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Abstract
The optical character recognition (OCR) quality of the historical part of the Finnish newspaper and journal corpus is rather
low for reliable search and scientific research on the OCRed data. The estimated character error rate (CER) of the corpus,
achieved with commercial software, is between 8 and 13%. There have been earlier attempts to train high-quality OCRmodels
with open-source software, like Ocropy (https://github.com/tmbdev/ocropy) and Tesseract (https://github.com/tesseract-ocr/
tesseract), but so far, none of the methods have managed to successfully train a mixed model that recognizes all of the data in
the corpus, which would be essential for an efficient re-OCRing of the corpus. The difficulty lies in the fact that the corpus is
printed in the two main languages of Finland (Finnish and Swedish) and in two font families (Blackletter and Antiqua). In this
paper, we explore the training of a variety of OCR models with deep neural networks (DNN). First, we find an optimal DNN
for our data and, with additional training data, successfully train high-quality mixed-language models. Furthermore, we revisit
the effect of confidence voting on the OCR results with different model combinations. Finally, we perform post-correction
on the new OCR results and perform error analysis. The results show a significant boost in accuracy, resulting in 1.7% CER
on the Finnish and 2.7% CER on the Swedish test set. The greatest accomplishment of the study is the successful training of
one mixed language model for the entire corpus and finding a voting setup that further improves the results.

Keywords OCR · Historical periodicals · Finnish · Swedish

1 Introduction

The OCR of historical newspapers published in Finland
1771–1929 is of unsatisfactory quality. The entire cor-
pus1 has been recognized with ABBYY FineReader 11 and
presents a character error rate between 8 and 13%. This
error rate is rather high for meaningful and reliable scien-
tific research on this data set, so there is a need to re-OCR
the entire corpus.

OCRing the corpus is difficult because it contains very
diverse data written in a non-standard language. Newspa-
pers in Finland from the eighteenth to the early twentieth
century were printed in the two main languages of Finland

1 https://digi.kansalliskirjasto.fi.
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(Finnish and Swedish) using two font families (Blackletter
and Antiqua) with a large variety of fonts. Also, the data are
not evenly distributed. In earlier data, there is more material
printed in Swedish with Blackletter fonts, whereas the later
data is mostly printed in Finnish with Antiqua fonts. How-
ever, there are periods when both languages and both font
families were used extensively, sometimes even on the same
pages. The standardization of the Finnish literary language
began in the early nineteenth century [16]; hence, a large part
of the corpus that we are working on contains spellings from
different Finnish dialects.

Due to this diversity of fonts and languages, it is an
interesting research problem to try to train a model that is
capable of adequately recognizing all segments of the data
set. It is also important to note that the corpus is very large,
with almost 5 billion tokens, so it is important to find a
time-efficient method for the re-OCRing. Potential multiple
processing steps like separate language and font recognition
are time-consuming and less desirable. In addition, each sep-
arate step tends to introduce errors on its own, so a single-step
process is preferred if feasible.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10032-020-00359-9&domain=pdf
http://orcid.org/0000-0002-7645-3079
https://github.com/tmbdev/ocropy
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://digi.kansalliskirjasto.fi


280 S. Drobac, K. Lindén

In previous work on this data set, Koistinen et al. [17,20,
21] trained models to recognize Finnish Blackletter pages
with the open-source tool Tesseract, but they focused only
on the material printed in Finnish Blackletter. On the other
hand, in [5,6], we used the open-source tool Ocropy to train
models on both Finnish and Swedish data and both theBlack-
letter and Antiqua font families. However, probably due to
the limitations of the shallow one-dimensional Long short-
term memory (LSTM) neural network used by Ocropy, we
did not manage to train a single high-quality mixed model,
but obtain better accuracy for Swedish with a monolingual
language model.

In this paper, we use the Calamari2 training tool, which
supports training models with custom-made deep neural net-
work (DNN) specifications. Using a DNN improves the
accuracy compared with a shallow network. Also, the DNN
is able to benefit from additional training data.With a tailored
DNN and additional training data for Swedish and Finnish
in Antiqua, we managed to train a mixed model for the entire
corpus that does better than or as well as monolingual lan-
guage models.

It is an important milestone to have trained a single mixed
model for the entire corpus, as it drastically simplifies the re-
OCRing process. Using DNNs and additional training data
also results in a significant performance improvement. In
comparison to the results from [6], the character error rates
go down 3.3% for Finnish, and 4.4% for Swedish (or over
60% of relative improvement), which are statistically signifi-
cant gains. Furthermore, using the Calamari tool brings some
additional benefits, such as the ability to run the recognition
on a graphics processing unit (GPU), which is faster than
the central processing unit (CPU) recognition with Ocropy.
We also run experiments with voting between several OCR
models to assess which model combination is most benefi-
cial. Finally, we test the post-processing method used in [5]
to find whether it is still successful on the new, improved
OCR results.

Contributions As the main contribution of the paper, we
demonstrate that it is possible to create a single model that
recognizes two non-related languages and two different font
families, where each font family consists of many fonts.
Furthermore, we demonstrate an improvement in the results
using a mixed model, which seems to indicate that for OCR
the languagemodel on theword level and above is less impor-
tant, whereas having sufficient representation of individual
characters and their variants is crucial, with a small benefit
to be gained from n-grams of characters in the immediate
context.

2 https://github.com/Calamari-OCR/calamari.

The new data sets and the trained Calamari models (mixed
models, Finnish model and Swedish model) are publicly
available at: https://github.com/sdrobac/ijdar-2020.

2 Related work

The demand for OCR of historical documents has initi-
ated large-scale projects whose aim is to make OCR easily
accessible to non-technical scholars. They usually create an
easy-to-use graphical interface with a semi-automatic com-
plete OCR workflow, from image optimization and page
layout analysis to automatic post-correction. For example,
READ (Recognition and Enrichment of Archival Docu-
ments) is an e-Infrastructure project funded by the European
Commission with a focus on making archival material more
accessible. They have developedTranskribus,3 a service plat-
form for OCR of both printed and handwritten material.

In Germany, there is the OCR-D4 coordination project,
with 8 project modules focused on various stages of OCR.
Also in Germany, OCR4all [28] has recently published an
open-source tool providing a (semi-)automatic OCR Work-
flow for historical prints. The workflow was created using
different open-source tools.

However, due to specific fonts used in different areas, it is
sometimes difficult to use pre-trainedmodels offered byother
initiatives, but there are existing open-source software pack-
ages that allow custom training and optimization, as well as
recognition. The most popular open-source tools are Ocropy,
Kraken,5 Tesseract and Calamari. While Ocropy and Kraken
train a one-level LSTM, the new versions of Tesseract and
Calamari train OCR models using Deep Neural Networks.

Ocropy has been widely used for years. Springmann et
al. [36] apply different OCR methods to historical prints
of Latin text and obtain high accuracy with Ocropy. Some
work on Blackletter fonts has been reported in [3], where
models were trained on artificial training data and achieved
high accuracy on scanned books with Blackletter text.
Shafait [33], along with an overview of different OCR meth-
ods, presents the architecture of Ocropy and explains the
different steps of a typical OCR process. Springmann and
Lüdeling [35] use Ocropy to recognize scanned images of
books printed between 1487 and 1870 and report character
error rates lower than 10%.

Calamari was created in 2018 and first published in [39],
which presented the Calamari-OCR software for training and
recognition that allows users to set up their own DNN struc-
ture including convolutional neural networks (CNNs) and
LSTMs. Convolutional neural networks have also been used

3 https://read.transkribus.eu.
4 http://www.ocr-d.de/eng.
5 http://kraken.re/.

