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Abstract

A new paradigm, which models the relationships between Wetidg and topic categories, in
the context of medical forms, is presented. The ultimatelsgeae (i) the recognition of medical
handwriting, and (ii) the use of such information for praatiapplications such as a medical form search
engine. Medical forms have diverse, complex and large t¢adcconsisting of English, Medical and
Pharmacology corpus. Our technique shows that a few rezedriharacters, returned by handwriting
recognition, can be used to construct a linguistic modelabbp of representing a medical topic
category. This allows (i) a reduced lexicon to be constididteereby improving handwriting recognition
performance, and (i) PCR forms to be tagged with a topicgmatie and subsequently searched by
information retrieval systems. We present an improvemé&®96 in raw recognition rate and a search
precision of 0.86 at the 0.1 recall position on a data set @buostrained handwritten medical forms
filled in emergency environments.

Index Terms

Handwriting Analysis, Language Models, Pattern MatchiRgtrieval Models, Search Process

. INTRODUCTION

This paper describes the first automatic recognition sy$terhandwritten medical forms.
In the United States, any pre-hospital emergency medical peovided must be documented.
Departments of Health for each state provide a standardaaleftirm to document all patient
care from the beginning of the rescue effort until the patisriransported to the hospital. State
laws require that emergency personnel fill out one form faheaatient.

Figure 1 shows an example Pre-Hospital Care Report (PCR)fptB which contains
16 information regions (see Table I). Handwriting, from P@®&jions 8, 9, 11, 13 and 14
are used for recognition and retrieval analysis. There are ghases to our research: (i) the
recognition of handwriting on the medical form, and (ii) adioal form query retrieval engine.

Handwriting recognition is used to tag medical forms withopit category to subsequently
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1) Form, agency, and ambulance vehicle Identificatior®) Subjective Assessment
2) Patient and physician contact information 10) Presenting Problem
3) Care in progress on arrival and mechanism of injurd/1) Past Medical History
4) Dispatch Information 12) Vital/Signs
5) Patient Transfer Information 13) Objective Physical Assessment
6) Rescue times between rescue and transport phasest) Physical Assessment Extension and/or Comments
7) Extrication and patient vehicle information 15) Treatment Given
8) Chief Complain 16) Ambulance Crew Identification
TABLE |

PCR CATEGORIES

improve recognition performance. The medical forms reflace lexicons containing Medical,
Pharmacology and English corpus. While current state ofatheecognizers report recognition
performance between-58-78%, on comparable lexicon sizes in the postal appticaf27]
[49] [50], our experiments show25% raw match recognition performance on the medical
forms. This underscores the extremely complicated nattiraealical handwriting (Figure 1).
We have developed a method of automatically determiningtdape category of a PCR form
using machine learning and computational linguistics népes. We demonstrate the strategy

for improving the raw word recognition rate by about 8% foeziton size of over 5,000 words.

[I. BACKGROUND

The basis for reducing the lexicon to improve recognitioraisvell researched strategy
in handwriting recognition [19] [49]. Although handwrignrecognition and lexicon prun-
ing/reduction [33] have been researched substantially theeyears, many challenges still persist
in the offline domain. Word recognition applications rangent automated check recognition
[26], postal recognition [14], historical documents recibign [15] [18], and how emergency
medical documents [35] [36] [37]. Strategic recognitionhieiques for handwriting algorithms
such as Hidden Markov Models (HMM) [28] [34] [38] [22] [9], Aificial Neural Networks
(ANN) [40] [4] [11] [16] [10], and Support Vector Machines\{#) [1] [5] have been developed.
Lexicon reduction has been shown to be critical to improvwenad performance primarily
because of the minimization of possible choices [19]. Even dystems dealing with a large
vocabulary corpus have been successful [28] [29].

Additionally, some lexicon reduction strategies have udleel extraction of character
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information for lexicon reduction, such as that by Guile\et al. [20]. However, such strategies
reduce the lexicon for a single homogeneous category, ryaoiges within the country of
Finland. In addition, usage of word length estimates for alkm lexicon are available [20].
Caesar, et al. [6] also state that prior reduction techrsd@i®] [46] [41] are unsuitable since they
can only operate on very small lexicons due to enormous ctatipoal burdens [6]. Caesar [6]
further indicates that Suen’s [47] approach of n-gram coratairics is sensitive to segmentation
issues, a common problem with medical form handwriting gjwever, Caesar’s method [6] and
those which are dependent on using the character informatia/or the character information of
only one word to directly reduce the lexicon, suffer if ondlod characters is selected incorrectly
[6]. This is observable in the cursive or mixed-cursive hariting types.

Many existing schemes, such as that of Zimmermann [51],nassbat some characters can
be extracted. However, in the medical handwriting domais task is error prone. Therefore,
operating a reduction scheme which can be robust to indtyrelcosen characters is necessary.
We use sequences of characters to determine the medicaldajggory which has a lexicon of
its own, thereby reducing the issues of using the charantermation directly. Similar to the
study by Zimmermann et al. [51], the length of words are uséd phrases.

Kaufmann, et al. [25] present another HMM strategy whichrisngrily a distance-based
method and uses model assumptions which are not applicabteei medical environment.
For example, Kaufmann [25] assumes that “...people gdgesaite more cooperatively at the
beginning of the word, while the variability increases ie tiniddle of the word.” In the medical
environment, variability is apparent when multiple heattire professionals enter data on the
same form. The medical environment also has exaggeratddragxiremely compressed word
lengths due to erratic movement in a vehicle and limited papace. Kaufmann [25] only
provides a reduction of 25% of the lexicon size with littlerto improvement in error rate, and

the experiments are run only on a small sample of words.

