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Abstract

In many applicaions, it is necessary to determine the string similarity " . Text comparison now appeas in
many disciplines sich as compresson, pattern recognition, computational biology, Web seaching and data
cleaning. Edit distancWF74] approac is a dassc method to determine Field Similarity. A well known
dynamic programming algorithm [GUS97] is used to cdculate alit distance with the time @mplexity
O(nm). (for worst case, average cae and even best case) Instead of continuing with improving the eit
distance gproadh, [LL+99] adopted a brand new approach---token-based approach. Its new concept of
token-base-----retain the origina semantic information, good time cmplex----O(nm) (for worst, average
and best case) and good experimental performance make it a milestone paper in this area Further study
indicaesthat thereis gill room for improvement of its Field Similarity algorithm. Our paper is to introduce
a padckage of substring-based new algorithms to determine Field Similarity. Combined together, our new
algorithms not only achieve higher acairacy but also gain the time complexity O(knm) (k<0.75) for worst
case, O( B8 *n) where g <6 for average cae and O(1) for best case. Throughout the paper, we use the
approach of comparative examples to show higher accuracy of our algorithms compared to the one
proposed in [LL+99]. Theoreticd analysis, concrete examples and experimental result show that our
agorithms can significantly improve the acaracy and time wmplexity of the cdculation of Field
Similarity.
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1. Introduction

In many applications, it is necessary to determine the string similarity”. Text comparison
[SV94,MSU97,CPSV00,ABROO,MS00,KR87,KMR72,GAL85ME96] now appeas in many disciplines
such as compression, pattern recognition, computational biology, Web seaching and data
cleaningHS95,BD93]. Edit distancWF74] approach is a dassc method to determine Field Similarity. A
well known dynamic programming algorithm [GUS97] is used to cdculate dit distance with the time
complexity O(nm). (for worst case, average cae and even best case) Since then, progress has been made in
terms of time cmplexity such as O(n) [Kar93], o (nm) [SV96], O(kn) [LV86, MY E86], O(n paly(k)/m+n)
[CH98g], O(nVm) [ABR87], O(n+k ) [APLO0]. However, all these progresses are obtained by relaxing the
problem in a number of ways. Hence, when subsequent comparison is made in this paper with resped to
time complexity, we still refer to O(nm) [GUS97]. Instead of continuing with improving the edit distance
approach, [LL+99] adopted a brand new approacdh---token-based approach. Its new concept of token-base--
---retain the origina semantic information, goodtime complex----O(hm) (for worst, average and best case)
and good experimental performance make it a milestone paper in this area Further study indicates that
thereis gill room for improvement of its Field Similarity algorithm. Our paper is to introduce apadage of
substring-based new algorithms to determine Field Similarity. Combined together, our new algorithms not
only achieve higher aacuracy but aso gain the time complexity O(knm) (k<0.75) for worst case, O( 8 *n)
where B <6 for average cae and O(1) for best case. Throughout the paper, we use the gproach of
comparative examples to show higher acarracy of our algorithms compared to the one proposed in
[LL+99]. Theoreticd analysis, concrete examples and experimental result show that our algorithms can
significantly improve the acarracy and time complexity of the cdculation of Field Similarity. The rest of
the paper is organized as foll ows. Sedion 2 gives a badkground description of the dgorithm of caculating
Field Similarity presented in [LL+99]. Sedion 3 proposes our algorithms of cdculating Field Similarity
and exhaustively compares the new agorithms with the previous one. Sedion 4 provides experiments to

prove the performanceimprovement with the introduction of the new algorithms.

*
Dueto historical reason, in this paper, we equalize two terms “string similarity” and “field similarity”



2.Preliminary Background
This ®dion gvesabrief description of the dgorithm to cdculate Field Simil arity presented in [LL+99].

Let afield X have words Ox1, Ox2,....., Oxn and the @rresponding field Y have words Oy1, Oy2,...... , Oym.

Dos, +3 7 DoS,
n+m

SIMK(X,Y) = 2

D

About the cdculation of degreeof similarity of words---DoS:

e If two words are exadly the same, the degreeof similarity between these two wordsis 1.
: : 1 :
e If there is a total of x charaders in the word, then we deduct — from the maximum degree of

X

similarity of 1 for eat charader that is not found in the other word. For example, if we compare "kit" and

1 2
"quit", then DoS ;. =1- — =0.67 since the charader k in "kit" is not found in "quit" and DoS , ;. =1- — =0.5
kit 3 quit 4

sincethe dharadersqand u in "quit" are not found in "kit".

Exercise: compute the Field Similarity of the filed "address' of record land 2in table 1.

Record Name Address
1 Qi Xiao Yang 129Industry Park
2 Qi Xiao Yang 129Indisttry Park

Table 1 cdculation of degreeof similarity of words

1. The degreeof similarity between "129" and "129" is 1, between "129" and "Indisttry" is O, between

"129" and "Park " is 0. So acarding to the ebove rule, DoS129 o; =1. (DoS should be the maximum)



2. The degreeof similarity between "Industry" and "129" is 0, between "Industry" and "Indisttry" is 1-
1 . .
g =0.875, between "Industry” and "Park " is 0. So according to the &ove rule, DoSinduwstry o, =0.875.