123

https://github.com/Calamari-OCR/calamari
https://github.com/sdrobac/ijdar-2020
https://read.transkribus.eu
http://www.ocr-d.de/eng
http://kraken.re/


Optical character recognition with neural networks and post-correction with finite state methods 281

in recognition of handwritten texts. For example, Guha et
al. [13] reports success in training deep CNNs to extract fea-
tures in recognition of handwritten Devanagari characters.

The Calamari tool can be used as a replacement for
Ocropy training and recognition tools, and besides DNNs,
it offers other important features in comparison to Ocropy.
For example, models can be trained and text recognized on a
GPU, which dramatically improves performance. Additional
features such as early stopping, cross-fold voting, and pre-
training have been implemented. All these features lead to
lower error rates.

In [40], Calamari performance is tested in comparison
to Ocropy on historical books, demonstrating that a combi-
nation of a convolutional and an LSTM network performs
better than a single layer LSTM. Additionally, they experi-
ment with a voting mechanism and data augmentation and
find data augmentation to be beneficial in cases when there is
only a small amount of training data available (<3000 lines
on average). It is found that, for recognizing a book, a com-
bination of DNN, voting, data augmentation and pre-trained
models requires only 60 lines of ground truth (GT) data to
achieve an error rate below 2%.

The same paper also checks the performance of training
and recognition. Training Calamari’s deep network is faster
than training Ocropy when several CPU cores are used(>4).
However, training on a GPU is at least 4 times faster. In the
prediction phase, Calamari is faster than Ocropy by a factor
of 3 even with a single CPU core, and about 30 times faster
on a GPU. However, when using voting, the prediction time
for a single line needs to be multiplied by the number of
prediction models.

Reul et al. [29] train mixed Blackletter models with var-
ious data sources and then test the models on nineteenth
century unseen data from books, journals, and a dictionary.
They compare results from Tesseract, Ocropy and ABBYY
Finereader and Calamari to find that Calamari outperforms
the other tools in most cases. They also find that training on
real data gives better results than training on artificial data.

There have been several attempts to recognize histori-
cal prints published in Finland. In our earlier work [5], we
used Ocropy to recognize historical newspapers and journals
published in Finland and we achieved character error rates
between 4.79 and 7%. In further work [6], we experimented
on an optimal training data set size for the same data set.
We also trained on Swedish lines and unsuccessfully tried to
get a mixed model to recognize everything, achieving better
accuracy for Swedish with a monolingual model. However,
we found that adding Swedish data to the model reduced the
Ocropy character error rate for Finnish (−0.5%).

Another group has also been trying to OCR data from
the same corpus using Tesseract. In [20,21], they describe
their OCR process. In [17], they create the ground truth
data on Finnish Blackletter text (from the time period 1771–

1910), perform recognition with Tesseract and report word
error rates (WER) between 13 and 14.6%. In [18], they
report improvements in both accuracy and efficiency. The
newmethod consists of a combination of five different image
pre-processing techniques, a new Finnish Blackletter model
for Tesseract 3.04.01 with word candidate selection (voting).
The voting is based on character-level rules information as
well as the use of morphological analyzers and a language
model. They report CER 2.36% and WER 5.51%.

2.1 Post-correction

There are many different approaches to OCR post-
processing. Some of the basic methods look at post-
correction as a sequence to sequence spelling correction task
(e.g., [8,24,34]). In this work, we use a sequence to sequence
method that can be described as an unstructured classifier
and is proposed in [34]. This is a relatively simple method
from both a theoretical and a computational point of view
without a language model or a segmentation model. It can
use a lexicon to determine OCR errors, but can also work
without a lexicon.

However, there are alsomore specializedmethods that use
properties of the OCR results as features. All of the methods
have at least two steps:

1. Generation of correction candidates
2. Decision making to accept proposed corrections

The implementation and methodology behind each step
vary from approach to approach.

Certain methods use a lexicon to check if the suggested
words are valid words of the language, but historical lexicons
are not always available or are of poor coverage. An example
of this approach is [19], in which Arabic data with poor OCR
(WER 30% on the document level) is corrected and a 9%
WER improvement reported. They use a lexicon to select
incorrect words, for which they create correction candidates
with a regressionmodel trained on a confusionmatrix created
from a transcribed set of images. In the second stage, the right
correction is selected again using a regressionmodel, but this
time based on word features obtained from a language model
built from a large, publicly available text data set.

Similarly, but with historical data, Généreux et al. [11]
perform post-correction of newspapers printed in German
Fraktur between 1910 and 1920. They use a lexicon to find
correction candidates and an external corpus together with
edit distance and n-gram frequencies to score the candidates
and find the winner. They conclude that their model works
well when the correct result is not more than two edits from
the candidate and when they have “a perfect dictionary.” Fur-
thermore, Evershed and Fitch [10] post-correct Australian
historical newspaperswith a high error rate (over 20%WER).
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They also use an external representative text corpus to create
a language model by extracting and using n-gram frequency
lists. Their error model uses statistically weighted multiple
character edits with the addition of a “reverse OCR” pro-
cedure. The “reverse OCR” is a procedure for getting the
confusion cost by generating low-resolution glyph bitmaps
for each word pair, with a generic font. The bitmaps are then
overlaid in memory and adjusted to find the best alignment,
from which they calculate a bit correlation measure. This
measure helps improve the final confusion cost slightly.

Manual post-correction of OCR text is perceived to
achieve high-quality results, but it is time-consuming, expen-
sive and hard work. Human correctors need to have a good
knowledge of the text domain and be trained to use cor-
rection tools. Also, humans are bad at recognizing similar
character confusions. There are semiautomatic approaches
that make manual correction easier and more effective. In
the approach presented in [32], human annotators use an
interactive interface to correct Handwritten Text Recognition
(HTR) results. The user’s input is considered in real time and
applied to provide better automated suggestions. Addition-
ally, an ergonomic and user-friendly touchscreen interface
allows observation of the annotator’s pointer actions, which
is used to improve annotation performance.

Another tool PoCoTo [38] is a state-of-the-art web-based
tool for semiautomated correction of OCR results on histori-
cal texts. The toolwas first developed as a desktop application
in the EU project IMPACT and was later adapted for web
use. It uses an automated profilingmechanism that calculates
which words in an OCR document are probably errors using
a combination of statistical and lexical methods. The user
interface shows page snippets together with OCR text con-
taining possible errors and also offers possible corrections.
Thus it makes it easier for users to correct errors manually.

Recently, a new, improved and fully automated version
A-PoToCo [9] has been published. It uses a multi-input
OCR approach together with a logistic regression model
to rank post-correction candidates. To obtain multiple OCR
inputs, different engines are used, or different models created
by the same engine, to OCR the same historical document
multiple times. To decide whether to accept the highest-
ranked correction candidate, a logistic regression model is
trained, taking the confidenceof the highest-ranked candidate
and the difference to the confidence of the second-highest
ranked candidates as features.

The methods are tested on two data sets, one from 1557,
and the other from 1841, both with quite low starting accu-
racy (35% and 23%WER, respectively, on tokens with more
than 3 characters). The authors conclude that automated post-
correction on very old data with large spelling variation is
difficult, although they obtain better results on the older data
set than the modern one (−4,8% vs. −3,06% WER). They
are planning to implement an interactive interface for humans

to make the decisions on correction candidates in the next
version of the tool, called A-I-PoToCo.

In another multi-input OCR approach by [25], five bina-
rized versions of the same grayscale image are created using
different binarization thresholds (a value between 0 and 255
that determines whether each pixel will be assigned to a
white or a black pixel group depending on whether it is
below or above the threshold value). Once all the candi-
dates are obtained, a hypothesis lattice is created and a single
word selected using a supervised discriminative machine
learning tool [26]. Similarly, Dong and Smith [4] create an
unsupervised framework for OCR error correction for both
single-input and multi-input correction tasks. They focus
specifically on the datawith severalOCRversionswhich they
align to create parallel OCR data. Then they train a uniform
errormodel on parallel OCRdatawith sequence-to-sequence
methods with attention. The optimal post-correction is then
chosen via bootstrapping.

