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Abstract Many musical works produced in the past are still 

currently available only as original manuscripts or as photo- 

copies. The preservation of these works requires their digita- 

lization and transformation into a machine-readable format. 

However, and despite the many research activities on opti- 

cal music recognition (OMR), the results for handwritten 

musical scores are far from ideal. Each of the proposed meth- 

ods lays the emphasis on different properties and therefore 

makes it difficult to evaluate the efficiency of a proposed 

method. We present in this article a comparative study of sev- 

eral recognition algorithms of music symbols. After a review 

of the most common procedures used in this context, their 

respective performances are compared using both real and 

synthetic scores. The database of scores was augmented with 

replicas of the existing patterns, transformed according to an 

elastic deformation technique. Such transformations aim to 

introduce invariances in the prediction with respect to the 

known variability in the symbols, particularly relevant on 

handwritten works. The following study and the adopted dat- 

abases can constitute a reference scheme for any researcher 
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1 Introduction 

 
Music, from Greek µøυσ ικη (τ ‹χ νη)–musike (t echne), 

which means the art of the muses, can be defined as an 

organized sequence of sounds and silences so as to produce 

aesthetic pleasure in the listener. There are evidences, by pic- 

tographs, that music is known and practiced since prehistory. 

Over the years, music has expanded in many several music 

styles and for many different purposes, like educational or 

therapy. The centrality of music in the cultural heritage of any 

society and the importance of cultural diversity, as necessary 

for humankind as biodiversity is for nature, makes policies 

to promote and protect cultural diversity an integral part of 

sustainable development.1 

Portugal, like many other countries, has a notorious lack in 

   music publishing from virtually all eras of its musical history. 
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In spite of most of the original manuscripts of music known 

before the twentieth century being kept in the national library 

in Lisbon, there is not any repository of musical information 

from the last century. Although there are recent efforts to cat- 

alogue and to preserve in digital form the Portuguese music 

from the twentieth century—notably the Music Information 

Center2 and the section on musical heritage from the Institute 

 
1 http://www.unesco.org/bpi/eng/unescopress/2001/01-112e.shtml. 

2 http://www.mic.pt. 
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Fig. 1 Typical architecture of an OMR processing system 

 

 

of the Arts website3—most of the music predating computer 

notation software was never published and still exists in the 

form of manuscripts or photocopies spread out all over the 

country in discreet places. The risk of irreversibly losing this 

rich cultural heritage is a reality that must be taken seriously 

and dealt with accordingly. 

Table 1 Music notation 

Digitization has been commonly used as a possible tool    

for preservation, offering easy duplications, distribution and 

digital processing. However, transforming the paper-based 

music scores and manuscripts into a machine-readable sym- 

bolic format (allowing operations such as search, retrieval 

and analysis) requires an optical music recognition (OMR) 

system. Unfortunately, the actual state of the art of handwrit-  
ten music recognition is far from providing a satisfactory 

solution. 

After the image preprocessing (application of several tech- 
 

niques, e.g. binarization, noise removal, blurring, deskewing, 

amongst others, to make the recognition process more robust 

and efficient), an OMR system can be broadly divided into 
 

three principal modules (see Fig. 1): 

 
1. Recognition of musical symbols from a music sheet;  

2. reconstruction of the musical information to build a log- 

ical description of musical notation; 

3. construction of a musical notation model for its repre- 

sentation as a symbolic description of the musical sheet. 

 
The first module is typically further divided into three 

stages: staff lines detection and removal to obtain an image  

containing only the musical symbols (staff lines spacing and 

thickness also provide the basic scale for relative size com- 

parisons); symbols primitives segmentation and recognition. 

For reference, Table 1 introduces the set of symbols with rel- 

evance in this work. The second and third modules (musical 

notation reconstruction and final representation construction) 

are intrinsically intertwined. In the module of musical nota- 

tion reconstruction, the symbols primitives are merged to 

form musical symbols. Usually, in this step, graphical and 

syntactic rules are used to introduce context information to 

validate and solve ambiguities from the previous module of 

music symbol recognition. Detected symbols are interpreted 

and assigned a musical meaning. In the third module of final 

 
 

3 http://patrimonio.dgartes.pt. 
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representation construction, a format of musical description 

is created with the information previously produced. 

In this paper, we focus on the step of music symbol rec- 

ognition. More specifically, we will motivate the adoption of 

specific algorithms for staff line detection and removal and 

symbol detection, and we will present a comparative study of 

methods for the music symbol classification. We also inves- 

tigate the interest of elastic deformation to extend the set of 

symbols used to design the classifiers, in an attempt to favour 

robustness to typical distortions in musical symbols. 

