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Abstract As one of the fundamental problems in doc-

ument analysis, scene character recognition has attracted

considerable interests in recent years. But the problem

is still considered to be extremely challenging due to

many uncontrollable factors including glyph transfor-

mation, blur, noisy background, uneven illumination,

etc. In this paper, we propose a novel methodology for

boosting scene character recognition by learning canon-

ical forms of glyphs, based on the fact that characters

appearing in scene images are all derived from their cor-

responding canonical forms. Our key observation is that

more discriminative features can be learned by solving

specially-designed generative tasks compared to tradi-

tional classification-based feature learning frameworks.

Specifically, we design a GAN-based model to make the

learned deep feature of a given scene character be ca-
pable of reconstructing corresponding glyphs in a num-

ber of standard font styles. In this manner, we obtain

deep features for scene characters that are more dis-

criminative in recognition and less sensitive against the

above-mentioned factors. Our experiments conducted

on several publicly-available databases demonstrate the

superiority of our method compared to the state of the

art.
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1 Introduction

Scene character recognition (SCR) is an important and

challenging problem in areas of Document Analysis,

Pattern Recognition and Computer Vision. Automatic

reading of characters in natural scenes is very useful to

a wide range of applications such as autonomous vehi-

cle navigation, textual image retrieval, machine trans-

lation, etc.

There are two widely used feature representations

for scene character recognition including hand-crafted

features and neural network based features. The major-

ity of hand-crafted feature based methods employ HOG

(Histogram of Oriented Gradient) [4] like features for

character recognition, such as [25,30]. However, these

traditional methods based on handcrafted features are

not able to satisfactorily deal with noisy data in natu-

ral scenes. Recently, deep learning based models have

been presented for solving character recognition prob-

lem. Convolutional Neural Networks (CNNs), which pos-

sess a powerful feature expression ability, are utilized to

recognize characters in many works, such as [26,1,14,

27].

Through our experiments, we find that existing CNN-

based models typically fail in handling the following two

situations:

– Noisy background and texture. CNNs employ

convolutional filters to extract useful patterns and

combine them for recognition. However, noisy back-

ground and texture tend to distract CNNs from lo-

cating useful patterns accurately.

– Novel Font Design (or writing style). The hu-

man creativity continuingly endows characters with

novel font designs (or writing styles). As we know,

even a small deformation of objects could lead off-

the-shelf CNNs to failure in object recognition. Sim-
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Fig. 1 Scene character samples that existing CNN-based
models typically fail to recognize. We classify the failure sit-
uations into two categories: one is noisy background and tex-
ture, the other is novel font design (or writing style).

Fig. 2 The main idea of our work. Extracted features of
scene characters are endowed with the ability to portray their
canonical forms of glyphs in multiple font styles. By adding
this constraint, redundant information in features is reduced
and thus recognition performance can be improved.

ilarly, existing CNN-based models perform poorly in

recognizing those new images whose font styles dif-

fer a lot with training images. Specific examples of

these two situations are shown in Figure 1.

Existing methods ignore the following two impor-

tant facts: First, glyphs in canonical forms can be adopted

as helpful guidance for SCR in addition to character la-

bels. Most existing models employ character labels as

the only guidance information. In this paper, we de-

fine canonical forms of glyphs as the character images

in some commonly-used and easy-to-read fonts, such as

Arial, Times New Roman, Courier (English), Song and

Kai (Chinese), etc. Furthermore, it is easy to obtain

these character images as they can be directly gener-

ated from corresponding font files. Referring to canon-

ical forms of glyphs is actually seeking for a mapping

relation from scene characters to their standard glyphs.

This mapping relation can instruct models to further

exclude useless scene information and concentrate on

the shapes of characters. Moreover, we believe that this

process is accordant with the habit of human cognition

and behavior.

Second, font style information (letter endings, weights,

slopes, etc.) is useless for recognizing character content

and not supposed to be encoded into character features.