3. Inthe same way, we will obtain the foll owing:

DOSpark o, =1, DOS120,, =1, DOSindisttry 5, =1- 320.778,D05Park =1

4. When Formula 1l isemployed, the aldressField Similarity for R1 and R2 can be obtained as:

>4D0S, +3 1,D0S, 1+0875+1+1+0.778+1

SIM&(X,Y)=
n+m 6

=0.942

3 Proposed new Field Similarity algorithm

This ®dion propases a new algorithm----Moving Contrading Window Pattern Algorithm (MCWPA) to
cdculate Field Similarity. Firstly, we give the definition of window pattern. All charaders as a whole
within the window congtitute awindow pattern. Take astring "abcde" as an example, when the window is
dliding from left to right with the window size being 3, the series of window patterns obtained are "abc",

"bcd" and "cde".

Let afield X have n charaders (including blank spaceor comma, this applies to the following) and the
corresponding field Y have m charaders. w represents window size, Fx represents the field X and Fy
representsthe field Y. The Field Similarity for Fx and Fy is

SSNC

SIMr (X,Y)= |———
(n+m)?

(2)

SSNC represents the Sum of the Square of the Number of the same Charaders between Fx and Fy.
SIMe(X,Y) approximetely refleds the ratio of the total number of the mmmon charaders in two fields to
the total number of charadersin two fields.

Imagine we have two windows, one for ead field. The basic ideais that we begin with big window size. If
window patternin field 1isthe same asthat in field 2, we record the cntribution of this matchingin SSNC

and mark these window patterns as inacassble to avoid revisiting in the following rounds. Every next



round, window size deaeases by 1. And within one round, as aching for the same window pattern is
going on, windows move from left to right.

The followingisthe complete dgorithm (MCWPA) to cdculate SSNC.

1 w= the smaller of nand m;

2. SSNC=0;

3. Fs=the small er of Fx and Fy;

4. window is placed on the leftmost paosition;

5. while ((window sizeisnot 0) or (still some charadersin Fsare accsshle))

6.

7. while (window right border does not exceed the right border of the Fs)

8.

9. if (the window pattern in Fx has the same pattern anywherein Fy )

10. {

11, SSNC= SSNC +(2w) 2 ;

12. mark the pattern charadersin Fx and Fy asinacessdble charaders to avoid revisiting;

13 }

14. move window rightward by 1 (if the window left border is on an inaccesible dharader,
move window rightward by 2 and so on and so forth)

15. }

16. w=w-1;

17. window is placead on the leftmost position where the window left border is on an accesible
charader;

18. }

19. return SSNC;

Figurel MCWHPA agorithm
The following example is provided to ill ustrate how to cdculate the Field Similarity with MCWPA and
formula(2).

Example 1. cdculate the following Field Similarity.

Field 1 abc de

Field 2 abc k de

The processof cdculating SSNC with MCWPA is own isfigure 2 in detail (next page).

SNC  [(2*4)° +(2*2)°
SIMK(X,Y)= = ~63%
(n+m)? (6+8)°

Exer cise what isthe Field Similarity between the field1 "abcd" and field2 "abed" ? (the answer is 100%6.)

3.1 Analysisand Comparison of Two Algorithmsof Field Similarity
This sdion will give some examples to show that MCWPA can overcome some drawbadks that exist in

the previous algorithm of the Field Simil arity. Also the logic behind the design of MCWPA is presented.



In this example. n—=6.m—=38, Fx = abcl lde, Fy=— abcl kLl Ide, the initial value for v is 6,
Round 1 for the loop in line 5:

Step 1:
: P "
abel ide w =& , the -vmndow pattern is abcl-_l-de . In ]-Fy, th-ere
is not a string "abec Llde”, the condition for line @ is
abecl kL Ide not true. So jump to line 14. MMowve window rightward
by 1.
Step 2
abecllde Since the window right border exceeds the right
border of the Fs, the condition of line 7 is false, the
abel kL ide program goes to line 16.

Round 2 for the loop in line 5:

Stepl
b d
abel Jde w =3 | in Fy, there are not strings "abelld” or
abecl kL Ide "bellde™. so w continues to reduce.
Step2
abclide
abcllklIde
Round 3 for the loop in line 5: w —4. The window pattern "abcll” has
Stepl the same pattern in Fyv. The condition
— — P for line 9 is true. SENC=0 +(2*4)~ ,
abcllde abel Ide abegcl Ide Mark the window patterns as
— HEM M — 00K X inaccessible characters. ZWlowve the
abel 1kl Ide abclllkl Ide abecllkl Ide window rightward to accessible
FUHE K B characters.
Round 4 for the loop in line 5: w =3. (omitted)

Round 5 for the loop in line 5: N
w =2. The window pattern "de” has the
Step 1 same pattern in Fy. The condition for
b d|_| b d i line @ is true. SENC= (8)° + (2*%2) %,
%ngl—l = > %Xgl}?lxﬁ Mdark the window patterns as
inaccessible characters. Mowve the
%1):()2 Iglkl—lde ;%EQ I)lel—lg’g window rightward to accessible
characters. (no accessible characters any
. . more
Round 6 for the loop in line 5: )
n
abecllde - -
PME R w w =1. There is no accessible characters
abel 1kl Ide available, so the condition in line 5 is not
HA K H KX true. The program ends.