 

 
2 Related works 

 
The investigation in the OMR field began with Pruslin and 

Prerau [5]. However, it was only in the 1980s decade, when 

the equipment of digitalization became accessible that work 

in this area has expanded [2,5,10,28]. Over the years, sev- 

eral OMR software packages have appeared in the market, 

but none with a satisfactory performance in terms of pre- 

cision and robustness. The complexity of the OMR task 

caused by the bidimensional structure of the musical nota- 

tion, by the presence of the staff lines and by the exis- 

tence of several combined symbols organized around the note 

heads have been hampering the progress in this area. Until 

now, even the most advanced recognition systems (Notescan 

in Nightingale, Midiscan in Finale, Photoscore in Sibelius, 

Smartscore, Sharpeye, etc.) cannot identify all musical nota- 

tions. Besides that, classic OMR is more focused in regu- 

lar, printed music sheets; so, a good performance is usually 

obtained only when processing this type of scores. 

 
2.1 State of the art on staff line detection and removal 

 
The problem of staff line detection is often considered simul- 

taneously with the goal of its removal, although exceptions 

exist [5,27,30,34]. The importance of these operations lies 

on the need to isolate the musical symbols for a more effi- 

cient and correct detection of each symbol present on the 

score. When working with printed scores, the staff line detec- 

tion and removal is completed with high performance; hand- 

written scores, on the other hand, still represent a challenge. 

These scores tend to be rather irregular and determined by 

the authors’ own writing style. The handwritten staff lines 

are rarely straight or horizontal, rarely parallel to each other. 

Moreover, most of these works are old, and therefore there 

is a sharp decay in the quality of the paper and ink. Another 

interesting setting for the comparative study detailed latter is 

the common modern case where the music notation is hand- 

written on paper with preprinted staff lines. 

The simplest approach for staff line detection consists 

on finding local maxima in the horizontal projection of   

the black pixels of the image [4,5,16,26,31,35]. Assuming 

straight and horizontal lines, these local maxima represent 

line positions. Several horizontal projections can be made 

with different image rotation angles, keeping the image    

in which the local maxima is largest. This eliminates the 

assumption that the lines are always horizontal. In [9], we 

have critically overviewed the state of the art in staff line 

detection and proposed a new staff line detection algorithm, 

where the staff line is the result of a global optimization prob- 

lem. The performance was experimentally supported on two 

test sets adopted for the qualitative evaluation of the proposed 

method: the test set of 32 synthetic scores from [13], where 

several known deformations were applied, and a set of 50 real 

handwritten scores, with ground truth obtained manually. 

 
2.2 State of the art on symbols primitives segmentation and 

recognition 

 
The process of segmenting the objects from the music score, 

and the related operation of symbol classification, has long 

deserved attention from the research community [5,33,35]. 

Major problems result from the difficulty in obtaining indi- 

vidual meaningful objects. This is typically due to the print- 

ing and digitalization, as well as the paper degradation over 

time. In addition, distortions caused by staff lines, broken 

and overlapping symbols, differences in sizes and shapes or 

zones of high density of symbols, contribute to the complex- 

ity of the operation. It is also a fact that few research works 

have been done around handwritten scores [15]. 

The most usual approach for symbol segmentation con- 

sists in extracting elementary graphic symbols, note heads, 

rests, dots, etc., that can be composed to build musical nota- 

tion. Usually, the primitives segmentation step is made along 

with the classification task [5,33,35]; however, exceptions 

exist [4,16]. Mahoney [5] builds a set of candidates to one 

or more symbols types and then uses descriptors to select 

the matching candidates. Carter [5] uses a line adjacency 

graph (LAG) to extract symbols. The objects resulting from 

this operation are classified according to the bounding box 

size, the number and organization of their constituent sec- 

tions. Other authors [4,16] have chosen to apply projections 

to detect symbols primitives. The recognition is done using 

features extracted from the projection profiles. In [16], the 

k-nearest neighbour rule is used in the classification phase, 

while neural networks is the classifier selected in [4]. 

Randriamahefa [31] proposed a structural method based 

on the construction of graphs for each symbol. These are iso- 

lated by using a region-growing method and thinning. Tem- 

plate matching is adopted in [5,26,33,35]. In [33], a fuzzy 

model supported on a robust symbol detection and template 

matching was developed. This method is set to deal with 

uncertainty, flexibility and fuzziness at symbol level. The 

segmentation process is addressed in two steps: individual 

analysis of musical symbols and fuzzy model. In the first 
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step, the vertical segments are detected by a region-growing 

method and template matching. Then, beams are detected 

by a region-growing algorithm and a modified Hough trans- 

form. The remaining symbols are extracted again by tem- 

plate matching. From this first step results three recognition 

hypotheses: the fuzzy model is then used to make a consistent 

decision. The proposed process incorporates graphical and 

syntactic rules. Besides, it enables the application of learn- 

ing procedures when potential errors occur, in an effort to 

gain robustness. 

Other techniques for extracting and classifying musical 

symbols include rule-based systems to represent the musical 

information, a collection of processing modules that commu- 

nicate by a common working memory [5] and pixel track- 

ing with template matching [35]. Toyama [35] checks for 

coherence in the primitive symbols detected by estimating 

overlapping positions. This evaluation is done with music 

writing rules. Coüasnon [10,11] proposed a recognition 

process entirely controlled by grammar which formalizes 

the musical knowledge. In [32], the segmentation process 

involves three stages: line and curves detection by LAGs, 

accidentals, rests and clefs detection by a character pro-  

file method and note heads recognition by template match- 

ing. The contextual recognition is done by graph grammars. 