A completely different approach is presented in [14],
where they use the property that OCR errors of the same
word due to semantic similarity are grouped in vector space.
They train a Word2Vec [27] model on the entire newspa-
per collection to obtain clusters of the OCR errors together
with the real synonyms. Using a dictionary, they checkwhich
of the words are correctly spelled and then group the correct
words with all misspelled variants using the Levenshtein edit
distance. They use this parallel data set to train a character-
level neural machine translation (NMT) model with which
they perform a character-level translation of the erroneous
words.

A similar clustering approach was presented in [31] and
further in [30]. They created a post-correction Text-Induced
Corpus Clean-up tool TICCL that also clusters all similar
words in the corpus, but instead of being grouped semanti-
cally, they are grouped by character distances in Euclidean
space, calculated and scored by an anagram hashing method.
They use external data (lexicon, OCR confusions, and mor-
phological rules) to distinguish between correct words and
correction candidates and to adjust the scores. Finally, they
perform the correction by selecting the correction candidate
with the highest score.

3 OCR process

The OCR process (see Fig. 1) usually begins with pre-
processing of the image files to make the images more
uniform. Commonly, pre-processing includes image de-
skewing, normalization, and binarization, which transforms
each image pixel into a black or white pixel, resulting in a
black and white image.

Binarization reduces noise in the images, usually making
the text clear (Fig. 2). However, with images of poor quality,
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Training line images + GT lines Pre-trained
model

Pre-
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binariz.

Line
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tation OCR

Post
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XML

creation

Training

Fig. 1 OCR process

mistamaan. Niitä kutoessa pidetään tiuhtoa; mutta har-

mistamaan. MiitS kutoessa pidetään tiubtoa; mutta bar-

ilmoitus laiminlyödään, tätä ennen annetut

ilmktus laimiylyhdään; tätä ehten annetut

Åhrenberg työmies Bask ja työntekijä-

Ahr nberg työmis Bask ji työtekjä-

Fig. 2 Three examples of original images versus binarized images, GT
and OCR texts

binarizationmay sometimes remove useful information. Fur-
thermore, a binarized OCR model requires binarized images
in the recognition phase, which has a performance impact
on mass recognition. However, binarization is usually per-
formed together with normalization, so the added cost is not
prohibitive.

As we have deep neural networks that can handle and
remember large quantities of information, it might be possi-
ble to train networks with the original images or grayscale
ones, as is customary with handwritten manuscripts. How-
ever, that begs the question of whether such models also
require more training data. At this point, such experiments
are left for future work.

The second step in the process is image segmentation.
When we think about recognizing a document, we often
think of processing one page at a time. However, most of
today’s OCR models are trained on and can recognize only
one line of text at a time. In the past, there were approaches

that trained models on a glyph level, like Tesseract 3. How-
ever, it is difficult to correctly segment each glyph, so those
models produce many segmentation mistakes. Additionally,
creating glyph-level training data for many different fonts,
especially for historical data, is very time-consuming. With
those problems in mind and the ability to feed entire lines of
text into neural networks, line-level segmentation is currently
the state-of-the-art.

There are existing segmentation tools. For example,
Ocropy has a segmentation tool in its toolset. However, all
of our data had already been recognized once with ABBYY
Fine reader, so we reused their segmentation.We do not have
a good measure of the quality of the segmenting tool or a
comparison with other tools, but from manual inspection, it
seems that all the currently available tools perform approxi-
mately similarly. It is important to note that the segmentation
of newspapers is challenging and it is an open research prob-
lem, so until there is significant progress in the field we will
use the already existing segmentation.

Whenwe have line images, we feed them into a recognizer
for whichwe have trained a recognitionmodel. As output, we
obtain lines of text that can be further processed and corrected
using language technology. The final result is usually written
into XML files.

In this paper,we focus on training themost accurate recog-
nition models we can, considering our data. Furthermore,
we experiment with post-correction to see if we can achieve
additional gains.

4 Data and tools

4.1 Data

In this paper, we work on data from a corpus of historical
newspapers and journals published in Finland between 1771
and 1939. The data have been written mainly in Finnish and
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Swedish. From our random sample, we can conclude that
about the same amount of the Swedish text is printed in
Blackletter and Antiqua, while three-quarters of the Finnish
text is printed in Blackletter and only one quarter in Antiqua.
We have also found that the material contains Cyrillic and
Greek letters to a lesser degree.

4.2 Data preparation

In this paper, we use already available data sets as well as
data sets that we created on our own.We describe the process
of selecting and preparing the data for training and testing.
Part of the data that we use in this paper was taken from [6].
However, due to the larger memory capacity of DNNs, we
created additional training data for both Finnish andSwedish.

The existing data sets are from [6] and consist of 9500
lines of Finnish text and 6500 lines of Swedish text (418
of each set are used solely for testing). Both data sets were
randomly harvested from the corpus of historical newspapers
and journals. The Finnish data set is extracted from the time
period 1820–1939 and the Swedish data set from 1771 to
1874.

In addition to the existing data sets, we added 5000
Swedish and 4000 Finnish Antiqua lines that were also ran-
domly picked from the corpus from the same periods as the
previous data and manually transcribed. To obtain lines from
the corpus, we used ABBY’s segmentation information (line
coordinates), stored in METS-ALTO files. The XML files
also contain some information about the languages and fonts
found on each page, but we decided not to use that informa-
tion for two reasons. First, we do not know how reliable the
information is. Second, we do not have font and language
labels on a line level. Therefore, to harvest the new data we
used the language detection tool described in [15] to check
if a line is written in Finnish or Swedish. The tool works
very well on OCR data. We used the font-family recognition
tool described in [7] to check if a line is written in Blacklet-

Table 1 Details of Swedish and Finnish training and test sets

Dataset # lines # words # chars B:A

Training

Swe 11,094 63,561 478,054 50%:50%

Fin 13,037 54,941 513,987 50%:50%

Testing

Fine-grained Swe 418 2357 17,621 50%:50%

Fine-grained Fin 418 1756 16,622 75%:25%

Balanced Fin (1) 1303 5575 52,472 50%:50%

Balanced Swe (1) 1109 6368 47,791 50%:50%

B:A Blackletter:Antiqua ratio

ter or Antiqua. This was especially useful for the automatic
selection of additional Finnish Antiqua lines.

In the end, we had around 11,500 Swedish lines and
13,500 Finnish lines, both consisting of a similar percent-
age of Blackletter and Antiqua lines. All line images were
cut from binarized, normalized and de-skewed page images.

To test our results, we perform fivefold cross-validation.
The entire data set (minus 418 lines from each language set
which are used just for testing purposes) is randomly divided
into 5 equal-sized subsets. We use this test set for fivefold
cross-validation. Since, in this case testing, is performedwith
a balanced data set (the font family distribution is equal in
this set), we call this the Balanced test set.

For testing how the models behave on a specific language
and font-family, we use the 418 testing lines per language
from [6] that are never trained on. These lines have beenman-
ually checked, so for each line we know both the language
and font-family it was written in. This data set was randomly
picked from the corpus for each language, so it represents
the real font-family distribution of the original corpus. We
call this test set the Fine-grained test set. Testing on this test
set allows us to directly compare our new results with the
previous results reported in [6].

In Table 1, we show the statistics of the training and test
sets. We present the number of lines, words, and characters,
as well as the Blackletter and Antiqua ratio in each set.

