International Journal on Document Analysis and Recognition (IJDAR) (2021) 24:3-17
https://doi.org/10.1007/510032-020-00361-1

SPECIAL ISSUE PAPER l‘)

Check for
updates

Arrow R-CNN for handwritten diagram recognition

Bernhard Schifer'2(- Margret Keuper?(® - Heiner Stuckenschmidt?

Received: 6 February 2020 / Revised: 19 October 2020 / Accepted: 8 December 2020 / Published online: 2 February 2021
© The Author(s) 2021

Abstract

We address the problem of offline handwritten diagram recognition. Recently, it has been shown that diagram symbols can
be directly recognized with deep learning object detectors. However, object detectors are not able to recognize the diagram
structure. We propose Arrow R-CNN, the first deep learning system for joint symbol and structure recognition in handwritten
diagrams. Arrow R-CNN extends the Faster R-CNN object detector with an arrow head and tail keypoint predictor and
a diagram-aware postprocessing method. We propose a network architecture and data augmentation methods targeted at
small diagram datasets. Our diagram-aware postprocessing method addresses the insufficiencies of standard Faster R-CNN
postprocessing. It reconstructs a diagram from a set of symbol detections and arrow keypoints. Arrow R-CNN improves
state-of-the-art substantially: on a scanned flowchart dataset, we increase the rate of recognized diagrams from 37.7 to 78.6%.

Keywords Diagram recognition - Offline recognition - Object detection - Graphics recognition - Symbol recognition -

Flowchart

1 Introduction

Graphical modeling languages are a long-used and intuitive
device to visualize algorithms, business process models, and
software systems. There are various formalized modeling
notations, including flowchart, UML use case, and event-
driven process chain diagrams. Initial diagrams are typically
sketched on non-digital devices such as whiteboard or paper
[10]. If a user decides they want to continue working on the
sketch in a modeling software, they are required to manually
recreate the diagram in its entirety. Research in handwrit-
ten diagram recognition addresses this gap, by providing an
automated method that converts a scan or photograph of a
diagram into a structured model. It is thus concerned with
two main tasks: (1) the local recognition and localization of
symbols and (2) the recognition of the global structure.

B Bernhard Schifer
bernhard.schaefer@sap.com

Margret Keuper
keuper @uni-mannheim.de

Heiner Stuckenschmidt
heiner @informatik.uni-mannheim.de

1 Intelligent Robotic Process Automation, SAP SE, Walldorf,
Germany

Data and Web Science Group, University of Mannheim,
Mannheim, Germany

Handwritten diagram recognition methods can be catego-
rized into two approaches: online and offline recognition [7].
In online recognition, the diagrams are drawn with an ink
input device such as a tablet. This input device captures the
drawing as a temporal sequence of strokes. Online diagram
recognition has received a lot of attention in research, espe-
cially in the area of flowcharts [1-6,9,14,18,36,37,40]. Yet,
those approaches are of limited applicability if the original
stroke data are not available (e.g., hand-drawn diagrams on
paper). While offline recognition directly allows to tackle
this more general scenario, it has attracted much less atten-
tion in the past. Most offline approaches rely on traditional
image processing methods to reconstruct the strokes of a
diagram, and use feature engineering to derive a set of distinc-
tive stroke features [7,24]. The revival of deep convolutional
neural networks (CNNs) has caused a paradigm shift from
“feature engineering” to “feature learning”. For detecting
object instances in an image, two-stage object detectors pop-
ularized by Faster R-CNN [26] are state-of-the-art. In [15] it
was demonstrated that Faster R-CNN can be effectively used
to recognize the symbols in a flowchart image. Even though
the utilized flowchart dataset has only 200 training images,
the evaluation shows very good results for recognizing node
shapes. The model mostly struggles with recognizing arrows
and text phrases due to their varying form and size. We agree
with their motivation and thus propose an offline handwrit-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10032-020-00361-1&domain=pdf
http://orcid.org/0000-0003-4364-0086
http://orcid.org/0000-0002-8437-7993
http://orcid.org/0000-0002-0209-3859

B. Schifer et al.

ten diagram recognition approach which builds upon Faster
R-CNN for symbol recognition.

This work focuses on handwritten diagrams, where each
diagram contains node symbols of varying shapes, arrows,
and optionally text phrases. Arrow recognition methods
are also used to identify regions of interests in medical
images and to interpret mechanical drawings and circuit dia-
grams [27-29]. While the recognition of computer-generated
arrows in mentioned examples is important, this work focuses
on handwritten diagrams, where each arrow connects two
nodes, and each text phrase annotates either a node or an
arrow. Although this structure is simple, it is sufficiently pow-
erful to describe graphical modeling languages from various
domains. We follow the terminology in [6] and use the term
arrow-connected diagram to describe this class of diagrams.
Structure recognition in arrow-connected diagrams is con-
cerned with specifying the nodes each arrow joins and the
edge direction. While an object detector can classify and
localize the symbols of a diagram through bounding boxes,
the bounding box information is insufficient for structure
recognition. We show that we can leverage arrow keypoint
information for diagram structure recognition.

In this paper, we propose a system for recognizing arrow-
connected diagrams. Our contributions are the following:

— We demonstrate how a Faster R-CNN object detector can
be extended with a lightweight arrow keypoint predictor
for diagram structure recognition.

— We identify data augmentation methods for diagrams and
show that they vastly improve object detection results. We
also propose a method to augment diagrams with words
from an external dataset, to further reduce the confusion
between arrow and text symbols.

— We propose a postprocessing pipeline to form a final dia-
gram from object and keypoint candidates.

— We evaluate our system on four datasets from the
flowchart and finite automata domain.

Figure 1 provides an overview of our method.

The remainder of the paper is organized as follows. Sec-
tion 2 surveys related work in diagram recognition and
keypoint estimation. Section 3 describes the Arrow R-CNN
network and its training procedure. Section 4 proposes
augmentation and postprocessing methods designed for dia-
grams. Section 5 contains experimental results and describes
the datasets used for evaluation. Section 6 presents conclu-
sions and potential future work.

2 Related work

Symbol recognition plays an important role in various appli-
cations and has a rich literature in graphics recognition

@ Springer

[30,31]. Our work focusses on diagram recognition using an
arrow keypoint detector. Thus, in the following we separately
discuss related work on (1) handwritten diagram recognition
and (2) generic keypoint detection with neural networks.

2.1 Handwritten diagram recognition

While our work is focused on offline handwritten diagram
recognition, there is an overlap with online recognition with
respect to the utilized methods and datasets. From a method
perspective, online recognition systems that do not strictly
require temporal stroke information can be adjusted for
offline recognition. To this end, a stroke reconstruction pre-
processing step can extract a set of strokes from a raster
image. From a dataset perspective, online datasets can also
be used to evaluate offline systems by plotting the strokes as
an image. This is common practice, due to the lack of public
datasets that are offline by nature. In the following, we dis-
cuss related offline work and also include online works that
introduce a new dataset or contain an offline extension.

In 2011, Awal et al. [1] published the FC_A online
handwritten flowchart dataset. The dataset is publicly avail-
able, and its size has been increased to 419 flowcharts
after the publication date. Following the release, several
methods for online flowchart recognition were proposed [2—
6,9,18,36,37,40]. Wu et al. [38] is the first work that uses
FC_A for offline recognition. [38] use a three-stage recogni-
tion pipeline, including a shapeness estimation algorithm to
figure out if a stroke grouping has a regular appearance. The
pipeline is evaluated using the ground truth strokes without
temporal information and achieves 83.2% symbol recogni-
tion accuracy. Since the evaluation does not attribute for
stroke reconstruction errors, the result is not comparable with
an image-based recognition system.