In [30], the segmentation task is based in hidden Markov 

models. 

Despite the wide variety of suggested recognition tech- 

niques, a comparative evaluation of their merit has not yet 

been attempted. This work tries to address this void by 

presenting a quantitative comparison of different methods 

for the classification phase. The experimental work is con- 

ducted over a large data set of scores, consisting both of 

real handwritten music scores and synthetic scores to which 

known deformations can be applied. In Sect. 3, the algorithms 

selected for staff line detection, removal and symbol detec- 

tion are presented and motivated. The algorithms for symbol 

classification under comparison are presented in Sect. 4. The 

data set adopted in the experiments is detailed in Sect. 5. In 

Sect. 6, we present the experimental results obtained with 

the algorithms under evaluation in this comparative study. 

Finally, conclusions are drawn and future work is outlined in 

Sect. 7. 

 

 
3 Preliminary operations 

 
The stage of recognition of musical primitives is often pre- 

ceded with the elimination of the staff lines and the segmen- 

tation of the musical primitives. The reasons for doing that 

lie on the need to isolate the musical symbols for a more 

efficient and correct detection of each symbol present on the 

score. As these operations are not the focus of our study, 

we start by describing the algorithms that were selected for 

 

  
(a) (b) 

Fig. 2 An illustrative example of the staff line removal a music score 

with staff lines, b music score without staff lines 

 

 

these operations. Most of the algorithms described in the 

following subsections require an estimate of the staff space 

height, staffspaceheight and staff line height, stafflineheight. 

Robust estimators are already in common use and were there- 

fore adopted: the technique starts by computing the verti- 

cal run-lengths representation of the image. If a bit-mapped 

page of music is converted to vertical run-length coding, 

the most common black-run represents the staff line height 

and the most common white-run represents the staff space 

height [16]. 

 
3.1 Staff line detection 

 
In [8,9], we presented a new and robust staff line detection 

algorithm based on a stable path approach. In a brief expla- 

nation, the proposed paradigm uses the image as a graph and 

considers a staff line as a connected path from the left margin 

to the right margin of the music score. As staff lines are almost 

the only extensive black objects on the music score, the path 

to look for is the shortest path between the two margins if 

paths (almost) entirely through black pixels are favoured. 

When compared with state-of-the-art solutions, the pro- 

posed algorithm performed significantly better on the con- 

ducted experiments. The performance of our approach was 

almost independent of the intensity of the deformations pres- 

ent on the scores. Moreover, differently from many other 

algorithms, it does not require as input the number of lines 

per staff. 

 
3.2 Staff line removal 

 
Although the presence of staff lines is helpful for providing 

a vertical coordinate system for musical primitives, it is also 

an obstacle. Staff lines usually connect several independent 

symbols, can fill empty symbol regions and completely cover 

other symbol features. For that reason, almost all OMR sys- 

tems eliminate staff lines before the recognition phase, as 

illustrated in Fig. 2. 

The adopted staff line removal algorithm is a modified ver- 

sion of the line track height algorithm presented on [31]. In 

[9], we conducted a series of experiments, comparing exist- 

ing versions of staff line removal algorithms with modified 

versions of them, making use of the stable path algorithm at 
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Fig. 3 Variability between different publishings in printed a and hand- 

written, b scores. For instance, for the same clef symbol, we have differ- 

ent thickness and for the same beam symbol, we have different shapes. 

Also, for the same editor, we can have different authors with different 

typewriting producing, therefore, an nonuniformity on writing 

 

the staff line detection step. The algorithms like line track 

height, line track chord and Roach/Tatem from [13] were 

adapted for the tests. The original version of the algorithms 

were considered as available in [12], making use of the Dalitz 

algorithm in the detection phase; the modified versions use 

instead the stable path algorithm for detecting lines. It was 

experimentally confirmed that the line track height algorithm 

with the stable path consistently outperformed the other algo- 

rithms. Subsequently, we have improved on the line track 

height algorithms [7], by focusing special attention on defor- 

mations—staff lines may have discontinuities, be curved or 

inclined—that may occur in the music scores. The position 

of the staff lines obtained by a staff line detection algorithm 

may pass slightly above or under the real staff lines posi- 

tions. Therefore, if we are in the presence of a white pixel 

when the staff lines are tracked, we search vertically for the 

closest black pixel. If that distance is lower than a specified 

tolerance, we move the reference position of the staff line to 

the position of the black pixel found. 

 
3.3 Symbol segmentation 

 
The next module in the processing pipeline is the segmenta- 

tion of musical symbols, which we based on already existent 

algorithms [4,16]. The variability of the symbols (in size 

and shape), found both on handwritten music scores—see 

Fig. 3b—and in printed scores, when we have scores from 

different editors—see Fig. 3a—is one of the sources for the 

complexity of the operation. 

This segmentation process consists in localizing and iso- 

lating the symbols in order to identify them. In this work, the 

symbols we want to recognize can be split into four different 

types: 

 
1. The symbols that are featured by a vertical segment with 

height greater than a threshold: notes (e.g. ), notes with 

flags (e.g.  ) and open notes (e.g. ). 