Figure 2 The processof cdculating SSNC with MCWPA for example 1

Example 2: cdculate the following Field Similarity with the dove two algorithms.

Field 1 X EX X BX EX EX EX X eX ex

Field 2 ab ab ab ab ab ab ab ab ab ex

With the previous a gorithm,



zin:l DOS‘i + ernzl DOSYJ

n+m

SIMe(X,Y) = 50 >50%

With MCWPA,

SS\C 2*3)> 3
SIMK(X,Y) = 5 = 5 =——~10%
(n+m) 2*29° 29

Obvioudly, the two fields are quite different, only 10% common charaders. However, the result of the

previous algorithm shows that these two fields have 50% similarity. In contrast, the result of MCWPA is

about 10%, which is quite dose to the expedation.

Oxn, Oy1, Oy2,...... , Oym respedively. If quite anumber of words in one field are similar to only one word
in the other field and dissmilar to ather words, the previous algorithm will give inacairate result. MCWPA
overcomes this problem by marking the same charaders in two fields as inacessble so as to avoid
revisiting.

Example 3: cdculate the following Field Similarity for two cases with the bove two algorithms.

Casel:

Field 1 deLiabc

Field 2 deLiabc

Case2:

Field 1 abcLide

Field 2 deLiabc

With the previous algorithm for case 1. SIMe(X,Y) =1,

for case2: SIMF(X,Y)=1

With MCWPA for case 1:



anocy) | SN _ (@67 _
T (nem)2 T\ (6+6)7

for case 2:

_[s\C _\/(2*3)%(2*2)2
SIMK(X,Y) = > = .
(n+m) (6+6)

=0.6=60%

Note: for casel, two agorithms produce the same result.

Analysis: Clealy, the similarity in case 1 should be higher than that in case 2. However, the same results
based on the previous agorithm suggest that the previous algorithm considers "abcLide" and "deLiabc” in

cese 2 the same. This disagrees with our common sense. In the following experiment sedion, we will show
that this is fatally erroneous in some dataset with Chinese names. Further study of the previous algorithm
shows that the adoption of word as basic unit resultsin its inability to dstinguish between two exadly the
same fields and two fields with the same words in diff erent sequences. To improve the acaracy, MCWPA
is based on substring and uses the charader as the unit. In this example, if the unit is word, both cese 1 and
cese 2 have two same words. In contrast, if the unit is charader, case 1 has 6 same dharaders and case 2
has 5 same daraders. As expeded, SIMr(X,Y) in case 1 is larger than SIM#(X,Y) in case 2 when
MCWPA is employed.
Example 4. cdculate the following Field Similarity for two cases with the &ove two algorithms.
Casel:
Field 1 Fu Hui
Field 2 Mr Fu Hui
Case2:
Field 1 Fu Hui
Field 2 Fu Mr Hui

With the previous algorithm for case 1: SIMF(X,Y) =80%,
for case 2: SIMF(X,Y) =80%,

With MCWPA for case 1:



SS\NC (2*6)°
SIMF(X,Y) = (n+m)? = (6+9)° =80%

for case 2:

SSNC (2* 2)* +(2* 4)?
SIMF(X,Y) = 5 = > ~60%
(n+m) (6+9)

Note: for casel, two agorithms produce the same result.

Analysis: Intuitively, in case 1, "Fu Hui" and "Mr Fu Hui" should be the same person. In case 2, the
likelihood exists that due to transposition error, originally "Fu Mr Hui" should be " Mr Fu Hui". However,
in more likelihood, due to typographicd errors, originaly "Fu Mr Hui" should be " Fu Mi Hui" or "Fu Ma
Hui", etc. Fadualy, the two common words "Fu Hui" in field 2 d case 1 are @ntinuous. In contrast, in
field 2 d case 2, they are interpolated by another word "Mr", hence the similarity between two fields is
severely reduced. Thus intuitively and factually two fields in case 1 should be more similar than those in
case 2. However, the previous algorithm gives the same results for case 1 and case 2. In contrast, the results

based on MCWPA show that the similarity for case 1 isreasonably higher than that for case 2. With resped
to charaders, both case 1 and case 2 have 6 common charaders ("Fu" "LHui"). According to example 3,

even MCWPA can not distinguish casel from case 2. Further examination of the two cases reveals that in
field 2 d case 1, these 6 charaders are ontinuous whilein field 2 d case 2, they are not. In order to refled
the difference in terms of continuity despite the same number of common charaders, MCWPA introduces

the sguare to the cdculation of SIMF(X,Y). In the cdculation of SIMF(X,Y) in example 4 with MCWPA,

the fundamental reason that the result of casel is larger than that of case2 is because 62> 2%+47,

Mathematicdly, it is easily seen that the square of the sum of humbersis larger than the sum of the square

of numbers, that is, (at+b+....+n) Z>a%+h%+...... +n? , (if aZ b.....Zn# 0). In this way, the introduction
of square in the cdculation of SIMF(X,Y) can overcome the wntinuity problem which leads to the

inacaurate result for the previous algorithm.

