the algorithm, from graph sizes of 100
nodes up to 10,000 nodes, with increments of 100 and average vertex degree
of 3

All graphs had an average vertex degree of three. The
data from the five iterations are averaged together and plotted
with multiples of log(n) in Figure 4] It is clear from the data
that the algorithm is O(log(n)) with a tight upper bound of
3log(n) and a tight lower bound of log(n).

The simulation provides insight into the runtime behavior
of the distributed graph coloring algorithm when applied to
our swarm Droplet platform. For the purposes of our appli-
cation, each molecule’s center Droplet will choose a time
interval to flash red. Adjacent center Droplets will compare
their time intervals, and those molecules whose interval is
unique will be assigned that interval. Those molecules who
choose the same time interval must try again the next round.

It is important to note that the number of unique time
intervals is a fixed, physical constant, since too much over-
lap between two intervals will cause the AR’s molecule
recognition algorithm to confuse what should be two distinct
molecules. Thus, the max vertex degree A of the network
of molecules cannot exceed one less than the number of
unique time slots in order for the AR application to function
correctly.

We must also consider how real world factors, such
as inter-Droplet communication, will affect performance.
Specifically, if a Droplet fails to communicate some critical
piece of information during a round, such as what color it
chose for its group or which neighbor it is, then it must
resend this information in the subsequent round, extending
the overall runtime of the algorithm. Given that each Droplet
has a, albeit low, probability of communication failure with
adjacent Droplets, it is not unreasonable to assume that
such events will occur in any trial or actual use of the
program. Thus, the simulations provide a lower bound on
the performance of the algorithm in an actual, physical set-
ting. However, these faults should not affect the asymptotic
behavior of the algorithm, and will instead add constant time
overhead to the algorithm’s performance.

V. RESULTS AND DISCUSSION

In order to understand how our application would perform
in a real setting, we ran several experiments to test the
robustness of the AR application under different circum-
stances. The variables we believe have the most impact on
our AR application’s Droplet detection accuracy are camera
resolution, distance from the phone camera to the Droplets,
the number of Droplets visible to the camera, and finally, the
angle of inclination of the camera relative to the Droplets.
Specifically, we address the following four questions in order
to assess the robustness of our AR implementation: (1) To
what degree does camera resolution affect performance of the
application and Droplet detection accuracy? (2) How does
Droplet detection accuracy change as a function of distance
(3) How does the Droplet detection accuracy of our image
processing pipeline change with respect to the number of
Droplets visible in the camera frame? (4) How does Droplet
detection accuracy change as a function of camera angle
inclination relative to the horizontal? The experiments and
results used to address these questions are detailed in the
proceeding section. In addition, we provide empirical data
that will be used to discuss the performance of Algorithm 1
in the real world. These results help us parameterize what
set of variables allow the AR application to maintain a high
degree of detection accuracy under different environments
while also maintaining an acceptable framerate.

A. Camera Resolution

We empirically determined that the best resolution for the
camera is 640x480 pixels. This resolution is a compromise
between performance and quality of the video feed. Any
lower resolution, while boosting performance, would result in
a blurry and choppy image stream, and any higher resolution
will significantly impact the performance of the application
to default to non-ideal frame rates. Due to the fact that a
Droplet’s color is interpreted as an average hue, saturation,
and value over a region of pixels, changing the pixel density
can throw off these calculations, resulting in erroneous
behavior and occasionally false positives in the application.
Thus, we have decided to lock the resolution to 640x480
for all devices that run the application for the purpose of
standardization.

B. Accuracy as a Function of Distance

The AR tool primarily relies on color thresholding in order
to detect Droplets and determine their position relative to
other Droplets, as well as compute their bond status. The
light from the Droplets is interpreted as a high saturation
and value in the HSV color space, thus making it eas-
ily distinguishable from background light and surrounding
objects that are not Droplets. However, there is a certain
threshold corresponding to the distance from the camera to
the Droplets power board in which the distinction can no
longer be made. This variable significantly contributes to the
accuracy at which the application can detect Droplets, thus
we found it useful to gather data on this subject.