2. The symbols that link the notes: beams (e.g. ). 

3. the remaining symbols connected to staff lines: clefs, 

rests (e.g. ), accidentals (e.g. b, α, q) and time signature 

(e.g. ). 

4. The symbols above and under staff lines: notes, relations 

(e.g. ^) and accents (e.g. > ). 

 
The segmentation of these types of symbols was based 

on a hierarchical decomposition of a music image. A music 

sheet is first analysed and split by staffs, as yielded by the 

staff lines removal step. Subsequently, the series connected 

components were identified. To extract only the symbols 

with appropriate size, a series selection of the connected 

components detected in the previous step was carried out. 

The thresholds used for the height and width of the symbols 

were experimentally chosen. These values take into account 

the features of the music symbols. As a bounding box of a 

connected component can contain multiple connected com- 

ponents, care was taken in order to avoid duplicate detec- 

tions or miss to detect any connected component. In the 

end, we are ready to find and series extract all the music 

symbols. 

 
3.3.1 Beam detection 

 
Beams are one of the symbols with harder detection process. 

Its shape and size are very variable, and they can connect to 

each other and to other symbols in multiple different arrange- 

ments. They are also prone to present inconsistencies in the 

thickness and in the link with stems—see Fig. 2a. Thus, we 

propose a solution that just checks the presence of a seg- 

ment of adequate height, which connects the extremities of 

notes. 

 
3.3.2 Notes, notes with flags and notes open detection 

 
In this work, we address the segmentation of the stems and 

note heads as a single primitive symbol. We defined the 

geometric features of the notes we want to extract as the 

objects with a height bigger than a threshold, experimen- 

tally selected as 2 x staffspaceheight, and a width limited by 

two values, also experimentally chosen as staffspaceheight/ 

2 and 3 staffspaceheight. To make this task easier the 

detected beams were removed before the application of this 

algorithm. 

 
3.3.3 Accidentals, rests, accents and time signature 

detection 

 
Generally, these symbols have similar values for width and 

height. The procedure used to extract them was based on the 

combination of X–Y projection profiles technique [16]. On 

the one hand, we have symbols that have vertical sequence of 

black pixels, for instance, sharps, naturals and rests. On the 

other hand, we need to take into account the symbols topo- 

logical position, because in this case, we are trying to detect 

accents and time signature. 
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3.3.4 Clefs and relations detection 

 
These symbols have their own attributes, like a large width 

for the relations and a big height for the clefs. In neither of 

them, we have the presence of stems. With these properties 

in mind, the projection profiles procedure was used with spe- 

cific heuristics. For clefs, a width between staffspaceheight 

and 4 staffspaceheight and a height between 2 staff- 

spaceheight and 2  numberstaffspace staffspaceheight 

numberstaffline stafflineheight yielded the best experi- 

mental results.4 These values take into account the fact that 

clef symbols are the largest of all the signs, beginning below 

the staff and extending above it. On the other hand, for the 

relations symbols (ties and slurs), the rules for extracting 

them were based in a large width. 

 

 
4 Recognition process 

 
The different approaches to musical symbol classification 

compared in this work can be categorized as follows: 

 
• Hidden Markov models. 

• K-nearest neighbour. 

• Neural networks. 

• Support vector machines. 

For the neural network, k-nearest neighbour and support vec- 

tor machines methods, each image of a symbol was initially 

resized to 20 20 pixels and then converted to a vector of 400 

binary values; under the hidden Markov model, the images 

were normalized with a height and width of 150 and 30 pix- 

els, respectively. These approaches follow standard practices 

in the state-of-the-art algorithms in the OMR field [30]. 

We randomly split the available data set into training and 

test sets, with 60% and 40% of the data, respectively. No 

special constraint was imposed on the distribution of the cat- 

egories of symbols over the two sets; we only guaranteed that 

at least one example of each category was present in the train- 

ing set. The best parameterization of each model was found 

based on a fourfold cross-validation scheme conducted on 

the training set. Finally, the error of the model was estimated 

on the test set. To take into account the variability in writing 

style, we considered the use of elastic deformation techniques 

to simulate distortions that can happen in real scores. The data 

were expanded with variations of the original examples, in 

order to introduce robustness in the model design. The elas- 

tic deformation technique was applied in the training data 

only. 

 
4 The numberstaffline is the number of lines per staff, as yielded by the 

staff line detection algorithm; the numberstaffspace = numberstaffline 

-1 is the number of spaces between the staff lines. 

4.1 Hidden Markov models 

 
Hidden Markov models (HMMs) have almost never been 

used in OMR except in some isolated experiences [23,25,30]. 

The application of this technique to musical symbol clas- 

sification had its origins on optical character recognition. 

One of the reasons for the use of HMMs lies in its capa- 

bility to perform segmentation and recognition at the same 

time. 