IIl. L EXICON REDUCTION

This research proposes the following hypothesis which igfigd experimentally: A
sequence of confidently recognized characters, extraobed &n image of handwritten medical
text, can be used to represent a topic category. The cotistiuaf medical form training and

test decks has been created manually. A software data eygtgns has been developed which
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10 Body System<irculatory/Cardiovascular, Digestive, Endocrine, Etory,
Immune, Integumentary, Musculoskeletal, Nervous, Repctide, Respiratory.

6 Body Range Locationgsbdomen, Back/Thoracic/Lumbar, Chest, Head,
Neck/Cervical, Pelvic/Sacrum/Coccyx.

4 Extremity LocationsArms/Shoulders/Elbows, Feet/Ankles/Toes,
Hands/Wrists/Fingers, Legs/Knees.

4 General:Fluid/Chemical Imbalance, Full Body, Hospital Transfeaiisport, Senses.

TABLE Il
CATEGORIES ARE DENOTED BY THESEANATOMICAL POSITIONS

allows human truthers to segment all PCR form regions anddsyoand provide a human
interpretation for the word, denoted as the truth. Truthisxgone in two phases: (i) the digital
transcription of medical form text, and (ii) the classifioat of forms into topic categories.
The distribution of PCR forms under each category is appnakely equal in both the training
and test decks (see Table Il). The task has been supervisegeaformed by a health care
professional with several years of field emergency mediealises (EMS) experience. This
emergency medical data set is the first of its kind.

A PCR can be tagged with multiple categories. In our datargefprm had more than five
category tags. The subijectivity involved in determining ttategories makes the construction
of a hierarchical chart representing all patient scenanib respective prioritized anatomical
regions a difficult task and exceeds the scope of this relse@he following are some examples

for classifying medical form text into categories (see €alb):

Example 1:A patient treated for an emergency related to her pregnarmyjdibe included in

the Reproductive Systenategory (see Table II).

Example 2:A conscious and breathing patient treated for gun shot wedadhe abdominal
region would fall into theCirculatory/Cardiovascular Systeniue to potential loss of blood, as

well as being categorized fakbdominal, Back, and Pelvicategories (see Table II).

We take characters with the highest recognition as an inpditpaoduce higher level topic
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categories. A knowledge base is constructed duringrdiring phasefrom a set of PCR forms.
The knowledge base contains the relationships betweerstanu categories. Thecognition
phasetakes an unknown form, and reduces the lexicon using the letig® base. This phase
is evaluated using a separate testing deck. Finally, afteroatent of the PCR form has been
recognized, a search can take place by entering in a quely.phlase is tested by querying the
system with a deck of phrase inputs. The forms are then raag&eordingly and returned to the
user.

In the training phase, a mechanism for relating uni-grantskargrams (henceforth: uni/bi-
grams) as well as categories from a PCR training deck aretrcotesd. The testing phase then
evaluates the algorithm’s ability to determine the categgoirom a test form by using a lexicon
driven word recognizer (LDWR) [27] to extract the top-cheiani/bi-gram characters from
all words. A maximum of two characters per word are consudieggven that LDWR [27]
successfully extracts a bi-gram with spatial encoding rimfation 40% of the time. 1> 3
characters are selected, then LDWR [27] successfully etstra characteK 1% of the time.

Hence the maximum value of n in the n-grams is taken to be 2gsamples in Figure 4).

A. Training

The training stage involves a series of steps to constructedhat represents relationships
between terms and categories. Each form can have up to fegarads. In the first phase, lexicons
are constructed using all the words from all forms under agmty. In the second phase, phrases
are extracted from the form using a cohesion equation. Tphkssses are then converted to ESI
encoding terms (ESI denotes “Exact Spatial Informatioréduas the encoding procedure for
the uni/bi-gram terms; see definitions later in this segtidnmatrix is then constructed utilizing
the ESI terms for the rows and the categories in the columhe.matrix is then normalized,
weighted, and prepared in Singular Value Decompositiomédr

A list of about 400 stopwords provided by PubMed are omittednfthe lexicon [39] [21].
An additional list of about 50 words (e.g. male, female,)eficund in most PCR'’s, which have
little bearing on the category are omitted from the cohesiaalysis (the frequency of two words
co-occurring versus occurring independently; see Equatjobut retained in the final lexicon.
It is common to apply other filters to reduce the likelihoodnodrphological mismatches [21].

However, strategies such as ‘stemming’ [21] cannot be a@gdbefore recognition because the
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text is not yet ASCII and is therefore unknown. Consider adwaiiten word image representing
“rhythms” that needs to be recognized. The alteration oftlims” to “rhythm” in the lexicon will
affect recognition performance. However, at the end ofsti@stion, these words are considered
equivalent. Therefore, word stemming is applied after tB®R [27] has determined the ASCII
word translation.

A passage P is the set of all wordsfor a PCR form under a category C treated as a single
string. For each C, every pair of passages, dendtednd P, is compared. A phrase is defined
as a sequence of adjacent non-stopwords [13]. Here we denas a word located at position
x within a passage P. b, € Py, w, € P, w, € P, w, € P, such thatt > ¢’ andb > a, then a
potential phrase consisting of exactly two words is cortséd. The cohesion of phrases under
each C is then computed. If the cohesion is above a thresti@d, that phrase represents that
category C. Thus a category C is represented by a sequengghatdhesion phrases using only

those PCR passages manually categorized under C.

f(wm wb)
f(wa) f (wy)

The cohesion between any two words andw, is computed by the frequency that, and

(1)

cohesion(w,, wy) = z ®

wy, Ooccur together versus existing independently. The top 4@siwe phrases are retained for

each category (see Equation 1).

Consider the following two unfiltered text sentencégsand .S, under the categoriegs
Sy: “right femur fracture”
Sy: “broken right tibia and femur”

The candidate phras€sP, and C' P, after the filtering step are:
C Py: “right femur” ... “right fracture” ... “femur fracture”

C Py: “broken right” ... “right femur” . ..

