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Abstract
When a disaster strikes, one of the highest priorities is to save the lives of the victims. The proportion of victims that rescu-
ers can save is strongly related to how quickly rescue efforts can begin. Therefore, early detection of disaster victims is very 
important. However, significant risks are involved in rescue operations immediately after a disaster. In fact, in the Great 
East Japan Earthquake, approximately 250 firefighters died while rescuing victims. Under such circumstances, rapid and 
safe rescue operations are needed at disaster sites. For this purpose, it is important to improve the technology of disaster 
relief robots. In this paper, we propose an algorithm to measure the linear distance to an obstacle in real time using only 
a line laser and a monocular camera. This approach allows the use of a camera to obtain more information than the one-
dimensional information such as that obtained by ultrasonic sensors. Moreover, this method of obstacle detection for disaster 
rescue robots is smaller and more durable than large measurement systems such as LiDAR that have been used in the past. 
In addition, since only one camera is used, the processing cost is low and the processing equipment is expected to be small. 
The proposed method’s effectiveness is indicated by comparing the distance measured from the image processing results in 
a dynamic environment with the actual distance between the obstacle and a crawler robot by having the robot move straight 
toward to an obstacle.
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1 Introduction

According to the Centre for Research on the Epidemiology of 
Disasters (CRED) database, about 8,000 large-scale disasters 
worldwide occurred in the 50 years between 1967 and 2016, 
in which about 2.8 million people were killed [1]. In addition, 
a 2010 Cabinet Office White Paper on Disaster Prevention 
observed that, given the many natural disasters in Japan (such 
as earthquakes with a magnitude of 6.0 or more, about 20 % of 
the world total [2]), rescue activities are very important here. 
In fact, about 250 members of the fire brigade carrying out 
rescue activities in the Great East Japan Earthquake perished 
[3]. Figure 1 summarizes the numbers of natural disasters, 
deaths, and victims globally between 1920 and 2008. Given 
these circumstances, rescue activities at disaster sites must be 

both prompt and safe. Therefore, it is important to improve the 
technology of disaster robots. At a disaster site, a self-sustain-
ing mobile robot needs to quickly and safely select a route to 
a destination in order to carry out rescue activities, sometimes 
in the dark where camera function is impaired or roads are 
damaged [4]. In addition, detecting both dynamic and static 
obstacles with high accuracy and low delay is an important 
factor that enables autonomous driving [5]. Focusing specifi-
cally on the obstacle-detection function, conventional technol-
ogies includes ultrasonic sensors, position-sensitive detector 
(PSD) sensors, 2-D LiDAR, and 3-D laser scanners. Each of 
these, however, has disadvantages. Ultrasonic sensors have a 
slow response speed, are affected by dust and water, and have 
low angular resolution [6, 9, 11]. PSD sensors are affected by 
colors and materials and have short measurement distances; 
2-D LIDAR is costly and has poor durability; finally, 3-D laser 
scanners are vulnerable to black objects and mirrors [4, 6]. 
In contrast, cameras are inexpensive and small, can acquire 
environmental factors such as terrain appearance, and can 
operate in various climatic environments [7]. Current mobile 
robots obtain position information about obstacles via multiple 
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installed cameras. However, if technology can be developed to 
acquire location information using only a monocular camera, 
more data can be acquired and the amount of information and 
accuracy can be improved; if multiple devices are used, the 
accuracy can be further improved [7, 10].

In this paper we propose an algorithm that can measure 
the straight-line distance to an obstacle in real time with only 
a line laser and a monocular camera. Suetsugu et al. con-
ducted obstacle-detection research using a line laser. How-
ever, in addition to manual photography, the conventional 
method requires a long processing time because calculations 
are performed after image processing, and the obstacle and 
camera must both be static. Moreover, conventional meth-
ods of detecting obstacles in real time do not consider the 
influence of surrounding light, and the method of detecting 
the position of the line laser is also not considered. Thus, 
some challenges remain to be resolved for practical use. In 
addition, the formula for calculating distance in conven-
tional research had a large error when measured dynami-
cally. There are also studies that use machine learning to 
estimate depth from information obtained using a monocular 
camera. However, a maximum error of about 10% occurs 
in distance measurement, and the processing cost is high, 
so the machines that do the processing calculations are too 
large, which makes it difficult to install in a disaster rescue 
robot [8].