Existing models tend to fail in recognizing character im-

ages with new font styles, which are commonly-seen in

SCR scenarios while few previous works have paid at-

tention to that. Accordingly, we define two important

properties of features extracted from character images,

which markedly affect the recognition performance:

– Scene-independent. Features for character recog-

nition are supposed to focus on the characters’ shapes

instead of scene information like background, illumi-

nation, special effects, etc. In our method, the ex-

tracted deep features are forced to be capable of re-

constructing standard printed glyphs, which is help-

ful to reduce useless scene information. In this man-

ner, our model acquires a better global perception of

characters shapes so as to ignore noisy backgrounds

and textures.

– Font-independent. Font information of characters

ought not to be contained in extracted features for

recognition. It is necessary to decrease the font style

information in extracted features to increase the ro-

bustness of models. Our model is designed to gen-

erate glyphs of different font styles by decoupling

content features and font style features. Therefore,

the learnt features are supposed to contain as less

font information as possible during training stage.

When meeting characters with new font designs, our

model could still find useful local patterns.

Motivated by the above-mentioned analyses, we pro-

pose a novel framework named Character Generation

and Recognition Network (CGRN), in which canoni-

cal forms of glyphs are used as prior knowledge for

guiding models to learn scene-independent and font-

independent features for SCR.

2 Related Work

2.1 Image Synthesis

Image synthesizing methods essentially fall into two

categories: parametric and nonparametric. The non-

parametric models generate target images by copying

patches from training images. In recent years, paramet-

ric models based on Generative Adversarial Networks

(GANs) [7] have been popular and achieved impressive

results, such as LAPGAN [6] and DCGAN [20]. Image-

to-image translation is a specific problem in the area of
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image synthesis. Most recent approaches utilize CNNs

to learn a parametric translation function by training a

dataset of input-output examples. Inspired by the suc-

cess of GANs in generative tasks, the “pix2pix” frame-

work [11] uses a conditional generative adversarial net-

work to learn a mapping from input to output images.

Our key observation is that the learned mapping from a

complex distribution (natural scene) to a simple distri-

bution (canonical form) can help to handle the recog-

nition task. Motivated by this observation, generation

and recognition functions are integrated together and

work cooperatively in our model.

2.2 Scene Character Recognition

The problem of character recognition has attracted in-

tensive attentions from AI/CV/PR communities for sev-

eral decades. Traditional methods rely heavily on hand-

crafted features (e.g., HOG [4]) and typically fail to ob-

tain satisfactory performance on scene character recog-

nition (SCR). Recently, deep learning based approaches

became as the predominant way to handle the SCR

task. For instance, [26], [1], [14] employed end-to-end

CNNs to extract characters’ features for recognition.

[27] proposed a model named SEDPD to improve the

classification performance of CNN features by learning

discriminative part detectors. In handwritten charac-

ter recognition (HCR), [29] designed a adversarial fea-

ture learning (AFL) model to learn writer-independent

features under the guidance of printed data. However,

above mentioned methods are all classification-based

feature learning frameworks while our model is based

on generative models. Character labels are employed
as their only guidance information in existing methods

except AFL. Compared to AFL, our generative model

aims to transfer the input scene character image to its

canonical forms of glyphs, whose semantic and font in-

formation are both utilized by our method to excavate

scene&font-independent features.

3 Method Description

In this section, we describe the methodology of learning

canonical forms of glyphs and present the details of our

proposed network (i.e., CGRN).

3.1 Character Generation and Recognition Network

CGRN builds a bridge between scene characters and

standard glyphs to acquire a better understanding of

their meanings. Specifically, given an input character

image x, CGRN tries to generate its corresponding glyphs

of canonical forms in multiple font styles and predict its

character label simultaneously. Let us denote its char-

acter label as y and its corresponding target images as

T = {t1, t2, ..., tm}, where y ∈ Y , Y = {1, 2, ..., L} is

a finite label set, L denotes the number of character

classes, and m is the number of font categories.

3.2 Network Architecture

As shown in Figure 3, the proposed CGRN is com-

posed of four subnetworks: Feature Extraction Network

(FEN), Character Classification Network (CCN), Glyph

Generating Network (GGN) and Glyph Discrimination

Network (GDN). Details of the network architecture are

presented in the following subsections.