Bresler, Prisa, and Hlava¢ published a series of works on
online diagram recognition [2—6], and also introduced two
online diagram datasets in the domains of finite automata
(FA) and flowcharts (FC_B). The latest online system in [6]
is a pipeline with text/non-text separation, symbol segmenta-
tion, symbol classification and structural analysis as its core
parts. An offline extension to this online system is proposed
in [7] and uses a stroke reconstruction preprocessing step.
For the evaluation, two offline flowchart datasets based on
the existing FC_B dataset were introduced. One of those
datasets contains scans of a printed thicker stroke visualiza-
tion containing real noise, which we refer to as FC_Bgcan-
The adapted recognizer was also tested on the unordered
FC_A strokes and achieved 84.2% symbol recognition recall.

As the proposed approach, Julca-Aguilar and Hirata [15]
train a Faster R-CNN [26] object detector to recognize sym-
bolsinthe FC_A dataset. To this end, they do transfer learning
from models pre-trained on MS COCO, a large dataset of
natural images depicting everyday scenes [20]. The detector

Arrow R-CNN for handwritten diagram recognition

Region Proposal

Network (RPN)

Region
Proposals

CNN with
Feature

Region of Interest (Rol)
Box and Arrow Networks | Detections | Postprocessing

Diagram-Aware

Diagram Image

Fig.1 Overview of our method: the CNN backbone network computes
the image feature pyramid from an input image. The region proposal
network (RPN) uses the feature pyramid to compute a set of region pro-
posals. The region of interest (Rol) box network (Fig. 2) classifies each

achieves a mAP@0.5 of 97.7%, where mAP@0.5 corre-
sponds to mean average precision (mAP) at a ground truth
bounding box overlap of at least 50%. Due to differing eval-
uation metrics, this result is not comparable to [7].

Gervais et al. published the online handwritten flowchart
dataset DIDI in 2020 [11]. It is the first large-scale dia-
gram dataset and consists of two parts: 22,287 diagrams with
textual labels (DIDI¢ext) and 36,368 diagrams without tex-
tual labels (DIDIng text). Each handwritten diagram has
been collected by showing a flowchart image to the user who
was then asked to draw over it. The flowchart images were
rendered using GraphViz based on randomly-generated dot
files. Unlike other online datasets, the handwritten diagrams
are not annotated on stroke level. However, the provided dot
files contain information about the rendered diagram, such
as the position and size of each node.

The present paper builds upon an earlier workshop paper
[32]. In [32], we proposed a deep learning system based
on Faster R-CNN for recognizing the symbols and structure
of flowcharts. We identified data augmentation methods for
flowchart recognition and showed that they vastly improve
object detection results on the FC_A dataset. We also demon-
strated how a Faster R-CNN object detector can be extended
with a lightweight arrow keypoint predictor for flowchart
structure recognition. For the present paper, we have con-
solidated the overall technique and provide a more broadly
applicable system for recognizing arrow-connected dia-
grams. Specifically, we improve on the data augmentation
and arrow proposal sampling methods used during network
training. Moreover, we propose a postprocessing pipeline
to form a final diagram from object and keypoint candi-
dates. We evaluate our system on four datasets, adding a
finite automata, a flowchart dataset of scanned images, and a
large-scale flowchart dataset, and provide profound insights
into accurate arrow and text phrase detection, which we con-
sider the main challenge for recognizing arrow-connected
diagrams.

Pyramid Image
Networks (FPN) Feature & Arrow
Pyramid Keypoints

proposal and predicts a refined bounding box. For detected arrows, our
Rol arrow network additionally predicts arrow head and tail keypoints.
The postprocessing component (Fig. 7 ff.) uses the detected symbols
and arrow keypoints to construct the final diagram

2.2 Keypoint detection

Keypoint detection methods are typically used for tasks such
as pose estimation in natural images, i.e. to estimate facial or
human body keypoints. For human pose estimation (HPE),
where the task is to predict human body keypoint locations
such as elbow and wrist, there are two mainstream methods:
directly regressing the position of keypoints [34,35], and esti-
mating keypoint heatmaps [23,39].

In the heatmap approach, the keypoints are chosen as the
locations with the highest heat values. Over the last years, the
heatmap approach has been used in all state-of-the-art sys-
tems evaluated on the MS COCO dataset keypoint detection
task [20]. The HPE systems typically tackle multi-person
keypoint estimation in a top-down process. In the first stage,
individual person instances are detected with an object detec-
tor. In the second stage, the person instances are cropped from
the image, resized to a fixed resolution, and feed into a dedi-
cated single-person pose estimation network. While methods
used in HPE can serve as inspiration for an arrow keypoint
detector, the two tasks differ substantially. In the COCO
dataset, persons instances can be occluded, under-exposed
and blurry, and keypoints are often either not visible or there
is some visual ambiguity. This forces the models to consider
spatial and contextual relationships. Popular architectures
for HPE such as stacked hourglass networks [23] encour-
age the learned person features to be reevaluated in a larger
global context. They achieve this with CNN architectures that
involve successive steps of pooling and upsampling, with
additional skip connections. In arrow keypoint estimation,
most arrow heads and tails are clearly visible. Further, arrow
head and tail keypoints are often the outermost arrow pixel
in one spatial direction and thus define one border of the
bounding box. Therefore, there is a task overlap between
arrow keypoint detection and bounding box detection. Thus,
in a multi-task learning setup, it might be beneficial to learn
those tasks together with shared features.

@ Springer

B. Schifer et al.

In conclusion, although HPE is dominated by heatmap
methods, we opt for a keypoint regression method that shares
its features with the object detector network. We find that
this approach is effective in the diagram domain, where most
datasets are small and keypoints are typically located at the
bounding box border.

3 Arrow R-CNN

Arrow R-CNN is based on the Faster R-CNN [26] object
detector. Faster R-CNN is the successor of R-CNN [12],
which has popularized a two-stage approach in object detec-
tion. The first stage generates a set of class-agnostic region
proposals or region of interests (Rol), where each Rol is
defined by a bounding box location and an objectness score.
The second stage then classifies each Rol and predicts a
refined bounding box location. From a high-level perspec-
tive, Faster R-CNN consists of three sub-networks:

1. CNN backbone network
2. Region proposal network (RPN)
3. Rol box network

The CNN backbone network is used to extract a featurized
representation of the entire image. This feature map has a
lower spatial resolution w x h, but a much higher number
of channels ¢ than the original image. The RPN uses the
feature map to compute a large set of Rols. The Rol box
network classifies each Rol as one of the object classes or
as background, and refines its bounding box location. It uses
Rol pooling, a pooling mechanism to extract a fixed-sized
7 x T x 512 feature map for each Rol proposal. Rol pooling
uses the proposal bounding box to extract the relevant spatial
part of the backbone feature map and then applies pooling
to reduce it to a fixed-size representation. The box network
processes each Rol feature map with intermediate fully con-
nected layers, before it classifies each Rol and predicts its
refined bounding box.

One of the limitations of Faster R-CNN is that it has
difficulties with datasets where objects have a large-scale
variance. [19] addresses this issue by incorporating fea-
ture pyramid networks (FPNs) into Faster R-CNN. In this
extension, the backbone network generates a pyramid of fea-
ture maps at different scales. The image feature pyramid
is a multi-scale feature representation in which all levels
are semantically strong, including the high-resolution levels.
During Rol pooling, an Rol is assigned to a feature pyra-
mid level based on its bounding box dimension. This has the
advantage that if the Rol’s scale becomes smaller, it can be a
mapped into a finer resolution level. Our initial experiments
showed that we get consistently better results with the FPN
extension. Thus, we use it in all our experiments.