The phrase “right femur” is computed frodiP; andC'P,, given thatw, andw, = “right”,
wy and w; = “femur”, and the condition$ > « andt’ > o’ have been met. If the cohesion for
“right femur” is above the threshold across all PCR forms arnthe legs category, then this

phrase is retained as a representative of the catdggsy
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FREQUENCY COHESION PHRASE

6 0.67 DCAP BTLS
166 0.35 CHEST PAIN
91 0.38 PAIN O
1860 2.49 PAIN HIP
144 0.34 HIP JVD
112 0.39 PAIN CHANGE
275 0.81 HIP FX
110 0.37 HIP CHANGE
82 0.38 PAIN 10
163 0.40 JVD PAIN
106 0.40 CAOXS PAIN
202 0.50 PAIN JVD
213 0.55 PAIN LEG
205 0.42 CHEST HIP
3 0.33 PERPENDICULAR DECREASE
121 0.33 FELL HIP
118 0.36 PAIN FX
2251 3.01 HIP PAIN
390 0.83 PAIN CHEST
288 0.59 HIP CHEST
TABLE 11l

Top COHESIVEPHRASES FOR THECATEGORY: PELVIS

Tables 1l and IV illustrate some top choice cohesive phsagenerated. Digestive system
and pelvic region are anatomicalljose However, different information is reported in these two
cases resulting in mostly different cohesive phrases. 8 mdsch are the same, such @BIEST
PAIN have different cohesion values. This implies that it isliikihat the term frequencies will
also be different and therefore commonly occurring termedne be weighted appropriately to
their categories (this will be discussed in more detailrjatehrases sometimes may not make
sense by themselves, however, this is the result of usinghasoee phrase formula in which

words may not be adjacent.

There are three strategies for term representations: NSlagd ASI. These terms will later be

modeled to an anatomical category and used as the esseitgaba for lexicon reduction.
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Remove Stopwords

High Cohesion Low Cohesion

High Cohesion

v
Generate All Possible Character Combinations (Remove Duplicates)

Blood bl, bo, b6, bd, lo, I, Id, 0o, od, od
Nostrils no, ns, nt, nr, ni, nl, s, os, ot, or, oi, ol, vs, st, sr, si, sl, ss ...
Mouth mo, mu, mt, mh, ou, ot, oh, ut, uh, th

Pairing All High Cohesion Phrases and Construct nm-gram Terms
(Blood, Nostrils) (bl, no), (bl, ns), (bl, nt), (bl, nr) ...
(Blood, Mouth) (bl, mo), (bl, mu), (bl, mt), (bl, mh) ...

Fig. 3. Term Extraction from High Cohesive Phrases

_—T i Tl
st TSN o s
L, Y. e
—1 e

(ID: 407-1)

(ID: 407-2)

(ID: 473)

(ID: 643)

Fig. 4. NSI Encodings Example (Blue Letters: LDWR[27] swsxfally extracted)
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10

FREQUENCY COHESION PHRASE

30 0.72 PAIN INCIDENT
5 0.31 PAIN TRANSPORTED
42 0.54 PAIN CHEST
52 0.81 STOMACH PAIN
9 0.25 HOME PAIN
6 0.43 VOMITING ILLNESS
39 0.51 CHEST PAIN
4 0.24 CHEST SOFT
25 0.54 PAIN SBM
31 0.37 PAIN X4
31 0.47 PAIN JVD
11 0.34 PAIN EDEMA
25 0.44 PAIN PMSX4
6 0.21 PAIN SOFT
3 0.21 SBM INCIDENT
11 0.25 PAIN LEFT
TABLE IV

Top COHESIVEPHRASES FOR THECATEGORY. Digestive System

No Spatial Information (NSI):
An asterisk (*) indicates that zero or more characters awmdobetweenC; and C;. NSI
encodings are the most simple form of encoding (see Figureamples).

UNI-GRAM ENCODING: *C'x

BI-GRAM ENCODING: xC} x Cyx

BI-GRAM ENCODING EXAMPLE: BLOOD — *L*D*

Exact Spatial Information (ESl):

The integers (X, y, z) represent the precise number of cteambetween”; and C,. ESI
encodings are an extension of the NSI encodings with theusiwh of precise spatial
information. In other words, the number of characters kefafter and between the highest
confidenceC; and C, characters are part of the encoding. These encodings arentisé

successful in our experiments since there are fewer terisiools involved. Hence the ESI

July 20, 2006 DRAFT



11

encodings are preferred.
UNI-GRAM ENCODING: zC'y
BI-GRAM ENCODING: zCyCsz
BI-GRAM ENCODING EXAMPLE: BLOOD — 1L2D0

Approximate Spatial Information (ASI):
The integers(z,, y., z.), denoted as length codes, represent an estimated rangeamafctdrs
between”; andC,. A0’ indicates no characters, a '1’ indicates between om@ tavo characters,
and a '2’ represents greater than 2 characters. The ASI elgodre an approximation of ESI
encodings designed to handle cases when the precise numblearacters is not known with
high confidence.

UNI-GRAM ENCODING: z,Cy,

BI-GRAM ENCODING: z,C1y,C52,

BI-GRAM ENCODING EXAMPLE: BLOOD — 1L1DO0O

Combinatorial Analysis

The quantity of all possible NSI, ESI and ASI uni-gram andykam combinations, for a
given word of character length n, such that- 1, is represented by Equation 2. Regardless of
the encoding, the same quantity of combinations existedine distance between characters is

known.