3.2.1 Feature Extraction Network

The Feature Extraction Network is composed of a bunch

of convolutional and pooling layers. Given the input

character image x, FEN learns a deep feature E(x, θe),

where θe denotes the parameters of FEN. To describe

characters’ semantic information more precisely, multi-

layer features are combined together to represent E(x, θe):

E(x, θe) = {El1(x, θe), El2(x, θe), ..., Elk(x, θe)}, (1)

where Eli(x, θe) denotes the output features of li-th

layer (l1 < l2 < ... < lk).

3.2.2 Glyph Generating Network

The Glyph Generating Network takes the deep features

of source images and font embeddings as input, and gen-

erates corresponding glyphs in canonical forms. Specif-

ically, the extracted deep features are utilized to gener-

ate character images in multiple font styles through a

bunch of deconvolutional layers, as shown in the “Multi-

Font Output” part in Figure 3.

Given the extracted features E(x, θe) and a font em-

bedding zi, x’s corresponding canonical form t̂i in font

style fi can be generated by GGN

t̂i = G(E(x, θe), zi, θg), 1 ≤ i ≤ m, (2)

where z1, z2, ..., zm are font category embedding vectors

and θg denotes the parameters of GGN. The generation

of t̂1, t̂2, ..., t̂m is parallel and the process is very similar

to group convolution.

Inspired by the U-NET proposed by [21], we add

skip connections in the corresponding layers of FEN

and GGN to reduce the information loss during the

downsampling process (shown in Figure 3).



4 Yizhi Wang et al.

Fig. 3 The architecture of our proposed network.

3.2.3 Character Classification Network

The aim of our Character Classification Network (CCN)

is to utilize the deep features extracted from input im-

ages to classify them into corresponding character cate-

gories. First, multi-scale features in E(x, θe) are down-

sampled and concatenated as

E
′
(x, θe) = concat(E

′

l1(x, θe), ..., E
′

lk
(x, θe)), (3)

where E
′

li
(x, θe) is down-sampled from Eli(x, θe), 1 ≤

i ≤ k. E
′
(x, θe) is then sent into CCN to compute its

classification probability

P (yc = y|x; θe, θc) =
e−Cy(E

′
(x,θe),θc)∑L

j=1 e
−Cj(E

′ (x,θe),θc)
, (4)

where yc denotes the predicted category label, θc de-

notes the parameters of CCN, and Cj(•) means the

value of j-th element in the CCN’s output vector.

3.2.4 Glyph Discrimination Network

The introduction of Glyph Discrimination Network (GDN)

mainly borrows the idea of Generative Adversarial Net-

works (GANs) [7]. GAN has been proved to be able to

markedly improve the quality of generated images. In

CGRN, GDN is employed to discriminate between gen-

erated (fake) glyphs and real glyphs. Meanwhile, GGN

is devoted to generate glyphs which are good enough to

fool GDN. Through this adversarial process, the quality

of generated glyphs becomes better and better.

GDN takes an image pair as input and predict its

label yd. The real pair (x, t) corresponds to yd = 1,

while the fake pair (x, t̂) corresponds to yd = 0, where

t ∈ T = {t1, t2, ..., tm}, t̂ ∈ T̂ = {t̂1, t̂2, ..., t̂m}. The

probabilities of yd = 1 and yd = 0 predicted by GDN

are defined as

P (yd = 1|x, ti; θd) =
1

1 + e−D(x,ti,θd)
, (5)

P (yd = 0|x, ti; θd) = 1− P (yd = 1|x, ti; θd), (6)

P (yd = 1|x, t̂i; θd) =
1

1 + e−D(x,t̂i,θd)
, (7)

P (yd = 0|x, t̂i; θd) = 1− P (yd = 1|x, t̂i; θd), (8)

where θd denotes the parameters of GDN, 1 ≤ i ≤ m

and D(•) means the value of GDN’s output.

3.2.5 Detailed Configurations

The detailed configurations of CGRN are shown in Ta-

ble 1. The first, second and third columns show net-

work layers’ names, types and parameters, respectively.