4.3 Evaluation

For the evaluation of the results, we use two error measure-
ments: character error rate (CER) andword error rate (WER).

The character error rate is the percentage of erroneous
characters in the system output and is a common metric in
OCR-related tasks. It is the number of erroneous characters
divided by the sum of correct characters and errors in the
system output. Similarly, theword error rate is the percentage
of erroneous words in the system output. We calculate it as
the number of erroneous words divided by the sum of correct
characters and errors in the system output.

CER,WER = errors

correct + errors
(1)

To obtain the number of errors, we first aligned the ground
truth and the OCR lines on the character level (for both CER
and WER). Then we calculated the overall Levenshtein dis-
tance [22] between the system output and the ground truth
including deletions and insertions.

While calculating the CER is pretty straightforward, dif-
ferent evaluation systems use different alignment approaches
when calculating WER. For example, Fig. 3 shows two dif-
ferent alignments of a misspelled word example. The first
alignment is on a character level, so it will pair the missing
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Fig. 3 An example of how the number of word errors can vary depend-
ing on the alignment. When the lines are first aligned on a character
level, aligning them on the word level afterward gives a word error
count of 1 (the word example is aligned with exam εε e, ε being the
empty string). If we try to align words directly, we get a word error
count of 2 because we recognize exam as one word and e as another

letters p and l with the empty string ε. If this alignment is
then used to calculateWER, the word examplewill be paired
with the whole word exam εε e and will result in one error.
On the other hand, if we immediately pair on a word-level,
we will get the whole word example paired with exam, and
e gets paired with ε, giving us two errors in total.

Since both the Finnish and the Swedish Fine-grained test
sets (Sect. 4.2) have around 16,000 characters, we used only
one decimal place for CER.Going further than thatwould not
express any significant difference in our test sets as a 0.01%
CER improvementmeans 1.6 characters. For similar reasons,
we have left out all decimal points in the WER measure.

When comparing OCR systems on different languages
with differentword lengths such as, e.g., Finnish andEnglish,
with Finnish having relatively long words, character-based
measures are better indicators for comparing the overall
quality of the recognition results between languages. As
longer words are statistically more likely to contain errors,
word-based measures will seem artificially low for Finnish
compared with English. The legibility of Finnish text may
improve considerablywith increasing character-based results
without any notable change in the word-based measure.
Furthermore, character-based measures make it easier to
compare different OCR systems, because different alignment
and evaluation calculations can make a big difference on
the word level. However, one should note that a high CER
and WER means that the errors are distributed among many
words and this makes the text difficult to read, while a high
CER and low WER makes the text easier to read. So using
both character-based and word-based measures is useful.

For the fivefold testing, we calculate the mean and the
sample standard deviation over all 5 test results and estimate
a confidence interval of 95% (statistical significance level of
5%). In the fivefold cross-validation on the Balanced test set,

we test each model on an unseen distinct test set and obtain
5 test results. In the fine-grained testing, we test each model
on the same test set every time, also obtaining 5 test results.

4.4 Baseline

The corpus of newspapers and journals has previously been
recognized with ABBYY FineReader 11. The commercial
tool performed a line segmentation of each page and stored
segmentation information together with OCR results in the
METS-ALTO file format. On Finnish lines, the OCR char-
acter error rate is about 9–10%, while on Swedish lines it is
about 8–10%.

4.5 Tools

4.5.1 Ocropy

Ocropy (previously known as OCRopus [1–3]) was for many
years a leadingopen-source software toolkit for trainingOCR
models. However, several of the limitations in its training and
recognition tools (only a one-dimensional LSTM, no ability
to use GPUs, a slow NumPy implementation) have led to
the development of other training systems. However, Ocropy
tools for page segmentation, pre-processing and evaluation
are still used today. In this paper, we use the Ocropy bina-
rization and normalization tool for preparing the data. We
also use the Ocropy evaluation tool to calculate confusion
matrices.

4.5.2 Calamari-OCR

Calamari-OCR [39] is a toolkit for training and recognition
of image lines. It was created as a remedy to the previously
mentioned Ocropy deficiencies, so it does not have tools for
pre-processing and segmentation. Calamari supports a user-
defined deep CNN-LSTM-Hybrid architecture, which has
proven to increase model accuracy. They use Tensorflow as
the backend, which reportedly [40] increases computation
performance in comparison toOcropy, especiallywhile train-
ing and recognizing on aGPU. In addition to the performance
improvement, Calamari offers some additional tools that are
useful in certain instances (like voting and data augmenta-
tion).

4.5.3 FST post-correction

We chose to performOCR post-correction using the unstruc-
tured classifier described by [34] and used by [5] because we
wanted to see if there was any difference in the performance
of the post-correction method with different OCR quality in
the data set.
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2D CNN: 128, 3x3, ReLU

MaxPool2D: 2x2

2D CNN: 128, 3x3, ReLU

MaxPool2D: 2x2

Bi-LSTM: 600

Dropout: 0.5

Bi-LSTM: 600

Dropout: 0.5

Fully connected layer, Softmax

Fig. 4 The neural network consists of two pairs of convolution and
pooling layers with a ReLU activation function, followed by two bidi-
rectional LSTM layers with dropout layers after each one. Finally, the
model ends with a fully connected layer and a Softmax output layer

The method corrects input tokens and creates an error
model, which is a set of weighted context-sensitive paral-
lel replacement rules implemented as a weighted finite-state
transducer. After we have an error model, we use a lexi-
cal lookup to validate or discard suggestions generated by
the error model. We run all finite-state operations using
HFST6 [23] tools.

5 Method

5.1 Initial experiments

Before adding new data, we performed some initial experi-
ments from which we concluded that the Calamari results,
even with the default network, were definitely better than
Ocropy (with a mixed model we got 4.6% on the Swedish
test set and 3.1% on the Finnish test set, compared with the
best Ocropymonolingualmodels with only 7.1%on Swedish
and 5.0% on Finnish the test set). As we added extra training
data to Calamari, we needed to expand the network dimen-
sions from the default settings in order to take full advantage
of the new data.

6 https://hfst.github.io/.

5.2 OCR: trainingmodels

To train OCR models, we chose to use Calamari because of
its reported best performance results in [40]. Calamari has a
default neural network:

cnn = 40 : 3× 3, pool = 2× 2, cnn

= 60 : 3× 3, pool = 2× 2, lstm = 200, dropout = 0.5

As initially tested in Sect. 5.1, there is a significant
improvement in the results evenwhen switching fromOcropy
to the default Calamari model. However, as we added more
data, we wanted to see if increasing the network size would
improve the results further. Thus, through fivefold cross-
validation testing with different network configurations, we
found that we achieved the best results with the following
neural network:

cnn = 128: 3× 3, pool = 2× 2, cnn

= 128: 3× 3, pool = 2× 2, lstm

= 600, dropout = 0.5, lstm = 600, dropout = 0.5

The same neural network with more detail is shown in
Fig. 4. We used two CNN layers, the same as in the default
network, but we increased the depth of the layers from 40 to
128. This was the maximum considering the GPU hardware
restrictions. After each CNN layer, we have a MaxPooling
layer to reduce dimensions. Therefore, in the end we have
the original image reduced 4 times in size because of the
two pooling operations. This dimension reduction limits our
number of MaxPooling layers to prevent short lines from
getting too reduced, which would result in poorer results.

