
International Journal on Document Analysis and Recognition (IJDAR) (2020) 23:89–102
https://doi.org/10.1007/s10032-020-00350-4

ORIG INAL PAPER

Fast multi-language LSTM-based online handwriting recognition

Victor Carbune1 · Pedro Gonnet1 · Thomas Deselaers1 · Henry A. Rowley2 · Alexander Daryin1 ·Marcos Calvo1 ·
Li-Lun Wang2 · Daniel Keysers1 · Sandro Feuz1 · Philippe Gervais1

Received: 8 August 2019 / Revised: 20 December 2019 / Accepted: 24 January 2020 / Published online: 8 February 2020
© The Author(s) 2020

Abstract
We describe an online handwriting system that is able to support 102 languages using a deep neural network architecture. This
new system has completely replaced our previous segment-and-decode-based system and reduced the error rate by 20–40%
relative for most languages. Further, we report new state-of-the-art results on IAM-OnDB for both the open and closed dataset
setting. The system combines methods from sequence recognition with a new input encoding using Bézier curves. This leads
to up to 10× faster recognition times compared to our previous system. Through a series of experiments, we determine the
optimal configuration of our models and report the results of our setup on a number of additional public datasets.

1 Introduction

In this paper, we discuss online handwriting recognition:
Given a user input in the form of an ink, i.e., a list of touch
or pen strokes, output the textual interpretation of this input.
A stroke is a sequence of points (x, y, t) with position (x, y)
and timestamp t .

B Victor Carbune
vcarbune@google.com

Pedro Gonnet
gonnet@google.com

Thomas Deselaers
deselaers@google.com

Henry A. Rowley
har@google.com

Alexander Daryin
shurick@google.com

Marcos Calvo
marcoscalvo@google.com

Li-Lun Wang
llwang@google.com

Daniel Keysers
keysers@google.com

Sandro Feuz
sfeuz@google.com

Philippe Gervais
pgervais@google.com

1 Google, Zurich, Switzerland

2 Mountain View, CA, USA

Figure 1 illustrates example inputs to our online handwrit-
ing recognition system in different languages and scripts. The
left column shows examples in English with different writing
styles, with different types of content, and thatmay bewritten
on one or multiple lines. The center column shows examples
from five different alphabetic languages similar in structure
to English: German, Russian, Vietnamese, Greek, and Geor-
gian. The right column shows scripts that are significantly
different fromEnglish: Chinese has amuch larger set ofmore
complex characters, and users often overlap characters with
one another. Korean, while an alphabetic language, groups
letters in syllables leading to a large “alphabet” of syllables.
Hindi writing often contains a connecting “Shirorekha” line,
and characters can form larger structures (grapheme clus-
ters) which influence the written shape of the components.
Arabic is written right-to-left (with embedded left-to-right
sequences used for numbers or English names), and char-
acters change shape depending on their position within a
word. Emoji are non-text Unicode symbols that we also
recognize.

Online handwriting recognition has recently been gaining
importance for multiple reasons: (a) An increasing number
of people in emerging markets are obtaining access to com-
puting devices, many exclusively using mobile devices with
touchscreens. Many of these users have native languages and
scripts that are not as easily typed as English, e.g., due to the
size of the alphabet or the use of grapheme clusters which
makes it difficult to design an intuitive keyboard layout [10].
(b) More and more large mobile devices with styluses are

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10032-020-00350-4&domain=pdf


90 V. Carbune et al.

Fig. 1 Example inputs for online handwriting recognition in different
languages. See text for details

becoming available, such as the iPad Pro,1 Microsoft Sur-
face devices,2 and Chromebooks with styluses.3

Early work in online handwriting recognition looked at
segment-and-decode classifiers, such as the Newton [48].
Another line of work [38] focused on solving online hand-
writing recognition by making use of hidden Markov mod-
els (HMMs) [20] or hybrid approaches combining HMMs
and Feed-forward Neural Networks [2]. The first HMM-
free models were based on time delay neural networks
(TDNNs) [5,22,37], and more recent work focuses on recur-
rent neural network (RNN) variants such as long short-term
memory networks (LSTMs) [6,7,14].

How to represent online handwriting data has been a
research topic for a long time. Early approaches were
feature-based, where each point is represented using a set
of features [22,23,48], or using global features to represent
entire characters [22]. More recently, the deep learning rev-
olution has swept away most feature engineering efforts and
replaced themwith learned representations inmany domains,
e.g., speech [17], computer vision [44], and natural language
processing [33].

Together with architecture changes, training method-
ologies also changed, moving from relying on explicit
segmentation [25,37,48] to implicit segmentation using the
connectionist temporal classification (CTC) loss [12], or
encoder–decoder approaches trained with Maximum Likeli-
hood Estimation [51]. Further recent work is also described
in [26].

The transition to more complex network architectures and
end-to-end training can be associated with breakthroughs
in related fields focused on sequence understanding where
deep learning methods have outperformed “traditional” pat-
tern recognitionmethods, e.g., in speech recognition [40,41],

1 https://www.apple.com/ipad-pro/.
2 https://www.microsoft.com/en-us/store/b/surface.
3 https://store.google.com/product/google_pixelbook.

OCR [8,47], offline handwriting recognition [16], and com-
puter vision [45].

In this paper, we describe our new online handwrit-
ing recognition system based on deep learning methods.
It replaces our previous segment-and-decode system [25],
which first over-segments the ink, then groups the segments
into character hypotheses, and computes features for each
character hypothesis which are then classified as characters
using a rather shallow neural network. The recognition result
is then obtained using a best path search decoding algo-
rithm on the lattice of hypotheses incorporating additional
knowledge sources such as language models. This system
relies on numerous preprocessing, segmentation, and fea-
ture extraction heuristics which are no longer present in
our new system. The new system reduces the amount of
customization required, and consists of a simple stack of
bidirectional LSTMs (BLSTMs), a single Logits layer, and
the CTC loss [15] (Sect. 2). We train a separate model for
each script (Sect. 3). To support potentially many languages
per script (see Table 1), language-specific language models
and feature functions are used during decoding (Sect. 2.5).
For example, we have a single recognition model for Ara-
bic script which is combined with specific language models
and feature functions for our Arabic, Persian, and Urdu lan-
guage recognizers. Table 1 shows the full list of scripts and
languages that we currently support.

The new models are more accurate (Sect. 4), smaller, and
faster (Table 2) than our previous segment-and-decode mod-
els and eliminate the need for a large number of engineered
features and heuristics.

We present an extensive comparison of the differences
in recognition accuracy for eight languages (Sect. 5) and
compare the accuracy ofmodels trained on publicly available
datasets where available (Sect. 4). In addition, we propose a
new standard experimental protocol for the IBM-UB-1 data-
set [43] to enable easier comparison between approaches in
the future (Sect. 4.2).