Thereinto, “Conv” means convolutional layer, “Pool”

means pooling layer, “Deconv” means deconvolutional
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layer and “FC” means fully-connected layer. For convo-

lutional and deconvolutional layers, “k × k × c, s, BN,

ReLU” in each row denotes that the kernel size is k,

the stride is s, the number of output features’ channels

is c, activation function ReLU and batch normaliza-

tion [10] are employed. For pooling layers, “k× k, s” in

each row denotes that the pooling kernel size is k, the

stride is s. For fully-connected layers, “i × o” in each

row describes the input dimension and output dimen-

sion of features. The configuration of FEN is basically

consistent with convolutional layers of VGG16 [24], ex-

cept the last pooling layer and batch normalization for

each convolutional layer. Note that the architectures of

our FEN and GGN are asymmetrical, which is differ-

ent against the original UNET, as we expect FEN goes

deeper to acquire richer features of scene characters.

Table 1 Detailed Configurations of our CGRN.

Input: 64× 64 RGB image
Layer Type Parameters

Feature Extraction Network
E conv1 (×2) Conv 3× 3× 64, 1, BN, ReLU

E pool1 Pooling 2× 2, 2
E conv2 (×2) Conv 3× 3× 128, 1, BN, ReLU

E pool2 Pooling 2× 2, 2
E conv3 (×3) Conv 3× 3× 256, 1,BN, ReLU

E pool3 Pooling 2× 2, 2
E conv4 (×3) Conv 3× 3× 512, 1,BN, ReLU

E pool4 Pooling 2× 2, 2
E conv5 (×3) Conv 3× 3× 512, 1,BN, ReLU

E pool5 Pooling 4× 4, 4
Character Classification Network

C pool1 Pooling 32× 32, 32
C pool2 Pooling 16× 16, 16
C pool3 Pooling 8× 8, 8
C pool4 Pooling 4× 4, 4
C pool5 Pooling 1× 1, 1
C fc FC 1472× L

Glyph Generating Network
G deconv1, 2 Deconv 5× 5× 512, 2, BN, ReLU
G deconv3 Deconv 5× 5× 256, 2, BN, ReLU
G deconv4 Deconv 5× 5× 128, 2, BN, ReLU
G deconv5 Deconv 5× 5× 64, 2, BN, ReLU
G deconv6 Deconv 5× 5× 3, 2, BN, ReLU

Glyph Discrimination Network
D conv1 Conv 5× 5× 64, 2, BN, ReLU
D conv2 Conv 5× 5× 128, 2, BN, ReLU
D conv3 Conv 5× 5× 256, 2, BN, ReLU
D conv4 Conv 5× 5× 512, 1, BN, ReLU
D fc FC 32, 768× 1

3.3 Learning Scene&Font-Independent Features

Although CNN based models have already achieved im-

pressive performance in removing useless scene informa-

tion for character recognition, we believe their perfor-

mance can be further improved by adding the guidance

of glyphs in canonical forms. As shown in Figure 3, the

target images are composed of clear backgrounds and

corresponding glyphs in canonical forms. The aim of

the proposed CGRN is to learn scene&font-independent

features by reconstructing these character images accu-

rately.

As we know, glyphs in any kinds of font styles might

be contained in a given natural scene image. If we mix

semantic features with font information, our model might

fail to recognize those characters whose font styles have

never been seen in training images. Therefore, the ex-

tracted character features E(x, θe) are supposed to be

font-independent in addition to scene-independent. By

introducing the font embedding mechanism into CGRN,

we expect to separate font features from semantic fea-

tures, with z representing the former and E(x, θe) for

the latter. Furthermore, by setting multi-font glyphs

as target, the extracted features are forced to contain

as less font information as possible, so as to recon-

struct glyphs in various font styles. However, if we set

single-font glyphs as target, font information is hardly

to be removed especially when many training charac-

ters’ fonts share similar style with the target font. In

our work, we select English and Chinese characters in

representative fonts as the target glyphs in canonical

forms for CGRN to generate, details are presented in

the following sections.

