
Vol.:(0123456789)1 3

International Journal on Document Analysis and Recognition (IJDAR) (2020) 23:73–88
https://doi.org/10.1007/s10032-019-00347-8

ORIGINAL PAPER

Efficient and effective OCR engine training

Christian Clausner1 · Apostolos Antonacopoulos1 · Stefan Pletschacher1

Received: 8 June 2018 / Revised: 16 September 2019 / Accepted: 10 October 2019 / Published online: 30 October 2019
© The Author(s) 2019

Abstract
We present an efficient and effective approach to train OCR engines using the Aletheia document analysis system. All com-
ponents required for training are seamlessly integrated into Aletheia: training data preparation, the OCR engine’s training
processes themselves, text recognition, and quantitative evaluation of the trained engine. Such a comprehensive training
and evaluation system, guided through a GUI, allows for iterative incremental training to achieve best results. The widely
used Tesseract OCR engine is used as a case study to demonstrate the efficiency and effectiveness of the proposed approach.
Experimental results are presented validating the training approach with two different historical datasets, representative of
recent significant digitisation projects. The impact of different training strategies and training data requirements is presented
in detail.

Keywords Optical character recognition · OCR · Machine learning · Training · Graphical user interface · Historical
documents

1 Introduction

Document digitisation is an everyday continuing activity
at all scales, ranging from the very large content holding
institutions (e.g. libraries, archives) to medium-sized opera-
tions (e.g. charities, community enterprises) to individuals
undertaking small projects. On average, for most use-cases
involving relatively simple (no complex backgrounds, no
scanning artefacts) modern material, out-of-the-box OCR
engines perform very well as they are configured to rec-
ognise text written in the most common fonts in the most
popular languages.

However, for the multitude of historical documents and
for documents written in the many smaller languages in the
world, out-of-the-box OCR engines do not perform opti-
mally or even not at all. Some systems allow adjustments
via recognition parameters, but this has typically no major
impact on results. In such cases, training OCR engines
become important in order to recognise those rarer/historic
fonts and languages. Even in cases where OCR performs
well, training can result in meaningful increases of recogni-
tion accuracy—a small percentage of quality increase over a

large collection of documents can mean significant savings
in manual error correction [1].

Training OCR engines are currently a time-consuming,
non-trivial, and disjointed process requiring expert knowl-
edge. With the exception of simply adding a set of unseen
symbols to commercially available engines (not real train-
ing), the process involves several steps for extensive data
preparation, running training scripts, evaluating the perfor-
mance of the newly trained engine, and repeating the cycle
incrementally until sufficient performance improvements are
made.

Ideally, an efficient and effective training approach should
involve an integrated system where the sequence of data
preparation and training steps flows seamlessly and real
progress (effectiveness) is evaluated objectively. Through a
graphical user interface (GUI), OCR engine training should
be a straightforward process, allowing anyone to optimise
OCR performance, even for smaller volumes of content in
several different circumstances.

This paper describes such a fully integrated OCR engine
training approach using the Aletheia document analysis sys-
tem [2]. All required steps are accessible and controllable
through a graphical user interface, including the preparation
of training data, OCR engine-specific training and dictionary
creation, as well as assessment of the impact of the training
by performing OCR and evaluating its results.

 * Christian Clausner
 c.clausner@primaresearch.org

1 University of Salford, The Crescent, Salford M5 4WT, UK

http://orcid.org/0000-0001-6041-1002
http://crossmark.crossref.org/dialog/?doi=10.1007/s10032-019-00347-8&domain=pdf

74 C. Clausner et al.

1 3

The description of the proposed system and approach is
made using a concrete case study in real-world digitisation
scenarios. As such, Tesseract [3] was selected as the exam-
ple OCR engine of choice, reflecting its popularity with dig-
itisation pipeline developers and users, as well as its open-
source ethos and availability to all. It should be noted that
for other OCR engines, the most important and resource-
intensive steps of training data preparation and evaluation
of improvement, as well as the GUI-based system that ena-
bles and guides the whole process will remain the same.
The only change will be the different OCR engine-specific
training scripts that will have to be called from within the
Aletheia system, a straightforward addition that can be made
by the developers of Aletheia. In fact, an early demonstra-
tion, as yet formally unpublished, of the main principles of
the system used Gamera [4] as an example OCR engine to
be trained.

The efficiency of the proposed system is presented
through the description of it and the integrated workflow
it enables. The effectiveness of the system is demonstrated
through results from experiments on different datasets and
application scenarios, including the presence of more than
one font in the same document. In addition to the detailed
description of the proposed OCR engine training system,
this paper also reports on a number of experiments carried
out on different datasets to investigate the ideal training con-
ditions in terms of size and quality of a training set.

The next section presents and discusses the background
and related work in OCR engine training. Section 3 pro-
vides an introduction of the relevant aspects of both the OCR
engine to be trained (Tesseract) and the Aletheia system, in
which the proposed training approach is incorporated. Each
individual aspect of the proposed approach and system is
explained in detail in Sect. 4. The effectiveness of the OCR
engine training is objectively evaluated, and further experi-
ments are reported in Sect. 5. The paper concludes with a
discussion of the experimental results and further remarks
in Sect. 6.

2 Background and related work

Optical character recognition systems are typically devel-
oped and packaged to support a specific set of languages,
scripts, and fonts. Accordingly, if unsupported material is
to be processed, adaptations of the recognition engine are
required. If the material in question includes new characters
and symbols, e.g. in the form of a completely new language
and/or script, this training will have to be done from scratch.
For less substantial changes, such as adding support for a
new font to an already supported language, it might be pos-
sible to build on existing resources (language/script models,
dictionaries, etc.) within the system to be trained.

Previous large-scale research projects related to mass dig-
itisation [5] have demonstrated the potential gain in accu-
racy when training OCR engines specifically to the material
which is to be processed. Such gains can be achieved even
for systems which were designed to follow an Omni-font
approach, i.e. not solely relying on comparison of fixed
shapes and patterns but employing more flexible features.
In [6], for instance, it is reported how recognition rates for
non-mainstream documents (Polish historical texts) can be
significantly improved by training the OCR engine used.
The report states improvements from 45 to 80% character
accuracy rate and 15–55% word accuracy rate for typically
very challenging to recognise Gothic documents after train-
ing ABBYY FineReader on only very few pages.

To leverage OCR training, commercially available sys-
tems such as ABBYY FineReader have basic built-in facili-
ties to at least add some new symbols to an existing lan-
guage/script [7]. It should be noted that this is not training,
in the sense of adding completely new scripts, languages
and/or dictionaries. Tesseract and other open-source soft-
ware, on the other hand, offer more training possibilities but
still rely largely on scripting of loosely coupled helper tools
and/or complex workarounds.

In the literature, there are various reports on how spe-
cific OCR training problems were tackled. One example [8]
shows how Tesseract was trained to support Ancient Greek.
The described process relies mostly on scripting and some
manual intervention. The author offers some general rec-
ommendations, but neither is a systematic approach related
to the choice of parameters and settings followed nor are
quantitative justifications given.