Starting at an inclination of 0.1 meters relative to the floor
until a height of 1 meters, with increments of 0.1 meters at a
time, we measured the accuracy of the AR application as the
ratio of correctly identified Droplets to total Droplets visible
on the camera. At each increment, we kept a fixed camera
angle of 0 degrees relative to the horizontal, or a birds eye
view, and a fixed x-y position in each z-plane. The results
are graphed in Figure [5

Detection Accuracy vs. Distance

Droplet Detection Accuracy (%)

) 3
Distance from Droplets(m)

Fig. 5. Droplet detection accuracy as a function of distance. The sigmoid
function was fitted to the data.

The data shows that closer distances have fairly high accu-
rate Droplet detection rates. However, beyond 0.6 meters, we
begin to see nominal performance from the application. This
affects the number of Droplets we can have at any given time
while maintaining a high detection accuracy, since increasing
the number of Droplets implies moving the camera further
back in order to capture all the Droplets present.

C. Number of Droplets versus Detection Accuracy

The maximum number of Droplets that the camera can
detect at any instance in time is closely intertwined with the
maximum distance of the camera to the power board. This
is due to the fact that a greater distance between the camera
and Droplets results in more Droplets being able to fit within
the cameras boundaries. However, another determining factor
for the maximum allowed Droplets on the camera is the
ability to detect individual Droplets and accurately represent
them as their corresponding elements. As more Droplets are
densely packed in a confined space, the color information
from each Droplets becomes is lost and the resolution for
each individual Droplet becomes too small. For example,
Figure [6] shows an ensemble of 18 Droplets with the blue
Droplets (Oxygen) either not or incorrectly classified, and
one pink Droplet (Carbon) not identified.

Thus, we believe that the number of Droplets on the field
is another important variable to determining the robustness
of our application. We performed experiments in order to
understand the correlation between detection accuracy and
the number of Droplets visible to the camera. We collected
data on the detection accuracy from 1 to 20 Droplets at
increments of 1 Droplet at a time. Once again, the camera
angle of inclination was fixed at O degrees relative to the

Fig. 6.
(green) and carbon (pink). One oxygen is misclassified as hydrogen, and
one oxygen and carbon are not identified.

Example of 18 Droplets, representing oxygen (blue), hydrogen

horizontal. For each increment, the detection accuracy was
averaged over three trials. The results are graphed in the
figure below.

Droplet Detection Accuracy vs. Number of Droplets
120

&

3 =0

o —F—
8 { £ r <+ ’—i—(
& 60 :

c

o

T

Q

3

o}

a

0 5 10 15 20
Number of Droplets

Fig. 7. Droplet detection accuracy vs. number of Droplets visible to the
camera. An inverse linear relation exists until the empirically determined
max of 20 Droplets

We see an inverse linear relationship between the number
of Droplets present and the Droplet detection accuracy
up until 20 Droplets are present on the field, which we
have empirically determined to be the maximum number
of Droplets can detect at any given time. At 20 Droplets,
individual Droplet color information is lost, and light over-
saturation prevents the camera from perceiving any of the
Droplets, as we can see from the stark drop of detection
accuracy to O percent at 21 Droplets.

D. Angle of Inclination

The final variable in question is how the angle of in-
clination of the camera affects the performance of our AR
application. In practice, as the angle of inclination increases,
the surface area of colored light emitted from the Droplets
and perceived from the camera reduces until the algorithm
no longer considers the light source as a Droplet candidate.
How this affects detection performance at different camera
angles is of interest and importance, as we do not expect the

average user to hold their smart phones at a perfect birds-
eye-view indefinitely.

The experiment was performed starting at O degrees
relative to the horizontal to 90 degrees, at increments of
15 degrees at a time. The distance from the Droplets was
kept fixed at 0.3 meters. In order to de-correlate angle of
inclination and number of Droplets present, we repeated the
experiment at each increment with 5, 8, and 11 Droplets,
and averaged the results. The results are shown in the figure
below.

Droplet Detection Accuracy vs. Angle of Inclination
100

90

80

S
> 70
o
e
5 60
Q
& 50
c
S
=
Q
@ 30
3
3]
0 2
10
0
0 15 30 45 60 75 90
Angle of Inclination (°)
Fig. 8. Droplet detection accuracy vs. angle of inclination. The detection

accuracy is fairly high until the angle steepens to 90 degrees

While angle of inclination and detection performance
are negatively correlated, camera angle inclination does not
affect performance as severely as number of Droplets present
or camera distance for angles between 0 and 75 degrees. For
steeper angles higher than 75 degrees relative to the normal,
we do notice a significant drop in detection performance, for
the reasons listed above.