3.4 Loss Function

In CGRN, we define three loss functions. The first one

(i.e., the pixel loss Lpixel), which measures the dissim-

ilarity between generated character images t̂ and their

corresponding glyphs of canonical forms t all over m

fonts, is defined as

Lpixel = Et,t̂[
1

m

m∑
i=1

‖t̂i − ti‖]

= Ex,t,z[
1

m

m∑
i=1

‖G(E(x, θe), zi, θg)− ti‖].
(9)

The character recognition loss LCR, which indicates the

recognition error of CCN, is defined as

LCR = −Ex,y[log(P (yc = y|x; θe, θc))]. (10)

The discriminator loss LD, which indicates the identi-

fication error of GDN all over m image pairs, is defined

as

LD = −Ex,t[
1

m

m∑
i=1

log(P (yd = 1|x, ti; θd))]

−Ex,t̂[
1

m

m∑
i=1

log(P (yd = 0|x, t̂i; θd))].
(11)



6 Yizhi Wang et al.

3.5 Training Process

We optimize the whole network by introducing GDN to

play the minmax game with FEN, GGN, and CCN:

min
θe,θc,θg

max
θd

λLCR(θe, θc)+λLpixel(θe, θg)−LD(θe, θg, θd),

(12)

where λ is a fixed weight coefficient (set as 100 in our

experiments). Our optimization strategy for this objec-

tive function is training FEN, CCN, GGN and GDN

alternatively, which is similar to [7]. Details are as fol-

lows.

In each mini-batch, we first optimize GDN:

θd ← θd − µ
∂LD
∂θd

. (13)

Then, we optimize FEN, GGN and CCN jointly:

θ
′

e ← θe − µ(
∂λLCR
∂θe

+
∂λLpixel
∂θe

− ∂LD
∂θe

), (14)

θ
′

g ← θg − µ(
∂λLpixel
∂θg

− ∂LD
∂θg

), (15)

θ
′

c ← θc − µ
∂λLCR
∂θc

, (16)

θe ← θ
′

e, θg ← θ
′

g, θc ← θ
′

c, (17)

where µ is the learning rate used for training model.

Note that Equation 13, 14, 15 and 16 are presented in

the basic form of gradient descent for brevity. Practi-

cally, we employ a gradient-based optimizer with adap-

tive moment estimation (i.e., Adam optimizer [16]).

4 Experiments

To verify the effectiveness and generality of our model,

we conduct experiments on datasets of three widely-

used languages: English, Chinese and Bengali, which

represent alphabet, logography and abugida, respec-

tively. We also design comparative experiments to demon-

strate the effect of proposed techniques in our model.

4.1 Datasets

English character datasets include ICDAR 2003 [18]

and IIIT5K [19] dataset. They all contain English let-

ters in 52 classes and Arabic numbers in 10 classes (i.e.,

a-z, A-Z, 0-9).

– The task on the ICDAR 2003 character dataset is

very challenging because of serious non-text back-

ground outliers with cropped character samples, and

many character images have very low resolution.

It contains 6,113 character images for training and

5,379 for testing

– The IIIT5K dataset consists of 9,678 character sam-

ples for training and 15,269 for testing. The dataset

contains both scene text images and born-digital im-

ages.

Chinese character dataset : Pan+ChiPhoto dataset [25].

It is built by the combination of two datasets: ChiPhoto

and Pan Chinese Character dataset. The images in

this dataset are mainly captured at outdoors in Beijing

and Shanghai, China, which involve various scenes like

signs, boards, advertisements, banners, objects with texts

printed on their surfaces. In [25], ChiPhoto was split

into two parts (60% and 40%) and added to the train-

ing and testing datasets of Pan Chinese Character. Be-

cause the authors did not give the exact split of training

and testing images, we follow their steps to split these

images again. Finally, we have 6098 training images and

4220 testing images, totally 1203 character classes.

Bengali character dataset: ISI Bengali Character

dataset [25]. Bengali script is the 6th most popularly

used script in the world and it holds official status in

the two neighboring countries Bangladesh and India.

This dataset contains 158 classes of Bengali numerals,

characters or their parts. 19,530 Bengali character sam-

ples are divided into two sets in which 13,410 images

are used for training and 6,120 for testing.