C(n) = ((nz_l(n—i)> +n) - (((g) (n— 1)) +n> @)

=1
However, the functionC only considers the combinations of an individual entry. The

combination inflation of a uni/bi-gram phrase is shown by &mn 3. The equation parameters

a andb represent the string lengths of the words considered in asghr

P(a,b) = C(a) - C(b) ®3)

For example:
Let the phrase to evaluate uni/bi-gram combination$¥b& MONARY DISEASE
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Let n = length(“PULMONARY") = 9

Let m = length(“DISEASE”) = 7

C(n) = 45 uni-gram + bi-gram combinations for “PULMONARY”

C(m) = 28 uni-gram + bi-gram combinations for “DISEASE”

P(n,m) = 1,260 uni-gram + bi-gram phrase combinationsR&iLMONARY DISEASE

Each of these encodings has its advantages and disadvanidge choice is ultimately
based on the quality of the handwriting recognizer’s (LDWd&ility to extract characters.
If the handwriting recognizer cannot successfully extiaasitional information, then NSI is
the best approach. If extraction of positional informatisrreliable, then the ESI is the best
approach. However, NSI and ASI create more possibilitiesctnfusion since distances are
either approximated or omitted. ESI is more restrictive los possibilities as the precise spacing
is used leading to lesser confusion among terms.

Using the ESI protocol, all possible uni/bi-gram terms ametisetically extracted from each
cohesive phrase under each category. For example, BLOOLbeancoded to the uni-gram
0B4 (zero characters before 'B’ and four characters aftéy &d the bi-gram 0B3DO (zero
characters before 'B’, three characters between 'B’ anddBd zero characters following 'D’).
All possible synthetic positional encodings are generédedeach phrase and chained together
(a'$’ is used to denote a chained phrase). For example, CHEZ8N encodes to: 0C430P0A2
... 0C4$1A2 ... OCOH3%$0P1I1 ... OCOH33%0P2NO, etc. Theegfeach category now has a
list of encoded phrases consisting of positional encodedbiegrams. These terms are the
most primitive representative links to the category usedughout the training process. In the
training phase, the synthetic information can be extrastade the text is known. However, in
the testing phase, a recognizer will be used to automatipatiduce an ESI encoding since the
test text is not known. To improve readability, the notat{®¥,, 115) is used to represent an

ESI encoding of a two-word phrase (e.g. Myocardial Infarctiimy, in), (my, if), (my, ia), etc ...).

A matrix A, of size |T| by |C|, is constructed such that the rows of the matrix
represent the set of terms T, and the columns of the matriresept the set of category
C. The value at matrix coordinate (t,c) is the frequency thath term is associated with

the category. The term frequency corresponds to the phfesgliency from which it was
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1 Category = Collection of Related Documents
Categories &——»

Terms (Character Phrases)

\4

Fig. 5. Term Category Matrix (TCM) Overview

derived. It is the same value as the numerator in the cohdsronula (refer to Equation 1):
f(wq, wy). For example, if the frequency of CHEST PAIN is 50, then alinteencodings

generated from CHEST PAIN, such as (ch, pa), will also rexaifrequency of 50 in the matrix.

Step 1: Compute the normalized matrix B from A using Equation 4 [7]} [8

At,c

\ 2oe=1 Al

Matrix A is the input matrix containing raw frequencies, MatB is the output matrix

Bt,c - (4)

with normalized frequencies, and (t,c) is a (term, categooprdinate within a matrix.

Step 2: Term Discrimination Ability

The Term Frequency times Inverse Document Frequency (TH i®used to favor those
terms which occur frequently with a small number of categ®mis opposed to their existence
in all categories [31] [44]. While Luhn [31] asserts that med frequency terms would best
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& £ & Construct a Term-

%)
‘@@i@;@‘;@ R 7+ iy g

ST TP F FE g &

PG T IS IR
(b,no){ 0 |0 0 32/ 0/0 0 00
(bl,ns)| 6 |0 0 28 028 0 00
(bl,nt) [0 |00 2800 0 00l D@E@
(o) 0|4 0 /31 0/ 00 140
(blbmo){ 0 |0 0 33/ 0 5 0 00
b,muw| 0 0 0 330 0 0 41]0
(bl,mt)| 0 | 5 o@ 0 18 0 00
(bl,mh){ 0 |0 0 28/0 |0 0 00 o0
(bo,no)l 9 ' 0 0 28[0 12/ 0 0 0
(bo,ns){ 0 |0 0 32/0 38 0 00

v
(bl, mt) occurred 42 times across all PCR's under Head

Fig. 6. TCM Frequency Construction Example

resolve a document, it precludes classification of rare oadvords. Salton’s [44] theory,
stating that terms with the most discriminatory power arsoamted with fewer documents,

allows a rare-medium frequent word to resolve the document.

STEP 2A Compute the weighted matrix X from B using Equatioryb[8] [21]:

IDF(t) = zogQ% (5)

IDF gives the inverse-document-frequency on tdrmvhere c(t) is the number of categories
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containing termt.

Step 2B Weight the normalized matrix by IDF values using Hguma6 [7] [8] [23] [21]:

Xt,c — IDF(t) . Bt,c (6)

Matrix B is the normalized matrix from Step 1, IDF is the cortgiional step defined in Step

2, and Matrix X is a normalized and weighted matrix.

The normalized and weighted term-category matrix can nowsdrd as the knowledge
base for subsequent classification. A singular value deositipn variant, which incorporates a
dimensionality reduction step allows a large term-catggoatrix to represent the PCR training
set (see Equation 7). This facilitates a category query famnunknown PCR using the LDWR
[27] determined terms [7] [8] [12].

X=UeSeVT (7)

Matrix X is decomposed into 3 matrices: U is a (T x k) matrixnesgenting term vectors,

Sis a (k x k) matrix, and V is a (k x C) matrix representing théegary vectors.