2  Purpose

In this paper, camera information is read from a robot 
equipped with a line laser and a monocular camera, and 
OpenCV and Python are integrated to perform image 

processing tasks such as noise removal and setting the laser 
color recognition threshold. On the basis of our findings, we 
propose an algorithm that can acquire position information 
and measure the straight-line distance to an obstacle in real 
time even in a dynamic environment. This method can detect 
obstacles using only a line laser and a monocular camera. 
Therefore, this method is not affected external noise., and 
it is easy to improve downsizing and durability. We demon-
strate the effectiveness of the proposed method by actually 
measuring the distance to an obstacle after moving the robot 
for 1 s and comparing the result with the distance measured 
by an image processing result.

3  Methods

To enable real-time measurement of the straight-ahead dis-
tance to an obstacle even in a dynamic environment, we first 
irradiate a red-line laser diagonally from above the robot in 
the straight-ahead direction. The position information of the 
obtained line laser is then extracted from the image informa-
tion. The straight-line distance is measured by detecting the 
position information of the line laser light projected onto the 
obstacle with OpenCV and calculating the distance using the 
similarity relationship of triangles. When the red-line laser is 
radiated diagonally from above the robot in the straight-line 
direction, the laser light will be projected onto an obstacle in 
that direction if one exists. The straight line of the horizontal 
light projected onto the obstacle will then rise vertically. The 
actual situation is shown in Fig. 2.

This line of light is processed when the camera captures 
an image, which is then imported by OpenCV and binarized, 
which binarizes the image by the color threshold set for the 

Fig. 1  Numbers of 
disasters,deaths and victims 
(1970 → 2008)
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laser color. After the noise is removed from the binarized 
image, the distance to the obstacle can be calculated in real 
time by extracting the coordinates of the laser and calculat-
ing the distance using the similarity relation of triangles. The 
flowchart of this algorithm is shown in Fig. 3.

The image information from the camera is first sent to 
OpenCV, which converts it into HSV values. The threshold 
value is the red light extracted from the image in advance 
of the line laser using the HSV value. Binarization is then 
performed between red and other colors.

The binarized output screen is then morphologically 
transformed using OpenCV. Shrinking, a basic morphologi-
cal process, is used to remove small noise in the image, fol-
lowed by opening, a noise processing method that increases 
the area by performing expansion. Then, the part of the line 
laser that does not hit an obstacle (the position of the line 
laser when there is no obstacle) is deleted by specifying 
the area. Finally, the distance to the obstacle is calculated 
by labeling and extracting the coordinates of the centroid 
of the line laser. Figure 4 shows the image after the video 
from the camera is binarized by OpenCV using a threshold 
with a predetermined HSV value. Figure 5 shows the out-
put screen after noise removal and labeling processing, and 
Fig. 6 shows the screen displaying the original image and 
the coordinates being extracted. Figure 5 shows the image of 
Fig. 4, in which OpenCV shrinks the pixel values, noise is 
removed, the image is expanded to avoid holes in the pixels, 
and labeling is applied to detect the centroid of the line laser 
hitting the obstacle. The coordinates of the detected centroid 
are the blue dots in Fig. 6, which is an image from a camera 
in which the program displays the position coordinates of 
a line laser hitting an obstacle as blue dots. As can be seen 
from this image, this method can obtain the position infor-
mation of the line laser in real time using OpenCV.

Specific calculation methods, the red horizontal line laser 
is attached to the robot at height H [mm], and the maximum 
irradiation distance is L [mm]. Let T

max
 [mm] be the maxi-

mum shooting range at the maximum irradiation distance of 
the line laser in the camera attached to the robot, and let t

m

[pixel] be the position of the line laser in the image when no 
obstacle is present. Then, an obstacle is placed in the robot’s 
straight-ahead direction, and the height of the irradiation 

Fig. 2  Actual experiment

Fig. 3  Flowchart of distance measurement algorithm

Fig. 4  Binarization using HSV values
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position where the line laser is projected onto the obstacle is 
T
R
 [mm], while the position of the line laser in the image at 

that time is t [pixel]. The height T
R
 [mm] of the laser irradia-

tion position can be calculated by Eq. (1).

From the result, the distance D [mm] to the obstacle can be 
obtained by Eq. (2) using the similarity relation of triangles.