3.2 The Comparison of Time Complexity between two Algorithms
For pedagogicd reasons, suppose we have two fields with the same number of words (W) and same

number of charaders (N).



3.2.1 For thepreviousalgorithm:

Sinceevery word in one field needs to be compared with every word in the other field to find the maximum

DoS, the complexity for this gep is O(W 2 ). The complexity of determining whether every charader in one

N
word is in the other word is O((W)Z). Both fields neal to be cdculated. Therefore, the total time

complexity of cdculation of Field Similarity by the previous agorithm is 2*O(W 2 )*O((% ) 2 ), namely,

2*O(N 2 ), N0 matter it isworst case, average @se or best case.

3.2.2For MCWPA:

Some preparatory knowledge is provided as foll ows:
When the window sizeis N, the complexity is O(1 2 ).

When the window sizeis N-1, the cmplexity is O(2 2 ).

When the window sizeis 1, the complexity is O(N 2 ).

We will discuss the foll owing two situations: 1) with user-specified SIMF(X,Y) Threshold (ST) 2) without
user-spedfied ST. Since situation 1 is more common and therefore of more pradicd and theoreticd value,
it should and dces deserve more spacein our paper.

3.2.2.1 With user-specified SIMF(X,Y) threshold (ST):

3.2.21.1UBWSand LBWS

From figure 1, we know that MCWPA begins with the window size N and caries on with N-1, N-2......
Now, with the knowledge of ST, can we begin diredly with a window size named Upper-Bound Window
Size (UBWS) so that if there ae matching strings (length L) longer than or equal to the UBWS, we can
safely determine that the two fields are duplicae. The foll owing presents how to get UBWS with the user-
spedfied ST.

With formula 2,

10



SS\C =\/ (2% L)?

SIMF(X,Y)=\/(n m)? V(NN

Suppose there exists a USWS that makes

_ [(2* UBWS)?
ST_\} (N +N)> ©

Since L> UBWS is true, SIMF(X,Y) = ST is also true. This means, with L> UBWS, we @n safely
determine the two fields are duplicae.

Based on (3), we can get

UBWS= N*ST 4
Example 5: compare the number of comparisons involved in determining whether two fields are duplicate

by two algorithmsif the SIMF(X,Y) threshold (ST) is 0.8.

Field 1 abcdefghijklmnpo

Field 2 abcdefghijklmnwo

With the previous a gorithm:
According to the @ove analysis, the total number of operationsis 2*2 2 *(%’ )2 =512 (2 words for

ead field).

With revised version of MCWPA:

With formula 4: UBWS=N* ST=17*0.8~14

As mentioned before, revised MCWPA algorithm skips bigger size window and only uses window size 14
to deted whether there ae matching strings. Since the matching strings “abcdefgh ijkimn” are 15
charader-long, the dgorithm can find the matching strings “abcdefgh ijklm” in the first step and come to

the conclusion that these two fields are dupli cae. So the total number of comparisonsis 1.

What if there ae not matching strings longer than UBWS? We need to continue with small er size windows
as described in figure 1. As with the ideaof UBWS, can we paossibly find a window size named Lower-
Bound Window Size (LBWS). With LBWS, even though the field is full of maximum possible matching

strings al equally with the length being LBWS and remaining matching strings, the SIMe(X,Y) till can not

11



med ST. For example, for two strings A="abcdefghij” and B="ghidefabcj”, even though there ae three 3-

charader-long matching strings and one 1-charader-long remaining matching string, namely, “abc”, “def”,

“gh” and “j”, the SIMgX,Y) between these two fields 4gill can mot meet the ST=0.55
* )2 * 7\ 2 * 2\ 2 * 1\2
(~°’|'\/|F(><,Y)=\/(2 I+ (i)o +1(02)2 Y 2D =0.529) Also, it is easly seen that 3 is the maximum
+

(2% 4% + (2% 4)% + (2* 2)?

> =0.6>0.55=ST. Thus, for ST=0.55, the
(10+10)

passble length because SIMF(X,Y) =\/

LBWS is 3. So for this example, we diredly use window size 4 to deted whether there ae matching
strings. If not, we mnclude that these two strings are not duplicae. Generally, let the Length o the
Remaining matching strings be RL, obviously, RL=N-(N/LBWS)*LBWS.