The value k represents the number of dimensions to be finatgined. If k equals the
targeted number of categories to model, then SVD is perfdrmighout the reduction step.
Therefore, in order to reduce the dimensionality, the dionlit < |C'| is necessary to reduce

noise [12].

B. Testing

Given an unknown PCR form, the task is to determine the cayegb the form, and
use the reduced lexicon associated with the determinegaatéo drive the word recognizer,
LDWR [27]. In addition, the category determined can be useday the form which can be

subsequently used for information retrieval. The querk tasdivided into the following steps:
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@6\ é@é\ & Produce Matrix B by
&Y C\G.i\ o‘).{:-"“ Normalizing Matrix A
®$03'§ ‘5& O & & ¥ o &
P & LSS L
(bl,no)] O 0 0 10/ 0 0 0 0 0O
(bl,ns)[.15 0 0 /.70 0 .70/ 0 O O
(b,nt){0 0|0 10 0|0 0 0|0 o0
(bl,nr)| 0 .12/ 0 91 0|0 0 41|0
(bl,mo)l 0 ' O 0 510 .86 0|0 0 —l
(bl,mu)l 0 ' O 0 63 0 0 0 /.78 0 Term
(bl,mt)y| 0 .11 0 @ 0 .39.0 0 0 Vector
®,mm| o o0 010/0/ 0 0 0l 0 [ X ]
(bo,no)[.28 0 | 0 .88/ 0 .38 0|0 0
(bo,ns){ 0 | O 0 64/ 0 .76/ 0 0 O

\ 4
Matrix values are now normalized.
Term Vector's are now all of unit length.

Fig. 7. TCP Normalization

(i) Term Extraction, (ii) Pseudo-Category Generation, @idCandidate Category Selection [7]
[8].

Given a new PCR image, all image words are extracted fromdha,fand LDWR [27]
is used to produce a list of confidently recognized charadtar each word. These are used to
encode the positional uni/bi-grams consistent with thenfdrduring training. All combinations
of uni/bi-phrases in the PCR form are constructed. Each wwad exactly one uni-gram

and exactly one bi-gram. A phrase consists of exactly twonowk words. Therefore it is
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IS @6‘ o Produce Matrix X by

.&co«iﬁ}‘-"““” Vit B torms
S ST FE

(bl,no)] O O 0 950 0 0 0 0
(bl,ns)[.07 0 0 .34 0 34/ 0 0 O
(b,nt){0 0|0 95 0/ 0 0 0/0 o0
(bl,nr)| 0 .06/ 0 .44 0|0 0 .20|/0
(bl,mo)l 0 'O 0 .33/ 0 .56 0|0 0 _l
(bl,mu)0 O/ 0 41,0 0|0 51 0 Term
(bl, mt)| 0 .05 0 @ 0 .19 0 0 0 Vector
®,mh) 0 0o o 950 0 0 0o [ X ]
(bo, no)|.18 0 | 0 57| 0 25 0 | 0 | O
(bo,ns)| 0 |0 0 42/ 0 49 0|0 0O

A\
Matrix values are now adjusted to improve
discrimination ability.

Fig. 8. TCM Inverse Document Frequency (IDF)

represented by precisely four uni/bi-phrases (BI-Bl, BHUUNI-BI and UNI-UNI).

A (m x 1)query vector Q is derived, which is then populated with thentérequencies
for the generated sequences from the Term-Extraction Htepterm is not encountered in the
training set, then it is not considered. Positional bi-gsaane generated to yield the trained
terms 37% of the time, and similarly positional uni-gram®®%éf the time. The experiments

here illustrate this to be a sufficient number of terms. A edalector representation of Q is

July 20, 2006 DRAFT



18

_x?..r
S 3
o’;@}{\-a,‘;g’ '@’@ Caé
A" G P @
%é\é‘ S c®
§®@' §®b N @ o
N ¥ L N
Qé? @‘o \@@ \Z‘G‘D \;@0 Q?é’ Qa:h \90: Yﬁ‘@ 52
.no)J o 0 0 950 0o/0o|o/ofo:!
(bl,ns)[.07 0/ 0|34 0 .34 0 0 OFf2:
,n)|0 0 0|95 0/ 0 00|01
(bl,nr) [0 .06/ 0 |44 0 0 0 20 O} 1|
(bl,mo){ 0 | 0 0 .33 0 .56 0 0 OFf1:
(bl,mu) 0 0 0 41 0 0 0 .51/ 00!
(bl,mt){ 0 |05 0 44 0 19/ 0 0| Of 2:
w,mh) 0| 0o/0 9 0/ 0/0 0 ofo0:
(bo,no)|.18 0 | 0 57 0 .25 0|0 O 3!
(bo,ns){ 0 0 0 42 0 49 0 0 Of1:
[ @ Vector Qis now added to the
. . original normalized/weighted
matrix X

Fig. 9. Pseudo-Category Vector

then produced by multiplying)” and U.

Once the pseudo document is derived, R-SVD is applied forfaHewing reasons: (i)
It converts the query into a vector space compatible inpod, @) the dimensional reduction
can help reduce noise [12]. Since the relationship betweenst and categories is scaled by

variance, the reduction allows parametric removal of lggsifsicant term-category relationships.