@ Springer

Region of Interest (Rol)

Feature Map ro+

Soft; 3 .

o ﬁ Classification
FC + FC +
ReLu ReLu FC @ Bounding-box Regression
-_ @ — U (Ac,, Ac,s Aw, Ar)

1024 1024
FC Arrow Keypoint Regression

256 Khead g, Khesd _c, piail _c, Kol —c,
wo h w7 h

Fig. 2 Arrow R-CNN Rol networks The box and arrow modules pro-
cess each Rol feature map through fully connected layers (FC) with
ReLu activation functions. The box network predicts a class and refined
bounding box for all proposals. The arrow network predicts a 4-d arrow
keypoint vector for each arrow proposal (training) or arrow detection
(inference)

In the next sections, we outline the Arrow R-CNN net-
work architecture (Sect. 3.1), explain how we train the entire
network (Sect. 3.2), and detail how Arrow R-CNN computes
the detected symbols and keypoints from a diagram image
during inference time (Sect. 3.3).

3.1 Network architecture

For predicting the keypoints at the arrows head and tail, we
add a parallel Rol arrow network to the existing Rol box
network. Figure 2 shows both Arrow R-CNN Rol networks.
The arrow network reuses the fully connected feature extrac-
tion layers from the box network and regresses both 2-d arrow

- head T ptail Ty

keypoints as a 4-d vector (k , kK™) from the extracted
1024-d arrow feature representation. Figure 2 illustrates this
series of computation with a green path from the Rol fea-
ture map to the arrow keypoint regressor. In theory, we could
directly use the absolute arrow keypoint pixel coordinates
as regression targets. However, this would require the Rol
feature map to capture the global image context, since the
network would have to predict not only where the keypoints
are located relative to the proposal bounding box, but also
where they are located within the overall image. The Faster
R-CNN bounding box regression thus encodes the bound-
ing box regression targets relative to the proposal box. For
arrow keypoint regression, we follow a similar strategy and
encode the arrow keypoint targets relative to the proposal
bounding box. Suppose we have a proposal bounding box
b = (cy, cy, w, h)" with center point ¢ = (cx, cy) ', width
w and height 4, where 4wh measures the area of b. For a
ground truth arrow keypoint k = (ky, ky)T assigned to a
proposal with bounding box b, we define bounding box nor-
malized keypoints as

_ _ T
k= (kb)) = (’M ’M) _ (1)

Arrow R-CNN for handwritten diagram recognition 7
Train Losses
10
? loss.
loss_classifier
[SETRERUTTO, [SETREWTT,, 08 loss_box_reg
~—— loss_arrow
—— loss_objectness
06 —— loss_rpn_box_reg
= L L§B(wR)-17 T —— < LsBler)-17|]
i — oA
i Ye W
- 2 - 02
RESULT = RESUT = i
ResuLT + “Po RESULT + “PO ___\’__‘ - -
| | o 250 500 750 1000 1250 1500 1750 2000
— 2 — iteration
FI SHLETU) M 0 EFT SHLETU) M
RIGHT SHIH (i B RIGHT SHIH (g Fig.4 FC_Bgcan training losses during the first 2000 iterations (A = 1)
NEXT (3 () Arrow loss Ly : In the following, we discuss how we com-
bine the individual arrow keypoint prediction into an overall
N & E“'”*”m | o arrow loss Lgry,. Given our set of N arrow proposa_ll_ pairs
. . L
e with the 4-d regression targets t; = (kl}.‘e"‘d , k?aﬂ) eT
with the Kk; as defined in equation (1) for arrowsi =1... N
and corresponding predictions t; € 7. The arrow loss is
(@ @+ ®)

Fig.3 Arrow proposal example: the left image shows the 72 proposals
with at least 70% IoU to a ground truth arrow, the right image shows the
19 proposals that additionally have both arrow keypoints located within
their proposal box

Thus, ng and Igy are within the range [—1, 1], for keypoints
k contained in bounding box b. Our arrow regression target

£
. ST =T .
is then the 4-d vector t = (kPead il) representing

relative 2-d coordinates of the two keypoints per arrow.

3.2 Training

In Faster R-CNN, the first RPN stage generates a set of pro-
posals and then performs non-maximum suppression (NMS).
For any two proposals that have a bounding box overlap of
at least 70%, NMS iteratively removes the proposal with
the lower objectness score. The bounding box overlap is
commonly referred to as intersection over union (IoU). For
training the Rol box network, Faster R-CNN considers the
top 2000 proposals ranked by their objectness score [19]. For
training our arrow network, we use a subset of the 2000 pro-
posals. Concretely, we define an arrow proposal as a proposal
that fulfills two criteria:

(a) atleast 70% IoU to a ground truth arrow
(b) both arrow keypoints are located within the proposal box

Figure 3 shows exemplary arrow proposals that fulfill
either criteria (a), or both (a) and (b). For each arrow bound-
ing box proposal b, our arrow network predicts two keypoints
k"®ad and k@ which are encoded against the proposal bound-
ing box.

computed as the mean squared error over all predictions and
dimensions:

4
N 1 N 2
Lan(T. 1) = 75 37 3 (tld] — isla)))
i=1d=1
Finally, we extend the Faster R-CNN box network multi-
task loss Lo; by adding the arrow regression loss term

Lyoi = Leis + Lioc + ALy, (3)

where L is the classification loss and L, the localization
loss for bounding box refinement regression. The hyperpa-
rameter A balances the arrow and the other task losses. We
found that A = 1 sufficiently balances the loss terms and
thus did not treat A as another hyperparameter to tune. Fig-
ure 4 shows the individual loss terms throughout the first
2000 iterations on the FC_Bg.an database.

3.3 Inference

During inference, Faster R-CNN generates a set of detec-
tions per image, where each detection has a bounding box, a
predicted class, and a classification score that corresponds to
the maximum softmax score over all classes. During arrow
network training, the Rol align operation takes the arrow pro-
posal bounding box and the image feature pyramid as input
and computes an arrow feature map as output. During infer-
ence, this procedure differs: here, we use the final (refined)
arrow bounding box from the Rol box network as input. This
is due to the fact that the refined detection bounding box is
more accurate, which makes it easier for the arrow network
to identify the keypoint locations. The arrow network uses
the arrow feature maps to compute the encoded 4-d arrow

@ Springer

B. Schifer et al.

head and tail keypoint vectors. The absolute arrow keypoint
locations are then computed by applying the inverse encod-
ing operation. Section 4.2 explains how we use the detected
objects and arrow keypoints to recognize the entire diagram.

4 Integrating diagram domain knowledge

Our Arrow R-CNN network generates a set of detected sym-
bols, where detected arrows additionally have predicted head
and tail keypoints. This section addresses two key questions
in using our deep learning method for diagram recognition:

1. How can we synthetically increase the size for the small
diagram datasets?

2. How can we form the final diagram from a set of detections
and keypoints?

For addressing the first question, we use a pipeline of aug-
mentation methods guided by our domain knowledge about
diagrams, which we outline in Sect. 4.1. Regarding the lat-
ter question, we present our diagram-aware postprocessing
method in Sect. 4.2.

4.1 Augmentation

We use the following augmentation pipeline to improve the
generalization capabilities of our model:

1. LongestMaxSize Resize longest image size to 1333 and
preserve aspect ratio (p = 1.0)

2. IAMWordAugmentation Augment diagram with up to
three random word images of size (w, &) from the words
in the IAM-database [21], where 5 < w < 300 and
12<h <150 (p =1.0)

3. ShiftScaleRotate Use uniformly sampled ranges for shift-
ing image by a factor [—0.01, 0.01], scaling image by
factor [—0.2, 0.0], and rotating image [—5°,5°] (p =
0.3)

4. RandomRotate90 Randomly rotate image by 90 degrees
zero or more times (p = 0.3)

5. Flip Randomly flip image horizontally, vertically, or both
(p=0.3)

This pipeline is applied as a sequence, and each step is applied
with probability p. We use the Albumentations library [8] for
all augmentations except IJAMWordAugmentation.