Another example can be found in [9] where the authors
train Tesseract to recognise Odia, a previously unsupported
Indian script. Here, training data is first generated in an arti-
ficial way (text entered and typeset in a word processor, then
printed and eventually scanned) and then fed into the stand-
ard Tesseract command line tools. While this might work
for languages (character sets) which are known in principle,
it would not be a viable option if unknown characters and
symbols are expected to occur (which is quite often the case
in historical documents).

Synthetic ground truth [10–13] can be useful for generat-
ing large amounts of examples, but it is very hard to guaran-
tee the same level of representativeness and authenticity as
datasets containing real-world document images. The big-
gest downside is that previously unseen/unknown effects can
per se never be included in a completely artificial dataset as
no discovery stage (like manual ground truthing) is involved.
This is a major problem especially for historical documents
which are often the subject of (and likely to benefit greatly
from) OCR training. Also, realistic rendering of synthetic
examples might not be feasible for historical documents if
no appropriate fonts are available (font generation can be

75Efficient and effective OCR engine training

1 3

an option but requires manual intervention [13]). A viable
option could be the combination of manually created ground
truth with synthetically derived examples to obtain greater
numbers of training data instances.

A more generic approach to training Tesseract based
on custom material is presented in [14]. With their main
focus being on historical documents, the authors describe a
web-based system for generating training data from scanned
documents which has the benefit of enabling crowdsourcing
in order to allow multiple users to work on the same project.
With regard to the actual generation of training data, the
system is limited to simple boxes for marking glyphs (rather
than allowing more precise polygons), potentially leading to
the inclusion of image parts of neighbouring glyphs, which
in turn is likely to confuse the training process. The soft-
ware therefore offers a “brush tool” allowing manual cor-
rection of the bitmap images. While manual image micro-
editing this might be a workable solution for a very small
amount of samples (or if a very large number of volunteers
are available and willing to do it), it appears to be far less
efficient than using a polygon-based approach, which could
incorporate automatic wrapping of outlines around glyphs
and hence producing clean glyph images straight away (e.g.
as the Aletheia system [2] does). Also, that system is not
fully integrated; requiring users to generate Tesseract OCR
profiles by themselves (using scripts and the standard train-
ing command line tools) and then uploading them to the
so-called Virtual Transcription Laboratory (VTL) portal in
order to be used by the provided recognition engine.

Torabi et al. [15] and Christy et al. [16] describe a simi-
larly adaptable approach but use more powerful and efficient
tools for glyph image creation. Aletheia [2] is used to pre-
pare those, Franken+ (a system developed by the authors
of that paper) is used to create suitable training instances
using the glyphs, and finally, Tesseract’s command line
training procedure is applied. While this enables the train-
ing for historical fonts, it is still a very complex operation
involving the use of only loosely coupled components, partly
with graphical user interface and partly requiring scripting
of command line tools. Unfortunately also, the development
of Franken+ has not continued and the latest available ver-
sions of the other tools are no longer compatible with it. In
addition, in terms of the training process there is limited
feedback available with respect to the creation of the training
set (e.g. with regard to completeness, number of individual
character/symbol instances, etc.) making it, inevitably, dif-
ficult for the user to keep an overview of training progress
and to identify any shortcomings in the data set. It should be
noted that the work in described in [15] formed the basis for
the inception of the system proposed in this paper, in order
to address those issues mentioned above.

The general theme from looking at the existing situation
is that there is some support for training OCR engines but

typically only in a loosely coupled way making the whole
process unnecessarily complicated (for experts and non-
technical users of OCR alike) and therefore inefficient. Also,
explicit support for training data generation, e.g. in the form
of providing statistics, is generally missing thus potentially
reducing the quality and effectiveness of training. Finally,
several reports provide various recommendations on certain
parameters and settings, but it is rare to find empirical data
and/or quantitative results with regard to the composition
of a good training dataset and the influence of training data
selection on the achievable overall results.

3 Tesseract and Aletheia

In the following, the Tesseract OCR engine (including the
possibilities of training it) and Aletheia (including its func-
tionality relevant to this work) are outlined. Both comple-
ment each other when combined in a general-purpose docu-
ment analysis and recognition system.

3.1 The Tesseract OCR engine

Tesseract [3] is arguably one of the most popular open-
source OCR engine. It features page layout analysis and a
flexible text recognition module. It was originally created
at Hewlett-Packard between 1985 and 1994 and was open-
sourced in 2005. For more detailed information on the capa-
bilities and development history of Tesseract, the reader is
referred to [17–20]. Tesseract is still under active develop-
ment by Google staff and currently available as version 4.0,
including a new LSTM-based engine and the traditional
engine (selectable via command line option). Both engines
have different strengths and weaknesses and therefore are
applicable in different use scenarios.

The authors of this paper have chosen the traditional
engine (originating from Tesseract 3.0×) as a case study
to present the proposed training system as they believe that
in several cases (in particular where historical documents
are involved) that version will be the engine of choice due
to the significant amount of training data required by the
LSTM-based engine and the higher resource requirements
for running the latter engine.

The more recent versions of Tesseract are fully imple-
mented in the C++ programming language, supporting
multiple platforms including Linux- and Windows-based
systems. The native releases ship with a command line exe-
cutable that processes input images and outputs plain text,
PDF, or HOCR (an XHTML-based format). Several aspects
of the recognition results cannot be stored in those formats
and can only be accessed through runtime objects, requiring
the usage and extension of the source code.

76 C. Clausner et al.

1 3

The official downloadable resource offers pre-trained
packages for over 100 languages and variations, but Tesser-
act can be trained for new languages and character sets.
However, as mentioned earlier, the procedure can be com-
plex and requires expert knowledge. Creating training data
for historical material is especially challenging as the stand-
ard training method is designed to work with fonts that are
already available as TrueType or bitmap font files.

The training procedure is described in detail in the fol-
lowing subsection.

3.1.1 Native training procedure

Tesseract can be trained via a collection of command line
tools and Linux shell scripts (see [21]). The procedure is
composed of two major parts: shape training and diction-
ary creation (both explained in more detail below). The
output of the training is a “<language>.traineddata” file
which needs to be copied to the data folder of the Tesser-
act instance that will be used to perform OCR taking into
account the training data.

In general, the training data generation consists of several
steps that produce intermediate files, which, eventually, are
packaged to a single results file. The name of that file typi-
cally indicates the language it is intended for and possibly
font properties—“deu-frak”, for instance, is used for German
(Deutsch) printed in Fraktur font.

3.1.1.1 Shape training Tesseract’s main recognition
method uses a feature-based approach to recognise charac-
ters. The shape training fulfils two purposes:

• Feature extraction and clustering based on character
images (supervised learning).

• Character set creation (i.e. the alphabet).

Several steps are required for shape training—more if no
TrueType or OpenType fonts files are available (e.g. in the
case of historical documents). Those steps can be outlined
as follows:

1. For each font family (includes font variants for bold,
italic, etc.) to be added, create an image—box file pair
(an image with the glyph “shapes” and the correspond-
ing file with the bounding box coordinates and character
codes for each of the glyph shapes):

a. If a TrueType or OpenType font file is available
i. Call the text2image script with a training text sample file

and the target font file
b. Else (no font file available)

 i. Create an image collating all the glyph
shapes (complete training set)

 ii. Create a corresponding box file by run-
ning Tesseract in box file preparation
mode

 iii. Manually correct the box files (for ex-
ample if a single glyph was wrongly
recognised as two characters, the correct
character code must be added and the two
bounding boxes have to be merged into
one and the coordinates corrected)

c. Run Tesseract in training mode using the image and
the corresponding box file (creates a.tr file)

2. Generate the Unicode character set (unicharset) using
all intermediate files from the previous step by running
two separate scripts:

a. Prepare the character set
b. Add additional properties (e.g. bold, mono-space,

etc.)