The main contributions of our paper are as follows:

– We describe in detail our recurrent neural network-
based recognition stack and provide a description of
how we tuned the model. We also provide a detailed
experimental comparison with the previous segment-
and-decode-based stack [25] on the supported languages.

– We describe a novel input representation based on
Bézier curve interpolation, which produces shorter input
sequences, which results in faster recognitions.

– Our system achieves a new state of the art on the IAM-
OnDB dataset, both for open and closed training sets.

– We introduce an evaluation protocol for the less com-
monly used English IBM-UB-1 query dataset. We pro-
vide experimental results that quantify the structural

123

https://www.apple.com/ipad-pro/
https://www.microsoft.com/en-us/store/b/surface
https://store.google.com/product/google_pixelbook


Fast multi-language LSTM-based online handwriting recognition 91

Table 1 List of languages supported in our system grouped by script

Script Languages

Latin Afrikaans, Azerbaijani, Bosnian, Catalan, Cebuano, Corsican, Czech, Welsh, Danish, German, English,
Esperanto, Spanish, Estonian, Basque, Finnish, Filipino, French, Western Frisian, Irish, Scottish Gaelic,
Galician, Hawaiian, Hmong, Croatian, Haitian Creole, Hungarian, Indonesian, Icelandic, Italian,
Javanese, Kurdish, Latin, Luxembourgish, Lao, Lithuanian, Latvian, Malagasy, Maori, Malay, Maltese,
Norwegian, Dutch, Nyanja, Polish, Portuguese, Romanian, Slovak, Slovenian, Samoan, Shona, Somali,
Albanian, Sundanese, Swedish, Swahili, Turkish, Xhosa, Zulu

Cyrillic Russian, Belarusian, Bulgarian, Kazakh, Mongolian, Serbian, Ukrainian, Uzbek, Macedonian, Kyrgyz,
Tajik

Chinese Simplified Chinese, Traditional Chinese, Cantonese

Arabic Arabic, Persian, Urdu

Devanagari Hindi, Marathi, Nepali

Bengali Bangla, Assamese

Ethiopic Amharic, Tigrinya

Languages with distinct scripts: Armenian, Burmese, Georgian, Greek, Gujarati, Hebrew, Japanese,
Kannada, Khmer, Korean, Lao, Malayalam, Odia, Punjabi, Sinhala, Tamil, Telugu, Thai, Tibetan,
Vietnamesea

aWhile Vietnamese is a Latin-script language, we have a dedicatedmodel for it because of the large amount of diacritics not used in other Latin-script
languages

Table 2 Character error rates on the validation data using successively
more of the system components described above for English (en), Span-
ish (es), German (de), Arabic (ar), Korean (ko), Thai (th), Hindi (hi),
and Chinese (zh) along with the respective number of items and charac-

ters in the test and training datasets. Average latencies for all languages
and models were computed on an Intel Xeon E5-2690 CPU running at
2.6GHz

Language en es de ar ko th hi zh

Internal test data (per language)

Items 32,645 7136 14,408 11,617 22,951 23,608 9030 197,547

Characters 162,367 40,302 83,231 84,017 55,654 109,793 36,726 312,478

Internal training data (per script)

Items 3,293,421 570,375 3,495,877 207,833 1,004,814 5,969,179

Characters 15,850,724 4,597,255 4,770,486 989,520 5,575,552 7,548,434

Unique supported characters 295 337 3524 195 197 12,726

System CER (%)

Segment-and-decode [25] 7.5 7.2 6.0 14.8 13.8 4.1 15.7 3.76

BLSTM (comparison) [25] 10.2 12.4 9.5 18.2 44.2 3.9 15.4 –

Model architecture (this work) 5 × 224 5 × 160 5 × 160 5 × 128 5 × 192 4 × 192

(2) BLSTM-CTC baseline curves 8.00 6.38 7.12 12.29 6.87 2.41 7.65 1.54

(3) + n-gram LM 6.54 4.64 5.43 8.10 6.90 1.82 7.00 1.38

(4) + character classes 6.60 4.59 5.36 7.93 6.79 1.78 7.32 1.39

(5) + word LM 6.48 4.56 5.40 7.87 – – 7.42 –

Avg. latency per item (ms)

Segment-and-decode [25] 315 359 372 221 389 165 139 208

This work 23 25 26 14 20 13 19 30

Number of parameters (per script)

Segment-and-decode [25] 5,281,061 5,342,561 8,381,686 6,318,361 9,721,361 –

This work 5,386,170 2,776,937 3,746,999 1,769,668 3,927,736 7,729,994

123



92 V. Carbune et al.

Fig. 2 An overview our
recognition models. In our
architecture, the input
representation is passed through
one or more bidirectional LSTM
layers, and a final softmax layer
makes a classification decision
for the output at each time step

difference between IBM-UB-1, IAM-OnDB, and our
internal dataset.

– We perform ablation studies and report results on numer-
ous experiments highlighting the contributions of the
individual components of the new recognition stack on
our internal datasets.

2 End-to-endmodel architecture

Our handwriting recognition model draws its inspiration
from research aimed at building end-to-end transcription
models in the context of handwriting recognition [15], optical
character recognition [8], and acoustic modeling in speech
recognition [40]. The model architecture is constructed from
common neural network blocks, i.e., bidirectional LSTMs
and fully connected layers (Fig. 2). It is trained in an end-to-
end manner using the CTC loss [15].

Our architecture is similar to what is often used in the
context of acoustic modeling for speech recognition [41], in
which it is referred to as a CLDNN (Convolutions, LSTMs,
andDNNs), yet we differ from it in four points. Firstly, we do
not use convolution layers, which in our own experience do
not add value for large networks trained on large datasets of
relatively short (compared to speech input) sequences typ-
ically seen in handwriting recognition. Secondly, we use
bidirectional LSTMs, which due to latency constraints is not
feasible in speech recognition systems. Thirdly, our architec-
ture does not make use of additional fully connected layers
before and after the bidirectional LSTM layers. And finally,
we train our system using the CTC loss, as opposed to the
HMMs used in [41].

This structure makes many components of our previous
system [25] unnecessary, e.g., feature extraction and segmen-
tation. The heuristics that were hard-coded into our previous
system, e.g., stroke-reordering and character hypothesis
building, are now implicitly learned from the training data.

The model takes as input a time series (v1, . . . , vT ) of
length T encoding the user input (Sect. 2.1) and passes it
through several bidirectional LSTM layers [42] which learn
the structure of characters (Sect. 2.2).

The output of the final LSTM layer is passed through a
softmax layer (Sect. 2.3) leading to a sequence of probability
distributions over characters for each time step.

For CTC decoding (Sect. 3.1), we use beam search to
combine the softmax outputs with character-based language
models, word-based languagemodels, and information about
language-specific characters as in our previous system [25].