With formula (2)

S Y= | SNC (27 LBWS)® (27 LBWS)® +....R* RL)? _
"\ (n+m)? (N +N)?

(2* LBWS)? * (N/ LBWS) + (2* (N - (N/ LBWS) * LBWS))?
(N +N)?

:J(LBWS)Z*(N/LBWS)+(I;1—(N/LBWS)*LBWS)2 <sT ©)
N

With formula (5), we @n easily get LBWS with given ST by testing every value between 1 and UBWS, the
time complexity isonly O(UBWS).

3.2.2.1.2 Expandable Region M atch Algorithm (ERMA)

It can be seen that the core of UBWS, LBWS and MCWPA technology is to find the matching strings
efficiently. In this subsedion, we propase a algorithm--Expandable Region Match Algorithm (ERMA). It
can colled information for all matching strings at O(3N) for best case, O(k*N 2) for worst case (k<75%)
and O( B8 *N) (8 <6) for average cae. First, we present an introductory example to demonstrate the rough
idea of ERMA. How to find the matching substring “ab” with ERMA for field 1)"xxxabxx" and field
2)"yabyyyy"? Suppose now we have dready had charader information about field 2, that is, “y” is in
pasition 1 of field 2 “a” isin position 2 o field 2...... the last charader “y” isin position 7 of field 2 and

thereisno “c”, “d”.... “X” in field2. When we seach for matching stringsin field 1 charader by charader,

12



we @n easily know that the first three “x”s have no counterparts in field 2 When it comes to the fourth
charadger “a”, we know that we have a darader “a” in the second pasition of field 2 Next, we compare the
fifth pasition of field 1 with the third pasition of field 2 and we find anther common charader “b”. When
we aompare the sixth position of field 1 with the fourth pasition of field 2, we find they are not the same.
Thus, we find the matching substring “ab”. The aucia point for ERMA is that we must have paosition
information for every charader in field 2 in advance Next, we introduce the ERMA in detail by severa
examples. For ill ustrative reasons, both fields consist of only ordinary charaders (a—z).

Example 6: locae dl matching strings by ERMA.

Field 1 akabc axyz mo

Field 2 aabc axyz muo

Step 1---pre-process (Regionalize Field 2).
Imagine we have acharader-region with 26 sub-regions, namely, “a” sub-region, “b” sub-region....We
start with position 1, 2, 3....of the field 2 (excluding blank space, put charader “x” into x sub-region with

the charader’s paosition information. For example 6, the result after stepl is shown in figure 3.

Level 1 | Level 2
[ a(l)
- e b(2)
a aa(l), ab(2), ax(6) s null
SR> b(3)
T 0(4) s mull
: uxn - X(G)
ju— “y null
7 : il @ Gz null
: b b(3)
: c o(4)
u.y'n y(g)
Oy 2(9)
oy ¥(8)
o= 2(9)
Figure 3 A character-region with Capacity Limit >3 Figure4 A character-region with Capacity Limit 1

Since “b” isin position 3, b(3) is put into “b” sub-region. In “a” subsedion, there ae 3 elements--“aa”,
"ab” and "ax” since there ae three“a’ occurrences in field 2 Note that ax(6) indicate that the position of
“a” is 6 not that of “x”. Capadty Limit for a charader-region is the upper limit of the number of elements
for the subregion. If the Capadty Limit for Figure 3 is 1, we nedal to further partition “a” subregion----
expand “a” subregion. The result after expansion is shown in Figure 4.

Step 2---process every character in field 1.

13



In particular, for every charader in field 1. 1)get the longest matching strings darting from that charader
based on the charader-region built in stepl. 2)Record the information of length of longest matching strings
starting from that charader and the crresponding starting position in field 2 . For example 6, we begin
with the string starting with the first charader “a”, namely “akabc....”. Based on the charader-region
shown in Figure 4, the first charader “a” has 3 common charaders, while the second charader “k” mees
with a“null” in the level 2 of charader-region. This means that the string starting with the first charader
“a” only has 1-charader-long longest matching string. Since the longest matching string “a” has 3
ocaurrencesin field 2, we randomly choose any one of them. The reason why we randomly choose is given
in sedion 3.2.2.1.3. In pradice, to guarantee that they can be cosen with equal probability, madcine
generated random numbers with equal probabili ty are used to make the dedsion. A record is then generated
with information that the length is 1 and the position is any one of the three dwices“1”, “2” and “6”, say,
“2". And this record is linked to the first charader “a”. (seefigure 5) Easily seen, the string starting with
the second charader “k” does not have any matching string. For the string starting with the third charader
“a”, namely, “abc axyz mo”, similarly, based on the dharader-region shown in Figure 4, the first charader
“a@” has 3 common charaders, whil e the second charader “b” meets with a “b” in the level 2 of charader-
region with a pointer pointing to pasition 2 of field 2 Base on this information, next, the string “abc axyz