After the CNN layers, we have two bidirectional LSTM
layers of dimension600, each followedbyadropout [37]with
a rate of 0.5 to prevent overfitting. We tried to train models
with smaller and larger LSTM dimensions, as well as differ-
ent combinations of the number of layers and dimensions per
layer. Empirically, we seem to get statistically similar results
as long as the total number of LSTM dimensions is greater
than 1200. It seems that it does not matter how the dimen-
sions are distributed through layers. For example, the network
with two LSTM layers of size 600 gives similar results as a
network with three LSTM layers of size 400, with the same
dropout layer in between the LSTM layers. Due to compu-
tational restrictions, we could not train with only one LSTM
layer of size 1200. Therefore, this is the minimum network
configuration that does not increase the error rate.

Finally, in the end there is a fully connected layer and a
Softmaxoutput layer. The loss is computedusing theConnec-
tionist Temporal Classification (CTC) algorithm described in
[12].
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The models were trained with early stopping after the
results on the validation set had not improved after 5 steps in
batches of 32 lines.

5.3 Recognition phase and voting

In the recognition phase, we use the Calamari predict tool.
The main advantage of this tool is that it can be run on a
GPU, which makes the recognition phase very fast.

Another feature of the tool is the ability to recognize an
image with several models at the same time and then choose
the optimal result with voting. Each model predicts several
candidates with their accompanying probabilities and then
the voting mechanism decides which candidate wins. By
default, the tool uses confidence voting that adds all prob-
abilities for each candidate. The candidate with the highest
sum of probabilities wins.

Wick et al. [39] showed that voting always reduces errors,
sowe also tested it on our data. The downside of themethod is
that it requires recognition with several models, which slows
down the recognition process.

5.4 Post-correction

The post-correction training process was the same as
described in [5]. Error models of varying sizes were trained
on the Finnish andSwedish training sets, having beenOCRed
by the best OCR model. We picked the optimal error model
on the validation set and tested it on the Fine-grained test set.
Since this post-correction method works only on words, the
algorithm includes splitting the lines into tokens at blanks,
post-correcting and then joining the strings back into lines.
Thus, the algorithm cannot affect spaces.

For Finnish, we performed experiments both with and
without a historical Finnish lexicon.7 We further modified
this lexicon to accept strings with leading and trailing punc-
tuation, as punctuation often provides important clues for
finding the correct substitution, which could be lost if the
data was tokenized and the punctuation removed.

Aswe do not have a convenient Swedish historical lexicon
for the timeperiod,weonly ran experimentswithout a lexicon
on the Swedish test set.

6 Experiments and results

To evaluate the performance, we ran experiments with:

1. Mixed models (models trained on both Finnish and
Swedish data);

7 https://github.com/jiemakel/omorfi.

2. monolingual models (models trained on Finnish or
Swedish data);

3. Voting on different model combinations;
4. Post-correction.

6.1 Mixedmodels

With the first experiment, we wanted to see if we could train
mixedmodels that would be able to recognize all the different
parts of the data set.

To test the performance ofmixedmodels, we performfive-
fold cross-validation on theBalanced test set, which contains
both Finnish and Swedish training data. Additionally, we test
the same models on the Fine-grained test set to get a better
understanding of how models behave on each language and
font family. The results are shown in Table 2 and they are
expressed as a five-model mean error rate with 95% confi-
dence intervals. For every test result, we calculate both the
character and the word error rates.

The mixed models achieve an average error of 2.6% CER
and 10%WERon theBalanced test set. On the SwedishFine-
grained test set, they achieve 3.4% CER and 13% WER in
total, with 3.5%CER and 14%WER on Blackletter lines and
3.1% CER and 13% WER on Antiqua lines. On the Finnish
Fine-grained test set the total performance is 2.2% CER and
10% WER, with 1.9% CER and 8% WER on Blackletter
lines and 3.6% CER and 14% WER on Antiqua lines.

The 95% confidence interval is very narrow for CER. On
the Fine-grained test set it is under 0.08% in all cases except
for Finnish Antiqua, where it is 0.24%. On the Balanced test
set, it is 0.22%. For WER, the 95% confidence interval is
quite uniform, between 0.2 and 0.4%.

Table 2 Test results with mixed models

Test set CER (%) WER (%)

Balanced 2.6±0.22 10±0.4

Fine-grained

swe-test 3.4±0.05 14±0.3

swe-blackletter 3.5±0.05 14±0.2

swe-antiqua 3.1±0.07 13±0.4

fin-test 2.2±0.08 10±0.3

fin-blackletter 1.9±0.08 8±0.3

fin-antiqua 3.6±0.24 14±0.4

Results show the mean character (CER) and word error rates (WER)
with 95% confidence interval calculated with fivefold cross-validation
models. The first part of the table shows the results on the Balanced test
set and the second part on the Fine grained test set
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6.2 Monolingual models

In the second experiment, we trained Finnish and Swedish
monolingual models, so as to be able to compare the results
with the results achieved with mixed models.

For monolingual models, we performed the same five-
fold cross-validation on the Balanced test set and additional
testing on the Fine-grained test set, with the only difference
being that we performed training and testing separately for
each language. Therefore, the Finnish models were trained
and tested on Finnish data only, and the Swedish models
on Swedish data only. The results are shown in Table 3 and
also expressed as a five-model mean error rate with a 95%
confidence interval for both CER and WER.

Thefirst part of the table shows results on theBalanced test
set for eachmodel, as well as the combined error rate for both
balanced test sets,fin+swe, which results in 2.8%CERand
10% WER. We calculated and included this line for easier
comparison with the mixed model results, and we can see
that the result is in the same range as the mixed model result,
albeit with a larger error margin (0.71%). The second part of
the table shows how the Swedish models performed on the
Swedish part of theFine-grained test set (3.1%CERand13%
WER in total) and the third part of the table shows the results
of Finnish models on the Finnish part of the Fine-grained
test set (4.1% CER and 11%WER). While the results on the
Swedish test set are the same as with the mixed model, the
monolingual models did significantly worse on the Finnish
test set.

6.3 Voting

To test how the voting mechanism affects the results, we
performed voting experiments with six different model com-
binations.Allmodels used for votingwere trained and used in
the fivefold cross-validation experimentswithmixedmodels,
or with monolingual models. Initial results showed that vot-
ing performed worse with only three models, so we tested
combinations with 5 models and one additional 7-model
setup. We used the following model combinations:

1. 5 mixed models
2. 1 mixed model, 2 Finnish monolingual models, 2

Swedish monolingual models
3. 3 mixed models, 1 Finnish monolingual model, 1

Swedish monolingual model
4. 5 mixed models, 1 Finnish monolingual model, 1

Swedish monolingual model
5. 5 monolingual Finnish models
6. 5 monolingual Swedish models.

Table 4 shows the results after voting with the model com-
binations. The upper table shows the character error rates and

Table 3 Test results on monolingual models

CER (%) WER (%)

Test set

swe-balanced 3.8±0.37 13±0.7

fin-balanced 1.7±0.09 8±0.5

fin + swe 2.8±0.71 10±1.9

Swedish models

Fine-grained

swe-test 3.4±0.09 13±0.5

swe-blackletter 3.6±0.15 15±0.8

swe-antiqua 3.1±0.08 13±0.7

Finnish models

Fine-grained

fin-test 4.1±0.16 11±0.4

fin-blackletter 3.5±0.15 9±0.6

fin-antiqua 5.8±0.24 17±1.0

The first table shows errors (CER andWER) for balanced models. Five
Swedish and five Finnish models were cross-trained and tested. The
first row shows mean errors with 95% confidence interval on Swedish
fivefold testing, the second one on Finnish fivefold testing and the third
row mean errors on their combined results (5 Finnish and 5 Swedish
test results). The second and third tables shows errors on fine-grained
test sets. In the second table, we tested Swedish models on Swedish test
sets, and in the third table Finnish models on Finnish test sets

Table 4 Recognition results with voting on Fine-grained test set, CER
(upper table) and WER (below)