2.1 Input representation

In our earlier paper [25], we presented results on our datasets
with a model similar to the one proposed in [15]. In that
model, we used 23 per-point features (similar to [22]) as
described in our segment-and-decode system to represent
the input. In further experimentation, we found that in sub-
stantially deeper and wider models, engineered features are
unnecessary and their removal leads to better results. This
confirms the observation that learned representations often
outperform handcrafted features in scenarios in which suffi-
cient training data are available, e.g., in computer vision [28]
and in speech recognition [46]. In the experiments presented
here, we use two representations:

2.1.1 Raw touch points

The simplest representation of stroke data is as a sequence
of touch points. In our current system, we use a sequence of
5-dimensional points (xi , yi , ti , pi , ni )where (xi , yi ) are the
coordinates of the i th touchpoint, ti is the timestamp of the
touchpoint since the first touch point in the current observa-
tion in seconds, pi indicates whether the point corresponds to
a pen-up (pi = 0) or pen-down (pi = 1) stroke, and ni = 1
indicates the start of a new stroke (ni = 0 otherwise).4

In order to keep the system as flexible as possible with
respect to differences in the writing surface, e.g., area shape,

4 We acknowledge a redundancy between the features pi and ni which
evolved over time from experimenting with explicit pressure data. We
did not perform additional experiments to avoid this redundancy at this
time but do not expect a large change in results when dropping either
of these features.

123



Fast multi-language LSTM-based online handwriting recognition 93

size, spatial resolution, and sampling rate, we perform some
minimal preprocessing:

– Normalization of xi and yi coordinates, by shifting in x
such that x0 = 0, and shifting and scaling the writing
area isometrically such that the y coordinate spans the
range between 0 and 1. In cases where the bounding box
of the writing area is unknown, we use a surrogate area
20% larger than the observed range of touch points.

– Equidistant linear resampling along the strokes with δ =
0.05, i.e., a line of length 1 will have 20 points.

Wedo not assume thatwords arewritten on a fixed baseline or
that the input is horizontal. As in [15], we use the differences
between consecutive points for the (x, y) coordinates and
the time t such that our input sequence is (xi − xi−1, yi −
yi−1, ti − ti−1, pi , ni ) for i > 0, and (0, 0, 0, p0, n0) for
i = 0.

2.1.2 Bézier curves

However simple, the raw input data have some drawbacks,
i.e.,

– Resolution: Not all input devices sample inputs at the
same rate, resulting in different point densities along the
input strokes, requiring resampling which may inadver-
tently normalize-out details in the input.

– Length: We choose the (re-)sampling rate such as to
represent the smallest features well, which leads to over-
sampling in less interesting parts of the stroke, e.g., in
straight lines.

– Model complexity: The model has to learn to map small
consecutive steps to larger global features.

Bézier curves are a natural way to describe trajectories in
space, and have been used to represent online handwriting
data in the past, yet mostly as a means of removing outliers
in the input data [21], up-sampling sparse data [22], or for
rendering handwriting data smoothly on a screen [35]. Since
a sequence of Bézier curves can represent a potentially long
point sequence compactly, irrespective of the original sam-
pling rate, we propose to represent a sequence of input points
as a sequence of parametric cubic polynomials, and to use
these as inputs to the recognition model.

These Bézier curves for x , y, and t are cubic polynomials
in s ∈ [0, 1]:

x(s) = α0 + α1s + α2s
2 + α3s

3

y(s) = β0 + β1s + β2s
2 + β3s

3

t(s) = γ0 + γ1s + γ2s
2 + γ3s

3 (1)

We start by normalizing the size of the entire ink such that
the y values are within the range [0, 1], similar to how we
process it for raw points. The time values are scaled linearly
to match the length of the ink such that

tN−1 − t0 =
N−1∑

i=1

[
(xi − xi−1)

2 + (yi − yi−1)
2
]1/2

. (2)

in order to obtain values in the same numerical range as x
and y. This sets the time difference between the first and last
points of the stroke to be equal to the total spatial length of
the stroke.

For each stroke in an ink, the coefficients α, β, and γ are
computed by minimizing the sum of squared errors (SSE)
between each observed point i and its corresponding closest
point (defined by si ) on the Bézier curve:

N−1∑

i=0

(xi − x(si ))
2 + (yi − y(si ))

2 + (ti − t(si ))
2 . (3)

where N is the number of points in the stroke. Given a set
of coordinates si , computing the coefficients corresponds to
solving the following linear system of equations:

⎡

⎢⎢⎢⎣

x1 y1 t1
x2 y2 t2
...

...
...

xN yN tN

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
Z

=

⎡

⎢⎢⎢⎣

1 s1 s21 s31
1 s2 s22 s32
...

...
...

...

1 sN s2N s3N

⎤

⎥⎥⎥⎦

︸ ︷︷ ︸
V

⎡

⎢⎢⎣

α0 β0 γ0
α1 β1 γ1
α2 β2 γ2
α3 β3 γ3

⎤

⎥⎥⎦

︸ ︷︷ ︸
Ω

(4)

which can be solved exactly for N ≤ 4, and in the least-
squares sense otherwise, e.g., by solving the normalized
equations

V TZ = V TVΩ. (5)

for the coefficients Ω . We alternate between minimizing the
SSE in Eq. (3) and finding the corresponding points si , until
convergence. The coordinates si are updated using a Newton
step on

x ′(si )(xi − x(si )) + y′(si )(yi − y(si )) = 0, (6)

which is zero when (xi − x(si ), yi − y(si )) is orthogonal to
the direction of the curve (x ′(si ), y′(si )).

If (a) the curve cannot fit the points well (SSE error is
too large) or if (b) the curve has too sharp bends (arc length
longer than 3 times the endpoint distance), we split the curve
into two parts. We determine the split point in case (a) by
finding the triplet of consecutive points with the smallest

123



94 V. Carbune et al.

Fig. 3 Parameterization of each Bézier curve used to feed the network.
Namely: vector between the endpoints (blue), distance between the
control points and the endpoints (green dashed lines, 2 values), and the
two angles between each control point and the endpoints (green arcs, 2
values) (color figure online)

angle, and in case (b) as the point closest to the maximum
local curvature along the entire Bézier curve. This heuristic
is applied recursively until both the curve matching criteria
are met.

As a final step, to remove spurious breakpoints, consec-
utive curves that can be represented by a single curve are
stitched back together, resulting in a compact set of Bézier
curves representing the data within the above constraints. For
each consecutive pair of curves, we try to fit a single curve
using the combined set of underlying points. If the fit agrees
with the above criteria, we replace the two curves by the new
one. This is applied repeatedly until no merging happens
anymore.

Since the Bézier coefficients α, β, and γ may vary sig-
nificantly in range, each curve is fed to the network as a
10-dimensional vector (dx , dy, d1, d2, α1, α2, γ1, γ2, γ3, p),
with:

– dx , dy : the vector between the endpoints (cp. Fig. 3)
– d1, d2: the distance between the control points and the

endpoints relative to the distance between the endpoints
(cp. Fig. 3),

– α1, α2: the angles between control points and endpoints
in radians (cp. Fig. 3),

– γ1, γ2 and γ3: the time coefficients from Eq. 1,
– p: a Boolean value indicating whether this is a pen-up or

pen-down curve.