3. Perform shape clustering (only for Indic languages)
4. Perform feature extraction (called MF training for

“Micro Features”)
5. Perform character normalisation (called CN training for

“Character Normalisation”).

3.1.1.2 Dictionary creation Dictionary data in Tesseract
is optional but can improve the OCR results significantly
(see Sect. 5.5). The character set from the previous step
is a requirement to create a dictionary, and therefore, the
training has to be performed in this order.

Tesseract uses a special efficient format for dictionaries,
called Directed Acyclic Word Graph (DAWG). A DAWG
file can be created from a word list in plain text format
using the wordlist2dawg command line tool. The reverse
is also possible (a word list can be extracted from a DAWG
file), which can be useful if existing dictionaries are to be
updated.

There are different dictionary types which can be cre-
ated and added individually for each language, to help
Tesseract decide the likelihood of different possible char-
acter combinations. For instance:

1. Word list: All words that are expected to be encountered
(case sensitive).

2. Frequent words: Words that appear often in the given
language (e.g. “the” for English).

3. Number patterns: Special patterns representing numbers
with mathematical symbols, units, etc.

4. Punctuation patterns: Special patterns representing sen-
tence and word punctuations.

5. Word bigrams: Common combinations of pairs of words.

77Efficient and effective OCR engine training

1 3

3.2 The Aletheia document analysis system

Development on Aletheia [2] initially started in 2001
to create a ground truthing system for page layout and
text content. Since then, Aletheia has evolved into a full
document image analysis system, incorporating support
for multiple document file formats, image processing/
enhancement and geometric correction methods, several
layout description editing modes, integrated OCR, text
content entry and manipulation functions, and more. In
this section, only those features which are relevant for
training Tesseract are described.

Figure 1 shows the general architecture of Aletheia.
It has a modular design which allows the integration of
different OCR engines. Tesseract is available by default
and is part of the software download. The communication
between modules is based on a command line interface,
and data is interchanged via PAGE XML [22] (other for-
mats such as ALTO and FineReader XML are supported
as well).

The core system, including the graphical user interface,
is loosely coupled with OCR engines (Tesseract 3 and 4
included by default). The communication is handled as
command line calls, and the data interchange is handled
via files (temporary files in some cases). The training
process is managed and triggered by the core system, but
is performed by the OCR engine. The PRImA Tesseract
tool provides a command line interface for all the required
functions and converts the OCR output to PAGE XML
format. The tool was compiled from the Tesseract source
code with additions by the authors (PAGE support, etc.).
Training is currently only supported for Tesseract 3.

All tools are available for download for academic/per-
sonal use [23, 24].

3.2.1 Image operations

Aletheia supports a number of image types and formats;
however, Tesseract only accepts bitonal (black-and-white)
TIFF files for the training process. Colour or greyscale
images can be binarised with one of three methods currently
integrated in Aletheia (depending on complexity): Otsu
global thresholding [25], Sauvola locally adaptive binarisa-
tion [26], or manual thresholding. To improve the creation of
training data and the training itself, several image processing
methods are available within Aletheia:

• Cropping and rotating
• Automated and manual noise removal
• Manual drawing on the image and erasing
• Exporting to TIFF format.

When working on a document (e.g. to prepare bitonal
training data for Tesseract), both the original colour (or grey-
scale) and a corresponding bitonal image are available for
viewing. By being able to quickly switch between the two
instances (toggle via a key press), flaws in the bitonal images
(e.g. binarisation issues) can be uncovered and, using the
image editing tools provided, repaired.

3.2.2 Ground truth production

The Tesseract training process requires ground truth on
glyph level. In Aletheia, a glyph is a page layout object
defined by its shape and position on the page (a polygon)
and its associated character code. Glyphs are the lowest
level of a layout object hierarchy which starts with region
objects at the top and progresses through text line objects to
word objects and then glyphs. Here, only text regions are of
interest, although other region types such as tables, images,
graphics, and separators are available.

It should be noted that sub-glyph components (graph-
emes) can also be ground truthed with Aletheia and rep-
resented in PAGE XML. A use case is presented by Biggs
[27].

Producing a sufficient amount of glyph objects (several
hundred) can be very significantly labour-intensive when
defining and describing each glyph individually. Aletheia
supports several strategies and corresponding functionality
to reduce the required manual effort. Three possible main
strategies are described below, each involving automation
assistance in different proportions. Different strategies (or
combinations) are applicable in different circumstances
depending on the quality of results obtained by the auto-
mated methods involved.

3.2.2.1 Segmentation‑assisted strategy A user-driven top-
down approach can be an efficient way to produce glyph-

Aletheia System

Aletheia Core System (including Graphical User
Interface)

PRImA Tesseract
Integration
Tesseract

OCR …

PAGE

Command line interface

Fig. 1 The architecture of Aletheia

78 C. Clausner et al.

1 3

level ground truth. Top-down means in this case segmenting
the page image into regions, text lines, words, and glyphs in
that order. Aletheia offers several automated tools for region,
line, and word segmentation (the latter two are an outcome
of the IMPACT project [5, 28]). In addition, semi-auto-
mated tools are available including precise outline tracing
and intelligent (text component preserving) region splitting.
If none of the assistive tools work well, for instance, because
the image quality is extremely low, all layout objects can
also be created and manipulated completely manually (by
drawing shapes—simple or complex polygons—around
objects and further editing those polygons).

The text content can be provided in a similar way. Enter-
ing text at the highest level (regions) is more efficient than
entering isolated characters for each glyph individually.
When dividing a higher-level object into objects of a level
below, a propagation feature allows the corresponding split-
ting and copying of text from the highest to the lowest level
(glyphs) in an automated fashion. In case of discrepan-
cies between the entered text and the corresponding layout
objects (such as a different number of words in the text and
present word regions), the user is warned and a detailed dia-
logue for finding and resolving of conflicts is provided.

Several validation and visualisation features of Aletheia
help to check the correctness of the created ground truth.
This includes among many others the correctness of region
outlines (no overlapping objects), completeness of entered
text (no regions without text), and inclusion of all textual
elements within the reading order.

3.2.2.2 OCR‑assisted strategy In Aletheia, the entire page
layout object hierarchy and the corresponding text content
can be pre-produced using an integrated OCR engine and
then (manually) corrected in order to arrive at the required
accuracy to be used as ground truth. Tesseract can be used
for this purpose, even if itself is to be subsequently trained.
Using this strategy, the ground truth production process
only involves spotting and correcting segmentation and text
recognition errors.

Aletheia includes a wide range of correction and editing
tools that are useful in this scenario:

• Resizing and editing of layout object polygons
• Merging and splitting of layout objects
• Text overlay on the image for OCR error checking
• Validation to find polygon overlaps and other problems.