IAM word augmentation Due to the limited size of most
datasets and the varying shapes and forms of arrow and
text symbols, we noticed that the model frequently con-
fuses arrows with texts and vice versa. As an example, we
noticed several cases where the detector falsely predicted an
arrow within a text phrase, e.g. a handwritten “I” within the

@ Springer

Qf\d qr\ds Qﬂd qr\d

Final

IAM Word Binarized Skeleton

Fig.5 IAM word preprocessing example

IAM Word

Fig. 6 Exemplary FC_Bgcan flowchart augmented with three IAM
words

term “false”. To increase the robustness of arrow and text
detection, during training we augment the diagrams with
handwritten words from the IAM-database [21]. The cor-
pus consists of 1066 forms written in English and produced
by 2400 different writers, resulting in more than 80k word
instances out of a vocabulary of ~11k words. Out of these
word instances, we randomly sample words with a mini-
mum word image height to exclude words that consist solely
of punctuation marks and restrict the word image width to
exclude overly long words. Unlike the online handwritten
diagrams, the forms have been scanned and contain docu-
ment noise. To assure our detector does not learn to classify
those text phrases solely due to their document noise, we
preprocess the IAM words to increase the visual similarity
to the diagram text phrases. To derive a stroke-based repre-
sentation, we binarize the image using Otsu’s method and
skeletonize it to a one pixel wide representation. Afterward,
we use a procedure similar to the diagram rendering process
described in Sect. 5.1 to create words with uniform 3 pixel
wide smoothed strokes. Figure 5 shows an exemplary IAM
word and different preprocessing stages.

During training, we augment each diagram by inserting up
to three random IAM words into background regions. In the
diagram datasets, text phrases are located quite close to the
symbol or arrow that they annotate. To imitate this closeness,
we place each IAM word close to an existing symbol while
ensuring that the pixels of both objects do not overlap. Con-
cretely, we ensure that the distance to the closest flowchart
pixel is in the range [5, 50]. Figure 6 shows an exemplary
flowchart augmented with TAM words.

4.2 Diagram-aware postprocessing

The standard Faster R-CNN postprocessing method has a
major downside for recognizing symbols in diagrams: it does
not consider any domain knowledge about the global struc-
ture of diagrams. In this work, we design a postprocessing

Arrow R-CNN for handwritten diagram recognition

O

O

Faster R-CNN Detections
& Arrow Keypoints

Remove Detections
with Score < 0.7

Arrow candidates | Node Text
& keypoints candidates candidates
Arrow NMS Node NMS Text NMS
(IoU > 0.8) (IoU 2 0.5) (IoU = 0.3)
I
Final Node symbols l

Merge Texts
within Nodes

Arrow Structure
Recognition

Node symbols,
Arrow candidates,

and edge candidates
Y

Duplicate Edge

Suppression
Final Node & Final Text
Arrow Symbols symbols
and edges

O

Fig. 7 Diagram-aware postprocessing We remove detections with a
score below threshold. Then, we perform NMS over different groups of
classes using dedicated IoU thresholds. Third, we generate candidate
edges between nodes based on arrow keypoint to node symbol distances.
Then, we ensure that there is at most one edge per direction between
two nodes. We also merge text phrases located within a node

method that takes into account the following spatial and
structural observations about handwritten arrow-connected
diagrams:

1. Nodes in diagrams are typically drawn in a way that the
bounding boxes of any two nodes have little overlap.

2. There is at most one text phrase within a node that labels
this node.

3. Most graphical languages, including flowcharts and finite
automata, allow at most one edge per direction between
two nodes.

4. The bounding boxes of arrows can have a large overlap,
especially for opposite arrows that join the same nodes.

Based on these observations, Fig. 7 shows our diagram-
aware postprocessing method. We opt for a rule-based
sequential method that starts by filtering symbol candidates
based on a classification score threshold. We then perform

Fig. 8 Arrows with large bounding box overlap The two highlighted
arrows have a high IoU, which makes it impossible for any Faster R-
CNN detector with standard NMS to accurately detect both at once

NMS with a diagram-specific strategy. As mentioned, we
observe that arrows can have large bounding box overlap.
Figure 8 shows an exemplary diagram with two arrows that
have close to 70% IoU. Even with a perfect model, the
NMS postprocessing in standard Faster R-CNN with a 50%
ToU threshold would eliminate one of both arrows (the one
with the lower score). Therefore, we increase the arrow IoU
threshold to 80%. Increasing the threshold generates a lot
more arrow candidate detections, and often multiple candi-
dates per ground truth arrow. To filter those duplicates, we
employ a duplicate edge suppression step later in the pipeline.
For Text NMS, we reduce the IoU threshold to 30%, since
the axis-aligned bounding boxes typically enclose the written
text very well, and it is uncommon to have text that largely
overlaps. Our node NMS procedure is based on the first
observation that node bounding boxes typically have little
overlap. More concretely, we want to ensure that our model
does not generate two detections for different node classes
with almost identical bounding boxes. While allowing mul-
tiple detections for the same node would increase recall, it
is unrealistic to assume such a scenario in practice, and it
merely shows that the model is not sure about which class
to assign. To prevent those duplicate detections, we perform
NMS over all node classes jointly.

The arrow structure recognition step computes the dis-
tance of each arrow keypoint to its closest node and creates
a candidate edge between the two respective closest nodes.
For the FA dataset, where initial arrows have no predeces-
sor node, we use a heuristic and only connect an arrow to a
predecessor node if the spatial distance between the arrow
tail keypoint and the node bounding box is lower than 50.
The duplicate edge suppression step eliminates duplicate
candidate arrows that join the same two nodes in the same
direction. Duplicates are resolved by choosing the arrow with
the highest classification score.

@ Springer

10

B. Schifer et al.

Table 1 Handwritten diagram

dataset statistics Dataset Split Writers (split/total) Templates (split/total) Diagrams Symbols
FC_A Train 31/35 14/28 248 5540
Test 15/35 14/28 171 3791
FC_B Train 10/24 28/28 280 6195
Validation 724 28/28 196 4342
Test 7124 28/28 196 4343
FA Train 11/25 12/12 132 3631
Validation 7125 12/12 84 2307
Test 7/25 12/12 84 2323
DIDIno text Train 2/364%* 940/940 27,278 193,939
Validation 2/364%* 916/940 4545 34,464
Test 2/364%* 919/940 4545 34,139
DIDTtext Train 2/364%* 5300/5629 16,717 173,070
Validation 2/364%* 2131/5629 2785 30,468
Test 2/364%* 2090/5629 2785 34,052

* The DIDT dataset is split by writer (364 total). However, the writer distribution is unknown since the writer

identifiers are not public

In case the model detects multiple text phrases within a
node bounding box, we merge those into a unified text phrase
during postprocessing. The unified text phrase is created with
aunion bounding box and maximum classification score over
all text phrases in question.

5 Experiments

In this section, we describe the datasets (Sect. 5.1) and
metrics (Sect. 5.2) used to evaluate our method, before we
discuss implementation details (Sect. 5.3) and the experimen-
tal results in Sect. 5.4. We complete the experiments with an
error analysis in Sect. 5.5, where we also outline how future
work could address common sources of error.