Since the position information in the image of the red-line 
laser is used to measure the linear distance to the obsta-
cle, it is necessary to read the image from the camera and 
detect the position of the line laser in real time. Therefore, 

(1)T
R
=

T
max

∗ t

t
m

(2)D = L −

T
R
∗ L

H

in this study, the position information of the red line laser is 
detected using OpenCV. The detection method was as fol-
lows. First, the image captured from the camera is imported 
into OpenCV. To detect only the red line laser in the image, 
the HSV value is set to the color of the laser, and the image 
is binarized according to the pre-set threshold value. The 
place judged to be red in the image is converted to white (1), 
and the other colors are converted to black (0) to create the 
image. Noise is removed from a binarized image by opening 
processing, and the system detects the center coordinates 
of the line of the line laser irradiated to the obstacle in the 
image. This makes it possible to obtain the value of t [pixel] 
used to calculate distance. Then, by substituting this value 
into Eq. (1), the value of T

R
 [mm] can be obtained. Figures 7 

and 8 present explanations of these values.

4  Experiment

To verify whether the proposed method actually meas-
ures the distance to obstacles in the dark, we built a simple 
darkroom consisting of wooden boards and blackout cur-
tains. The effectiveness of the proposed method is verified 
by measuring the distance to obstacles in real time in the 
darkroom, in which only the light of the line laser could 
be observed from the read image. The camera was directly 
connected to a PC, and it was possible to read the video 
in real time and start the developed program. Also meas-
ured in advance are the height H of the line laser from the 
ground, the maximum irradiation distance L when there are 
no obstacles, and the maximum shooting distance T

max
 at the 

maximum irradiation distance. Table 1 lists the initial values 
measured in advance, and Fig. 8 shows the robot equipped 
with the camera and line laser. In this research, the camera 
is eMeet C960 made by EMeet and the line laser is Qlaers 
Red Laser Module 650nm 1mW.

Fig. 5  Noise removal and labeling for binarized image

Fig. 6  Original image and coordinate extraction position

Fig. 7  Trigonometric relationship of the values used to calculate the 
distance to obstacles
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Image processing was performed on these initial values 
in real time, and the measured T

R
 and t were substituted 

into Eq. (1) and (2), respectively, to calculate the distance 
between the robot and the obstacle. The experimental 
method is to calculate the distance in real time while mov-
ing the robot for 1 s. The actual distance between the robot 
and the obstacle after 1 s was used as the measured value. 
The same experiment was repeated 5 times (Fig. 9).

5  Experimental Results

Table 2 presents the process-measured and manually meas-
ured values after the obstacle and the robot were placed 700 
mm apart and moved for 1 s. In addition, Fig. 10 shows the 
third graph in which the error was 0, and Fig. 11 shows the 
displacement of the reading position of the line laser during 
movement for 2 s.

6  Discussion

The experimental results demonstrate that there was 
almost no error between the process-measured and manu-
ally measured values. It is considered that the reason why 
error was not completely eliminated is that the initial value 

was measured manually with a ruler, and if the initial value 
deviates by even 1 cm, the manually measured value also 
has an error of several millimeters. In this experiment, it 
was confirmed that there were no problems and that recog-
nition was performed with minimal error. In view of its use 
in real-world conditions, it is also considered necessary to 
use it outside the darkroom.

Fig. 8  Relationship between the image obtained from the camera and 
the constant when no obstacles are present

Table 1  Initial value measurement result

Measurement points Actual 
measurement 
value

Line laser height H[mm] 173
Maximum irradiation distance L[mm] 853
Maximum shooting range T

max
[mm] 563

Pixel value of Tmax t
m
[pixel] 298

Fig. 9  Robots actually used in the experiment

Table 2  Experimental result

Times Process 
measured[mm]

Manually measured 
values[mm]

Error [mm]

1 564 560 4
2 545 542 3
3 536 536 0
4 554 551 3
5 536 539 3
Avg. 547 545.6 2.6

Fig. 10  Graph of experimental results
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7  Conclusion

In this paper, we proposed an algorithm to calculate the 
straight-line distance to an obstacle in real time and con-
ducted an experiment to verify its effectiveness. Our results 
confirmed that it is possible to extract the position informa-
tion of a laser in the dark where the camera can recognize 
the light of the line laser and the position information of the 
moving laser. We demonstrated that the position informa-
tion could be used to detect the distance to the obstacle in 
real time. In the future, we will develop a self-sustaining 
mobile robot equipped with a line laser and a camera, and 
will detect errors during movement by setting the speed. In 
addition, the position information of the laser will be recog-
nized in response to the change in the color of the line laser 
due to brightness.
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bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
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included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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