The task is now to compare the pseudo-category vector Q &ith gector inl/,. e S, (from
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&
A"-’EP
&
&>
®
g
Q.-Qb
Q2
(bl,no) | O
(bl,ns) | 2
(bl, nt) | 1
The LDWR recognition

(bl.nr) | 1 | engine found the nm-gram
(bl, mo) | 1 | sequence (bo, no)three

times on a single PCR.
(bl, mu)

(bl, mt)
(bl, mh)
(bo, no)

(bo, ns)

Fig. 10. Pseudo-Category Integration

U (T xk) S kxk) VT kxich

Fig. 11. Matrix Decomposition Visual
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the training phase) using a scoring mechanism. The cosleeswsed for matching the query
[7] [8]. Both x andy are dimensional vectors used to compute the cosine in ExjuatiVectors
x andy in the equations represent the comparison of the vectoestdasdocument Q with every

column vector inV, e S,.

x-yl
z = cos(x,y) = Y (8)

\/Z?:l xf ) ?:1 3122

Each cosine score is mapped onto a sigmoid function usintetst square fitting method,

thereby producing a more accurate confidence score [7] [8. [€ast squares regression line

used to satisfy the equation f(x) = ax + b are shown in Equat®m@and 10 [30]:

n Z?:l T;Y; — E?:l Ly E?:l Yi
n E?:l %2 - (E?:l 7;)?

(9)

a =

n

b= (Y —ay ) (10)
i=1

i=1
The fitted sigmoid confidence is produced using the cosineesaad the regression line, using

equation (9):

1

1+ e—(az+b) (11)

confidence(a,b, z) =

The confidence scores are then used to rank the categoriescdtegory is above an
empirically chosen threshold, then that category is rethiior the PCR. Multiple categories may
be thus retained. All words corresponding to the selectéelgoaies are then used to construct
a new lexicon which is finally submitted to the LDWR recogmif27]. Given a test PCR
form, and the reduced lexicon, the LDWR [27] converts thedwaitten medical words to ASCII.

Each word which is recognized is compared with the truth. Elmv, a simple string
comparison is insufficient due to spelling mistakes and n@otations of word forms which
are semantically identical. This occurs 20% of the time initthe test deck words. Therefore,
Porter stemming [42] [24] [43] and Levenshtein String EdistAnce [2] of 1 allowable penalty

are performed on both the truth and the recognizer resuttrée¢hey are compared. Levenshtein

July 20, 2006 DRAFT



21

FIGHT vs EIGHT vs LIGHT FINE vs FIRE

MEDICAL vs MEDICATION FOOD vs FOOT

1400 vs 2400 LEFT vs LIFT

BAIL vs RAIL MOANING vs MORNING
BALL vs CALL MARK vs MARY

MOLE vs MOVE PUNCH vs LUNCH
CALF vs CALL REACH vs REACT
CARD vs CARE vs CART SCARE vs CARE
COLD vs TOLD SEVER vs FEVER
NECK vs DECK STABLE vs TABLE
FALL vs CALL FEET vs FEED

FOUND vs BOUND vs SOUND vs POUND

TABLE V
WORD COLLISIONS

CL CLT AL ALT SL SLT RL RLT
ACC | 76.34%| 76.92%| 63.52%| 66.59%| 70.51%| 71.51%| 70.70%| 71.06%
ERR | 71.93%| 69.65%| 57.24%| 47.12%| 62.26%| 59.44%| 62.04%| 59.45%
RAW | 23.31%| 25.32%| 32.31%| 41.73%| 30.30%| 32.73%| 30.62%| 32.63%
TLS | 5,628 |8,156 | 1,193 |1,246 | 2,514 |2,620 | 2,401 | 2,463

IL - - 23.89%| 8.02% | 16.06%| 10.46%| 16.61%| 12.23%
IHL | - - 33.33%| 97.98%| 48.19%| 73.99%| 46.59%| 62.96%
TABLE VI

HANDWRITING RECOGNITIONPERFORMANCE

is only applied to a word that is believed to be4 characters in length. For example, PAIN
and PAINS are identical. However, this also results in anroppr comparison in about 11%

of the corrections (see Table V).

IV. EXPERIMENTS

Our training data consists of 750 PCR forms and the test dataists of a separate blind
set of 62 PCR forms. In all experiments it is assumed that thie wegmentation and extraction

has been performed by a person. Also, forms in which 50% otément is indecipherable by
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CLTtoRLT |CL toRL | CLT to ALT | CLT to SLT
RAW Match Rate| | 7.48% T7.42% | 117.58% |1 7.42%
Error Rate 1 10.78% | | 10.88% | | 24.53% | | 10.21%
TABLE VI

COMPARISON BETWEENHANDWRITING RECOGNITIONEXPERIMENTS

LEXICON ANALYSISMETRIC | VALUE

Accuracy of Reductiond) 0.33

Degree of Reductionpf 0.83

Reduction Efficacy«) 0.06

Lexicon Density ) 1.07 — 0.87

Lexicon Density (") 0.50— 0.78
TABLE VIII

LEXICON REDUCTION PERFORMANCE BETWEEN THECOMPLETELEXICON (CL) AND THE REDUCEDLEXICON (RL)

July 20, 2006

ENVIRONMENT ITEM VALUE
Training Deck PCR Size 750
Testing Deck PCR Size 62
Training Deck Lexicon Size 5,628
Testing Deck Lexicon Size 2,528
Training + Testing Deck Lexicon Size 8,156
Training Deck Words for Modeling 42,226
Testing Deck Words to Recognize 3,089
Modeled Categories / RSVD Dimensions 24
Category Selection Threshold 0.55
Maximum Categories per Form 5
Average Categories per form 1.40
Max Phrases Per Category 50
Apple OS X Memory Usage 520 MB
Apple OS X G4 1GHZ Train Time 15-20 mins/exp
Apple OS X G4 1GHZ Test Time 3 hrs/exp
TABLE IX

HANDWRITING RECOGNITIONSYSTEM ENVIRONMENT
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a human being are omitted. This occurs 15% of the time.

CL (complete training lexicon)The union of all words in the training set.
CLT (complete training lexicon + test deck lexicofihe union of all the words in the training

and test sets.

AL (assumed training lexicon)rhis is a reduced lexicon constructed from the training deck
where the categories are determined by an Oracle.