E. Performance of Algorithm 1 on Real Data

Algorithm 1 entails our approach for handling molecule
formation of different groups of Droplets using each group’s
respective red blinking pattern. We drew from the Graph Col-
oring Problem to formulate our algorithm, and showed that
the algorithm converges and leads to successful formation of
all distinct molecules in O(log(n)) time.

To analyze the performance of this algorithm in a realistic
scenario, we introduced additional Droplets one at a time to
different molecule groups and measured how many rounds of
red blinking were required before our AR application could
recognize the correct number of molecules present in the
experimental arena. The results are graphed in Figure [9]

Rounds Until Completion vs. Visible Droplets

4 /
/
s /’/
z /
P
a3 /
£ /
o
o
2 /
=) /
% /
%2 —
< /
3 /
-4
/”
//
1
0 2 a 6 8 10 12 14 16 18

Number of Droplets

Fig. 9. Rounds of red blinking needed until molecule assignment completed
by the AR app.

From the data above, we can see that the algorithm be-
haves in accordance with the results found in the simulation
we ran for Algorithm 1 when the number of Droplets in the
experimental area is relatively low. However, we begin to see
three to four rounds of red blinking required as the number
of visible Droplets approaches 20. We empirically found
that our image processing pipeline made several mistakes
assigning Droplets to their correct groups as we increased
the number of Droplets present. We believe this to be a
result of the camera intrinsics, specifically resolution and
framerate, that causes certain Droplets that blink several
hundred milliseconds apart to appear to blink at roughly
the same time. Thus, we conclude that while our results
from the simulations run with Algorithm 1 give us a good
theoretical upper bound on performance, noisy data in real
world settings causes a reduction in performance of our
algorithm.

VI. CONCLUSION

In an environment where swarm members are equipped
with GPS information, such as in an environmental moni-
toring or agricultural task, the proposed approach can still
be used to differentiate between multiple robots that are
visible at the same time, for example swarming aircraft that
flock in close proximity. In future work, we wish to use this
information to explicitly address individual swarm members
and provide control signals. In the chemistry simulation, this
could be steering individual atoms or breaking up molecules.
In an environmental monitoring or agricultural application,
this could be selecting a leader or other mission-specific
commands.

Based on the robustness and scalability of the Augmented
Reality interface in conjunction with a properly implemented
swarm robotics platform, we believe that this tool serves
as the foundation for future swarm robotics research and
development. In the chemistry simulation, we found the
AR interface to be a practical tool for augmenting the
information users could retrieve, which might be important
in a teaching context. Having the Droplets maintain their
respective molecular structures while the AR interface over-
lays the physical space with relevant atomic information

20

effectively combines traditional 3D molecular models and
two-dimensional molecular charts into one interactive tool.

The augmented reality interfaces ability to visualize hid-
den data might have great implications for swarm robotics
and robot automation research in general. Data aggregation
can lead to faster development cycles for improved swarm
behavior algorithms and automated robot behavior. This can
have long-standing effects on modular robotics for education
and/or swarm research, as well as on swarm nanorobotics
for medical treatment, construction, etc. Clearly, swarm data
aggregation and visualization can advance our understanding
and utilization of swarms across multiple industries.

As previously discussed, the AR interface and the swarm
implementation is not without limitations. However, many
of these limitations are a byproduct of current computer
limitations. Computer vision is processor intensive; only
recently have processors reached a stage where Augmented
and Virtual reality devices have become viable. As computer
architectures continue to evolve, current limitations will con-
tinue to relax and Augmented Reality solutions will become
more powerful and relevant.

REFERENCES

[1] E. Sahin, “Swarm robotics: From sources of inspiration to domains of
application,” in International workshop on swarm robotics, pp. 10-20,
Springer, 2004.

M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7, no. 1, pp. 1-41, 2013.

A. Randall, J. Klingner, and N. Correll, “Simulating chemical reactions
using a swarm of miniature robots,” in International Conference on
Simulation of Adaptive Behavior, pp. 305-316, Springer, 2016.

S. Bashyal and G. K. Venayagamoorthy, “Human swarm interaction
for radiation source search and localization,” in Swarm Intelligence
Symposium, 2008. SIS 2008. IEEE, pp. 1-8, IEEE, 2008.