One limitation of this strategy is that Tesseract only pro-
duces rectangular glyph objects. This can lead to problems
with fonts where the bounding boxes of adjacent glyphs tend
to overlap each other. The outlines of the glyphs themselves
need to be described precisely (not involving parts of other
glyphs) in order to achieve clean training data. Overlapping

rectangles would need to be corrected manually (using the
tools in Aletheia mentioned above).

3.2.2.3 Hybrid strategy The previous two strategies can be
combined in any conceivable way. Layout analysis and OCR
can be performed on all levels for specific layout objects.
The user could segment a page image into regions manually,
for instance, and use Tesseract for all lower level segmenta-
tion and text recognition tasks. A recommended approach
is to try the automated methods first, and, if unsuccessful,
use the undo function of Aletheia and continue using the
assisted or manual features for the layout object at hand.

4 The training process with Aletheia

The steps and the user interface for OCR training presented
in this paper are tailored to Tesseract. However, the overall
workflow is generic with regard to ground truth production,
shape and dictionary training, and evaluation. Many aspects
of the user interface can be reused directly (ground truth-
ing, selection of shape instances, dictionary editor) or would
require small additions (training dialogue). All internal com-
munication from Aletheia to the OCR engine is done via
command line calls and XML files already, and new OCR
engines can be added with little development effort (dedi-
cated dialogues via GUI editor; training/OCR via command
line calls from controller). Since Aletheia supports multi-
ple levels of page elements (regions, text lines, words, and
glyphs), training based on whole words or text lines can be
implemented as well.

The general training workflow can be outlined as: ground
truthing (segmentation and transcription), training input data
generation (creating labelled training instances—e.g. char-
acter images with Unicode label), shape training (performed
by the OCR engine), dictionary creation/tweaking, and (re-)
integration of training results (recognition model for OCR
engine).

The Aletheia user interface for OCR engine training
(Tesseract in this instance) is pragmatic and closely tied to
the native training process (see Sect. 3.1.1). Figure 2 shows
the main dialogue which functions as a dashboard and con-
trol panel, providing the following features:

• Naming the training data, typically as <language>
[-<special font>] (Fig. 2a)

• Choosing a workspace for the training session, where all
intermediate files are stored (Fig. 2b)

• Overview of created/existing training data components
(tick boxes indicate whether an intermediate file exists)
and functionality for editing where applicable (Fig. 2c)

• Shape training workflow (Fig. 2d; see Sect. 4.3)

79Efficient and effective OCR engine training

1 3

• Import from existing training data and export to a train-
ing data file (Fig. 2e)

• Creation of training data and adding to Aletheia’s inte-
grated Tesseract instance (Fig. 2f)

4.1 Training data selection

The training process in Aletheia targets the more chal-
lenging use scenarios, where no font files are available
(see Sect. 3.1.1). Instead, training data has to be selected
from document images (scans of book pages, for instance).
According to the Tesseract training documentation [21], it
is recommended to provide 5–30 instances (i.e. glyphs) for
each character of the alphabet. This should be used as a
main guideline for the selection of images. In addition, all
different styles need to be handled separately, so that suf-
ficient character samples are provided for each font and font
property (bold, italic, etc.).

Samples of different font sizes can be mixed as long as
they are above 10 point. Smaller fonts should be trained
individually [21].

It is not straightforward to select suitable training data
(for efficient and effective training) purely by visual inspec-
tion. To ensure representativeness, the proposed training
process provides assistive features (presented in the next
two subsections). Those features support an iterative selec-
tion process which highlights the need for and possibility for

extending and refining the training data set further until the
required training conditions are fulfilled.

4.2 Ground truth production

In this step, glyph-level data is produced, using one of the
strategies provided by Aletheia, as described in Sect. 3.2.2.
The production outcomes are glyphs with a polygonal out-
line and their corresponding character code as label. Lig-
atures should be kept as single glyphs and should not be
split into their separate constituents. Unicode entries exist
for most common ligatures and Aletheia provides a virtual
keyboard with a special font (Aletheia Sans) allowing to edit
and display ligatures. Similarly, it is possible to work with
other uncommon special and/or historical characters which
would typically not be supported in standard word process-
ing software (see Fig. 3). In addition to the built-in special
font, it is also possible to use other fonts with the virtual
keyboard (so long as they are installed/registered within the
operating system).

As mentioned earlier, it is important to capture each glyph
image individually, avoiding overlaps with other glyphs. Fig-
ure 3 (bottom) also shows an example of the extraction result
of a glyph with closely fitting polygon in comparison with
using a bounding box. The occurrence of adjacent glyphs in

Fig. 2 Main dialogue for Tesseract training in Aletheia

Fig. 3 Glyph description in Aletheia: accuracy of closely fitting poly-
gons versus bounding boxes

80 C. Clausner et al.

1 3

the training data (caused by boxes overlapping more than
one glyph) will decrease the recognition performance. In
order to avoid this, more precise region outlines in the form
of closely fitting polygons can be used.

To facilitate the selection of an appropriately representa-
tive training set (as mentioned in Sect. 4.1), Aletheia pro-
vides a statistics dialogue which, among other data, lists
all characters found within the current document (i.e. page)
together with the number of glyph instances. This can be
used to make sure all characters of the alphabet are ade-
quately represented.

4.3 Shape training

Having prepared the training data, shape training is the cen-
tral step in the overall process (for Tesseract, and other OCR
engines, which may use different names for the same pro-
cess). Figure 4 shows the dedicated dialogue in Aletheia. It
provides a list of all fonts for which training data has been
produced and allows to add, remove, and modify the proper-
ties of such data.

Figure 5 shows the training data generation step for a
specific font. The font name is arbitrary but has to be unique
within the overall training for the current language. Here,
the user selects the ground truth files that were created ear-
lier and the corresponding image files. A preview of the
extracted glyphs is provided as well as an overview of all
characters and corresponding number of instances (glyphs).
Prior to starting the shape training step, this overview should
be used to check if all relevant characters are represented
(letters of the alphabet, punctuation marks, digits, etc.). If
not, more training ground truth has to be produced before
continuing with the shape training. This additional ground
truth can be partial, only covering the missing characters.

For ease of use, Tesseract’s training component is inte-
grated and can be directly executed from the graphical user
interface dialogue provided within Aletheia. Once the shape
training is complete, the main training dialogue is updated
to indicate the existence of the respective intermediate files
that have been created.

4.4 Dictionary creation and update

All five types of Tesseract dictionaries can be edited in
Aletheia. The editor (see Fig. 6) provides a text field where
entries can be directly manipulated and options to filter all
words as well as import words from ground truth files or
plain text files. The filter options include:

Fig. 4 Shape training dialogue

Fig. 5 Shape training step for a selected font

Fig. 6 Dictionary editor

81Efficient and effective OCR engine training

1 3

• Splitting of text chunks into words at specified characters
• Removal of specific characters (such as quotation marks)
• Removal of words containing specific characters (such

as digits).

The conversion to and from Tesseract’s graph format
(DAWG) is handled implicitly. If the character sets are com-
patible, existing dictionaries can be reused. This is useful in
cases where only an additional font is to be trained on and
not a whole new language.