ALT (assumed training lexicon + test deck lexicoBame as AL except that all words from
the test set are also inserted into the training deck cagdgricon. This gives the upper bound

for the effectiveness of the reduced lexicon strategy.

RL (reduced lexicon)The reduced lexicon from the training deck, which is the areé words
from the top ranked categories returned by the word recegnizis is a practical measure of
the current performance of the system.

RLT (reduced lexicon + test deck lexicor§ame as RL except that all words from the test
set are inserted into the training deck category lexicons Bhows the effectiveness of word

recognition under the assumption that the category lesi@e complete.

SL (synthetic term generation)This is the reduced lexicon in which the categories are
determined by a synthetic generation of the truth word. Thithe theoretical upper bound of
RL in which the handwriting recognition is a 100% accept natth a 0% error rate.

SLT (synthetic term generation + test deck lexicddame as SL except that all words from the
test set are inserted into the training deck category lexiddis is the theoretical upper bound
of RLT.

ACC (accept recognition rate)number of words the word recognizer accepts above an
empirically decided threshold.

ERR (error recognition rate)number of words incorrectly recognized among the acceptedsv
RAW (raw recognition rate)top choice word recognition rate without use of thresholds.

IL (truther word not present in the lexiconpercentage of words (for a specific experiment) not
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in the lexicon as a result of incorrectly chosen categorredue to the absence of that word in
the training deck.

IHL (human being could not completely decipher wong@rcentage of the 'L set in which even
human beings could not reliably decipher all or some of tharatters in the word (given the
context).

In reference to Table VII which is computed from the mostvatd changes in Table VI
. The theoretical RLT (i.e. comparing RLT to CLT) improveetRAW match rate by 7.48%
and drops the error rate 10.78% withdagree of reductiorp = 61.59%. The practical RL
(i.e. comparing RL to CL) improves the RAW match rate by 7.43f@ drops the error rate
by 10.88%. The RLT and RL numbers are close due to the differen the initial lexicon
sizes: CLT/RLT starts with 6,561 words (i.e. training declddesting deck lexicons) whereas
the CL/RL starts with 5,029 words (i.e. training deck lexiconly). The RLT lexicon is more
complete, but the lexicon is larger. The RL lexicon is lessptete, but the lexicon is smaller.
Thus, RLT gives the advantage that the recognizer has aegrehance of the word being a
possible selection and RL gives the advantage of the lexiedmg smaller. The ALT shows the
theoretical upper bound for the paradigm: (i) the categaosie correctly determined 100%, and
(ii) the lexicon is complete. The ALT (i.e. comparing ALT ta.© improves the RAW match
rate by 17.58% and drops the error rate 24.53% witlthegree of reductiom = 83.01%. The
synthetic experiments (SL and SLT) also do not offer muchrow@ment which shows perfect
character extraction does not guarantee recognition iwgonent. This is due to two reasons: (i)
a form is a representation of many characters and so somgecty recognized characters are
tolerated, and (ii) the remaining words on the form to be gaixed are difficult to determine
even when the lexicon is constructed with only the words advkm uni/bi-gram terms.

Table VIII provides insight into the effectiveness of thgit®n reduction from the complete
lexicon (CL) to the reduced lexicon (RL) experiments. Thefgrenance measures for lexicon
reduction as described by Madhvanath [32] and Govindagedjal. [19] are used with alteration
to the definition of reduction efficacy. Thccuracy of Reduction = E(.A), such thaty € [0, 1]
[32], and A is a random variable [3], indicates the existence of thehtratthe lexicon. The
functionE computes the expectation [3]. TBegree of Reductiop = E(R), such thap € [0, 1]
[32], represents the mean size of the reduced lexicon REtkiction Efficacy = Ay pwrxal™?,

such thatA;pwr, n,a,p € [0,1], is a measure of the effectiveness of a lexicon with respect
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to a lexicon driven recognizer. This formula is defined ddfgly in this research to weigh the
importance of accuracy over the reduction and include tdeattons effect on the recognizer.
The larger the efficacy value is, the better is the effectgsrof the reduction for one recognizer

versus another. The larger thexicon Densityo.pwr(L) = (vipowr(L))(frowr(n) +0Lpwr)

_ n(n—1)
T iz depwr(wiw;)

value (such that,pwr(L) and d;pwr(w;,w;) is a recognizer dependent
computation used to denote a distance metric between twplisdpwords) the moresimilar

or closethe lexicon words are [19]. A supplemental distance meadar®ted by théN-Gram
Lexicon Distance Metriel,pw r(w;, w;) = v(wi,w;)/I'(w;,w;), introduced in this research and
substituted into the lexicon density equatipn provides a measure of uni/bi-grams existing
within the lexicon. The value represents the number of uni/bi-gram terms thatretecommon
betweenv, andw;. I denotes the total number of uni/bi-gram term combinaticts/ben.; and
w;. In order to distinguish between thexicon density distance metrand then-gram lexicon
distance metricequations, the valueg and ¢” will be respectively used. Thiexicon density
distance metricy’ shows less confusion among lexicon words considering alkctraracters are
equally important. This implies that the reduced lexicofi ag less confusing to the recognizer.
The n-gram lexicon distance metrishows an increase in the quantity of words with common
NSI encodings. This implies the recognizer has a greatemaghaf selecting a word using the

confidently selected characters.

V. SEARCH METHOD

In this section, various search engine approaches are c¢ethpdhe inputs to the search
engine are a set of PCR medical forms and a query. The outplog iset of forms which match
the input query.

Search engines are mostly based on the assumption thatxhes telready in a digital
text format. The technologies have focused on parsing aganazing the content in a variety
of formats (e.g. PDF, PS, HTML, XML, and other proprietarycdment formats). There is no
widely used search engine technology which can directlycbkeand analyze the content of digital
handwritten documents. This query ability is important ieaith Surveillance applications to
access medical forms by simply offering a query.