Selected fonts for target canonical forms of glyphs:

In our experiments, we select 4 fonts for English glyphs:

Arial, Comic Sans, Courier New and Georgia, 4

fonts for Chinese glyphs: Song, Kai, Hei and Fang-

song, and one font for Bengali glyphs: Nirmala UI.

Character samples rendered by these fonts are shown

in Fig 4. For English and Chinese, we select these fonts

based on their popularity and style diversity. We only

select one font for Bengali glyphs because we are not

familiar with the language.

4.2 Data Preprocessing

All character images (including source images and tar-

get images) are resized into the resolution of 64 × 64.



Boosting Scene Character Recognition by Learning Canonical Forms of Glyphs 7

Fig. 4 Samples of characters rendered by our selected fonts.

Besides shuffling training data images, font embeddings

are also shuffled for each training image x to avoid

overfitting: (z1, z2, ..., zm) → (zp1 , zp2 , ..., zpm), where

p1, p2, ..., pm is one permutation of 1, 2, ...,m. Accord-

ingly, the target images (t1, t2, ..., tm) are shuffled to

(tp1 , tp2 , ..., tpm).

4.3 Implementation Details

The parameters of FEN are initialized by the pre-trained

VGG16 [24] on ImageNet dataset [5], and the others are

initialized by using random weights with normal dis-

tribution of 0 mean and 0.02 standard deviation. We

adopt Adam optimizer [16] to train our model where

the initial learning rate µ is set to 0.0001 and the first

order of momentum is 0.5. The batch size of training

images is set to 128. Our method is implemented under

the TensorFlow framework [9].

Table 2 Character recognition results of different methods
evaluated on the English Datasets

Method IC03 IIIT5K
HOG + SVM [4] 77.0 70.0
CNN [14] 86.8 78.5
RPCA-SR [30] 79.0 76.0
CO-HOG [25] 80.5 77.8
ConvCoHOG [25] 81.7 78.8
SEDPD [27] 84.0 80.3
VGG16 (pretrained) 84.5 82.1
CGRN (-GGN, -GDN) 85.5 84.9
CGRN (SF, -GDN) 86.3 85.2
CGRN (MF, -GDN) 86.9 85.5
CGRN (SF) 86.8 85.5
CGRN (MF) 87.1 85.6

Table 3 Character recognition results of different methods
evaluated on the Chinese Dataset

Method Pan+ChiPhoto
Tesseract OCR [8] 20.5
HOG 59.2
CNN [14] 61.5
CNN +SVM [14] 62.3
ConvCoHOG NewOffset [25] 71.2
VGG16 (pretrained) 85.8
CGRN (-GGN, -GDN) 87.5
CGRN (SF, -GDN) 88.6
CGRN (MF, -GDN) 88.9
CGRN (SF) 89.1
CGRN (MF) 89.4

Table 4 Character recognition results of different methods
evaluated on the Bengali Dataset

Method ISI Bengali
Tesseract OCR [8] -
HOG 87.4
CNN [14] 89.7
CNN+SVM [14] 90.1
ConvCoHOG NewOffset [25] 92.2
VGG16 (pretrained) 96.3
CGRN (-GGN, -GDN) 96.9
CGRN (-GDN) 97.1
CGRN 97.4

4.4 Comparison with Other Methods

Table 2, 3, and 4 show different methods’ performance

on aforementioned datasets. As the parameters of FEN

are initialized by the pre-trained VGG16, we add a fine-

tuned VGG16 model into comparison for the sake of

fairness. In these tables, “SF” denotes the best per-

forming version of CGRN when employing single-font

glyphs of canonical forms as target. “-GDN” denotes

the CGRN model in which GDN is removed. “-GGN”

denotes the CGRN model in which GGN is removed.

“MF” means employing multi-font glyphs as target in

CGRN (we experimentally set t = 4 in English and Chi-

nese datasets). As shown in these tables, our method

clearly outperforms other existing approaches.