Test/models CER (%)
(1) (2) (3) (4) (5) (6)

swe-test 2.9 4.0 3.0 2.9 6.6 2.8

swe-blackletter 3.1 4.2 3.3 3.2 7.1 2.9

swe-antiqua 2.7 3.9 2.7 2.7 6.1 2.8

fin-test 1.9 2.0 2.1 1.9 2.2 3.1

fin-blackletter 1.6 1.6 1.7 1.6 1.7 2.8

fin-antiqua 2.9 3.2 3.3 3.1 3.8 4.3

WER (%)

swe-test 12 14 12 12 23 11

swe-blackletter 12 14 13 12 25 12

swe-antiqua 11 13 11 11 20 11

fin-test 8 8 9 8 9 14

fin-blackletter 7 7 8 7 8 13

fin-antiqua 11 12 12 11 14 17

Bold denotes the best results in a row
All models used for voting were created and used with fivefold cross-
validation. Mixed models are trained on both Finnish and Swedish data.
When there are less than 5 models, we chose the ones with the best
results on the balanced tests. We used the following models for voting:
(1) 5 mixed models (2) 1 mixed model, 2 Finnish, 2 Swedish models
(3) 3 mixed models, 1 Finnish, 1 Swedish model (4) 5 mixed models,
1 Finnish, 1 Swedish model (5) 5 monolingual Finnish models (6) 5
monolingual Swedish models
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Table 5 Post-correction results (CER/WER) on Fine-grained test set

Test set OCR Lexicon No lexicon

swe-test 2.9/12 – 2.7/11

swe-blackletter 3.1/12 – 2.9/12

swe-antiqua 2.7/11 – 2.4/10

fin-test 1.9/8 1.9/8 1.7/7

fin-blackletter 1.6/7 1.6/7 1.4/6

fin-antiqua 2.9/11 2.9/11 2.9/11

Swedish error model was trained and tested on Swedish data, Finnish
on Finnish data. The first column shows a test set, the second OCR
accuracy, the third post-correction results with the use of the lexicon
and the last column post-correction accuracy without a lexicon

the lower table the word error rates. This time we only per-
formed one test per model combination, and the testing was
performed only on the Fine-grained test set, because that set
was not used for training any of the models. We could not
use the Balanced test set for this experiment to avoid testing
on data that had been trained on.

On the Swedish test set, we obtained the lowest error rates
with setup (6), consisting only ofmonolingual Swedishmod-
els (2.8%CER and 11%WER). The Finnish test set obtained
the best results with 5 mixed models (1.9% CER and 8%
WER). The best results with voting between 5 models were
better than the results with one model only.

6.4 Post-correction

The last experiment was post-correction. We wanted to see
if there is something left for a separate post-processing unit
to pick up on when using a multilingual OCR model.

As input for the post-correction training, we took re-
OCRed text produced by voting with 5 mixed models. The
post-correction error models were trained on the same train-
ing set as the OCRmodels with the optimal threshold chosen
on the same validation set. For Swedish, the optimal thresh-
old was 16. For Finnish with a lexicon it was 9 and without
a lexicon 11.

We show the recognition results on the Fine-grained test
set, as well as the post-correction results in Table 5. The
OCR error rates with voting is 2.9% CER and 12% WER
on the Swedish test set and 1.9% CER and 8% WER on the
Finnish test set. However, the best results for both test sets
were achieved with post-correction without lexicon (2.7%
CER and 11% WER for Swedish, 1.7% CER and 7% WER
for Finnish). Post-correction without lexicon managed to
improve all the results except for the Finnish Antiqua, which
stayed the same. Post-correction with lexicon did not make
any changes.

Table 6 A confusion matrix for the Balanced test set and the Swedish
and Finnish Fine-grained test sets with the best mixed model from the
fivefold cross-validation

Balanced Swe Fine-grained Fin Fine-grained
# ocr gt # ocr gt # ocr gt

64 __ 16 ä å 12 __

42 u n 10 . , 7 ä a

37 . , 9 å ä 7 t i

32 t l 8 s f 6 i t

31 å ä 8 u n 6 __ i

26 __ . 7 , . 5 . __

24 ä å 6 t l 5 n u

24 n u 6 __ , 5 l i

22 e c 6 . __ 5 i l

22 s f 5 a ä 4 k t

For each test set, the first column shows the frequency of the mis-
takes, the second column the recognition result and the third column
the ground truth. Deletions are marked with “__” in the OCR column
and insertions with “__” in the ground truth column. The Balanced test
set has a total of 95,886 characters, the Swedish Fine-grained test set
15,850 and the Finnish 16,890 characters

7 Error analysis

In this section, we performOCR error analysis on the charac-
ter level using confusionmatrices, aswell as aword-level and
line-level analysis. Furthermore, we analyze post-correction
results on the line level.

7.1 Confusionmatrices of OCR results

In Table 6, we show the confusion matrices with the 10 most
frequent confusions for 3 different test sets: theBalanced test
set from fivefold cross-validation (with CER 2.2%) and the
Swedish and Finnish Fine-grained tests sets recognized with
the same model.

The first 3 columns in the tables show confusions of the
Balanced test set, the next 3 columns of the Swedish set and
the final 3 columns of the Finnish Fine-grained test set. On
each test set, the first column is the frequency of themistakes,
the second column the recognition result and the third column
the ground truth. Deletions are marked with “__” in the OCR
column and insertions with “__” in the ground truth column.

The top mistake in the Balanced test set is the deletion
of a space, with 64 occurrences, followed by “u” and “n”,
“.” and “,” and “t” and “l” confusions. In the Fine-grained
test set, the most common confusion for Swedish is “ä” and
“å”, followed by “.” and “,”, “å” and “ä” and “s” and “f”.
For Finnish, the most common error was a wrongly deleted
space, followed by “ä” and “a”, “t” and “i” and “i” and “t”
confusions.

123



290 S. Drobac, K. Lindén

20 40 60 80 100

100

200

300

Error ranking

N
um

be
ro

fe
rr
or
s

Fig. 5 The graph shows the number of errors per every 10 error-rank in
the Balanced test set, starting with the most frequent ones. The first bar
shows that the top ten mistakes make up slightly more than 300 errors,
the sum of the next ten most frequent errors is shown in the second bar,
etc

Confusionmatrices are a goodway to seewhich letters are
confused the most. However, in our case, the most frequent
ten mistakes make up only a small portion of the entire data
set and correcting those few would bring only a small over-
all improvement. The Balanced test set has a total of 95,886
characters, and in the Fine-grained test set the Swedish part
has 15,850 and Finnish 16,890 characters. Together, the top
ten mistakes in the Balanced test set make up only 0.34% of
the characters, in the Swedish Fine-grained test set 0.48%
and in the Finnish test set 0.39%. We also calculated per-
centages for the next 10 mistakes (not shown in the table)
and, together, they account for 0.19% of the Balanced test
set, 0.23% of the Swedish and 0.20% of the Finnish Fine-
grained test set.

To visualize the numbers, we created a graph shown in
Fig. 5 that illustrates the cumulative number of errors for
every 10 positions in the Balanced test set confusion table.
The top ten mistakes account for slightly more than 300
errors, the next ten mistakes only half of that, then the next
10 mistakes again drop by half, etc.

The confusion table and the graph show us that although
some characters are confused more often than others, most
of the mistakes are widely distributed across a large and spu-
rious variety of characters.