A HMM is a doubly stochastic process that generates 

sequence symbols, with an underlying stochastic process 

that is hidden and can only be detected through another pro- 

cess whose realizations are observable [6]. The hidden pro- 

cess consists of a set of states connected to each other by a 

transition probability. Transitions probabilities from a state 

i to another state j are given by A a , where a 

P   qt+1    S j qt    Si  ,   1    i, j     N . The observed pro- cess 

consists of a set of outputs or observations. Each obser- 

vation is contained in a state with some probability density 

function. The set of observations probabilities is given by  

B  =  b j (k), where b j (k) =  P  ot = xk|qt = S j  ,  1  ≤ k ≤ 

M, j = 1, 2 , . . . ,  N . b j (k) represents the probability of the 

observation xk in state S j , o j denotes the observation in 

time t and qt represents the state in time t . HMM can now 

be concisely formulated as λ  ( A  B  π), where π is a set 

of initial probabilities of states [38]. 

The extraction of features was performed over the images 

of the symbols, normalized with a height and width of   

150 and 30 pixels, respectively. A 2-pixel sliding window 

mechanism over the symbol image was used to produce the 

sequence of observations. In doing so, dependent observa- 

tions are replaced by observations depending on the horizon- 

tal position of the window. The extracted features are based 

on the work of Pugin [30]: 

 

1. the number of distinct connected components of black 

pixels in the window; 

2. the area of the largest black connected component nor- 

malized by the area of the window; 

3. the area of the smallest white connected component nor- 

malized by the area of the window; 

4. the position (x and y) of the gravity centre of all black 

pixels in the window, normalized between 0 and 1. 

 
A left–right, model discriminant HMM was adopted to 

construct a model for each class [1]. The learning of the 

parameters of the models (λ ( A B π)) was accomplished 

with the Baum–Welch algorithm. The goal of classification 

is to decide which class the unknown sequence belongs to, 

based on the model obtained in the training phase. These 

symbols were classified on the basis of the maximum of the 

likelihood ratio obtained by the Viterbi algorithm. 
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all machine learning algorithms [14]. This algorithm belongs 

to a set of techniques called Instance-based Learning. It starts 

by extending the local region around a data point until the 

s.t yi [wt ϕ(x) + b]≥ 1 − ξi , i = 1,..., N ξi ≥ 0 
 

(1) 

kth nearest neighbour is found. An object is classified by a 

majority vote scheme, with the object being assigned to the 

class most common amongst its k-nearest neighbours. The 

training lies only in the estimation of the best k. Although 

the distance function could also be learnt during the train- 

ing, in this work we adopted the most often used Euclidean 

distance. 

 

 
4.3 Neural networks 

 
Artificial neural networks, or neural networks for short, were 

originally inspired on the central nervous system and on 

 

information processing elements [18]. With time, they have 

evolved quite independently from the biological roots, giv- 

ing rise to more practical implementations, based on statistics 

and signal processing. In our days, the principles and algo- 

rithms of neural networks have found several applications in 

diverse fields including pattern recognition and signal pro- 

cessing. 

In this work, a specific architecture of neural networks was 

exclusively used, namely the multi-layer perceptron (MLP), 

one type of a feed-forward network [18]. A MLP is a lay- 

ered structure consisting of nodes or units (called neurons) 

and one-way connections or links between the nodes of suc- 

cessive layers. The training of the networks was carried out 

under Matlab 7 R14 and was done using back-propagation 

together with the Levenberg–Marquardt algorithm. We use 

a network with K outputs, one corresponding to each class, 

and target values of 1 for the correct class and 0 otherwise. 

 

 
4.4 Support vector machines 

 
Support vector machines (SVMs), pioneered by Vapnik [36] 

follow the main idea of constructing an hyperplane as the 

decision surface in such a way that the margin of separation 

between positive and negative examples is maximized. 

where parameter C > 0 controls the trade-off between the 

classification errors and the margin. The slack variables ξi , 

i 1,..., N are introduced to penalize incorrectly classi- fied 

data points. 

The dual of the formulation Eq. 1 leads to a dependence on 

the data only through inner products φ(xi )t φ(x j ). Mercer’s 

theorem allows us to express those inner products as a con- 

tinuous, symmetric, positive semi-definite kernel function 

k(xi , x j ) defined in the input space. 

There are three common types of inner-product kernels for 

SVMs: polynomial learning machine, radial-basis function 

network and tangent hyperbolic. In this work, a radial-basis 

function network was used, given by: 

k(x, x ) = exp(−γ ||x − x ||2), γ ≥ 0 (2) 

The binary classifier just described can be extended to mul- 

ticlass scenarios. Of the multiple extensions available in the 

literature, we used the one against one methodology. 

 

 
5 Data sets 

 
The data set adopted for the quantitative comparison of the 

different recognition methods consists of both real handwrit- 

ten scores of five different composers—see Fig. 4—and syn- 

thetic scores, to which distortions were applied—see Fig. 5. 