Due to the normalization of the x , y, and t coordinates, as
well as the constraints on the curves themselves, most of the
resulting values are in the range [−1, 1].

The resulting sequences of 10-dimensional curve repre-
sentations are roughly 4× shorter than the corresponding
5-dimensional raw representation (Sect.2.1.1) because each
Bezier curve represents multiple points. This leads to faster
recognition and thus better latency.

In most of the cases, as highlighted through the experi-
mental sections in this paper, the curve representations do

not have a big impact on accuracy but contribute to faster
speed of our models.

2.2 Bidirectional long short-termmemory recurrent
neural networks

LSTMs [19] have become one of the most commonly
used RNN cells because they are easy to train and give
good results [24]. In all experiments, we use bidirectional
LSTMs [6,12], i.e., we process the input sequence forward
andbackward andmerge the output states of each layer before
feeding them to the next layer. The exact number of layers
and nodes is determined empirically for each script. We give
an overview of the impact of the number of nodes and layers
in Sect. 4. We also list the configurations for several scripts
in our production system, as of this writing.

2.3 Softmax layer

The output of the LSTM layers at each timestep is fed into
a softmax layer to get a probability distribution over the C
possible characters in the script (including spaces, punctu-
ation marks, numbers or other special characters), plus the
blank label required by the CTC loss and decoder.

2.4 Decoding

The output of the softmax layer is a sequence of T time
steps of (C + 1) classes that we decode using CTC decod-
ing [12]. The logits from the softmax layer are combinedwith
language-specific prior knowledge (cp. Sect. 2.5). For each
of these additional knowledge sources, we learn a weight
(called “decoderweight” in the following) and combine them
linearly (cp. Sect. 3). The learned combination is used as
described in [13] to guide the beam search during decoding.
5

This combination of different knowledge sources allows
us to train one recognitionmodel per script (e.g., Latin script,
or Cyrillic script) and then use it to serve multiple languages
(see Table 1).

2.5 Feature functions: languagemodels and
character classes

Similar to our previous work [25], we define several scoring
functions, which we refer to as feature functions. The goal of
these feature functions is to introduce prior knowledge about
the underlying language into the system. The introduction of

5 We implement this as a BaseBeamScorer (https://
github.com/tensorflow/tensorflow/blob/master/tensorflow/
core/util/ctc/ctc_beam_scorer.h) which is passed to the
CTCBeamSearchDecoder implementation in TensorFlow [1].

123

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/ctc/ctc_beam_scorer.h
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/ctc/ctc_beam_scorer.h
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/ctc/ctc_beam_scorer.h


Fast multi-language LSTM-based online handwriting recognition 95

recurrent neural networks has reduced the need for many of
them, and we now use only the following three:

– Character language models: For each language we sup-
port, we build a 7-gram language model over Uni-
code codepoints from a large web-mined text corpus
using Stupid back-off [3]. The final files are pruned to
10million 7-grams each. Compared to our previous sys-
tem [25], we found that languagemodel size has a smaller
impact on the recognition accuracy, which is likely due
to the capability of recurrent neural networks to capture
dependencies between consecutive characters. We there-
fore use smaller language models over shorter contexts.

– Word language models: For languages using spaces to
separatewords,wealsouse aword-based languagemodel
trainedon a similar corpus as the character languagemod-
els [4,39], using 3-grams pruned to between 1.25million
and 1.5million entries.

– Character classes: We add a scoring heuristic which
boosts the score of characters from the language’s alpha-
bet. This feature function provides a strong signal for
rare characters that may not be recognized confidently by
the LSTM, and which the other language models might
not weigh heavily enough to be recognized. This feature
function was inspired by our previous system [25].

In Sect. 4, we provide an experimental evaluation of how
much each of these feature functions contributes to the final
result for several languages.

3 Training

The training of our system happens in two stages, on two
different datasets:

1. End-to-end training of the neural network model using
the CTC loss using a large training dataset

2. Tuning of the decoder weights using Bayesian optimiza-
tion through Gaussian Processes in Vizier [11], using a
much smaller and distinct dataset.

Using separate datasets is important because the neural net-
work learns the local appearance as well as an implicit
language model from the training data. It will be overcon-
fident on its training data, and thus, learning the decoder
weights on the same dataset could result in weights biased
toward the neural network model.

3.1 Connectionist temporal classification loss

As our training data do not contain frame-aligned labels,
we rely on the CTC loss [12] for training which treats the

alignment between inputs and labels as a hidden variable.
CTC training introduces an additional blank label which is
used internally for learning alignments jointly with character
hypotheses, as described in [12].

We train all neural network weights jointly using the stan-
dard TensorFlow [1] implementation of CTC training using
theAdamOptimizer [27]with a batch size of 8, a learning rate
of 10−4, and gradient clipping such that the gradient L2-norm
is ≤ 9. Additionally, to improve the robustness of our mod-
els and prevent overfitting, we train ourmodels using random
dropout [18,36] after each LSTM layer with a dropout rate
of 0.5. We train until the error rate on the evaluation dataset
no longer improves for 5million steps.

3.2 Bayesian optimization for tuning decoder
weights

To optimize the decoder weights, we rely on the Google
Vizier service and its default algorithm, specifically batched
Gaussian process bandits, and expected improvement as the
acquisition function [11].

For each recognizer training,we start 7Vizier studies, each
performing 500 individual trials, and then we pick the con-
figuration that performed best across all of these trials. We
experimentally found that using 7 separate studies with dif-
ferent random initializations regularly leads to better results
than running a single study once. We found that using more
than 500 trials per study does not lead to any additional
improvement.

For each script, we train these weights on a subset of the
languages for which we have sufficient data, and transfer the
weights to all the other languages. For example, for the Latin-
script languages, we train the decoderweights onEnglish and
German, and use the resulting weights for all languages in
the first row of Table 1.

4 Experimental evaluation

In the following,where possible, we present results for public
datasets in a closed data scenario, i.e., training and testing
models on the public dataset using a standard protocol. In
addition we present evaluation results for public datasets
in an open data scenario against our production setup, i.e.,
in which the model is trained on our own data. Finally, we
showexperimental results for someof themajor languages on
our internal datasets. Whenever possible we compare these
results to the state of the art and to our previous system [25].