4.5 Packaging and evaluating the training output

Once training is complete, all resulting information related
to a given language (configuration, font, dictionaries, etc.,
files) can be packaged and exported to a “.traineddata” file
which is read in by Tesseract when the respective language
is specified (the filename reflects the language name in the
official Tesseract executable). The information can also
be added directly to the list of available languages of the
Tesseract instance that is integrated in Aletheia. A new entry
will appear in the page analysis and OCR dialogue (Fig. 7).
A more meaningful display name can also be specified.

The new training information can then be evaluated
within Aletheia (see Fig. 8) by running and assessing the
results of the trained OCR engine. Errors can indicate either
missing characters in the training ground truth or unsuitable
glyphs (broken or misshaped, for example).

Aletheia offers an OCR checking and correction mode
enabling recognised text to be displayed as overlay on top
of the scanned document image. For a more efficient com-
parison, the overlay component approximates the original

font size and links the slightly transparent text to the mouse
pointer which allows to position it exactly on top of the back-
ground image (or wherever it suits the user best). In large-
scale digitisation projects (like IMPACT [5] and ENP [29]),
it was found that line-by-line comparison, with the recog-
nised text positioned just above the corresponding image
text, works well for most users—requiring only little eye
movement and avoiding unnecessary distraction.

5 Experiments and Evaluation

The effectiveness of the training process was investigated
and validated using two very different datasets, each rep-
resenting a realistic use scenario where OCR engine train-
ing can make a difference: a sample of the 1961 Census for
England and Wales (line-printer output resembling more
“modern” typewritten/monospaced fonts also), and a histori-
cal book from the Bibliothèque National de France (French
National Library) dated 1603; collected and ground truthed
for the IMPACT project [28], representing an example of
typical historical fonts. Figure 9 shows two examples, and
Table 1 lists the characteristics and sizes of the training and
test sets. The data is available for download [30].

Five different experiments were carried out and reported
below, after a brief description of the experimental proce-
dure and the evaluation method used. First, in Sect. 5.3,
the results from the trained OCR engine are compared to
those of the original untrained engine in order to assess the
impact of the training. The second experiment, reported in
Sect. 5.4, evaluates the impact of reducing the size of the
training dataset (using different strategies) on the quality of
training. The improvement in recognition results after the
addition of combinations of different types of dictionaries
is measured in the third experiment in Sect. 5.5. Finally,
the fourth experiment, in Sect. 5.6, examines the impact of
training on the recognition of individual fonts within the
same document.

5.1 Experimental procedure

All experiments were carried out by creating an initial set of
training instances (glyphs with associated character codes),
and the results were evaluated using a metric based on text
edit distance (see next section).Fig. 7 Page analysis dialogue

Fig. 8 Test of newly trained OCR engine by visual comparison of its
results (top line) to the original text

82 C. Clausner et al.

1 3

The ground truth text was transcribed using Aletheia,
as described earlier. Special characters and ligatures were
entered as seen on the page (diplomatic transcription) and
not transliterated.

For the second experiment in particular, several strate-
gies to incrementally reduce the size of the training dataset
were applied. More specifically, the following steps were
carried out:

• Page segmentation into text regions, text lines, words,
and glyphs consequently

• Text transcription on text region level
• Text propagation from text region level down to glyph

level
• (Selection of training instances)
• Shape training
• (Dictionary creation)
• Training data export
• OCR on test set
• Evaluation of result (using ground truth data as refer-

ence).

The considered strategies for selecting training instances
involved: removal of broken/misshaped glyphs (see Fig. 10),
removal of similar looking glyphs, and removal of random
glyphs as a control group. The impact of each strategy was
tested by gradually removing more and more instances.

5.2 Evaluation methodology

To evaluate the OCR performance on its own, independently
from segmentation (layout analysis), text line snippets were
favoured over complete pages as input for Tesseract. The

respective result texts were recombined to the full-size test
set using the original text line order.

To measure the quality of OCR results, a tool called
TextEval [31] was used (developed by the authors). Among
other measures, it uses an implementation of the University
of Nevada measure [32] which is based on string edit dis-
tance. The evaluation quality reported is a percentage where
100% denotes the text was recognised perfectly. In addition,
the TextEval tool provides more in-depth statistical infor-
mation on which elements of the text were misrecognised.

5.3 Comparison to default (untrained) OCR

To measure the impact of the training, OCR results with and
without training were compared. Without training, in this
context, means using the default language information files
provided by Tesseract. For completeness of comparison, also
the state-of-the-art commercial system ABBYY FineReader
Engine 11 was evaluated.

It should be noted that the Census dataset is special in
the sense that it only contains upper case Latin characters
(as well as digits and punctuation marks). For that reason,
an additional performance value is reported, reflecting the
use of Tesseract’s configuration file where a character white
list (allowed characters, a subset of the supported charac-
ters) can be specified. While in most everyday cases this
feature may not be used, in the case of this particular dataset
it should be part of a fair comparison.

Table 2 shows the evaluation results. The trained Tesser-
act clearly outperforms all other configurations. For both test
sets, there is a performance increase of about 5% over the
“out-of-the-box” Tesseract OCR results.

5.4 Impact of glyph selection

To study the behaviour of Tesseract when trained with dif-
ferent amounts of training instances, the sizes of the initial
training datasets of glyphs were reduced using different
strategies.

Table 3 and Fig. 11 show the evaluation results for the
Census test set for three different removal strategies to
reduce the training dataset:

• Progressive removal of broken and misshaped glyphs
(100 at a time, bad cases removed first, see Fig. 10.
A manual intervention and therefore subjective with
regard to what would be judged broken/low quality
glyph images. Criteria were: obviously broken (disjoint)
“strokes”, thickness variations, deformations, etc.).

• Progressive removal of random glyphs (100 removed
each time from the number of glyphs in the previous
test).

Fig. 9 Example pages of the evaluation datasets

83Efficient and effective OCR engine training

1 3

• Independent removal of random glyphs (starting in each
case from the initial set of 2150 glyphs and just removing
the required number of glyphs to arrive at the number of
training glyphs specified in each test).

Since the removal of training instances was very gradual,
the overall number of measurements was deemed sufficient
(individual run was not repeated multiple times). Especially,
the independent removal of random glyphs represents multi-
ple statistically independent repeats of the experiment. The
other two removal strategies reflect how a user would pro-
gress the training.

The results show that the training is stable overall, but
some outliers can be observed. To find out what is caus-
ing the drop of performance for those outliers, the statistics
feature of the TextEval tool was used. The result is a table
where each column reports: ground truth text snippet, OCR
result text snippet, recognition error type (misclassification,
miss, false detection) and count. The statistics table revealed
that the main reason for the outlier in the “Remove broken
glyphs” experiment is the misclassification of all “1”s as “I”s
(upper case i). Interestingly, the results improved again when
removing more glyphs.

The exact origin of other performance fluctuations is not
known because Tesseract can be considered a black box with
regard to these experiments. After a careful examination,
the source code and documentation might provide further
insights.

Figure 12 shows the results for the BNF historical test set
using the removal strategy with independent random remov-
als (the more stable strategy based on the Census dataset
results). There is more variation in comparison with the
Census set, but the trained Tesseract outperforms the default
Tesseract in all instances.