For the experiments conducted on IC03 (ICDAR

2003), [14] and [25] both used additional character

images (107k and 18k) to train their models. On the

contrary, our model uses the least training character

images (6k) and achieves the best performance (see Ta-

ble 2). Although utilizing the parameters of pre-trained

VGG16, our model still possesses the advantages of

high efficiency and better extensibility. As is known to

all, recognizing Chinese characters is a very challeng-

ing task on account of their large number of classes

and quite complicated geometric structures. Existing

methods perform poorly on the Pan+ChiPhoto dataset.

VGG16 network greatly improves the recognition accu-
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racy, owing to the pre-training on the ImageNet dataset.

By learning canonical forms of glyphs, our model is

able to extract more discriminative features for Chi-

nese characters in natural scene images and thus signif-

icantly improves the recognition accuracy (see Table 3).

ISI Bengali Character, which contains many synthesized

images, is a less challenging dataset compared to the

others. Our model mainly contributes to improving the

recognition accuracy of scene characters in this dataset,

so the improvement of the overall recognition accuracy

is not that significant (see Table 4).

4.5 The Improvement of Image Feature Learning

In this section we give an illustration of how the fea-

ture learning is improved by learning canonical forms

of glyphs. We select VGG16 network for comparison,

which is commonly used as feature extractor in many

existing models [13,22,17]. Utilizing the technique pro-

posed by [28], we project the features activations back

to the input pixel space, which is presented in Figure 5.

The light regions in the reconstructed images are re-

sponsible for the activations in extracted feature maps.

The selected cases in Figure 5 are representative of the

two situations mentioned in Section 1. The left four

cases possess novel font designs and the right four cases

are placed in noisy backgrounds or have noisy textures.

Compared to VGG16, our model shows more accurate

perception on the discriminative patterns of scene char-

acters and correctly recognize them. Our model is trained

to capture the most discriminative local patterns so as

to reconstruct multi-font canonical glyphs, which is the

key to success. Taking the letter “E” for example, our

model pays more attention to the middle horizontal line

of “E”, which avoids recognizing it as “G”. Another ex-

ample is the letter “f”, our model’s concentration on

the head part of “f” leads to the successful recogni-

tion. Learning to generate canonical forms of glyphs in-

structs our model to exclude undesired nuisance factors

and concentrate on those useful patterns.

4.6 Contribution of Glyphs Discrimination Network

Glyphs Discrimination Network is proved to be effective

in improving the quality of generated glyphs through

our experiments (see Figure 6). Without the super-

vision of GDN, FEN and GGN tend to generate in-

correct or unrecognizable glyphs when meeting blurry,

distorted and ambiguous character images. After in-

troducing GDN, the generated images become more

accordant with target images and easier to be recog-

nized, although there still exist some flaws on them.

Fig. 5 Visualization of CNN feature maps of the 5th pooling
layer from VGG16 and our model. The light pixels reveal the
structures of input image that excite CNN feature maps. The
characters below each set of images are ground-truth label,
VGG16’s predicted label and our model’s predicted label, re-
spectively. Our model captures more useful local patterns of
scene characters compared to VGG16.

The improvement demonstrates that features learned

by model with GDN are able to more precisely cap-

ture semantics and eliminate other interference infor-

mation. Consequently, the recognition accuracy is also

improved (shown in Table 2, 3, and 4). Character im-

ages in Figure 6 were wrongly classified without GDN

but correctly classified after introducing GDN. Through

improving the quality of generated images, the learned

deep features are equipped with enhanced expressive-

ness and become more scene-independent.

4.7 Contribution of Multiple-Font Guidance

Our model becomes less sensitive to font variance un-

der the multiple-font guidance (MFG) compared to the

single-font guidance (SFG). When we set multi-font

glyphs as generation targets, there must be at least

one glyph whose font style is different from the input

scene character. To preciously reconstruct them all, the

feature extractor must learn to capture the most dis-

criminative local patterns for every training example.