7.2 Word level error analysis

In Table 7, we show how many words from the Fine-grained
test set are found also in the training sets. The Swedish test
set has more words in total, but almost the same number of
unique words as the Finnish one. However, words from the
Swedish test set are better represented in the training set. This

Table 7 Word representation of Finnish and Swedish Fine-grained test
sets in the respective training sets

FIN test SWE test

Total words 2169 2774

Unique words 1741 1754

Found in training set 57.6% 64.6%

Incorrect words 169 323

Unique incorrect words 160 289

Found in training set 41.9% 49.8%

The upper part shows the number of total and uniquewords, and the per-
centage of the unique words found in the training set. The bottom table
shows the number of incorrect words (total and unique) after recogni-
tion with a mixed model, as well as the percentage of unique incorrect
words, whose correct version is present in the training set

is not surprising since Finnish is morphologically richer than
Swedish and we searched for the words in their exact form
as they appear in the test set.

We analyze the incorrect words in the bottom part of the
table. The number of unique erroneous words is just slightly
lower than the total count and the percentage of the correct
version of those words found in the training set is lower than
in the upper table. However, this percentage is still quite high,
meaning that not only rare words have been misspelled.

7.3 Line level error analysis

In order to further understand the nature of the mistakes, we
performed an error analysis on the line level.We checked how
many lines were recognized completely correctly and found
that most of the lines did not have any errors (on average
over 72% of the Finnish lines, and over 51% of the Swedish
lines, while [5] report 37%correct lines on the Finnish test set
recognized with Ocropy). In the set of incorrect lines, most
of them only have some errors here and there, and those
are usually common OCR confusions (as shown in Table 6).
However, some lines have very high error rates sowe focus on
characterizingwhat type of lines they represent.Wemanually
went through the lines with CER over 25% (see examples in
Fig. 6) and found that the mistakes mostly belong to one of
three groups:

1. Wrong segmentation When there is visible text from the
previous or the next line, the recognizer gets completely
confused and cannot recognize anything (Fig. 6a). It
behaves similarly if the text is surrounded with graph-
ics as in Fig. 6f.

2. Poor image quality Although most of the images are of
good quality, some of the data suffers from poor qual-
ity, as shown in Fig. 6b. When preparing training and
testing data, we deleted line images that we could not
transcribe. However, there is a certain portion of lines
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ne Fiskals-Enkan Brita Lindroths Arfwingars, under N:o
21 och 25 i Klöster-Qwarte
ffnkt sr. K2e Aersed, sl fe öt td ir t iöftö mfn

(a) (a) Wrong segmentation

ilmoitus laiminlyödään, tätä ennen annetut

ilmktus laimiylyhdään; tätä ehten annetut

(b) (b) Poor quality

KAARLO KAUTTU.
KAAnL0 KArTrr.

(c) (c) All capital letters

Suomalainen Wirallinen Lehti.
Snomalainen Dirailimen Lehl.

(d) (d) Special font

Rahaksi muutto
Kaladiusta

(e) (e) Tall narrow font

Pirilän ja Kaulan

JHin ja käsl

(f) (f) Surrounded text

Fig. 6 Example lines with lots of errors. In every subfigure, the first line
shows the binarized image line, the second line the ground truth text,
and the last one the recognized text. The examples show OCR models
performing poorly on lines: awith wrong segmentation, there is visible
text from the previous line, b of poor quality, c containingwords with all
capital letters, d printed in specialized font, e printed in tall and narrow
font, f graphics surrounding the text

with poor image quality that we could transcribe based
on the context, but the OCRmodels seem to struggle with
those lines.

3. Specialized fonts Since our training data was harvested
randomly from the corpus, we have a good representation
of frequent fonts, but poor representation of specialized

Table 8 The results of recognition with mixed models on the trimmed
Fine-grained test sets after removing header and advertisement lines

Fine-grained CER (%) Δ WER (%) Δ

swe-test 3.2± 0.07 − 0.2 13± 0.0 − 1

swe-blackletter 3.5± 0.06 0.0 14± 0.0 0

swe-antiqua 2.9± 0.10 − 0.2 12± 0.5 − 1

fin-test 1.7± 0.06 − 0.5 9± 0.5 − 1

fin-blackletter 1.6± 0.06 − 0.3 8± 0.0 0

fin-antiqua 2.2± 0.08 − 1.4 11± 0.5 − 3

On the Swedish data set, we removed 25 lines, 10 Blackletter (5%) and
15 Antiqua (7%). On the Finnish set, we removed 31 lines in total, 10
Blackletter (3%) and 21 Antiqua (22%). The first column in the table
describes the test sets, the second theCERvalues, the third the difference
in the CER compared with results on the original Fine-grained test set.
The last two columns show the WER results on the altered test set and
the difference from the original WER results

fonts that rarely occur. Therefore, it is not surprising that
themodel has trouble recognizing lines printed in special-
ized fonts as those shown in Fig. 6d, e. Furthermore, the
model struggles with recognizing lines in all capital let-
ters (Fig. 6c). Some capital letters occur more frequently
than others, so they are better represented in the training
data. Also, the model rarely sees all capital letter exam-
ples in the training data, so it might not recognize some
capital letters surrounded by other capital letters because
it has not seen them before in that context.

Going through the lines with high error rates, we real-
ized that most of the lines printed in specialized fonts are
either headings or parts of advertisements. In order to check
how much of the error is caused by those lines, we prepared
a trimmed version of the Fine-grained test set, which did
not have any headings or advertisements. We identified and
removed 25 lines in total as headings from the Swedish test
set, of which 10 were Blackletter (5%) and 15 Antiqua (7%).
From the Finnish test set, we removed 31 lines, of which 10
were Blackletter (3%) and 21 Antiqua (22%) lines.

The recognition results without those lines are shown in
Table 8, as well as the difference from the results on the orig-
inal Fine-grained test set. The results on the “trimmed” test
set were better than the original results. The largest improve-
ment comes from the Antiqua lines. On the Swedish set, the
CER results improve0.2%and the entire improvement comes
from theAntiqua part. On the Finnish set, the results improve
0.5%, with the largest improvement also on the Antiqua part
(1.4%). Word error rates also improve (1% on both sets).

7.4 Post-correction error analysis

As seen in Table 5, the post-correction managed to improve
both the Finnish and the Swedish test data.
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Table 9 The number of lines of the Fine-grained test set (of a total of
418 lines in each Finnish and Swedish part) that became better or worse
after post-correction

Finnish Swedish
Lexicon No lexicon No lexicon

Better 0 11 17

Worse 0 0 2

The first row shows the number of lines that improved after post-
correction and the second row shows the number of lines that got worse
after post-correction. Thefirst two columns show the tests on the Finnish
data set,with andwithout a lexicon, and the last columnshows the results
for the Swedish test set

Fig. 7 A post-correction example. The first line shows the OCR output,
the second one the post-correction result and the third one the ground
truth. The error of the OCR line is 10.5% before correction and 0% after
correction

In order to analyze the post-correction results, we checked
how many lines improved and how many deteriorated with
post-correction. The tests were performed on the Fine-
grained test set and the results are shown in Table 9. We
can see that the Finnish model without a lexicon corrected
11 lines and did not make any bad decisions, versus the one
with a lexicon,which did notmake any changes. TheSwedish
error model managed to correct 17 lines and made two lines
worse.

Since we are dealing with such a small number of lines,
we manually checked all the results. Surprisingly, almost all
corrections were changes to quotation marks: two consecu-
tive commas were changed into a left lower double quotation
mark and two apostrophes were changed into one upper dou-
ble quotation mark. Figure 7 shows an example of an OCR
line with CER 10.5% that was post-corrected into a 100%
correct line by correcting the quotation marks in two places.

The other changes were the insertions and deletions of
commas. For example, both of the Swedish lines got worse
after correction because one comma was wrongly deleted. In
one line, that was a real mistake and the error went up from 0
to 2.2%. However, the other Swedish line that got worse had
an OCR character error rate of 68.8%; therefore, deletion of
one comma did not make a big difference because the OCR
text was completely incomprehensible anyway.