The real scores consist on a set of 50 handwritten scores from 

5 Portuguese musicians, with ground truth obtained manu- 

ally. Images were previously binarized with the Otsu thresh- 

old algorithm [17], as implemented in the Gamera project.5 

The synthetic data set includes 18 ideal scores from different 

writers to which known deformations have been applied; this 

set consists on the fraction of the data set available from [13] 

written on the standard notation. As the standard notation is 

the object of study in this work, variants of types of specific 

notation, such as drums and percussion notation, were not 

considered. Likewise, since tablature is something specific 

to certain instruments, it was also not addressed. The defor- 

mations applied to the perfect scores were only those with 

significant impact on the symbols: rotation and curvature; 
Formally, given the training set {xi , yi }

N
 with input data see [13] for more details. In total, 288 images were gener- 

xi ∈ R p 

i 1 

and corresponding binary class labels di ∈ {−1, 1}, ated from 18 perfect scores. 

the maximum-margin hyperplane is defined by g(x) 

wt ϕ(x) b where ϕ(x) denotes a fixed-feature space trans- 

formation and b a bias parameter; x is assigned to class 1 if 

The full set of training patterns extracted from the data- 

base of scores was augmented with replicas of the existing 

patterns, transformed according to the elastic deformation 

g(x) > 0 or to −1 if g(x) < 0. The maximization of the    

margin is equivalent to solving 5 http://gamera.sourceforge.net. 

the neurons, which constitute one of its most significant 

i =1 

The k-nearest neighbour algorithm is amongst the simplest of 
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Fig. 4 Some examples of real scores used in this work 

 
(c) 

Lam [24], one of the first works in this area, proposed   

a method of recognition in two stages. The images are first 

recognized by a tree classifier; those that cannot be satis- 

factory assigned to a class are passed to a matching algo- 

rithm, which deforms the image to match with a template. 

In [29], a grammar-like model for applying deformations  

in primitive strokes was developed, while Wakahara [37] 

proposed a shape-matching approach to recognize numbers 

manuscripts. The method uses successive local affine trans- 

formation (LAT) operations to gradually deform the image. 

The aim is to yield the best match to an input binary image. 

LAT on each point at one location is optimized using loca- 

tions of other points by means of least-squares data fitting 

using Gaussian window functions. In document degradation 

models, Baird [3] done an overview in techniques that param- 

eterized models of image defects that occur during print- 

ing, photocopying and scanning processes. In this same line, 

Kanungo [21,22] also proposed a statistical methodology of 

these deterioration processes in order to validate local deg- 

radation models. 

The deformation technique used in this work to deform the 

musical symbols is based in Jain [19,20]. In this approach, 

the image is mapped on a unit square S [0, 1] [0, 1]. The 

points in this square are mapped by the function (x , y) 

(x , y) D(x , y). The space of displacement functions are 

given by 

 

 
 

Fig.  5  Some  examples  of  deformations  applied  to  perfect scores: 

a  original;  b  curvature  with  amplitude  =  0.1;  c  curvature with 

x  (x , y) = (2 sin(π nx) cos(π my), 0) (3) 

mn (x , y) = (0, 2 sin(π ny) cos(π mx)) (4) 

Specifically, the deformation function is chosen as follows: 
amplitude = 0.04; d rotation with angle = 2; e rotation with M N x x y y 

angle = 5; f rotation with angle = −5 
D(x , y) = 

Σ Σ ξmn emn + ξmn emn
 (5) 

 
technique detailed next. Such transformations try to intro- 

m=1 n=1 

where ξ = 
.
(ξ x y 

λmn 

m, n = 1, 2 , . .  .
Σ 

are the projections 

duce robustness in the prediction with respect to the known 

variability in the symbols. 

The number of handwritten/printed music symbols per 

class used in the training phase of the classification models is 

represented in Table 2. The symbols are grouped according to 

their shape; the rests symbols were divided into two groups— 

RestI and RestII. Besides that, we included the unknown class 

to classify those symbols that do not fit into any of the other 

classes. In total, we have 3222 handwritten music symbols 

and 2,521 printed music symbols.6 

 
5.1 Elastic deformation 

 
The research in deformable template fields applied on hand- 

written digits and printed characters recognition is well estab- 

lished (e.g. [20,24,29,37]). 

 
6 The database is available upon request to the authors. 

mn , ξmn), 
of the deformation function on the orthogonal basis. Because 

D(x , y) can represent complex deformations by choosing 

different coefficients of ξmn and different values of M and N, 

it is important to impose a probability density on D(x , y). 

We assume that the ξmn’s are independent of each other and 

the x and y directions are independent, identically distrib- 

uted Gaussian distributions with mean zero and variance σ 2. 

Figure 6 shows examples for several deformations using dif- 

ferent higher-order terms. Note that the deformation is stron- 

ger when M, N and σ are increased. 

 
 

6 Results 

 
We randomly split the available data set into training and 

test sets. The splitting of the data into training and test was 

repeated ten times in order to obtain more stable results for 

accuracy by averaging and also to assess the variability of 

(a) (b) 

(d) (e) (f) 

e

e
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Table 2 Distribution of the full 

set of handwritten and printed 

music symbols over the set of 

classes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
where χ 2 

 
is the tabled critical two-tailed value in the 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6 Example of deformations on a musical symbol 

 
 

this measure. A confidence interval was computed for the 

mean of these values as 

chi-square distribution below which a proportion equal to 

[1 (α/2)] of the cases falls. 