By contrast, the training process of single-font model is

not so sufficient as multi-font model, which leads single-

font model more sensitive to the font variance. When

we adopt a single font as the target, our model tends

to generate incorrect glyphs if the font style of input

character images differs a lot with the target font style,

as is shown in Figure 7. It is caused by the poor robust-

ness of extracted features mixed with a lot of unneces-
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Fig. 6 Samples of testing images which were wrongly clas-
sified without GDN but correctly classified after introducing
GDN. Glyphs in the “output*” and “output” column are gen-
erated by CGRN (no GDN) and CGRN respectively.

sary font information. But the character images in Fig-

ure 7 can be correctly classified when training our model

with multiple-font guidance. Multiple-font guidance in-

structs our model to distinguish semantics from font

styles. Table 2, 3, 4 and Figure 7 show that MFG fur-

ther enhances our model’s recognition and generation

performance. Our model understands characters more

deeply by reconstructing them into canonical forms of

glyphs in multiple fonts according to font embeddings.

4.8 Experiments on Text String Recognition

The latest scene text recognition methods [22,2,3,23]

are mainly designed to recognize text strings without

explicitly splitting characters by combining Recurrent

Neural Networks (RNNs) with CNNs. To further ver-

ify our methods effectiveness, we conduct experiments

on text string recognition in addition to single charac-

ter recognition. Specifically, we add the proposed glyph

generating and discrimination network to ASTER pro-

posed by Shi et al. [23]. The detailed architecture of this

new model, named as ASTER+CGN (Character Gen-

Fig. 7 Samples of testing images which were wrongly clas-
sified without MFG but correctly classified after introducing
MFG. Glyphs in the “output*” and “output” column are gen-
erated by CGRN (SF, GDN) and CGRN (MF, GDN) respec-
tively.

eration Network), is presented in Figure 8. ASTER con-

sists of a text rectification network and a text recogni-

tion network, corresponding to the blue and green mod-

ules in Figure 8, respectively. The newly added modules

by us (marked as orange) consist of a LSTM encoder

(for sequence modeling), a glyph generating network

(i.e., glyph generator in Figure 8) and a glyph discrimi-

nation network. We employ the extracted CNN features

to generate canonical forms of a horizontal text, follow-

ing the main idea of CGRN. We add another dataset

ICDAR-2013 [15] into the experiment. As shown in Ta-

ble 5, our method significantly improves the recognition

accuracy of ASTER and achieves state-of-the-art per-

formance. Considering that the benefits of CGN have

been fully discussed in previous sections, we will not

show more experimental results here.

5 Towards Common Object Recognition

In this paper, our work focuses on scene character recog-

nition in natural scenes. It is worth mentioning that the

main idea of our work is not only limited to text recog-

nition but also applicable to common object recogni-

tion tasks, such as face recognition with different poses,
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Fig. 8 The architecture of our proposed network (ASTER+CGN) for text string recognition.

Table 5 Text string recognition results of different methods
evaluated on benchmarks in lexicon-free mode.

Method IC03 IIIT5K IC13
Jaderberg et al. [12] 89.6 - 81.8
Jaderberg et al. [13] 93.1 - 90.8
Lee et al. [17] 88.7 78.4 90.0
Shi et al. [22] 91.9 81.2 89.6
Cheng et al. [2] 94.2 87.4 93.3
Cheng et al. [3] 91.5 87.0 -
Shi et al. [23] 94.5 93.4 91.8
ASTER+CGN 95.3 94.0 94.4

speech recognition with accents and so on. Canonical

forms of objects, which contribute to eliminate the in-

terference factors in scene images, are more meaningful

than any other object properties summarized by hu-

man. Therefore, we believe that canonical forms of ob-

jects could be used as more complete labels than tra-

ditional numeric labels in many applications of object

recognition.

6 Conclusion

This paper presented a deep learning based framework

to boost the performance of SCR by learning canonical

forms of glyphs. The main contribution of the paper is

to utilize canonical forms of glyphs as guidance to exca-

vate scene-independent and font-independent features.

Our model also benefits from the adversarial learning

process introduced in GAN. The effectiveness and gen-

erality of our techniques were verified through exper-

iments conducted on multilingual datasets. Last but

not the least, it is easy to extend our approach with

a few changes to improve the performance of methods

in many other object recognition tasks.
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