4.1 IAM-OnDB

The IAM-OnDB dataset [31] is probably the most used eval-
uation dataset for online handwriting recognition. It consists

123



96 V. Carbune et al.

Fig. 4 CER of models trained on the IAM-OnDB dataset with different numbers of LSTM layers and LSTM nodes using raw (left) and curve
(right) inputs. Solid lines indicate results without any language models or feature functions in decoding, and dashed lines indicate results with the
fully tuned system

Table 3 Comparison of character error rates (lower is better) on the
IAM-OnDB test set for different LSTM layers configurations

Input lstm 64 Nodes 128 Nodes 256 Nodes

Raw 1 Layer 6.1 5.95 5.56

3 Layers 4.03 4.73 4.34

5 Layers 4.34 4.20 4.17

Curves 1 Layer 6.57 6.38 6.98

3 Layers 4.16 4.16 4.83

5 Layers 4.02 4.22 4.11

For each LSTM width and input type, we show the best result in bold

of 298,523 characters in 86,272 word instances from a dic-
tionary of 11,059 words written by 221 writers. We use the
standard IAM-OnDBdataset separation: one training set, two
validations sets and a test set containing 5363, 1438, 1518
and 3859 written lines, respectively. We tune the decoder
weights using the validation set with 1438 items and report
error rates on the test set.

We perform a more extensive study of the number of lay-
ers and nodes per layer for both the raw and curve input
formats to determine the optimal size of the bidirectional
LSTMnetwork (see Fig. 4, Table 3).We first run experiments
without additional feature functions (Fig. 4, solid lines), then
re-compute the results with tuned weights for language mod-
els and character classes (Fig. 4, dashed lines). We observe
that for both input formats, using 3 or 5 layers outperforms
more shallow networks, and using more layers gives hardly
any improvement. Furthermore, using 64 nodes per layer is
sufficient, as wider networks give only small improvements,
if at all. We see no significant difference in the accuracy
between the raw and the curve representation.

Finally, we show a comparison of our old and new systems
with the literature on the IAM-OnDB dataset in Table 4. Our
method establishes a new state-of-the-art result when relying

Table 4 Error rates on the IAM-OnDB test set in comparison with the
state of the art and our previous system [25]

System CER (%) WER (%)

Frinken et al. BLSTM [7] 12.3 25.0

Graves et al. BLSTM [15] 11.5 20.3

Liwicki et al. LSTM [32] – 18.9

This work (curve, 5x64, no FF) 5.9 18.6

This work (curve, 5x64, FF) 4.0 10.6

Our previous BLSTM [25]* 8.8 26.7

Combination [32]* - 13.8

Our segment-and-decode [25]* 4.3 10.4

This work (production system)* 2.5 6.5

A “*” in the “system” column indicates the use of an open training set.
“FF” stands for “feature functions” as described in Sect. 2.4

on closed data using IAM-OnDB, as well as when relying on
our in-house data that we use for our production system,
which was not tuned for the IAM-OnDB data and for which
none of the IAM-OnDB data were used for training.

To better understand where the improvements come from,
we discuss the differences between the previous state-of-the-
art system (Graves et al. BLSTM [15]) and this work across
four dimensions: input preprocessing and feature extraction,
neural network architecture, CTC training and decoding, and
model training methodology.

Our input preprocessing (Sect. 2.1) differs only in minor
ways: The x-coordinate used is not first transformed using a
high-pass filter, we do not split text-lines using gaps and we
do not remove delayed strokes, nor do we do any skew and
slant correction or other preprocessing.

The major difference comes from feature extraction. In
contrast to the 25 features per point used in [15], we use
either 5 features (raw) or 10 features (curves). While the 25
features included both temporal (position in the time series)
and spatial features (offline representation), our work uses

123



Fast multi-language LSTM-based online handwriting recognition 97

Fig. 5 CER of models trained on the IBM-UB-1 dataset with different numbers of LSTM layers and LSTM nodes using raw (left) and curve (right)
inputs. Solid lines indicate results without any language models or feature functions in decoding, and dashed lines indicate results with the fully
tuned system

only the temporal structure. In contrast also to our previ-
ous system [25], using a more compact representation (and
reducing the number of points for curves) allows a feature
representation, including spatial structure, to be learned in
the first or upper layers of the neural network.

The neural network architecture differs both in internal
structure of the LSTM cell as well as in the architecture con-
figuration. Our internal structure differs only in that we do
not use peephole connections [9].

As opposed to relying on a single bidirectional LSTM
layer of width 100, we experiment with a number of con-
figuration variants as detailed in Fig. 4. We note that it is
particularly important to have more than one layer in order
to learn a meaningful representation without feature extrac-
tion.

We use the CTC forward–backward training algorithm
as described in [15], and implemented in TensorFlow. The
training hyperparameters are described in Sect. 3.1.

The CTC decoding algorithm incorporates feature func-
tions similarly to how the dictionary is incorporated in the
previous state-of-the-art system. However, we use more fea-
ture functions, our language models are trained on a different
corpus, and the combination weights are optimized sepa-
rately as described in Sec 3.2.

4.2 IBM-UB-1

Another publicly accessible English-language dataset is the
IBM-UB-1 dataset [43]. From the available datasets therein,
we use the English query dataset, which consists of 63,268
handwritten English words. As this dataset has not been
used often in the academic literature, we propose an eval-
uation protocol. We split this dataset into 4 parts with
non-overlapping writer IDs: 47,108 items for training, 4690

Table 5 Error rates on IBM-UB-1 test set in comparison with our pre-
vious system [25]

System CER (%) WER (%)

This work (curve, 5x64, no FF) 6.0 25.1

This work (curve, 5x64, FF) 4.1 15.1

Segment-and-decode from [25] 6.7 22.2

This work (production system) (Sect. 5)* 4.1 15.3

A “*” in the “system” column indicates the use of an open training set

for decoder weight tuning, 6134 for validation and 5336 for
testing.6

We perform a similar set of experiments as we did for
IAM-OnDB to determine the right depth and width of our
neural network architecture. The results of these experiments
are shown in Fig. 5. The conclusion for this dataset is sim-
ilar to the conclusions we drew for the IAM-OnDB: using
networks with 5 layers of bidirectional LSTMs with 64 cells
each is sufficient for good accuracy. Less deep and less wide
networks perform substantially worse, but larger networks
only give small improvements. This is true regardless of the
input processing method chosen and again, we do not see a
significant difference in the accuracy between the raw and
curve representation in accuracy.

We give some exemplary results and a comparison with
our current production system as well as results for our pre-
vious system in Table 5. We note that our current system
is about 38% and 32% better (relative) in CER and WER,
respectively, when compared to the previous segment-and-
decode approach. The lack of improvement in error ratewhen
evaluating on our production system is due to the fact that our
datasets contain spaces while the same setup trained solely
on IBM-UB-1 does not.

6 Information about the exact experimental protocol is available at
https://arxiv.org/src/1902.10525v1/anc.

123

https://arxiv.org/src/1902.10525v1/anc


98 V. Carbune et al.

4.3 Additional public datasets

Weprovide an evaluation of our production system trained on
our in-house datasets applied to a number of publicly avail-
able benchmark datasets from the literature. More details
about our in-house datasets are available from Table 2. Note
that for all experiments presented in this section, we evalu-
ate our current live system without any tuning specific to the
tasks at hand.