5.1 Datasets

We evaluate our method on four handwritten diagram
datasets, three depicting flowcharts (FC_A [1], FC_B [6],
and DIDT [11]), and one finite automata dataset (FA [2]).
Table 1 shows basic statistics for all datasets. As mentioned
in Sect. 2.1, the DIDI dataset consists of two parts: one
that contains diagrams with textual labels (DIDI¢ext) and
one without textual labels (DIDI o text). Throughout the
experiments, we train on the entire DIDT dataset, but report
the results for both parts separately. For all datasets, the splits
were either created based on writers (FC_B, FA, DIDI) or
based on templates (FC_A), such that the sets of writers or
templates in the respective training, validation, and test parts
are disjoint. This means that the experimental results either
show to what extent the model generalizes to unseen writers

@ Springer

or unseen layouts, but not both at the same time. As another
difference, FC_A has no validation set. Obviously, it would
be possible to take a subset of the train dataset as validation
set. Since the majority of related works does not conduct a
further split of the training set, we opt for the same approach.
To avoid overfitting to the test set, we conduct all hyperpa-
rameter tuning on the FC_B training and validation set and
train a model on FC_A using the same configuration.
Online-to-offline conversion All four diagram datasets are
online datasets, where each diagram has been captured as a
sequence of strokes. For the FC_B dataset, we use the offline
FC_Bscan dataset introduced in [7], which contains scans
of printed FC_B diagrams. For the FC_A and FA datasets,
we render the strokes as anti-aliased polylines with a stroke
width of 3. To ensure border-touching strokes are fully vis-
ible, we pad each image by 10 pixels on each side. For the
DIDI dataset, we create an image with the dimension of the
drawing area that was shown to the user and plot the strokes
at their corresponding positions. During data collection, the
generated flowcharts were rescaled to fill the drawing area.
The size of this drawing area varies, with a maximum of
3600 x 2232 pixels. To avoid overly large images, we rescale
each image to the initial scale of the generated flowchart.
Bounding boxes For the offline FC_Bgcan dataset, we use
the provided bounding box annotations. In the following, we
outline how we generate the ground truth bounding boxes for
the other online datasets. For FC_A and FA, we define the
symbol bounding box as the union bounding box of all its
strokes. As mentioned in Sect. 2.1, the DIDTI dataset is not
annotated on stroke level. Instead, we use the symbol bound-
ing boxes of the corresponding GraphViz diagram. Since the
participants do not draw precisely over the diagrams, the

Arrow R-CNN for handwritten diagram recognition

1

S
oot >

(a) drawing next to diagram

(b) drawing with missing shapes
and arrows

—

| p——
_J [aprieol

&

BY

/ (;‘h:f"x" i

B
,._\L. /_ ‘V&
| '| /™ il /
| ‘ / SN

(c) inaccurate drawing without (d) inaccurate drawing with tex-
textual labels tual labels

Fig. 9 Exemplary DIDI diagrams with overlaid drawings the exam-
ples illustrate the inconsistencies between GraphViz and handwritten
diagrams

extracted bounding boxes do not perfectly fit the handwrit-
ten shapes. To quantify this difference, we manually annotate
100 handwritten diagrams (50 without and 50 with textual
labels). Figure 9 shows some drawings from this sample and
illustrates two major drawing issues we identified: diagrams
where a user did not draw over the flowchart as instructed
(9a) and diagrams where a user forgot to draw some or all
of the shapes (9b). Since the evaluation metrics described in
Sect. 5.2 are based on bounding box IoU, we try to exclude
these erroneous diagrams in order to get a meaningful assess-
ment of our method. As a heuristic, we exclude a drawing if at
least one bounding box contains no stroke pixels. This heuris-
tic correctly identifies 8 diagrams with drawing errors within
the 100 diagram sample, but misses one diagram where the
user forgot to draw an arrow. Table 2 shows the proportion of
excluded diagrams using mentioned heuristic, and it reveals
that drawing mistakes occur very frequently in the DIDT ¢ ext
train and test set.

Further, to account for inaccurate drawings such as Fig. 9c
and d, we use an IoU threshold of 50% instead of 80% for the
evaluation metrics described in Sect. 5.2. Within the sample
of 92 diagrams without drawing mistake, 0/325 annotated
nodes, 19/271 (7%) arrows, and 40/188 (21%) text phrases
have less than 50% IoU between handwritten and GraphViz
bounding box. Two of those text phrases and two arrows
can be found in Fig. 9c and d. Overall, this means that a

Table 2 Excluded DIDI diagrams with drawing errors: a drawing is
excluded if atleast one diagram bounding box contains only white pixels

Split DIDI g0 text DIDTtext

Train 404/27278 (1.48%)
Validation 12/4545 (0.26%)
Test 12/4545 (0.26%)

Total 428/36368 (1.18%)

1303/16717 (7.79%)
50/2785 (1.80%)
867/2785 (31.13%)
2220/22287 (9.96%)

For such a bounding box, the user either drew the symbol at another
location, or not at all

bounding box that perfectly encloses a handwritten symbol
can still be evaluated as incorrect, even with the relaxed IoU
threshold. Instead, for a positive evaluation result the model is
required to predict the location and size of the corresponding
GraphViz symbol.

Arrow keypoints For training our arrow keypoint regressor,
we need to specify ground truth arrow head and tail points.
The head and tail points are explicitly annotated in the FA and
FC_Bgscan dataset. For the DIDI dataset, we extract the head
and tail keypoints from the arrow spline control points in the
GraphViz dot file of the generated flowchart. For the FC_A
dataset, we use a heuristic to extract the keypoints from the
stroke data. For each arrow, we compute the Harris corner
measure response image and then identify corner peaks with
a minimum distance of 5. We set the arrow head and tail
keypoints as the corner points closest to the next and previous
node, respectively. We quantitatively evaluate the accuracy
of our heuristic on the FC_B dataset, where the head and
tail points have been annotated. For the flowcharts in the
training split, we compute the mean absolute error (mae)
based on the Euclidean distance between each approximated
and annotated arrow keypoint. We find that the approximated
arrow tail (mae = 1.38) and arrow head (mae=5.82) keypoints
are sufficiently close to the human annotations.

5.2 Evaluation metrics

We evaluate our method using recognition metrics on symbol
and diagram level. Regarding symbol recognition, Bresler,
Prisa, and Hlava¢ [7] compute the symbol recognition recall
at an IoU threshold of 80%. Additionally, arrows are required
to be connected to the correct node symbols. When using an
object detector framework, the recall negatively correlates
with the utilized detection score threshold. Without using
NMS and a detection score threshold, a Faster R-CNN sys-
tem generates one detection per object proposal, which would
result in more than 1000 detections per image. Therefore,
recall on its own does not possess much informative value
for evaluating object detectors, since any detector can be
configured to achieve very high recall. This is an important
distinction between related work that uses algorithms based

@ Springer

12

B. Schifer et al.

Table 3 Diagram recognition

rate: Comparison of our method FeA FeB A DIDIno_text DIDTeext
with other online and offline Online methods
methods
Wang et al. [36] 5.8 - - - -
Julca-Aguilar et al. [14] 34.0 - - - -
Bresler et al. [6] 59.1 67.9 79.8 - -
Offline methods
Bresler et al. [7] - 37.7 - - -
Arrow R-CNN 68.4 78.6 83.3 83.9 85.1
Bold indicates best result per column
For FC_B, the offline results are based on FC_Bgcan
Table 4 Augmentation ablation
study: the augmentation Fe A FC_Bscan A DIDIno_text DIDTeext
metho@s. increase the diagram No augmentation 234 70.4 52.4 82.5 83.7
recognition rate for the small .
datasets Substantially’ but lower ShiftScaleRotate 33.9 73.0 60.7 82.6 83.5
the rate on the large DIDI + RandomRotate90 & Flip 57.3 77.0 79.8 80.9 83.7
dataset + IAMWordAugmentation 66.7 76.0 81.0 80.8 83.5

Bold indicates best result per column

All results use standard faster R-CNN postprocessing and are based on the test set

on reconstructed strokes. Here, this trade-off is less severe,
since each reconstructed stroke is assigned to at most one
symbol. However, false-positive reconstructed strokes, such
as noise pattern that stem from the scanning process, might
still lead to false-positive symbols, which affect the preci-
sion of the system. In [7] symbol recognition precision is not
reported. To make the symbol recognition recall comparison
somewhat fair, we use a score threshold of 0.7 throughout all
our experiments, which corresponds to the default threshold
of our object detector framework. Moreover, with our node
NMS postprocessing, we also ensure that we do not have
multiple predictions for one symbol.