”

m...” in field 1 compares with the string “abc axyz m...” which starts from position 2 of field 2 This
comparison results in a 10-charader-long matching string “abc axyz m”. Similarly, A record is generated
with information that the length is 10 and the pasition is 2. This record represents that a substring starting
with “a” in field 1 has a 10-charader-long matching stringin field 2 that starts from position 2 d field 2
And this record is linked to the third charader “a”. Since we have processed the first charader of the 10-
charader-long matching string, we can skip comparisons for the next 9 consecutive charaders (“bc axyz
m”) by the following technique----Expectation. If a charader isin its expeded pasition, we dorn't neal to
make mmparison for it. Take the fourth charader “b” as an example. The expeded pasition for it is 3 in
field 2since “b” belongs to an existing matching string which starts from “a” and the position of “a” is 2
and “b” is next to it. Based on the charader-region shown in Figure 4, we find that the charader “b” only

has one occurrence----position 3 which is the same as its expeded pasition, obviously, we can skip

comparison for it. If there ae several occurrences of “b”-----this phenomenon is cdled Conflict Type 1---
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athough we can skip comparison for “b” which is in expeded pasition, for other occurrences of “b”, the
approach of procesingthem is the same asthat of processng the third charader “a”. The result after step 2
is shown in figure 5. The top level is a group of pairs representing the length of longest matching strings

starting with that particular charader and the corresponding position in field 2.

(1w< (BIBWQ) (111 (L13)

Figure 5 The result after step 2
Step 3---post-process (find all matching stringsfor the current round)

Based on the information from step 2, we can easily get the process gquence by sorting charaders into
descending order acording to the length of longest matching strings gsarting from that particular charader.
For example, In figure 5, since the length value (10) of the third charader “a” is largest, this charader
should be processed first. The sorting result is siown as a train of numbers on the bottom of figure 5 that
indicae the process gquence The process s$arts with the charader “a” since the first number in the train
points to it. On the other hand, this charader “a” is also the starting charader of the longest matching
strings for this processng round. We mark 10 consecutive charaders in two fields garting from “a” as
inaccessible. Correspondingly, al numbersin the train that link from these inaccessible dharaders are dso

marked asinaccesible. Theresult is own in figure 6.

(1w< (6 GWS) (39 (L1) (113
9%

| Fidd 2 | asbeaxyzmuo

Figure 6 The result after 10 charaders are marked in step 3

We antinue the current round with the leftmost accessible number in the train. For figure 6, it is“8” which
points to “a”. The information on the top level of figure 6 about the dharader “a@” indicates that this
charader has a matching string starting from position 2 o field 2 Unfortunately, the charader in this
pasition has been marked as inacaessble, which means this charader has aready belonged to another

matching string. This phenomenon is cdled Conflict Type 2. The solution to Conflict Type 2 isthat if we
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find that a charader “x” with length “I” has been marked as inacassble, we ignore processng “x” and
continue to process other charaders with the same length “I”. After al charaders with length “I” are
finished, we go to a new round by repeaing step 2 and step 3, but all inacessble charaders are not
processd any more. In figure 6, we @ntinue with the next accesible number “10" in the train. It points to
“0” and the length of “0” isaso 1, so we find another matching strings and mark them in two fields. Since
the length of the dharader “k” linked from the next acassble number in the train is 0 and lessthan 1, the
current round ends.

3.2.2.1.3 Implementation of ERM A and Time Complexity

For step 1, there ae two types of implementation: 1) Fixed size (26) array to represent charader-region
with Capadty Limit equal to 1 2) A treewhose nodes have nho more than 26 chil dren. The disadvantage for
the aray-based implementation is more storage. For example, in Figure 3, it neals to store “k” even though
k’s value is “null” while tree-based implementation does not. The alvantage wupled with the space
disadvantage is faster search. For example, to find “c”, we simply check whether array [3] is “null” or not
becaise “c” is the 3rd alphabeticdly. While for the tree-based implementation, along the path to find the
led, comparison neals to be made & non-leaf nodes even though it is negligibly cheg. The darader-
region with either of these two types of data structures can be built in O(N) time. In addition, another
choice is Fixed size (26) array to represent charader-region with Capadty Limit greder than 1 It isa
compromise between array implementation and treeimplementation with regard to time and space

For step 2, if there is no corflict type 1, we can colled information for al charadersin field 1a O(N). In
worst case where there is heavy conflict, the time cmplexity is O(k*N 2). (k<50%) (for example, field 1is
“abababab” and field 2 is “aaaaaaad’In average cae, empiricdly and experimentally, the conflict type 1
occurs within small scope, so the time complexity is O( 8 *N) where g <2.

For step 3, when we sort charaders acording to the length of longest matching strings garting from that
particular charader, we can use Radix sort approach[ CP01]. The time cmplexity for Radix sort is O(N). If
there is no conflict type 2, one round is enoughto find all matching strings. The time cmmplexity is O(1). In

worst case where there is heavy conflict, because the number is randomly chosen as mentioned before, the

time cmplexity is O(k*N 2). (Empiricadly and experimentally, k<25%) (for example, field 1is “abababab”
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and field 2 is “aaaaaaad’ln average @se, we can find all matching strings within 2 rounds. The time

complexity is correspondingly for step3 O( 8 *N) where g <2.