From the results obtained for the handwritten music sym- 

bols—see Table 3—we can conclude that the classifier with 

the best performance was the support vector machine with 

a 99% confidence interval for the expected performance 

95% 96% . Interestingly, the performance of the simplest 

model—the nearest neighbour classifier—was clearly better 

than the performance of the HMM and the neural network 

model and close to the performance of the SVMs. Finally, 

although the neural network performed slightly better than 

the HMM, it exhibited strong difficulties with some classes, 

presenting very low accuracy values (BassClef and Note- 

Open). 

The results obtained for the printed music symbols—see 

Table 4—further support the superiority of the SVM model, 

X̄ − t ∗  
S
 ≤ µ ≤ X̄ + t ∗  

S
 (6) 

with a 99% confidence interval for the expected performance 

97% 99% . As expected, all models presented the best per- 
formance when processing printed musical scores. 

where t ∗ is the upper (1 − C )/2 critical value for the t distri- 

bution with N    1 degrees of freedom, X̄ is the sample mean, 

S is the sample standard deviation and N is the sample size. 

The variance of a population represented by a sample is given 

by 

Next, we investigated the potential of the elastic deforma- 

tion to improve the performance of the classification models. 

The deformations as given by Eq. 5 with  M    1, 2, 3 and N 

1, 2, 3 were applied in the training data. 

The results in Tables 5 and 6 lead us to conclude that the 

(n − 1)S2
 

 
 

χ 2 
[1−(α/2)] 

≤ σ 2 ≤ 
(n 1)S2

 
 

 

2 
(α/2) 

 
(7) 

application of the elastic deformation to the music symbols 

does not improve the performance of the classifiers. Only 

in two handwritten music symbols, very similar in shape, 

 

 

 

 

 

Handwritten 
Music 
Symbols 

Symbol Class Total number  

 

 

 

 

Printed 
Music 
Symbols 

Symbol Class Total number 

 
 Accent 189 

 
 AltoClef 201 

 
 BassClef 26 

 
 TieSlur 67 

 
 Beam 438 

 
 Beam 291 

 
 Flat 230 

 
 Flat 155 

 
 Natural 317 

 
 Natural 127 

 
 Note 466 

 
 Note 304 

 
 NoteFlag 122 

 
 NoteFlag 120 

 
 NoteOpen 208 

 
 NoteOpen 309 

 
 RestI 135 

 
 RestI 63 

 
 RestII 401 

 
 RestII 321 

 
 Sharp 345 

 
 Sharp 13 

 
 Staccatissimo 21 

 
 Time 122 

 
 TrebleClef 99 

 
 TrebleClef 305 

 Unknown 404  Unknown 404 
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Table 3 Accuracy obtained for the handwritten music symbols for the classifiers trained without elastically deformed symbols 
 

 Neural network (%) Nearest neighbour (%) Support vector 

machines (%) 

Hidden Markov 

model (%) 

Accent 85 99 99 91 

BassClef 13 78 77 56 

Beam 85 98 95 90 

Flat 84 99 98 87 

Natural 93 99 98 91 

Note 82 97 96 73 

NoteFlag 51 86 89 64 

NoteOpen 3 75 40 22 

RestI 78 100 97 90 

RestII 96 100 100 92 

Sharp 85 98 98 84 

Staccatissimo 58 100 100 100 

TrebleClef 40 92 90 94 

Unknown 52 71 89 38 

99% CI for the expected     

performance in percentage: [81 (0.7); 84 (2.6)] [93 (0.3); 95 (1.2)] [95 (0.2); 96 (0.6)] [77 (1.2); 81 (4.3)] 

average (standard deviation)     

 

 

Table 4 Accuracy obtained for the printed music symbols for the classifiers trained without elastically deformed symbols 
 

 Neural network (%) Nearest neighbour (%) Support vector 

machines (%) 

Hidden Markov 

model (%) 

AltoClef 94 99 98 83 

Beam 92 100 100 98 

Flat 97 100 99 96 

Natural 94 100 100 95 

Note 90 99 99 91 

NoteFlag 70 92 96 65 

NoteOpen 88 98 97 85 

TieSlur 55 94 87 81 

RestI 85 100 100 83 

RestII 75 100 100 69 

Sharp 97 100 100 99 

Time 40 100 100 27 

TrebleClef 93 100 100 58 

Unknown 65 79 93 74 

99% CI for the expected     

performance in percentage: [88 (0.4); 89 (1.5)] [96 (0.3); 97 (1.0)] [97 (0.2); 99 (2.1)] [83 (0.8); 86 (2.9)] 

average (standard deviation)     

 

 

accuracy did improve with elastically deformed symbols— 

see Table 7. 