On a more aggregate level, The diagram recognition
metric intuitively assesses the performance of a diagram
recognition system as the ratio of correctly recognized dia-
grams in a test set. In this setting, a diagram has been
recognized if the number of detected symbols equals the
number of ground truth symbols, each symbol has been cor-
rectly classified and localized with at least 80% IoU, and each
of arrow predecessor and successor nodes has been correctly
identified.

5.3 Implementation

Our Arrow R-CNN implementation is based on the mas-
krenn-benchmark [22] R-CNN framework and uses PyTorch
[25]. As CNN backbone we use ResNet-101 with FPN. For
training, we adopt the recommended framework parameters
for our CNN backbone. We use SGD with a weight decay
of 0.0001 and momentum of 0.9. Each model is trained on a
Tesla V100 GPU with 16GB memory for 90k mini-batches,

@ Springer

while reducing the learning rate after 60k and 80k iterations
by a factor of 10. On the Tesla V100 GPU, the training takes
between 25 and 30 hours. We use a batch size of 4 and
decrease the learning rate from the recommended value of
0.02 for a batch size of 16 to 0.005 according to the linear
scaling rule [13]. To decrease memory usage during train-
ing, we use the default framework configuration and group
images with similar aspect ratios in one batch.

To demonstrate the general applicability of our approach,
we use identical configurations to train and evaluate models
for all datasets, except for two exceptions: as discussed in
Sect. 4.2, we use an arrow distance threshold to account for
arrows without a predecessor node in the FA dataset. For the
DIDI dataset, we do not use augmentation methods since
the dataset is very large.

5.4 Results

Diagram recognition Table 3 shows that Arrow R-CNN
improves state-of-the-art in offline recognition. Even though
our method uses no stroke information, the diagram recogni-
tion rates are also higher than state-of-the-art online systems.

Further, we conduct two ablation studies to quantify the
effect of each augmentation and postprocessing method
proposed in Sect. 4. Table 4 shows that the augmentation
methods substantially improve the diagram recognition rate
for small datasets, especially for FC_A, where the model has
to generalize to unseen layouts. For the large DIDT dataset,
the augmentation methods slightly lower the recognition rate.
To demonstrate the general applicability of our method, we
used the same number of training iterations for all datasets.

Arrow R-CNN for handwritten diagram recognition 13
Table 5 Postprocessing
ablation study: the FC_A FC_Bgcan FA DIDIno text DIDTtext
diagram-aware postprocessing Standard NMS (IoU < 0.5) 66.7 76.0 81.0 82.5 83.7
methods increase the diagram
recognition rate on all test sets + Node NMS 66.7 78.6 82.1 83.5 83.8
+ Arrow NMS & edge suppr. 67.8 78.6 83.3 83.9 85.1
+ Text NMS & merge node texts 68.4 78.6 83.3 83.9 85.1
Bold indicates best result per column
Table 6 FC_A symbol recognition at ToU 80% on test set Table 8 FA symbol recognition at IoU 80% on test set
Class Arrow R-CNN ‘Wu [38] Class Precision Recall
Precision Recall Recalljoyuso
Arrow 98.4/99.0* 98.4/99.0*
Arrow 94.7/97.3* 96.0/98.5* 80.3 Final state 100 100
Connection 99.2 100 73.4 State 100 100
Data 100 99.7 78.5 Text 99.6 99.7
Decision 100 99.5 78.9 Micro avg. 99.3/99.5% 99.3/99.5%
Process 99.8 100 88.3 N -
] *does not consider if arrow has been correctly matched to nodes
Terminator 100 100 90.6
Text 99.3 99.1 86.0
Micro avg. 97.9/98.8* 98.3/99.1* 83.2

*does not consider if arrow has been correctly matched to nodes

Table 7 FC_Bgcan symbol recognition at IoU 80% on test set

Class Arrow R-CNN Bresler [7]
Precision Recall Recall
Arrow 98.0/98.0* 98.0/98.0%* 84.3
Connection 100 100 86.6
Data 100 94.9 94.4
Decision 100 100 96.9
Process 95.5 100 98.8
Terminator 100 100 93.6
Text 99.2 99.3 93.7
Micro avg. 98.7/98.7* 98.7/98.7* 91.3

*does not consider if arrow has been correctly matched to nodes

However, the combination of large dataset size and multiple
augmentation methods might require more training itera-
tions. We leave the investigation of the interplay between
augmentation methods and dataset size to future work.
Table 5 shows the results of the postprocessing ablation
study and reveals that node NMS improves the diagram
recognition rate on four out of five datasets. Increasing the
Arrow NMS IoU threshold and introducing edge suppres-
sion leads to further improvements on all datasets except
FC_Bscan, Where the rate stays the same. Also, merging
texts within a node is a straightforward method to improve
the results on FC_A.
Symbol recognition Tables 6, 7, 8 and 9 show symbol
recognition results for the evaluated datasets. Overall, Arrow
R-CNN achieves perfect recognition results for several node

shapes, which can be explained by the fact that the shape
and scale of nodes has a much lower variance than arrow and
texts.

On the FC_A dataset (Table 6), where related works report
83.2% [38] and 84.2% [7] symbol recognition recall, Arrow
R-CNN has a much higher recall (98.3%). The largest source
of error for Arrow R-CNN is in the arrow class, where arrows
have either not been detected with at least 80% bounding
box overlap, or the arrow has not been joined to the cor-
rect node symbols. On the FC_A training set, we noticed
that our model fails to recognize diagrams of template 5 and
7. In these layouts, nodes are sometimes connected through
a sequence of two arrows. Yet, our current postprocessing
logic assumes that an arrow always points to a node and thus
connects the arrow to the node closest to its head keypoint.
We leave the development of appropriate methods for the
arrow-after-arrow scenario to future work.

Table 7 shows that Arrow R-CNN can accurately recog-
nize symbols in scanned flowcharts. In the FC_Bgcap test
set, all arrows that have been detected correctly are also con-
nected to their ground truth nodes. This demonstrates the
effectiveness of the Arrow R-CNN arrow keypoint mecha-
nism and postprocessing. Arrow R-CNN is also applicable
to diagrams other than flowcharts. As Table 8 illustrates, the
model perfectly recognizes the state and final state shapes in
the FA finite automata test set and also achieves very good
results for arrows and text. For the DIDT dataset, the symbol
recognition results in Table 9 are all above 90%, but slightly
lower than the results on the other dataset, even though a
lower IoU threshold of 50% is used. As discussed in Sect. 5.1,
this has to do with the discrepancy between the ground truth
bounding boxes extracted from the diagram and the actual

@ Springer

14

B. Schéfer et al.

Table9 DIDI symbol

recognition at IoU 50% on test Class DIDIno_text DIDIcext

set Precision Recall Precision Recall
Arrow 95.6/97.5%* 94.7/96.5* 96.6/99.2* 95.2/98.0*
Box 97.1 96.5 99.9 99.8
Diamond 99.2 97.5 99.9 99.9
Octagon 96.3 92.2 100 99.7
Oval 92.6 97.2 99.7 99.4
Parallelogram 97.9 97.0 99.9 99.8
Text - - 98.5 97.7
Micro avg. 96.1/97.0%* 95.4/96.3* 98.4/99.1* 97.6/98.4*

*does not consider if arrow has been correctly matched to nodes

Table 10 FC_Bgcan runtime per image: Arrow R-CNN timings are
taken using a Tesla V100 GPU, with the image already resized and
loaded to memory

Method Runtime [ms]

Min Mean Std. Max
Arrow R-CNN 59 91 15 119
Bresler et al. [7] 2623 10,970 - 37,972

Fig. 10 FC_Bgcan flowchart with most missing symbols in validation
set: highlighted in red are (1) an arrow with only 74% IoU, (2) a process
symbol confused as data, and (3) a data symbol confused as process

drawings. In Sect. 5.5, we further discuss the implications of
this discrepancy and show some error cases.