4.3.1 Chinese isolated characters (ICDAR 2013 competition)

The ICDAR-2013 Competition for Online Handwriting Chi-
nese Character Recognition [50] introduced a dataset for
classifying the most common Chinese characters. We report
the error rates in comparison with published results from the
competition and more recent work done by others in Table 6.

We evaluate our live production system on this dataset.
Our system was not tuned to the task at hand and was trained
as a multi-character recognizer, thus it is not even aware that
each sample only contains a single character. Further, our sys-
tem supports 12,363 different characters, while the competi-
tion data only contain 3,755 characters. Note that our system
did not have access to the training data for this task at all.

Whenever our system returnsmore thanone character for a
sample,we count this as an error. (This happened twice on the
entire test set of 224,590 samples.)Despite supporting almost
four times as many characters than needed for the CASIA
data and not having been tuned to the task, the accuracy of
our system is still competitive with systems that were tuned
for this data specifically.

4.3.2 Vietnamese online handwriting recognition (ICFHR
2018 competition)

In the ICFHR2018Competition onVietnameseOnlineHand-
written Text Recognition using VNOnDB [34], our produc-

Table 6 Error rates on ICDAR-2013 Competition Database of Online
Handwritten Chinese Character Recognition

System ER (%)

Human performance [50] 4.8

Traditional benchmark [30] 4.7

ICDAR-2011 winner [29] 4.2

This work (production system) Sect. 5 3.2

ICDAR-2013 winner: UWarwick [50] 2.6

RNN: NET4 [52] 2.2

100LSTM-512LSTM-512FC-3755FC [49] 2.2

RNN: ensemble-NET123456 [52] 1.9

Our system was trained with an open training set, including a mix of
characters, words, and phrases

Table 7 Results on the VNONDB-Word dataset

System Public test set Secret test set

CER (%) WER (%) CER (%) WER (%)

This work (Sect. 5) 6.1 13.2 9.8 20.5

IVTOVTask1 2.9 6.5 7.3 15.3

MyScriptTask1 2.9 6.5 6.0 12.7

Table 8 Results on the VNONDB-Line dataset

System Public test set Secret test set

CER (%) WER (%) CER (%) WER (%)

This work (Sect. 5) 6.9 19.0 10.3 27.0

IVTOVTask2 3.2 14.1 5.6 21.0

MyScriptTask2_1 1.0 2.0 1.0 3.4

MyScriptTask2_2 1.6 4.0 1.7 5.1

tion system was evaluated against other systems. The system
used in the competition is the one reported and described in
this paper. Due to licensing restrictions, wewere unable to do
any experiments on the competition training data, or specific
tuning for the competition, which was not the case for the
other systems mentioned here.

We participated in the two tasks that best suited the pur-
pose of our system, specifically the “Word” (ref. Table 7) and
the “Text line” (ref. Table 8) recognition levels. Even though
we can technically process paragraph level inputs, our system
was not built with this goal in mind.

In contrast to us, the other teams used the training and
validation sets to tune their systems:

– The IVTOV team’s system is very similar to our system.
Itmakes use of bidirectional LSTM layers trained end-to-
end with the CTC loss. The inputs used are delta x and y
coordinates, together with pen-up strokes (Boolean fea-
ture quantifying whether a stroke has ended or not). They
report using a two-layer network of 100 cells each and
additional preprocessing for better handling the dataset.

– TheMyScript team submitted two systems. The first sys-
tem has an explicit segmentation component alongwith a
feed-forward network for recognizing character hypothe-
ses, similar in formulation to our previous system [25].
In addition, they also make use of a bidirectional LSTM
system trained end-to-end with the CTC loss. They do
not provide additional details on which system is which.

We note that the modeling stacks of the systems out-
performing ours in this competition are not fundamentally
different (to the best of our knowledge, according to released
descriptions). We therefore believe that our system might

123



Fast multi-language LSTM-based online handwriting recognition 99

Fig. 6 CER of models trained on our internal datasets evaluated on our
English-language validation set with different numbers of LSTM layers
and LSTM nodes using raw (left) and curve (right) inputs. Solid lines

indicate results without any language models or feature functions in
decoding, and dashed lines indicate results with the fully tuned system

perform comparably if trained on the competition training
dataset as well.

Onour internal test set ofVietnamese data, our new system
obtains a CER of 3.3% which is 54% relative better than the
old Segment-and-Decode system which had a CER of 7.2%
(see also Fig. 7).

4.4 Tuning neural network parameters on our
internal data

Our in-house datasets consist of various types of training
data, the amount ofwhich varies by script. Sources of training
data include data collected through prompting, commercially
available data, artificially inflated data, and labeled/self-
labeled anonymized recognition requests (see [25] for a
more detailed description). This leads tomore heterogeneous
datasets than academic datasets such as IBM-UB-1 or IAM-
OnDB which were collected under standardized conditions.
The number of training samples varies from tens of thousands
to several million per script, depending on the complexity
and usage. We provide more information about the size of
our internal training and tests datasets in Table 2.

The best configuration for our system was identified by
runningmultiple experiments over a rangeof layer depths and
widths on our internal datasets. For the Latin-script experi-
ments shown in Fig. 6, the training set we used was a mixture
of data from all the Latin-script languages we support and
evaluation is done on an English validation dataset, also used
for the English evaluation in Table 2.

Similar to experiments depicted in Figs. 4 and 5, increas-
ing the depth and width of the network architecture brings
diminishing returns fairly quickly. However, overfitting is
less pronounced probably because our datasets are substan-
tially larger than the publicly available datasets.

For the experiments with our production datasets, we are
using the Bézier curve inputs which perform slightly better in

terms of accuracy than the raw input encoding but are much
faster to train and evaluate because of the shorter sequence
lengths.

5 System performance and discussion

The setup described throughout this paper that obtained the
best results relies on input processing with Bézier spline
interpolation (Sect. 2.1.2), followed by 4–5 layers of vary-
ing width bidirectional LSTMs, followed by a final softmax
layer. For each script, we experimentally determined the best
configuration through multiple training runs.

We performed an ablation study with the best configura-
tions for each of the six most important scripts7 by number
of users and compare the results with our previous work [25]
(Table 2). The largest relative improvement comes from the
overall network architecture stack, followed by the use of the
character language model and the other feature functions.

In addition, we show the relative improvement in error
rates on the languages for which we have evaluation datasets
of more than 2000 items (Fig. 7). The new architecture per-
forms between 20 and 40% (relative) better over almost all
languages.

5.1 Differences between IAM-OnDB, IBM-UB-1 and
Our internal datasets

To understand how the different datasets relate to each other,
we performed a set of experiments and evaluations with
the goal of better characterizing the differences between the
datasets.

