Skip to main content
Log in

Concealed weapon detection and visualization in a synthesized image

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Images acquired by heterogeneous image sensors may provide complementary information about the scene, for instance, the visual image can provide personal identification information like the facial pattern while the infrared (IR) or millimeter wave image can detect the suspicious regions of concealed weapons. Usually, a technique, namely multiresolution pixel-level image fusion is applied to integrate the information from multi-sensor images. However, when the images are significantly different, the performance of the multiresolution fusion algorithms is not always satisfactory. In this study, a new strategy consisting of two steps is proposed. The first step is to use an unsupervised fuzzy k-means clustering to detect the concealed weapon from the IR image. The detected region is embedded in the visual image in the second step and this process is implemented with a multiresolution mosaic technique. Therefore, the synthesized image retains the quality comparable to the visual image while the region of the concealed weapon is highlighted and enhanced. The experimental results indicate the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Klock BA (2003) Interface and usability assessment of imaging systems. IEEE AESS Syst Mag 18(3):11–12

    Article  Google Scholar 

  2. McMillan RW, O Milton J, Hetzler MC, Hyde RS, Owens WR (2000) Detection of concealed weapons using far-infrared bolometer arrays. In: Conference digest on 25th infrared and millimeter waves, pp 259–260

  3. Slamani MA, Ramac L, Uner M, Varshney P, Weiner DD, Alford M, Derris D, Vannicola V (1997) Enhancement and fusion of data for concealed weapons detection. In: SPIE, vol 3068, pp 20–25

  4. Burt PJ, Kolczynski RJ (1993) Enhanced image capture through fusion. In: Proceedings of 4th international conference on image processing, pp 248–251

  5. Uner MK, Ramac LC, Varshney PK, Alford M (1996) Concealed weapon detection: an image fusion approach. In: SPIE, vol 2942, pp 123–132

  6. Varshney PK, Ramac L, Slamani MA, Alford MG, Ferris D (1998) Fusion and partitioning of data for the detection of concealed weapons. In: Proceedings of the international conference on multisource-multisensor information fusion

  7. Varshney PK, Chen H, Uner M (1999) Registration and fusion of infrared and millimetre wave images for concealed weapon detection. In: Proceedings of international conference on image processing, vol 13, pp 532–536

  8. Aggarwal JK (1993) Multisensor fusion for computer vision, vol 99 of NATO ASI series F: computer and systems science

  9. Xue Z, Blum R, Li Y (2002) Fusion of visual and ir images for concealed weapon detection. In: Proceedings of ISIF 2002, pp 1198–1205

  10. Foresti GL, Snidaro L (2002) A distributed sensor network for video surveillance of outdoors. In: Foresti GL, Regazzoni CS, Varshney PK (eds) Multisensor surveillance systems. Kluwer, Dordrecht, pp 7–27

    Google Scholar 

  11. Matsopoulos GK, Marshall S, Brunt JNH (1994) Multiresolution morphological fusion of mr and ct images of the human brain. IEE Proc Vis Image Signal Process 141(3):137–142

    Article  Google Scholar 

  12. Koren I, Laine A, Taylor F (1998) Enhancement via fusion of mammographic features. In: Proceedings of international conference on image processing, pp 722–726

  13. Pohl C, Genderen JLV (1998) Multi-sensor image fusion in remote sensing: concepts, methods and applications. Int J Remote Sens 19(5):823–854

    Article  Google Scholar 

  14. Gros XE, Liu Z, Tsukada K, Hanasaki K (2000) Experimenting with pixel-level ndt data fusion techniques. IEEE Trans Instrum Measure 49(5):1083–1090

    Article  Google Scholar 

  15. Chen HM, Lee S, Rao RM, Slamani MA, Varshney PK (2005) Imaging for concealed weapon detection. IEEE Signal Process Mag 22(2):52–61

    Article  Google Scholar 

  16. Xue Z, Blum RS (2003) Concealed weapon detection using color image fusion. In: Proceedings of 6th international conference of information fusion, vol 1, pp 622–627

  17. Loftus P (2005) Camera detects concealed weapons. Wall Street J (online)

  18. Adelson EH, Anderson CH, Bergen JR, Burt PJ, Ogden JM (1984) Pyramid methods in image processing. RCA Eng 29(6):33–41

    Google Scholar 

  19. Chipman LJ, Orr TM (1995) Wavelet and image fusion. In: Proceedings of international conference on image processing, pp 248–251

  20. Li H, Manjunath BS, Mitra SK (1995) Multisensor image fusion using the wavelet transform. Graph Models Image Process 57(3):235–245

    Article  Google Scholar 

  21. Zhang Z (1999) Investigations of image fusion. PhD Thesis, Lehigh University

  22. Piella G (2003) A general framework for multiresolution image fusion: from pixels to regions. Inf Fusion 4(4):259–280

    Article  Google Scholar 

  23. Wilson TA, Rogers SK, Myers LR (1995) Perceptual-based hyperspectral image fusion using multiresolution analysis. Opt Eng 34(11):3154–3164