A. M. Naghsh, J. Gancet, A. Tanoto, and C. Roast, “Analysis and
design of human-robot swarm interaction in firefighting,” in RO-MAN
2008-The 17th IEEE International Symposium on Robot and Human
Interactive Communication, pp. 255-260, IEEE, 2008.

C. Vasile, A. Pavel, and C. Buiu, “Integrating human swarm interaction
in a distributed robotic control system,” in Automation Science and
Engineering (CASE), 2011 IEEE Conference on, pp. 743-748, 1EEE,
2011.

A. Kolling, K. Sycara, S. Nunnally, and M. Lewis, “Human swarm
interaction: An experimental study of two types of interaction with
foraging swarms,” Journal of Human-Robot Interaction, vol. 2, no. 2,
pp. 103-128, 2013.

G. Podevijn, R. OGrady, and M. Dorigo, “Self-organised feedback in
human swarm interaction,” in Proceedings of the workshop on robot
feedback in human-robot interaction: how to make a robot readable
for a human interaction partner (Ro-Man 2012), 2012.

N. Correll, G. Sempo, Y. L. De Meneses, J. Halloy, J.-L. Deneubourg,
and A. Martinoli, “Swistrack: A tracking tool for multi-unit robotic
and biological systems,” in 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 2185-2191, IEEE, 2006.

M. Daily, Y. Cho, K. Martin, and D. Payton, “World embedded
interfaces for human-robot interaction,” in System Sciences, 2003.
Proceedings of the 36th Annual Hawaii International Conference on,
pp. 6-pp, IEEE, 2003.

X. Benavides, J. Amores, and P. Maes, “Invisibilia: revealing invisible
data using augmented reality and internet connected devices,” in
Adjunct Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing and Proceedings of the 2015
ACM International Symposium on Wearable Computers, pp. 341-344,
ACM, 2015.

[2]

[3]

[6]

[8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

N. Farrow, J. Klingner, D. Reishus, and N. Correll, “Miniature six-
channel range and bearing system: algorithm, analysis and experimen-
tal validation,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA), pp. 6180-6185, IEEE, 2014.

A. Reina, A. J. Cope, E. Nikolaidis, J. A. Marshall, and C. Sabo,
“Ark: Augmented reality for kilobots,” IEEE Robotics and Automation
letters, vol. 2, no. 3, pp. 1755-1761, 2017.

F. Ghiringhelli, J. Guzzi, G. A. Di Caro, V. Caglioti, L. M. Gam-
bardella, and A. Giusti, “Interactive augmented reality for understand-
ing and analyzing multi-robot systems,” in 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp. 1195-1201,
IEEE, 2014.

M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal,
“Kilobot: A low cost robot with scalable operations designed for
collective behaviors,” Robotics and Autonomous Systems, vol. 62,
no. 7, pp. 966-975, 2014.

P. Marshall, “Do tangible interfaces enhance learning?,” in Proceed-
ings of the Ist international conference on Tangible and embedded
interaction, pp. 163170, ACM, 2007.

S. R. Klemmer, B. Hartmann, and L. Takayama, “How bodies matter:
five themes for interaction design,” in Proceedings of the 6th confer-
ence on Designing Interactive systems, pp. 140-149, ACM, 2006.

F. Kuhn and R. Wattenhofer, “On the complexity of distributed graph
coloring,” in Proceedings of the twenty-fifth annual ACM symposium
on Principles of distributed computing, pp. 7-15, ACM, 2006.

0. Johansson, “Simple distributed 8+ 1-coloring of graphs,” Informa-
tion Processing Letters, vol. 70, no. 5, pp. 229-232, 1999.

P. Erdos and A. Rényi, “On random graphs, i,” Publicationes Mathe-
maticae (Debrecen), vol. 6, pp. 290-297, 1959.

	I INTRODUCTION
	II RELATED WORK
	II-A Robot Swarm Implementation
	II-B Relevant Chemistry
	II-C Representing the Chemical Model with Droplets
	II-D Augmented Reality for Robotics

	III Tangible Robotics and Augmented Reality for Human-Swarm Interaction
	III-A Augmented Reality Implementation

	IV SWARM COMMUNICATION (GRAPH COLORING)
	V RESULTS AND DISCUSSION
	V-A Camera Resolution
	V-B Accuracy as a Function of Distance
	V-C Number of Droplets versus Detection Accuracy
	V-D Angle of Inclination
	V-E Performance of Algorithm 1 on Real Data

	VI CONCLUSION
	References