We trained a recognizer on each of the three training sets
separately, then evaluated each system on all three test sets

7 For Latin script, we report results for 3 languages.

123



100 V. Carbune et al.

Fig. 7 A comparison of the CERs for the LSTM and segment-and-
decode (SD) system for all languages on our internal test sets with
more than 2000 items. The scatter plot shows the ISO language code
at a position corresponding to the CER for the SD system (x-axis) and
LSTM system (y-axis). Points below the diagonal are improvements of
LSTM over SD. The plot also shows the lines of 20% and 40% relative
improvement

Table 9 CER comparison when training and evaluating IAM-OnDB,
IBM-UB-1 and our Latin training/eval set

Train/test IAM-OnDB IBM-UB-1 Own dataset

IAM-OnDB 3.8 17.7 31.2

IBM-UB-1 35.1 4.1 32.9

Own dataset 3.3 4.8 8.7

Wewant to highlight the fundamental differences between the different
datasets

(Table 9). The neural network architecture is the same as the
one we determined earlier (5 layers bidirectional LSTMs of
64 cells each) with the same feature functions, with weights
tuned on the corresponding tuning dataset. The inputs are
processed using Bézier curves.

To better understand the source of discrepancywhen train-
ing on IAM-OnDB and evaluating on IBM-UB-1, we note
the different characteristics of the datasets:

– IBM-UB-1 has predominantly cursive writing, while
IAM-OnDB has mostly printed writing

– IBM-UB-1 contains single words, while IAM-OnDB has
lines of space-separated words

This results in models trained on the IBM-UB-1 dataset
not being able to predict spaces as they are not present in

the dataset’s alphabet. In addition, the printed writing style
of IAM-OnDB makes recognition harder when evaluating
cursive writing from IBM-UB-1. It is likely that the lack of
structure through words-only data makes recognizing IAM-
OnDB on a system trained on IBM-UB-1 harder than vice
versa.

Systems trained on IBM-UB-1 or IAM-OnDB alone per-
form significantly worse on our internal datasets, as our data
distribution covers a wide range of use-cases not necessarily
relevant to, or present, in the two academic datasets: sloppy
handwriting, overlapping characters for handling writing on
small input surfaces, non-uniform sampling rates, and par-
tially rotated inputs.

The network trained on the internal dataset performs well
on all three datasets. It performs better on IAM-OnDB than
the system trained only thereon, but worse for IBM-UB-
1. We believe that using only cursive words when training
allows the network to better learn the sample characteristics,
than when learning about space separation and other struc-
ture properties not present in IBM-UB-1.

6 Conclusion

We describe the online handwriting recognition system that
we currently use at Google for 102 languages in 26 scripts.
The system is based on an end-to-end trained neural network
and replaces our old segment-and-decode system. Recogni-
tion accuracy of the new system improves by 20–40% relative
depending on the language while using smaller and faster
models. We encode the touch inputs using a Bézier curve
representation which performs at least as well as raw touch
inputs but which also allows for a faster recognition because
the input sequence representation is shorter.

We further compare the performance of our system to
the state of the art on publicly available datasets such as
IAM-OnDB, IBM-UB-1, and CASIA and improve over the
previous best published result on IAM-OnDB.

Acknowledgements We would like to thank the following contribu-
tors for fruitful discussions, ideas, and support: Ashok Popat, Yasuhisa
Fujii, Dmitriy Genzel, JakeWalker, David Rybach, Daan van Esch, and
Eugene Brevdo. We thank Google’s OCR team for the numerous col-
laborations throughout the years that have made this work easier, as
well as the speech recognition and machine translation teams at Google
for tools and support for some of the components we use in this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your

123



Fast multi-language LSTM-based online handwriting recognition 101

intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on
heterogeneous systems (2015). https://www.tensorflow.org/. Soft-
ware available from tensorflow.org. Accessed 8 Aug 2019

2. Bengio, Y., LeCun, Y., Nohl, C., Burges, C.: Lerec: a NN/HMM
hybrid for on-line handwriting recognition. Neural Comput. 7(6),
1289–1303 (1995)

3. Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J.: Large language
models in machine translation. In: EMNLP-CoNLL, pp. 858–867
(2007)

4. Chua, M., van Esch, D., Coccaro, N., Cho, E., Bhandari, S., Jia,
L.: Text normalization infrastructure that scales to hundreds of lan-
guage varieties. In: Proceedings of the 11thEdition of theLanguage
Resources and Evaluation Conference (2018)

5. Franzini, M., Lee, K.F., Waibel, A.: Connectionist Viterbi train-
ing: a new hybrid method for continuous speech recognition. In:
1990 International Conference on Acoustics, Speech, and Signal
Processing, 1990. ICASSP-90, pp. 425–428. IEEE (1990)

6. Frinken, V., Bhattacharya, N., Uchida, S., Pal, U.: Improved blstm
neural networks for recognition of on-line bangla complex words.
In: S+SSPR (2014)

7. Frinken, V., Uchida, S.: Deep BLSTM neural networks for uncon-
strained continuous handwritten text recognition. In: ICDAR
(2015)

8. Fujii,Y.,Driesen,K.,Baccash, J.,Hurst,A., Popat,A.C.: Sequence-
to-label script identification for multilingual OCR. In: ICDAR
(2017)

9. Gers, F.A., Schmidhuber, E.: Lstm recurrent networks learn simple
context-free and context-sensitive languages. IEEE Trans. Neural
Netw. 12(6), 1333–1340 (2001)

10. Ghosh, S., Joshi, A.: Text entry in indian languages onmobile: user
perspectives. In: India HCI (2014)

11. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Scul-
ley, D.: Google vizier: A service for black-box optimization. In:
Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1487–1495 (2017)

12. Graves, A., Fernández, S., Gomez, F.J., Schmidhuber, J.: Con-
nectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks. In: ICML (2006)

13. Graves, A., Jaitly, N.: Towards end-to-end speech recognition with
recurrent neural networks. In: ICML (2014)

14. Graves, A., Liwicki, M., Bunke, H., Schmidhuber, J., Fernández,
S.: Unconstrained on-line handwriting recognition with recurrent
neural networks. In: Advances in Neural Information Processing
Systems, pp. 577–584 (2008)

15. Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H.,
Schmidhuber, J.: A novel connectionist system for unconstrained
handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell.
31(5), 855–868 (2009)

16. Graves, A., Schmidhuber, J.: Offline handwriting recognition with
multidimensional recurrent neural networks. In: Advances in Neu-
ral Information Processing Systems, pp. 545–552 (2009)

17. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly,
N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.:
Deep neural networks for acoustic modeling in speech recognition:
the shared views of four research groups. IEEE Signal Process.
Magazine 29(6), 82–97 (2012)

18. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I.,
Salakhutdinov, R.R.: Improving neural networks by preventing
co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580
(2012)

19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural
Comput. 9(8), 1735–1780 (1997)

20. Hu, J., Brown, M.K., Turin, W.: HMM based online handwriting
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 1039–
1045 (1996)

21. Huang, B.Q., Zhang, Y., Kechadi, M.T.: Preprocessing techniques
for online handwriting recognition. In: Seventh International Con-
ference on Intelligent Systems Design and Applications, 2007.
ISDA 2007, pp. 793–800. IEEE (2007)