    Article  Google Scholar 

  24. Wilson TA, Rogers SK, Kabrisky M (1997) Perceptual-based image fusion for hyperspectral data. IEEE Trans Geosci Remote Sens 35(4):1007–1017

    Article  Google Scholar 

  25. Zhang Z, Blum RS (1998) Image fusion for a digital camera application. In: Proceedings of 32nd Asilomar conference on signals systems, and computers, Monterey, pp 603–607

  26. Koren I, Laine A, Taylor F (1995) Image fusion using steerable dyadic wavelet transform. In: Proceedings of international conference on image processing, pp 232–235

  27. Petrovic V, Xydeas C (1999) Multiresolution image fusion using cross band feature selection. In: SPIE, vol 3719, pp 319–326

  28. Teot A (1989) Image fusion by a ratio of low-pass pyramid. Pattern Recognit Lett 9:245–253

    Article  Google Scholar 

  29. Toet A (1992) Multiscale contrast enhancement with application to image fusion. Opt Eng 31(5):1026–1031

    Article  Google Scholar 

  30. Liu Z, Tsukada K, Hanasaki K, Ho YK, Dai YP (2001) Image fusion by using steerable pyramid. Pattern Recognit Lett 22:929–939

    Article  MATH  Google Scholar 

  31. Rockinger O (1996) Pixel level fusion of image sequences using wavelet frames. In: Proceedings of the 16th leeds annual statistical research workshop. Leeds University Press, pp 149–154

  32. Rockinger O (1997) Image sequence fusion using a shift-invariant wavelet transform. In: Proceedings of international conference on image processing, vol 3, pp 288–301

  33. Rockinger O, Fechner T (1998) Pixel-level image fusion: the case of image sequences. In: SPIE, vol 3374, pp 378–388

  34. Pu T, Ni GQ (2000) Contrast-based image fusion using discrete wavelet transform. Opt Eng 39(8):2075–2082

    Article  Google Scholar 

  35. Nikolov S, Hill P, Bull D, Canagarajah N (2001) Wavelets for image fusion. In: Petrosian A, Meyer F (eds) Wavelets in signal and image analysis, computational imaging and vision series. Kluwer, Dordrecht, pp 213–244

    Google Scholar 

  36. Wang H, Peng J, Wu W (2002) Fusion algorithm for multisensor images based on discrete multiwavelet transform. IEE Proc Vis Image Signal Process 149(5):283–289

    Article  Google Scholar 

  37. Slamani MA, Varshney PK, Rao RM, Alford MG, Ferris D (1999) Image processing tools for the enhancement of concealed weapon detection. In: Proceedings of ICIP, vol 3, Kobe, pp 518–522

  38. Yang J, Blum RS (2002) A statistical signal processing approach to image fusion for concealed weapon detection. In: Proceedings of ICIP, vol 1, pp 513–516

  39. Otsu N (1979) A threshold selection method from gray level. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  40. Duda RO, Hart PE, Strok D (2000) Patten classification, 2nd edn. Wiley Interscience, New York

    Google Scholar 

  41. Balasko B, Abonyi J, Feil B Fuzzy clustering and data analysis toolbox. Department of Process Engineering, University of Veszprem, Veszprem

  42. Bensaid AM, Hall LO, Bezdek JC, Clarke LP, Silbiger ML, Arrington JA, Murtagh RF (1996) Validity-guided (re)clusting with applications to image segmentation. IEEE Trans Fuzzy Syst 4:112–123

    Article  Google Scholar 

  43. Xie XL, Beni GA (1991) Validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847

    Article  Google Scholar 

  44. Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell 24(12):1650–1654

    Article  Google Scholar 

  45. Siomoncelli E, Freeman W (1995) The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings of 2nd IEEE international conference on image processing. Washington DC, pp 444–447

  46. Siomoncelli EP, Freeman WT, Adelson EH, Heege D (1992) Shiftable multiscale transform. IEEE Trans Inf Theory 38(2):587–607

    Article  Google Scholar 

  47. Hsu CT, Wu JL (1996) Multiresolution mosaic. IEEE Trans Consumer Electron 42(4):981–990

    Article  Google Scholar 

  48. Toyama K, Krumm J, Brumitt B, Meyers B (1999) Wallflower: principles and practice of background maintenance. In: Proceedings of international conference on computer vision, pp 255–261

  49. Yasuda K, Naemura T, Harashima H (2004) Thermo-key human region segmentation from video. Comput Graph Appl 24(1):26–30

    Article  Google Scholar 

Download references

Acknowledgements

Mr. D. S. Forsyth is acknowledged for his valuable comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu.

Additional information

This material is based on part of the work carried out at the SPCR laboratory of Lehigh University and the work is partially supported by the U. S. Army Research Office under grant number DAAD19-00-1-0431. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Xue, Z., Blum, R.S. et al. Concealed weapon detection and visualization in a synthesized image. Pattern Anal Applic 8, 375–389 (2006). https://doi.org/10.1007/s10044-005-0020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-005-0020-8

Keywords

Navigation