A slightly different random glyph removal experiment
was carried out with the BNF dataset to investigate if a con-
siderably smaller number of training instances (5–30 per
character class as advised by the Tesseract documentation)
is indeed of advantage. The experiment was designed to ran-
domly select progressively smaller sets of training instances
per character (starting with 90 and ending with 1) from the
pool of available glyphs (starting point was 2094 glyphs with

Table 1 Evaluation data sets Dataset Characters/font Training set Test set

Census 40 Character classes, upper case
Latin, digits, and punctuations;
one font

2150 glyphs 2115 glyphs

BNF (French National
Library)

74 Character classes; Latin with
French characters and ligatures,
two fonts

773 + 1321 glyphs 2040 glyphs

O K S M B N

1

2

3

4

Fig. 10 Broken or misshaped characters (glyphs) progressively
selected for removal from the training sets

65%

70%

75%

80%

85%

90%

95%

21
50

20
50

19
50

18
50

17
50

16
50

15
50

14
50

13
50

12
50

11
50

10
50 95

0
85

0
75

0
65

0
55

0
45

0
35

0
25

0
15

0 50 40 30

Ch
ar

ac
te

r
ac

cu
ra

cy

Number of training instances

Effect of Removing Training Instances

Removing broken and misshapen glyphs

Progressive removal of random glyphs

Independent removal of random glyphs

Fig. 11 OCR accuracy for the Census test set after removing training
instances (performance of default Tesseract represented by horizontal
dashed line)

84 C. Clausner et al.

1 3

varying number of instances per character class). The exper-
iment was repeated five times to reduce statistical variations.

Table 4 shows all results of the experiment. Figure 13
shows the average over all five repetitions and grouped in
ranges of two per character instance values resulting in an
average value over 10 independent random experiments. As
expected, the OCR performance decreases if very few train-
ing instances are used. But, for this dataset at least, there is

no statistical evidence that confirms the “less is more” direc-
tive from the official documentation. Nevertheless, the train-
ing is surprisingly stable, even with significantly less train-
ing instances than the initial set. A cap of 10 instances per
character, for example, leads to OCR performances between
87.45 and 89.41% (for the five repetitions) as compared to
the 90.14% starting point (maximum number of instances).

5.5 Dictionary training results

As mentioned in Sect. 3.1.1, Tesseract supports different
types of dictionaries which can be used to improve the OCR
results. For historical data, dictionaries are not always read-
ily available. This was the case for the BNF set which uses
historical French spelling. Nevertheless, a dictionary for fre-
quent words can be easily created. Because the Census data
is repetitive, a dictionary could be created using the training
set (all table row and columns headers). A number diction-
ary was relevant only for the Census data since the French
book did not contain any numbers.

Table 5 shows the performance evaluation results. There
are measurable improvements when using dictionaries. The
frequent word dictionary did not have a positive or negative
impact for the Census data, however.

5.6 The impact of training in the presence of more
than one font

The BNF dataset contains pages with two different fonts. In
this subsection, individual results for each font are presented.

Figure 14 shows the results of the trained OCR engine
for both fonts. The plain font, which looks more modern,
results in considerably higher OCR accuracy in comparison
with the italic font which has many flourishes and significant
overlap in the vertical direction between consecutive glyphs.

Table 2 OCR accuracy with and without training

OCR accuracy by dataset

Census (English)
(%)

BNF
(French)
(%)

Default FineReader 88.40 78.09
Default Tesseract 90.08 84.93
Default Tesseract upper case 92.77 N/A
Trained Tesseract 95.40 90.14

Table 3 OCR accuracy for the Census test set after removing training
instances (outliers highlighted in bold italic)

Number of train-
ing instances
(Glyphs)

OCR accuracy by removal strategy

Broken
removed
(%)

Progressively
(randomly)
removed (%)

Independently
(randomly)
removed (%)

2150 94.51 94.51 94.51
2050 94.37 93.69 93.83
1950 94.37 87.65 93.90
1850 94.17 88.57 94.10
1750 94.61 92.84 93.59
1650 94.30 93.79 93.49
1550 94.82 94.07 93.76
1450 88.85 94.44 94.30
1350 94.24 93.76 93.21
1250 94.24 94.13 93.98
1150 94.61 94.24 93.11
1050 93.83 92.57 94.13
950 94.20 93.66 92.84
850 93.04 94.13 94.20
750 93.35 88.88 94.20
650 93.59 94.10 92.67
550 94.48 94.27 93.66
450 94.44 93.28 94.03
350 94.34 92.84 91.10
250 94.37 93.15 94.13
150 91.95 91.00 92.50
50 90.89 84.24 89.91
40 92.50 74.59 85.20
30 88.75 66.71 67.91

82%

83%

84%

85%

86%

87%

88%

89%

90%

91%

20
94

19
94

18
94

17
94

16
94

15
94

14
94

13
94

12
94

11
94

10
94 99

4
89

4
79

4
69

4
59

4
49

4
39

4
29

4
25

4
21

4

Ch
ar

ac
te

r a
cc

ur
ac

y

Number of training instances

Independent Removal of Random Glyphs

Fig. 12 OCR accuracy for BNF set when removing random training
instances (performance of default Tesseract represented by horizontal
line)

85Efficient and effective OCR engine training

1 3

In both cases, the trained OCR outperforms the standard
OCR significantly. In the case of the italic font, the improve-
ment is highest with about 14%.

To find out if there is a correlation in accuracy between
the individual fonts within Tesseract, the results from the
random experiments were ordered by the OCR performance

for one font and the results of the other font were plotted in
a scatter graph (Fig. 15). It can be concluded that there is
no statistical evidence for any significant correlation (e.g. a
drop in performance for one font, due to training variation,
does not necessarily result in a drop in performance for the
other font).

5.7 Discussion of experimental results

OCR engine training using the proposed approach (for
the widely used Tesseract in this case) is effective in the
significant majority of cases and can lead to considerable
improvements in recognition performance. Nonetheless,
drops in quality can occur occasionally, although no com-
plete breakdown (not significantly below the default system)
was observed. It is therefore recommended to incorporate a
separate final quality assurance step with performance meas-
urement when the training is part of a digitisation project.
The positive message is that small changes to the training
data can rectify the OCR results and take full benefit of the
potential improvement.

Table 4 OCR accuracy for
random experiments with
capped training instances

a Maximum instances per character
b Total number of training instances (glyphs)

Max inst.
per chara

Training instb OCR accuracy in %

Repetition 1 Repetition 2 Repetition 3 Repetition 4 Repetition 5

∞ 2094 90.14 90.14 90.14 90.14 90.14
90 1933 89.75 90.11 90.41 90.02 89.96
80 1893 90.50 90.56 90.23 89.78 90.44
70 1853 89.72 89.87 89.41 90.02 90.78
60 1790 89.87 90.11 89.99 90.08 89.96
50 1692 89.74 89.99 89.65 89.90 90.23
40 1563 89.93 89.35 90.66 90.32 89.35
30 1373 89.54 89.51 89.65 90.23 88.99
20 1119 90.08 88.99 90.35 89.75 88.81
10 762 88.69 88.36 87.45 89.41 88.18
1 140 80.82 74.32 79.44 86.03 84.17

90.1% 90.2% 90.0% 89.9% 89.6%

84.7%

70%

75%

80%

85%

90%

all 80 - 90 60 - 70 40 - 50 20 - 30 1 - 10

Ch
ar

ac
te

r
ac

cu
ra

cy

Maximum character instances

Average over five repe��ons

Fig. 13 OCR accuracy for random experiments with capped training
instances (grouped in pairs of two)