It is important to state that the features used in the SVM, 

nearest neighbour and neural network were raw pixels. This 

choice, grounded in standard practices in the literature, influ- 

ences the performance of the classifiers: a slight change on 

the boundary of a symbol can modify the image scaling and 

as result many of the pixel values may change. 
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Table 5 Accuracy obtained for the handwritten music symbols for the classifiers trained with elastically deformed symbols 
 

 Neural network (%) Nearest neighbour (%) Support vector 

machines (%) 

Hidden Markov 

model (%) 

Accent 83 100 100 87 

BassClef 0 95 73 44 

Beam 85 96 96 87 

Flat 82 99 99 71 

Natural 92 99 98 84 

Note 86 97 97 64 

NoteFlag 20 83 91 34 

NoteOpen 2 53 43 11 

RestI 59 99 97 99 

RestII 93 100 100 75 

Sharp 85 99 99 82 

Staccatissimo 30 100 100 100 

TrebleClef 33 91 90 63 

Unknown 34 64 84 34 

99% CI for the expected     

performance in percentage: [77 (0.9); 80 (3.3)] [92 (0.3); 93 (0.9)] [94 (0.2); 96 (1.5)] [69 (1.0); 72 (3.7)] 

average (standard deviation)     

 
Table 6 Accuracy obtained for the printed music symbols for the classifiers trained with elastically deformed symbols 

 Neural network (%) Nearest neighbour (%) Support vector 

machines (%) 

Hidden Markov 

model (%) 

AltoClef 86 99 97 97 

Beam 95 100 100 99 

Flat 95 100 99 82 

Natural 92 100 98 95 

Note 81 100 98 89 

NoteFlag 43 94 97 39 

NoteOpen 89 97 98 78 

TieSlur 17 91 89 67 

RestI 87 100 100 100 

RestII 33 100 97 91 

Sharp 97 100 100 100 

Time 0 100 100 27 

TrebleClef 89 100 100 91 

Unknown 42 76 93 38 

99% CI for the expected     

performance in percentage: [79 (1.1); 83 (4.0)] [95 (0.4); 97 (1.4)] [97 (0.3); 99 (2.3)] [ 81 (1.0); 84 (3.6)] 

average (standard deviation)     

 

 

7 Conclusions 

 
In this paper, we conducted a comparative study of classifi- 

cation methods for musical primitives. We examined four 

classification methods, namely support vector machines, 

neural networks, nearest neighbour and hidden Markov mod- 

els, on two data sets of music scores containing both real 

 

handwritten and synthetic scores. The operations preced- 

ing the recognition phase, which include the detection and 

removal of staff lines and segmentation of the musical prim- 

itives, were implemented with state-of-the-art algorithms. 

The staff line detection and removal was based on our 

recently proposed stable path approach. A key advantage of 

this algorithm is to approach the problem as the result of 
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Table 7 Accuracy on the 
 

Nearest neighbour (%) Support vector machines (%) 
natural and sharp symbols       

 

 With elastic 

deformation 

Without elastic 

deformation 

With elastic 

deformation 

Without elastic 

deformation 

Natural 100 99 98 98 

Sharp 99 98 99 98 

 

 

optimizing a global function. The segmentation method was 

based on a hierarchical decomposition of the music image. 

The enormous variability in the music symbols observed in 

handwritten scores, the inconsistency in size and shape of the 

symbols greatly complicates the segmentation process. The 

hierarchical approach allows dealing with such difficulties. 

The SVMs, NNs and kNN received raw pixels as input 

features (a 400 feature vector, resulting from a 20 x 20 pixel 

image); the HMM received higher level features, like infor- 

mation about the connects components in a 30 x 150 pixel 

window. These options tried to reflect standard practices in 

the literature. The performance of any classifier depends 

crucially on the choice of features. Therefore, results must 

be interpreted in light of these design options. The SVMs 

attained the best performance (in line with the current results 

reported in the literature, where SVMs are systematically the 

top classifier) with a performance above 95% in the hand- 

written data set and above 97% in the typeset data set. The 

simple kNN also achieved a very competitive performance, 

better than the NNs and the HMMs. The less satisfying per- 

formance of the HMMs deserves additional exploration in 

the future: the choice of the input features, the number of 

states, the distribution assumed for the observed variable are 

design option that may be hampering the performance of the 

model. 

Concerning the use of elastic deformations to increase the 

training set, it was interesting to observe that the performance 

did not improve. Our aim was to increase the size of the train- 

ing set, creating controlled distorted symbols to prepare the 

classifier for the typical variations of symbols in handwritten 

music sheets. We would expect the classifiers designed with 

this extended data would be more robust, with improved per- 

formance. The results, in opposition to our initial thoughts, 

may have multiple explanations, which require further inves- 

tigation: the distortions created were not the most suited for 

the recognition task, the initial data set was already quite 

diverse in terms of symbol variety, or the raw representation 

adopted for features is not the most appropriate for introduc- 

ing this kind of variation. The fact that the handwritten scores 

were authored by only five different authors may also help 

explaining the results: it is possible that the writing was not 

that diverse to bring benefit to the design with elastic defor- 

mation. The enrichment of the data set with scores from more 

authors may help clarifying this issue. 

The various approaches in OMR to musical symbols 

segmentation and classification are still below the expecta- 

tions for handwritten musical scores. It is our intention, in 

future work, to incorporate the prior knowledge of the musi- 

cal rules in the recognition of symbols. The new proposed 

methodology should also be naturally adaptable to manu- 

script images and to different musical notations. 
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