Finally, Table 10 shows our system recognizes a diagram
in less than 100ms on average and is two orders of magnitude
faster than related work.

5.5 Error analysis and future work

Figure 10 shows the predicted symbols and arrow keypoints
of a FC_Bgcan flowchart. For texts and straight arrows,
where one bounding box side is often very short, a predic-
tion off by a few pixels can result in less than 80% IoU. This
raises the question whether an 80% IoU threshold all sym-
bols types is too strict. From an end-user perspective, it might

@ Springer

text 100%
amod 108%e_

Fig.11 FAdiagram with arrow-match errors: highlighted in red are two
arrows confused as initial arrows. The arrows have not been matched
correctly to their source shape since the distance between predicted tail
keypoint and shape bounding box exceeds the threshold

only matter that the arrow has been correctly identified as an
edge between two nodes. To this end, future research could
investigate graph similarity measures to evaluate diagram
recognition systems. The two confusions between process
and data are likely due to the fact that the writer in questions
draws very uneven lines. These uneven lines are typically
caused by uncontrolled oscillations of the hand muscles,
dampened by inertia [33]. In handwriting recognition, elastic
distortion augmentation is a way to simulate these oscil-
lations [17,33]. We found that although elastic distortion
augmentation improves classification results, it has a neg-
ative effect on localization accuracy. This is due to the fact
that the distortions cause the annotated bounding box and
keypoints to be inaccurate, e.g. by distorting a line close
to a bounding box such that it surpasses the bounding box.
Future work could investigate elastic distortion methods that
also adapt ground truth annotations accordingly.

Figure 11 shows a finite automata diagram. The diagram
has two arrows with overlapping bounding boxes, and the
model does not accurately predict the keypoints for the larger
arrow. This suggests that the model is not sure which arrow
head it should attend to. The example shows that localizing
arrows through axis-aligned bounding boxes has its limita-

Arrow R-CNN for handwritten diagram recognition

15

A1
< Fr:L},\/
\/Nnck

.

7 ST
. > Seavell e —P((Clogs)
/ Turn off; —_—7 Back, _s)\
) LZoamnine - EAN——
e A

ww I ——L

(a) GraphViz diagram and drawing

) elograin-100%
ext 99.5%—ari
- 'y ffmf—f”\ ﬁ
gttagon 9 . :

i

(b) Drawing and predictions

Fig. 12 DIDTI(cx+ diagram with arrow and text errors: 12a shows the
extent to which the drawn shapes and text differ from their correspond-
ing GraphViz symbols. The errors highlighted in red in 12b are (1) a
missing arrow due to confusion between two crossing arrows, (2) an
arrow with only 0.48 ground-truth IoU, and (3)—(8) texts with insuffi-
cient loU

tions when their bounding boxes overlap. A ground truth
arrow bounding box can contain multiple arrow heads, which
forces the model to not just recognize arrow heads in a local
context. Instead, the model is required to consider a wider
context to identify the relevant arrow. Future research could
investigate more robust methods to detect arrows and their
keypoints. In scene text detection, it is common to predict
rotated instead of axis-aligned bounding boxes [41]. These
rotated bounding boxes would capture arrows in a more
compact way and lead to less overlapping bounding boxes.
As another approach, diagram structure recognition could
be framed as visual relationship detection [16]. Instead of
detecting arrow instances, a classifier could directly predict
if two given nodes are connected through an arrow. Alter-
natively, a classifier could predict which arrow head and tail
keypoint belong together.

For the DIDT dataset, Fig. 12 illustrates that the model is
not only required to recognize the handwritten diagram, but
also to predict the GraphViz diagram it originates from. As
can be seen, the model correctly predicts node shape bound-
ing boxes which are smaller than the hand-drawn shapes,
i.e., it recognizes that the shapes have been drawn exces-
sively large. However, when the position and size of the
hand-drawn and GraphViz symbols differs too much, this
task becomes nearly impossible. This is illustrated by the
numerous text localization errors in the example, where, e.g.
the hand-drawn arrow labels “Back™ have very little inter-
section with the corresponding GraphViz texts. The example
also demonstrates why the IAM word augmentation method

is not very effective on DIDT, since the augmented word
bounding box is defined by the handwritten strokes instead
of the corresponding diagram label. Future work could pro-
pose evaluation methods that better disentangle handwriting
and GraphViz diagram recognition performance for DIDT.

6 Conclusion

We propose Arrow R-CNN, the first deep learning system
for offline handwritten diagram recognition. Our system is
able to correctly recognize more than 68% of all diagrams
in four public datasets and also improves the symbol recog-
nition state-of-the-art in all symbol classes. We show that
we can train highly accurate deep R-CNN models on small
datasets when using data augmentation methods guided by
human domain knowledge. Since standard Faster R-CNN
postprocessing is not well suited for diagram symbol recog-
nition, we propose a postprocessing method that takes into
the account the global structure of diagrams. Our system
recognizes arrow-connected diagrams in less than 100ms
on average, which allows it to be used in environments that
require quick response times.

Our results bring us a step closer to the ability of assist-
ing users in the translation of hand-drafted diagrams into an
electronic version that can be managed, validated and fur-
ther processed by diagram modeling software. The missing
piece at this point is the integration with a handwritten text
recognition system for recognizing the spotted text phrases.
In future work, we plan to investigate such a combination.
Further, we outline several ways on how to further improve
the recognition rate, putting special emphasis on recognizing
arrows and the global diagram structure.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

16

B. Schifer et al.

References

10.

11.

12.

13.

14.

15.

16.

18.

Awal, A.M., Feng, G., Mouchere, H., Viard-Gaudin, C.: First
experiments on a new online handwritten flowchart database. In:
Document Recognition and Retrieval X VIII, p. 78740A (2011)
Bresler, M., Phan, T.V., Prusa, D., Nakagawa, M., Hlavac, V.:
Recognition System for On-Line Sketched Diagrams. In: 2014 14th
International Conference on Frontiers in Handwriting Recognition,
pp. 563-568 (2014)

Bresler, M., Prisa, D., Hlavd¢, V.: Modeling flowchart structure
recognition as a max-sum problem. In: 2013 12th International
Conference on Document Analysis and Recognition, pp. 1215-
1219 (2013)

Bresler, M., Prtisa, D., Hlavac, V.: Simultaneous segmentation and
recognition of graphical symbols using a composite descriptor. In:
18th Computer Vision Winter Workshop, vol. 13, pp. 16-23 (2013)
Bresler, M., Prisa, D., Hlavac, V.: Detection of arrows in on-line
sketched diagrams using relative stroke positioning. In: 2015 IEEE
Winter Conference on Applications of Computer Vision, pp. 610-
617 (2015)

Bresler, M., Prtisa, D., Hlava¢, V.: Online recognition of sketched
arrow-connected diagrams. Int. J. Doc. Anal. Recognit. (IJDAR)
19(3), 253-267 (2016)

Bresler, M., Prusa, D., Hlavag, V.: Recognizing off-line flowcharts
by reconstructing strokes and using on-line recognition techniques.
In: 2016 15th International Conference on Frontiers in Handwriting
Recognition (ICFHR), pp. 48-53 (2016)