22. Jaeger, S., Manke, S., Reichert, J., Waibel, A.: Online handwriting
recognition: the NPen++ recognizer. Int. J. Doc. Anal. Recognit.
3(3), 169–180 (2001)

23. Jäger, S., Liu, C., Nakagawa, M.: The state of the art in Japanese
online handwriting recognition compared to techniques in western
handwriting recognition. Int. J. Doc. Anal. Recognit. 6(2), 75–88
(2003)

24. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical explo-
ration of recurrent network architectures. In: International Confer-
ence on Machine Learning, pp. 2342–2350 (2015)

25. Keysers, D., Deselaers, T., Rowley, H., Wang, L.L., Carbune, V.:
Multi-language online handwriting recognition. IEEE Trans. Pat-
tern Anal. Mach. Intell. 39(6), 1180–1194 (2017)

26. Kim, J.H., Sin, B.: Online handwriting recognition. In: Hand-
book of Document Image Processing & Recognition, pp. 887–915.
Springer-Verlag London (2014)

27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization.
In: ICLR (2014)

28. LeCun, Y., Bottou, L., andPatrick Haffner, Y.B.: Gradient-based
learning applied to document recognition. In: Proceedings of the
IEEE (1998)

29. Liu, C., Yin, F., Wang, Q., Wang, D.: ICDAR 2011 Chinese hand-
writing recognition competition. In: ICDAR (2011)

30. Liu, C.L., Yin, F., Wang, D.H., Wang, Q.F.: Online and offline
handwritten Chinese character recognition: benchmarking on new
databases. Pattern Recognit. 46(1), 155–162 (2013)

31. Liwicki, M., Bunke, H.: IAM-OnDB-an on-line English sentence
database acquired from handwritten text on a whiteboard. In:
ICDAR, pp. 956–961 (2005)

32. Liwicki,M.,Bunke,H., Pittman, J.A.,Knerr, S.:Combiningdiverse
systems for handwritten text line recognition. Mach. Vis. Appl.
22(1), 39–51 (2011)

33. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.:
Distributed representations of words and phrases and their com-
positionality. In: Advances in Neural Information Processing
Systems, pp. 3111–3119 (2013)

34. Nguyen, H.T., Nguyen, C.T., Nakagawa, M.: ICFHR 2018–
competition on Vietnamese online handwritten text recognition
using HANDS-VNOnDB (VOHTR2018). In: ICFHR (2018)

35. Nuntawisuttiwong, T., Dejdumrong, N.: Approximating online
handwritten image by bézier curve. In: CGIV (2012)

36. Pham, V., Bluche, T., Kermorvant, C., Louradour, J.: Dropout
improves recurrent neural networks for handwriting recognition.
In: 2014 14th International Conference on Frontiers in Handwrit-
ing Recognition (ICFHR), pp. 285–290. IEEE (2014)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/
http://arxiv.org/abs/1207.0580


102 V. Carbune et al.

37. Pittman, J.A.: Handwriting recognition: Tablet PC text input. IEEE
Comput. 40(9), 49–54 (2007)

38. Plamondon, R., Srihari, S.N.: Online and off-line handwriting
recognition: a comprehensive survey. IEEE Trans. Pattern Anal.
Mach. Intell. 22(1), 63–84 (2000)

39. Prasad, M., Breiner, T., van Esch, D.: Mining training data for lan-
guage modeling across the world’s languages. In: Proceedings of
the 6th InternationalWorkshop on Spoken Language Technologies
for Under-resourced Languages (SLTU 2018) (2018)

40. Sainath, T.N., Kingsbury, B., Saon, G., Soltau, H.,Mohamed, A.R.,
Dahl, G., Ramabhadran, B.: Deep convolutional neural networks
for large-scale speech tasks. Neural Netw. 64, 39–48 (2015)

41. Sainath, T.N., Vinyals, O., Senior, A., Sak, H.: Convolutional,
long short-term memory, fully connected deep neural networks.
In: ICASSP (2015)

42. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural net-
works. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

43. Shivram, A., Ramaiah, C., Setlur, S., Govindaraju, V.: IBM_UB_1:
A dual mode unconstrained English handwriting dataset. In:
ICDAR (2013)

44. Simonyan, K., Zisserman, A.: Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556
(2014)

45. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.:
Rethinking the inception architecture for computer vision. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2818–2826 (2016)

46. Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., Lang, K.J.:
Phoneme recognition using time-delay neural networks. IEEE
Trans. Acoust. Speech Signal Process. 37, 328–339 (1989)

47. Wang, T., Wu, D.J., Coates, A., Ng, A.Y.: End-to-end text recog-
nition with convolutional neural networks. In: ICPR (2012)

48. Yaeger, L., Webb, B., Lyon, R.: Combining neural networks and
context-driven search for on-line, printed handwriting recognition
in the Newton. AAAI AI Magazine (1998)

49. Yang, Y., Liang, K., Xiao, X., Xie, Z., Jin, L., Sun, J., Zhou, W.:
Accelerating and compressing LSTMbasedmodel for online hand-
written Chinese character recognition. In: ICFHR (2018)

50. Yin, F., Wang, Q.F., Zhang, X.Y., Liu, C.L.: ICDAR 2013 Chinese
handwriting recognition competition. In: 2013 12th International
Conference on Document Analysis and Recognition (ICDAR), pp.
1464–1470. IEEE (2013)

51. Zhang, J., Du, J., Dai, L.: A gru-based encoderdecoder approach
with attention for online handwritten mathematical expression
recognition. In: 2017 14th IAPR International Conference on Doc-
ument Analysis and Recognition (ICDAR), vol. 1, pp. 902–907.
IEEE (2017)

52. Zhang, X.-Y., Yin, F., Zhang, Y.-M., Liu, C.-L., Bengio, Y.:
Drawing and recognizing chinese characters with recurrent neural
network. IEEE Trans. Pattern Anal. Mach. 40(4), 849–862 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1409.1556

	Fast multi-language LSTM-based online handwriting recognition
	Abstract
	1 Introduction
	2 End-to-end model architecture
	2.1 Input representation
	2.1.1 Raw touch points
	2.1.2 Bézier curves

	2.2 Bidirectional long short-term memory recurrent neural networks
	2.3 Softmax layer
	2.4 Decoding
	2.5 Feature functions: language models and character classes

	3 Training
	3.1 Connectionist temporal classification loss
	3.2 Bayesian optimization for tuning decoder weights

	4 Experimental evaluation
	4.1 IAM-OnDB
	4.2 IBM-UB-1
	4.3 Additional public datasets
	4.3.1 Chinese isolated characters (ICDAR 2013 competition)
	4.3.2 Vietnamese online handwriting recognition (ICFHR 2018 competition)

	4.4 Tuning neural network parameters on our internal data

	5 System performance and discussion
	5.1 Differences between IAM-OnDB, IBM-UB-1 and Our internal datasets

	6 Conclusion
	Acknowledgements
	References