Table 5 OCR accuracy with use
of different types of dictionaries

OCR accuracy by dataset

Census (Eng) (%) BNF
(French)
(%)

Default Tesseract 90.08 84.93
Default Tesseract upper case 92.77 N/A
Trained without dictionary 94.51 89.78
Trained + word dictionary 95.26 N/A
Trained + word and number dictionaries 95.40 N/A
Trained + word, frequent word, and number dictionaries 95.40 90.14

86 C. Clausner et al.

1 3

Throughout the experiments, no universal strategy for
selecting suitable training instances could be discovered.
The results show that the initial set of training glyphs does
not necessarily lead to the best OCR results, but no meth-
odology to remove certain glyphs and retain others can be
derived from these experiments (although the independ-
ent removal of random glyphs seems more consistent).
It can be seen, however, that there is no apparent reason
to limit the training instances to between 5 and 30 per
character class (as mentioned in the Tesseract documenta-
tion). The best approach towards creating a good training
dataset still appears to be the proposed iterative refinement

process involving sample selection, training, processing,
and evaluation.

Given that the presented workflow for training data gener-
ation is very efficient (about two seconds per glyph instance),
crowdsourcing or generation of synthetic data will not pro-
vide significant benefits over the proposed approach, at least
for training Tesseract (traditional engine). Crowdsourcing
requires a dedicated infrastructure and strict quality assur-
ance measures, resulting in long lead time until usable data
becomes available. Synthetic examples can only be produced
if adequate fonts can be obtained and they always bear the
risk of not being truly representative of the characteristics
of the originals at hand. As has been shown, the traditional
OCR engine of Tesseract works well with very few training
instances per class. This is even more apparent considering
the challenges of historical material mentioned in the intro-
duction (no font available, special characters, etc.).

Of course, Aletheia allows to break up the workflow into
separate tasks that can be completed by different users. Page
segmentation and text transcription can be performed inde-
pendently and even web-based. (There is an open-source
web version of Aletheia [33] that can be deployed.) Inter-
mediate results can be exchanged as PAGE XML. Training
and evaluation can be done easily by one user.

6 Concluding remarks

An efficient and effective way to train OCR engines for new
languages and fonts was presented. All major components
required for the training are integrated into the Aletheia soft-
ware system, eliminating the need to go through disjointed
steps using different scripts, etc. Such a GUI-based approach
also allows non-technical users to train OCR engines and
benefit their digitisation projects. Moreover, the training data
preparation and performance evaluation functionality offered
in Aletheia are integral to the proposed iterative training
process in order to achieve best results. The training process
was shown for the widely used open-source Tesseract OCR
(version 4 but using the traditional engine as developed for
versions 3.0×) although the process will be largely the same
for other engines too: the main data preparation and train-
ing evaluation steps are directly applicable in all cases. All
mentioned tools are available for download at primaresearch.
org [23, 24, 31].

Where necessary (e.g. new material with new character
classes or other fonts) the training data can be extended (if
the original ground truth is available) and the training can
be repeated. While the training data generation is thereby
incremental, the actual training is not incremental and per-
formed in full (at least for Tesseract). However, this is not a
problem because Tesseract’s training method is very fast for
the traditional engine. Training for the new LSTM engine is

87.7% 87.9% 87.9% 87.8% 88.0% 87.4% 87.8% 87.7% 87.6%
86.3%

75.7%

92.5% 92.2% 92.7%
92.1% 92.0% 92.4% 92.0% 91.5% 91.6%

90.6%

86.2%

70%

75%

80%

85%

90%

95%

all 90 80 70 60 50 40 30 20 10 1

Ch
ar

ac
te

r a
cc

ur
ac

y

Maximum character instances

Average over five repe��ons, by font

Italic Plain

Fig. 14 OCR accuracy by font (italic and plain) for the BNF set
(dashed line: default Tesseract, italic; solid line: default Tesseract,
plain)

90.0%

90.5%

91.0%

91.5%

92.0%

92.5%

93.0%

93.5%

94.0%

86.5% 87.0% 87.5% 88.0% 88.5% 89.0% 89.5% 90.0%

Pl
ai

n
fo

nt
 c

ha
ra

ct
er

 a
cc

ur
ac

y

Italic font character accuracy

Correlation Plot

Fig. 15 Correlation plot for the two fonts of the BNF dataset

87Efficient and effective OCR engine training

1 3

currently not supported by the presented system, but it can
be added in future. This would require adoption of the new
training procedures (based on text lines, not glyphs) and
modifications to match the changes to the API.

The training approach was evaluated using two differ-
ent datasets of representative quality (taken from recent
large-scale digitisation projects). In both cases, significant
improvements over the default Tesseract setup and also over
the commercially available FineReader OCR Engine were
observed. The experiments reported in this paper also shed
a useful light on the intricacies of training in terms of train-
ing strategies, the amount of data required and the relative
independence of fonts in training.

In practical terms, an experienced user can create training
data for a new dataset within a few hours (the overall average
time per glyph is 2.1 s for an experienced user, as measured
in the experiments). The training script itself runs in only a
few seconds. Overall, using training can be recommended,
even for small digitisation projects.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Pletschacher, S., Clausner, C., Antonacopoulos, A.: Europeana
newspapers OCR workflow evaluation. In: Proceedings of the
2015 Workshop on Historical Document Imaging and Process-
ing (HIP2015), Nancy, France, pp. 39–46 (2015)

 2. Clausner, C., Pletschacher, S., Antonacopoulos, A.: Aletheia—
an advanced document layout and text ground-truthing system
for production environments. In: Proceedings of the 11th Inter-
national Conference on Document Analysis and Recognition
(ICDAR2011), Beijing, China, pp. 48–52 (2011)

 3. Tesseract OCR, https ://githu b.com/tesse ract-ocr. Accessed 28
Aug 2019

 4. Clausner, C., Pletschacher, S., Antonacopoulos, A.: Efficient
OCR training data generation with Aletheia”. In: Short Paper
Booklet of the 11th International Association for Pattern Rec-
ognition (IAPR) Workshop on Document Analysis Systems
(DAS2014), Tours, France, pp. 19–20 (2014)

 5. IMPACT Project: http://www.impac t-proje ct.eu, Accessed 28
Aug 2019

 6. Heliński, M., Kmieciak, M., Parkoła, T.: Report on the compari-
son of Tesseract and ABBYY FineReader OCR engines. PCSS,
2012, oai:lib.psnc.pl:358

 7. ABBYY: Recognition with Pattern Training. https ://abbyy .techn
ology /en:featu res:ocr:patte rn_train ing, Accessed 28 Aug 2019

 8. White, N.: Training Tesseract for Ancient Greek OCR. Eutypon
(28–29), 1–11 (2013)

 9. Nayak, M., Nayak, A.K.: Odia characters recognition by training
Tesseract OCR engine. In: IJCA Proceedings on International
Conference on Distributed Computing and Internet Technology
2014 ICDCIT-2014, (2013)

 10. Kanungo, T., Haralick, R.M.: An automatic closed-loop meth-
odology for generating character groundtruth for scanned docu-
ments. IEEE Trans. Pattern Anal. Mach. Intell. 21(2), 179–183
(1999)