Buslaev, A., Parinov, A., Khvedchenya, E., Iglovikov, V.I., Kalinin,
A.A.: Albumentations: Fast and flexible image augmentations.
arXiv:1809.06839 [cs] (2018)

Carton, C., Lemaitre, A., Coiiasnon, B.: Fusion of statistical and
structural information for flowchart recognition. In: 2013 12th
International Conference on Document Analysis and Recognition,
pp. 1210-1214 (2013)

Cherubini, M., Venolia, G., DeLine, R., Ko, A.J.: Let’s go to the
whiteboard: how and why software developers use drawings. In:
Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI *07, pp. 557-566 (2007)

Gervais, P., Deselaers, T., Aksan, E., Hilliges, O.: The DIDI dataset:
digital ink diagram data. arXiv:2002.09303 [cs] (2020)

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hier-
archies for accurate object detection and semantic segmentation.
In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 580-587 (2014)

Goyal, P, Dollar, P., Girshick, R., Noordhuis, P., Wesolowski, L.,
Kyrola, A., Tulloch, A., Jia, Y., He, K.: Accurate, large minibatch
SGD: training ImageNet in 1 Hour. arXiv:1706.02677 [cs] (2017)
Julca-Aguilar, F., Mouchere, H., Viard-Gaudin, C., Hirata, N.S.T.:
A general framework for the recognition of online handwritten
graphics. Int. J. Doc. Anal. Recognit. (IIDAR) 23, 143-160 (2020).
https://doi.org/10.1007/s10032-019-00349-6

Julca-Aguilar, ED., Hirata, N.S.T.: Symbol detection in online
handwritten graphics using faster R-CNN. In: 2018 13th IAPR
International Workshop on Document Analysis Systems (DAS),
pp- 151-156 (2018)

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J.,
Chen, S., Kalantidis, Y., Li, L.J., Shamma, D.A., Bernstein, M.S.,
Fei-Fei, L.: Visual genome: connecting language and vision using
crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1),
32-73 (2017)

Krishnan, P., Jawahar, C.V.: HWNet v2: an efficient word image
representation for handwritten documents. Int. J. Doc. Anal.
Recognit. (IJDAR) 22(4), 387-405 (2019)

Lemaitre, A., Mouchere, H., Camillerapp, J., Cotiasnon, B.: Inter-
est of syntactic knowledge for on-line flowchart recognition. In:

@ Springer

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Graphics Recognition. New Trends and Challenges, Lecture Notes
in Computer Science, pp. 89-98 (2013)

Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie,
S.: Feature pyramid networks for object detection. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 2117-2125 (2017)

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollar, P., Zitnick, C.L.: Microsoft COCO: common objects
in context. In: Computer Vision—ECCV 2014, Lecture Notes in
Computer Science, pp. 740-755 (2014)

Marti, U.V., Bunke, H.: The IAM-database: an english sentence
database for offline handwriting recognition. Int. J. Doc. Anal.
Recognit. 5(1), 39-46 (2002)

Massa, F., Girshick, R.: Maskrcnn-benchmark: fast, modular ref-
erence implementation of instance segmentation and object detec-
tion algorithms in PyTorch. https://github.com/facebookresearch/
maskrcnn-benchmark (2018)

Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for
human pose estimation. In: Computer Vision—ECCV 2016, Lec-
ture Notes in Computer Science, pp. 483—499 (2016)
Notowidigdo, M., Miller, R.C.: Off-line sketch interpretation. In:
AAAI Fall Symposium, pp. 120-126. Arlington, VA (2004)
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison,
A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: PyTorch:
an imperative style, high-performance deep learning library. Adv.
Neural Inf. Process. Syst. 32, 8024-8035 (2019)

Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-
time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 28, 91-99 (2015)

Santosh, K., Wendling, L., Antani, S., Thoma, G.R.: Overlaid arrow
detection for labeling regions of interest in biomedical images.
IEEE Intell. Syst. 31(3), 66-75 (2016)

Santosh, K.C.: Document Image Analysis: Current Trends and
Challenges in Graphics Recognition. Springer, Berlin (2018)
Santosh, K.C., Alam, N., Roy, PP., Wendling, L., Antani, S.,
Thoma, G.R.: A simple and efficient arrowhead detection tech-
nique in biomedical images. Int. J. Pattern Recognit. Artif. Intell.
30(05), 1657002 (2016)

Santosh, K.C., Lamiroy, B., Wendling, L.: Symbol recognition
using spatial relations. Pattern Recognit. Lett. 33(3), 331-341
(2012)

Santosh, K.C., Lamiroy, B., Wendling, L.: Integrating vocabulary
clustering with spatial relations for symbol recognition. Int. J. Doc.
Anal. Recognit. (IJDAR) 17(1), 61-78 (2014)

Schiifer, B., Stuckenschmidt, H.: Arrow R-CNN for flowchart
recognition. In: 2019 International Conference on Document Anal-
ysis and Recognition Workshops (ICDARW), p. 7 (2019)

Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for con-
volutional neural networks applied to visual document analysis.
In: Proceedings of the 7th International Conference on Document
Analysis and Recognition - Volume 2, ICDAR ’03, p. 958 (2003)
Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose
regression. In: Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 529-545 (2018)

Toshev, A., Szegedy, C.: DeepPose: Human pose estimation via
deep neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1653—-1660 (2014)
Wang, C., Mouchere, H., Lemaitre, A., Viard-Gaudin, C.: Online
flowchart understanding by combining max-margin Markov ran-
dom field with grammatical analysis. Int. J. Doc. Anal. Recognit.
(IIDAR) 20(2), 123-136 (2017)

Wang, C., Mouchere, H., Viard-Gaudin, C., Jin, L.: Combined seg-
mentation and recognition of online handwritten diagrams with
high order markov random field. In: 2016 15th International Con-

http://arxiv.org/abs/1809.06839
http://arxiv.org/abs/2002.09303
http://arxiv.org/abs/1706.02677
https://doi.org/10.1007/s10032-019-00349-6
https://github.com/facebookresearch/maskrcnn-benchmark
https://github.com/facebookresearch/maskrcnn-benchmark

Arrow R-CNN for handwritten diagram recognition 17

ference on Frontiers in Handwriting Recognition (ICFHR), pp. 41. Zhong, Z., Sun, L., Huo, Q.: An anchor-free region proposal net-
252-257 (2016) work for faster R-CNN-based text detection approaches. Int. J. Doc.

38. Wu, J., Wang, C., Zhang, L., Rui, Y.: Offline sketch parsing via Anal. Recognit. (IIDAR) 22(3), 315-327 (2019)
shapeness estimation. In: Twenty-Fourth International Joint Con-
ference on Artificial Intelligence (2015)

39. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose esti-
mation and tracking. In: Proceedings of the European Conference
on Computer Vision (ECCV), pp. 466-481 (2018)

40. Yun, X.L., Zhang, Y.M., Ye, J.Y., Liu, C.L.: Online handwritten
diagram recognition with graph attention networks. In: Image and
Graphics, Lecture Notes in Computer Science, pp. 232-244 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	Arrow R-CNN for handwritten diagram recognition
	Abstract
	1 Introduction
	2 Related work
	2.1 Handwritten diagram recognition
	2.2 Keypoint detection

	3 Arrow R-CNN
	3.1 Network architecture
	3.2 Training
	3.3 Inference

	4 Integrating diagram domain knowledge
	4.1 Augmentation
	4.2 Diagram-aware postprocessing

	5 Experiments
	5.1 Datasets
	5.2 Evaluation metrics
	5.3 Implementation
	5.4 Results
	5.5 Error analysis and future work

	6 Conclusion
	References