We speculated that the reason why only punctuation gets
corrected could be the fact that the error models were trained
on the same data set that the OCR models were trained on.
The error rates of the training set are lower than of the regu-
lar OCR test sets, so maybe the model does not have enough
examples to learn which mistakes to correct. To test this,
we trained the post-correction error models on the real OCR

test data. For this purpose, we took test sets from the fivefold
cross-validation, recognizedwith correspondingmodels, and
used for post-correction training. With this approach, the
post-correction performed more corrections, but also made
more incorrect decisions. In the end, the error rates with this
method were higher than with the original approach, because
the starting OCR error rates were higher than with voting.

8 Discussion

In this section, we analyze and discuss the OCR results
presented in the paper as well as the error analysis and post-
correction results.

The important accomplishment is thatwemanaged to train
a mixed model that is able to recognize both Finnish and
Swedish data, aswell as Blackletter andAntiqua fonts.While
the mixed model performs equally well as a Swedish mono-
lingual model on Swedish data, it is interesting that on the
Finnish data, we obtained significantly better results (around
−2%CER)with amixedmodel thanwith amonolingual one.
In [6], we report improvements on Finnish Antiqua with a
mixed model, but in our case, we achieve the same improve-
ment on both the Blackletter and Antiqua sets.

Furthermore, our results are a lot better than earlierOcropy
results reported in [6] on the same test data set. With the new
mixed model, we get −3.7% CER and −12% WER on the
Swedish test set and −2.8% CER and −11% WER on the
Finnish test data. With voting, the CER falls an additional
0.6% for Swedish and 0.3% for Finnish, andWERgoes down
2% for both languages.

We can also compare our Finnish Blackletter results with
voting (1.6% CER and 7% WER) with the Tesseract results
published in [18]. They report CER 2.36% and WER 5.51%
after voting enhanced with an external language model,
which after rounding equals to 2.4% CER and 6% WER.
In comparison, we get 0.8% better CER on OCR results, but
our WER is 1% worse than what they report. After post-
correction, the difference is 1% CER in our favor and WER
is the same. It is interesting that with significantly higher
CER, they get a lower or the same WER as we do. Since we
do not test on the same data, maybe the test data they use has
more short words than our test data. The other possibilities
for this result could be that voting with a language model
enables better decisions on a word level or that the differ-
ence in the results is a consequence of different alignment
methods when calculating WER. However, to get an accu-
rate comparison, it would be necessary to test both methods
on the same test data. Despite the lower WER, the obvious
drawback of their method is that their model focuses only
on one language and one font-family. Even if they acquire
training data for Swedish and Antiqua, they would have the
challenge of incorporating voting with two language mod-
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els. We should keep in mind that they also used additional
advanced image processing before the recognition.

All our mixed model results show that, despite the similar
sizes of the Finnish and Swedish training sets, the results on
the Swedish test set are always lower than on the Finnish test
set (about 1%CER and 3%WER). Furthermore, the Swedish
Blackletter results are always worse than the Swedish Anti-
qua, and conversely, the Finnish Antiqua results are always
worse than the Finnish Blackletter. In [6], the poor Finnish
Antiqua results were speculated to be due to a small num-
ber of Finnish Antiqua training lines. Now we have the same
number of training lines for both Blackletter and Antiqua,
but Finnish Antiqua results are still lagging behind. A new
hypothesis is that there is more variety in the Swedish Black-
letter fonts as they were initially hand-crafted, whereas there
is more variety in the Finnish Antiqua fonts as technol-
ogy progressed and advertising increased with the advent of
industrialization, advertising and fancy fonts. Both of these
should be remedied with additional training data.

When comparing mixed and monolingual model results,
it is interesting that the Swedish test set results are the same
in both cases, but the Finnish monolingual model performs
a lot worse than the mixed model on the Finnish test set.
In [6], Finish Antiqua benefited from being combined with
Swedish in the mixed model, but now both Blackletter and
Antiqua get a large performance boost from themixedmodel.
It seems that the added variety is still more important than
the language context, indicating that the model could still
benefit from more Finnish training data.

It is known that voting can improve OCR results (as
reported in [39]). It is not surprising that the results on our
models also improved with voting. However, it is interest-
ing that having similar models voting (5 mixed models or
5 monolingual models) outperformed models trained on dif-
ferent segments of the data set (combinations of monolingual
and mixed models). This contradicts what has been reported
in [39]: “The benefit of voting depends highly on the vari-
ance of the individual voters. If the voters predict very similar
results, errors are less probable of being removed, than if
more diverse models are used.” That is not the case in our
test, where we achieve the best voting results with similar
models. Perhaps there is a limit to how diverse the models
should be or how variety is accumulated in the models. On
the other hand, the obvious downside of voting is the recog-
nition speed. Voting with 5 models means slowing down the
recognition by a factor of 5. However, the recognition is per-
formed on a GPU, which is very fast, so this might not be a
real issue for the re-OCR process.

The error analysis on the character level showed that
errors are widely distributed. The top 10 errors make up
only 0.3–0.5% of the total character count, and 13–17%
of the remaining error rate. Correcting them would require

a substantial effort, but would yield only a small overall
improvement.

The analysis on the line level showed that most of the
lines are correct. However, there are lines with a high error
rate, and to improve general accuracy, it would be useful to
focus on identifying what kind of lines they are and find a
way to correct them. For example, we identified that a certain
number of lineswith high error rates are printed in specialized
fonts, and these are usually headings or advertisements.

While random sampling of lines across the corpus proved
to be effective for training a generalmodel, to further increase
the recognition rate of specialized fonts, we need a more
focused approach. We could still randomly sample the lines
from the corpus, but it would be useful to use an automatic
font classifier that would recognize lines printed in special-
ized fonts. The font-family classifier described in [7] could
possibly be trained for this purpose. This would allow us to
collect Cyrillic andGreek data, whichwe have so far ignored.

Finally, we discuss post-correction. Interestingly, despite
the large error reduction in the OCR results, the same
basic sequence to sequence post-correction method manages
(without a lexicon) to consistently reduce error rates. While
we do not know what kind of error corrections the post-
correction performed in [5], it is interesting that in this case
it focused on correcting punctuation.We could argue that this
is mainly because the error model was trained on the same
set as was OCRed, and because of the initial low error rates,
it does not frequently learn to correct other character confu-
sions. However, training on the real test set did not improve
overall accuracy and did introduce more incorrect “correc-
tions.” It is probably better to go with the safe option and
obtain even a small post-correction improvement.

9 Future work

Although we are happy with the current OCR results, we
believe that there is still room for improvement. We believe
that adding more training data for specialized fonts could
result in further improvement.

Binarization has been a standard procedure in the OCR
workflow for a long time. However, with DNNs available, it
would be interesting to see if it would be possible to train
successful models on grey or even colored images. Would
more information in the image require more training data
and a larger neural network?

Finally, votinghas shown tobe a successfulmechanism for
improving OCR accuracy. We achieved the best results with
5 relatively similar mixed models, but it would be interesting
to see if a different voting algorithm would be more suited
to voting successfully on more diverse models (for example,
combinations of mixed and monolingual ones).
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10 Conclusions

With deep neural networks and randomly sampled training
data, it is possible to train onemixedmodel for the entire data
set that performs better than the monolingual models. Voting
with five relatively similar models further reduces error rates
and post-correction models correct punctuation, resulting in
2.73% CER and 11% WER on the Swedish, and 1.7% CER
and 73% WER on the Finnish test set.

The results are far better than any previous results on this
data set, including commercial and Ocropy results. Further-
more, with CER on the Finnish Blackletter test set being 1%
lower than with Tesseract, this approach results in the best
recognition results on this corpus currently available.
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