3.2.2.1.4 Summary of the Situation with Given ST

Having introduced the definition of SIMr(X,Y), the method o cdculating SIMr(X,Y) with MCWPA, the

conceptsof UBWS, LBWS and ERMA, we sum up the discusson of the situation where ST is edfied as

follows. (seefigure 7)

Generally, We have two choices, MCWPA and ERMA. To determine whether there ae matching strings at

least equa to UBWS, MCWPA needs at least UBWS*(N—UBWS+1)2, while in average cae, ERMA

neals 6N. We dhoose the smaller of UBWS*(N-UBWS+1) 2 and 6N as our scheme.

For MCWPA, if we find matching strings at least equal to UBWS, we mnclude that two fields are

duplicate. If we can not find, we neead to make choice once ajain. One is continue with MCWPA with

LBWS*(N—LBWS)z. The other is ERMA with 6N. We dcoose the smaller of LBWS"(N—LBWS)2
and 6N as our scheme. If MCWPA is our choice, we use window size a@ual to LBWS to seach for
matching strings. If we can not find, we cnclude that two fields are NOT duplicate. If unfortunately we
can find, the situation will be quite complicated, we switch to ERMA.

For ERMA, (we discuss average @ase in terms of conflict type 1) (1) if there is not conflict type 2,
without going to the next round, we @n come to the conclusion. After we finish the first round with
O(5N), we compare the SIM#(X,Y) resulting from the antribution of all matching strings from the first
round with ST. If it is greder than ST, we @nclude that two fields are duplicate. If it is not, we
conclude that two fields are NOT duplicate. (2) if there is conflict type 2 , after we finish the first round
with O(5N), we mmpare the SIM#(X,Y) resulting from the cntribution of all matching strings from the
first round with ST. If it is greaer than ST, we @nclude that two fields are duplicate. If it is not, we
compare the longest matching string from the first round with LBWS. If it is shorter than LBWS, we
conclude that two fields are NOT duplicae. If it is no shorter than LBWS, we must go on to the second
round. Taking the contribution of all matching strings from the first round into aceunt, with formula 2
and formula 5, we can get new LBWS (see example 7). The discussion of situation where there is not

conflict type 2 is the same & before. We omit it sinceit is straightforward. If there is gill conflict type
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2, after we finish the second round with O(N), (becaise we can use the charader-region derived from
the first round and we do not need to processinaccessble daraders) we compare the SIM#(X,Y) which
isthe sum of the cntribution of al matching strings from the second round and the first round with the
ST. If it is greaer than the ST, we @nclude that two fields are duplicate. If it is not, we mmpare the
longest matching string from the second round with the new LBWS. If it is shorter than the new LBWS,
we onclude that two fields are NOT duplicae. If it is not shorter than the new LBWS, we must go on
to the third round. The same processwill carry on until either we can come to the conclusion whether
they are duplicate or al charaders are marked inacessble. Every more round will cost lessand less

becaise more and more charaders are marked inaccesible. As discussed before, the time complexity
for the worst case is O(0.25*N 2 )+ O(0.5*N ?) In average case, the time complexity is O( g *N) where
B <6.

The @ove discusdonisvisualy presented in figure 7 which more dealy shows the foll owing conclusions:

1) Only if UBWS*(N-UBWS+1) 2<6N, can MCWPA be used. Hence, MCWPA applies to the situation
where ST is quite high and the number of comparisons is quite small. The best case O(1) is obtained
from MCWPA.

2) For ERMA (right-lower areg), if there is not conflict type 2, we ca safely read the conclusion with
<5N.

3) For ERMA, if there is corflict type 2 and we come to the conclusion within the first round, the time
complexity is <5N. If we mme to the conclusion within the second round, the time cmplexity is
<5N+N. Empiricdly, in average the whole processwill end within 3 rounds which corresponds to about
6N.

Example 7: cdculate the cmplexity of judging whether the foll owing two fields are duplicae, given that

ST is0.48. (for clarity, we mark the matching strings in two fields)

-1
Field 1 | abcdefagha

Fiedd2 | aijklamabe
1 | =

Answer: Sincethere ae 10 charaders, N=10. Based on formula 4, we have UBWS=5. Bases on formula 5,

LBWS=2. Becaise UBWS"(N—UBWS+1)2:180>6*N: 60, we dwoose ERMA instead of MCWPA.

Suppose unfortunately, due to conflict type 2, in the first round, we only find the match string “abc”.
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SIM#(X,Y)=0.3<ST=0.48 and MM SLFC=3>LBWSfC=2. (seefigure 7) Thus, we must go to the second

round where we find another matching string “a”. Once ajain, unluckily, suppase we encounter conflict.