In order to have a query deck of sufficient size, we use theeldagut strategy which is

explained as follows. Suppose a total of 10 PCR’s are auaildake the first PCR as the test
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deck and the remaining 9 PCR’s as the training deck, and mperfloe recognition and tagging

on that single PCR. Next, repeat the process, except thatmewest deck consists only of the
2nd PCR while the training consists of the first PCR and theareimg 8 PCR’s. The recognition

and tagging on the 2nd PCR is now performed. This exhaustiveepsing of recognition and

tagging repeats 10 times, thereby providing a training demoit an unbiased test deck of the
same size. Applying this process to 800 PCR forms, the nasidhe same, except the split is
Leave-100; i.e. 8 experiments are performed using grouf9@f Finally, a set of 1,250 phrases,
constructed from adjacent non-stopwords, are extractau & blind deck of 200 PCR forms

(i.e. these 200 forms are not a subset of the 800 deck) sutledlh phrase is found in at least
one form in the 800 deck.

A query is performed by scanning the forms in the 800 test deckecognized words that
match an input query phrase. Two query experiments are npeetb and displayed in Figure
14: CL and RL. In the CL (complete lexicon) experiment, thes iaBDWR recognized words
computed from the full lexicon are compared against the yguerthe RL (reduced lexicon)
experiment, the raw LDWR words computed from the reducetdexare compared against the
qguery. A set of ranking rules are applied, relevance detezthiand the recall-precision table
generated (see Table VI and Figure 14). A relevant PCR is ardent in which a human truther
classifies at least one occurrence of each word from the ipipatse.

Ranking rules given an input phrase of exactly two words aréoHows:
e Both words must match the recognized words or that PCR isetatrred.
e A double precision rank is computed by summing the valueh@se two steps:
o Summing the frequencies of the occurring phrase words irddaaiment.
o Summing the distance between all recognized word occwegeircthe document using
Equation 12. Letl(a;, b;) be a function which computes the distance between the irtpasp of

two words,a; andb; such that andj respectively represent the word position in the document.

d(a;, b;) = L (12)

|a; — b

Unlike typical text retrieval systems, the words on a PCR rbayincorrectly recognized
by the handwritten recognition engine. In addition, gehsearch engines need to be concerned

about external influences such as spamming, which is not @econin this application.
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Therefore, a more trivial ranking measure such as of nesfmeximity in Equation 12 is
sufficient.

The comparison of the complete and reduced lexicon queaesbe found in Figure
14. The plot illustrates only those queries which returnedeast one record. While the CL
retrieval appears to be effective, queries in that seriagmed 0 forms 73% of the time, and
returned only 1 record on average. The RL returned O forms 28%he time and returned
7.5 documents on average. That is, 50% more of the queriesrajed at least one response.
Therefore, the lexicon reduction strategy offers considker improvement over the complete
lexicon strategy. This also illustrates that a small imgraent in handwriting recognition rates
can offer a huge improvement in search performance.

An alternative search engine approach involving the expanef the query terms into
their respective ESI combinations can be applied direablythte initial LDWR character
recognition results. This would effectively bypass the en@laborate search engine except
that this alternative approach significantly under-penf@r While results are returned 99.8%
of the time, with 125 records returned on average, the pogcisf the results is very low. As
intuitively expected, the uni/bi-grams match more terms ttuthe loss of word information. The
recall/precision chart in Figure 15 illustrates a drop itriezal effectiveness. This demonstrates
the dependence of the searches to operation at the word tatler than at the character level.
The lexicon reduction strategy which improves the handmgitrecognition performance also

improves the search effectiveness as expected.

For example, consider input query phraSHEST PAIN

CHESTIis decomposed into: CH, CE, CS, CT, HE, HS, HT, ES, ET, C, H, Brd T.
PAIN is decomposed into: PA, PI, PN, Al, AN, IN, P, A, I, and N.

In addition, the spatial information is known since the inguery is provided by a user.

The ESI encodings fo€HEST is decomposed into: 0COH3, 0C1E2, 0C2S1, 0C3T0, 1HE2,
1H1S1, 1H2TO0, 2E0S1, 2E1T0, 0C4, 1H3, 2E2, 3S1, and 4TO.

The ESI encoding foPAIN is decomposed into: 0POA2, OP111, OP2NO, 1A0I1, 1A1NO, ZION
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Fig. 14. Recall/Precision Chart for Medical Form Searchiksg

0P3, 1A2, 211, and 3NO.

Finally, all possible ESI sequences are generated: OCOPB&D, OCOH3$0P1I1,
OCOH3$0P2N0, 0COH3$1A0I1, etc...

If any of these ESI sequences match any of the characterabmatcodings from the
LDWR recognition, then that form is returned. Relevancy e&etdmined if the input query

words CHEST and PAIN are actually found on that form according to the truth.

VI. CONCLUSIONS

This paper defines a new paradigm for lexicon reduction arfidrrimation retrieval in
the complex situation of handwriting recognition of medit@ms. An improvement in raw

recognition rate from about 25% of the words on a PCR form fmra@apamately about 33% has
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Query Expansion Performance
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Fig. 15. Recall/Precision Chart using Query Expansion

been shown with a reduction in false accepts by about 7%, acted in error rate by about
10%-25%, and a lexicon reduction from 32%-85%. The additbra category driven query
facilitates almost 86% relevant searches at the first recaition in a search engine experiment
with medical forms.

Interestingly, certain computational elements of boatgting, described in our work, are
consistent with the human interpretation of ambiguous taitihg using contextual cues. Our
methodology accomplishes this by modeling character tersna higher level semantic concept
which mimics the human ability to recognize a word within t®#, when some characters are

unknown.
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