 11. Baird, H.S.: The state of the art of document image degradation
modeling. In: Proceedings of 4th IAPR International Workshop
on Document Analysis Systems, Rio de Janeiro, Brazil, pp.
1–16 (2000)

 12. Zi, G., Doermann, D.: Document image ground truth generation
from electronic text. In: Proceedings of the 17th International
Conference on Pattern Recognition, ICPR 2004, vol. 2, pp.
663–666, (2004)

 13. Journet, N., Mansencal, B., Visani, M.: Massive, free and repro-
ducible grountruthed document image databases generation
with DocCreator. In: Proceedings of 14th IAPR International
Conference on Document Analysis and Recognition (ICDAR),
pp. 1139–1143, (2017). https ://doi.org/10.1109/icdar .2017.188

 14. Dudczak, A., Nowak, A., Parkoła, T.: Creation of custom rec-
ognition profiles for historical documents. In: Proceedings of
the First International Conference on Digital Access to Textual
Cultural Heritage (DATeCH’14), ACM, pp. 143–146, http://
dx.doi.org/10.1145/25951 88.25952 09

 15. Torabi, K., Durgan, J., Tarpley, B.: Early modern OCR pro-
ject (eMOP) at Texas A&M University: using Aletheia to Train
Tesseract, vol. 23, ACM Press CrossRef. Web, (2013)

 16. Christy, M., Gupta, A., Grumbach, E., Mandell, L., Furuta, R.,
Gutierrez-Osuna, R.: Mass digitization of early modern texts
with optical character recognition. J. Comput. Cult. Herit.
(2018). https ://doi.org/10.1145/30756 45

 17. Smith, R.: An overview of the tesseract OCR engine. In: IEEE
Computer Society Proceedings of the 9th International Confer-
ence on Document Analysis and Recognition (ICDAR2007),
2007, pp. 629–633

 18. Smith, R., Antonova, D., Lee, D.S.: Adapting the Tesseract open
source OCR engine for multilingual OCR. In: Proceedings of
the International Workshop on Multilingual OCR, Barcelona,
Spain, (2009), https ://doi.org/10.1145/15778 02.15778 04

 19. Smith, R.: History of the Tesseract OCR engine: What
worked and what Didn’t. In: Proceedings SPIE 8658, Docu-
ment Recognition and Retrieval XX, 865802, https ://doi.
org/10.1117/12.20100 51 (2013)

 20. Shams, S.: Breaking down Tesseract OCR. Online article in
Machine Learning Medium, https ://machi nelea rning mediu
m.com/2019/01/15/break ing-down-tesse ract-ocr/. Accessed
28 Aug 2019

 21. Training Tesseract. https ://githu b.com/tesse ract-ocr/tesse ract/
wiki/Train ing-Tesse ract, Accessed 28 Aug 2019

 22. Pletschacher, S., Antonacopoulos, A.: The PAGE (page analysis
and ground-truth elements) format framework. In: Proceedings
of the 20th International Conference on Pattern Recognition
(ICPR2010), Istanbul, Turkey, IEEE-CS Press, pp. 257–260
(2010)

 23. Tesseract OCR to PAGE (command line tool): primaresearch.
org/tools/TesseractOCRToPAGE, last access 23/07/2019

 24. Aletheia (Lite and Pro): primaresearch.org/tools/Aletheia, Last
access 23/07/2019

 25. Otsu, N.: A threshold selection method from gray level histo-
gram. IEEE SMC-9, No. 1, pp. 62–66, 1979

 26. Sauvola, J., Pietikäinen, M.: Adaptive document image binariza-
tion. Pattern Recognit. 33(2), 225–236 (2000)

 27. Biggs, J.: Comparison of visual and logical character segmenta-
tion in Tesseract OCR Language Data for Indic Writing Scripts.
ALTA 11–20 (2015)

 28. IMPACT Centre of Competence for Digitisation in Europe.
In: Proceedings of the Australasian Language Technology

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/tesseract-ocr
http://www.impact-project.eu
https://abbyy.technology/en:features:ocr:pattern_training
https://abbyy.technology/en:features:ocr:pattern_training
https://doi.org/10.1109/icdar.2017.188
http://dx.doi.org/10.1145/2595188.2595209
http://dx.doi.org/10.1145/2595188.2595209
https://doi.org/10.1145/3075645
https://doi.org/10.1145/1577802.1577804
https://doi.org/10.1117/12.2010051
https://doi.org/10.1117/12.2010051
https://machinelearningmedium.com/2019/01/15/breaking-down-tesseract-ocr/
https://machinelearningmedium.com/2019/01/15/breaking-down-tesseract-ocr/
https://github.com/tesseract-ocr/tesseract/wiki/Training-Tesseract
https://github.com/tesseract-ocr/tesseract/wiki/Training-Tesseract

88 C. Clausner et al.

1 3

Association Workshop 2015—ALTA, Parramatta, Australia.
http://www.digit isati on.eu/. Accessed 28 Aug 2019

 29. Europeana Newspapers: http://www.europ eana-newsp apers .eu.
Accessed 25 May 2018

 30. Training and test data for Tesseract Training: https ://www.prima
resea rch.org/datas ets/TESSE RACT_TRAIN ING, Accessed 23
July 2019

 31. PRImA Text Evaluation tool. http://www.prima resea rch.org/
tools /Perfo rmanc eEval uatio n. Accessed 25 May 2018

 32. Rice, S.V.: Measuring the accuracy of page-reading systems.
Ph.D. Thesis, University of Nevada, Las Vegas (1996)

 33. WebAletheia: https ://githu b.com/PRImA -Resea rch-Lab/prima
-aleth eia-web. Accessed 11 Mar 2019

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://www.digitisation.eu/
http://www.europeana-newspapers.eu
https://www.primaresearch.org/datasets/TESSERACT_TRAINING
https://www.primaresearch.org/datasets/TESSERACT_TRAINING
http://www.primaresearch.org/tools/PerformanceEvaluation
http://www.primaresearch.org/tools/PerformanceEvaluation
https://github.com/PRImA-Research-Lab/prima-aletheia-web
https://github.com/PRImA-Research-Lab/prima-aletheia-web

	Efficient and effective OCR engine training
	Abstract
	1 Introduction
	2 Background and related work
	3 Tesseract and Aletheia
	3.1 The Tesseract OCR engine
	3.1.1 Native training procedure
	3.1.1.1 Shape training
	3.1.1.2 Dictionary creation

	3.2 The Aletheia document analysis system
	3.2.1 Image operations
	3.2.2 Ground truth production
	3.2.2.1 Segmentation-assisted strategy
	3.2.2.2 OCR-assisted strategy
	3.2.2.3 Hybrid strategy

	4 The training process with Aletheia
	4.1 Training data selection
	4.2 Ground truth production
	4.3 Shape training
	4.4 Dictionary creation and update
	4.5 Packaging and evaluating the training output

	5 Experiments and Evaluation
	5.1 Experimental procedure
	5.2 Evaluation methodology
	5.3 Comparison to default (untrained) OCR
	5.4 Impact of glyph selection
	5.5 Dictionary training results
	5.6 The impact of training in the presence of more than one font
	5.7 Discussion of experimental results

	6 Concluding remarks
	References