* 2 12
SIMe(X,Y) of SCAMSUC is %:0.31661 so we nead to judge whether
| @o+1g

MM SLFC<LBWSIC. Sincethe only matching stringis“a”, MM SLFC is 1. For LBWSFC, acwording to the

above discussion, we ned to try the charader length 2 and 1, since LBWS for the first round is alrealy 2.
First we try 2 with formula 5. (SCAPR™ represents Sum of Contribution from All Past Rounds, it is equal

to (2*3) 2 inthis case)

SCAPR +(2* LBWS)?......+ (2* RL)? _
(10+10)2

SIM#(X,Y) :J

‘/(2*3)2+(2* 2)2+(2* 2)2+(2* 2)2+(2*1)2 =0.469<ST,
(10+10)?

so the new LBWS is 2, MM SLFC=1<LBWSfC=2 and we car come to the mnclusion that the two fields
are undupli cated.

In summary, we read the mnclusion within 2 rounds, the time cmplexity is 6N=60. In this example, the
ST=0.48 is quite low, so MCWPA can not be used. Empiricdly, if ST is greder than 90%, in mgjority of
the caes, MCWPA will be used. That means, the time complexity will be lessthan O(6N).

3.2.2.2 Without User-Specified ST:

In this stuation, because of unavail ability of ST, al matching strings need to be found so that formula 2
can be used to cdculate SIM#(X,Y). ERMA is employed to perform this task. Hence part of the &ove
conclusion appliesto here. If there is no conflict type 2 (we discuss average cae for conflict type 1), within
one round, we @an find all matching strings. The time @mplexity for this is O(5N). In worst case where
there is heavy conflict type 2, the time cmplexity is O(k*N 2). (Empiricaly and experimentally, k<75%)
In average ase, the time complexity isO( 8 *N) where g <6.

4 Experiment Result

We mnducted four sets of experiments with both algorithms. The first dataset is a merger of two datasets
that come from two campus surveys conducted through an eledronic form within a mass-sent email. The

dataset has 782reoords. The second dataset is from the 1990US Census which is a freedownloaded dataset

19



coming from http://www.cs.toronto.edu/~delve/data/census-house/desc.html. It has 22784 records. The

third and fourth datasets are generated synthetic datasets bath with more than 200,000 records. We compare
two algorithms by two criteria: 1) MissDetedion (duplicae records are not deteded) and 2)False Detedtion
(similar non-dupli cate records are treaed as dupli cate records). The results are presented in figure 8 ~11.

Analysis. Experimental results on four datasets consistently indicate that with regard to MissDetedion, the
two agorithms perform roughly the same. However, in terms of False Detedion, MCWPA performs much
better than the previous algorithm. Further study of the testing datasets shows that in the name field, there
are some similar non-dupli cate names such as "Gao Hua Ming' and "Gao Ming Hua'. As analyzed in the
example 3, the previous agorithm treas two fields with the same words in different sequences as the
matching fields. Thus the high False Detedion rate for the previous algorithm begins to make sense. In
addition, there ae dso some similar cases that the previous algorithm treas sme names such as "zeng
hong" and "zeng zeng" the same. As analyzed in the example 2, MCWPA identifies a large differencein
the cdculation of Field Similarity between this type of two fields. Generaly, from several examples we
presented above, the previous algorithm tends to over-evaluate the SIMF(X,Y), while MCWPA does not.
We observe from both experiments that MCWPA is roughly equally effedive acossthe entire range of
SIMF(X,Y) threshold. As oppased to this, the False Detedion rate based on the previous agorithm
increases sgnificantly asthe SIMF(X,Y) threshold becomes |lower and lower. The MissDetedion diagrams
show that both algorithms can only perform well in the low SIMF(X,Y) threshold region. However, the
False Detedion diagrams indicate that in the low SIMF(X,Y) threshold region, the False Detedion rate
from the previous algorithm is very high. This means, with the previous algorithm, if we dcoaose low
SIMF(X,Y) threshold to satisfy Miss Detedion rate requirement, we will inevitably obtain poa False

Detedion performance This conflict does not show itself in MCWPA.

Conclusion

This paper has presented a new algorithm (MCWPM) for the cdculation of Field Similarity. In essence,
MCWPM improves the previous algorithm in the following aspeds:

1) The introduction of marking the cmmmon charaders as inacessble to avoid revisiting, which is

presented in example 2.
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2) The aoption of the charader as unit for the cdculation of Field Similarity instead of words to improve
acairacy, which is presented in example 3.

3) The introduction of sguare to the cdculation of Field Similarity to refled the difference in terms of
continuity despite the same number of common charaders, which is presented in example 4.

4) The introduction of UBWS, LBWS and ERMA to achieve higher efficiency, which is presented in
example 5.

Theoreticd analysis, concrete examples and experimental result lead to the wnclusion that our new

agorithm (MCWPM) can significantly improve the acuracy and efficiency of the cdculation of Field

Similarity.
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